summaryrefslogtreecommitdiffstats
path: root/fs/ecryptfs/messaging.c
AgeCommit message (Collapse)AuthorFilesLines
2017-11-06ecryptfs: Delete 21 error messages for a failed memory allocationMarkus Elfring1-6/+0
Omit extra messages for a memory allocation failure in these functions. This issue was detected by using the Coccinelle software. Signed-off-by: Markus Elfring <elfring@users.sourceforge.net> Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
2017-11-06eCryptfs: use after free in ecryptfs_release_messaging()Dan Carpenter1-3/+4
We're freeing the list iterator so we should be using the _safe() version of hlist_for_each_entry(). Fixes: 88b4a07e6610 ("[PATCH] eCryptfs: Public key transport mechanism") Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
2014-07-03fs/ecryptfs/messaging.c: remove null test before kfreeFabian Frederick1-2/+1
Fix checkpatch warning: WARNING: kfree(NULL) is safe this check is probably not required Signed-off-by: Fabian Frederick <fabf@skynet.be> Cc: ecryptfs@vger.kernel.org Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
2013-06-07eCryptfs: Cocci spatch "memdup.spatch"Thomas Meyer1-2/+1
Signed-off-by: Thomas Meyer <thomas@m3y3r.de> Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
2013-03-07Merge tag 'ecryptfs-3.9-rc2-fixes' of ↵Linus Torvalds1-3/+2
git://git.kernel.org/pub/scm/linux/kernel/git/tyhicks/ecryptfs Pull ecryptfs fixes from Tyler Hicks: "Minor code cleanups and new Kconfig option to disable /dev/ecryptfs The code cleanups fix up W=1 compiler warnings and some unnecessary checks. The new Kconfig option, defaulting to N, allows the rarely used eCryptfs kernel to userspace communication channel to be compiled out. This may be the first step in it being eventually removed." Hmm. I'm not sure whether these should be called "fixes", and it probably should have gone in the merge window. But I'll let it slide. * tag 'ecryptfs-3.9-rc2-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tyhicks/ecryptfs: eCryptfs: allow userspace messaging to be disabled eCryptfs: Fix redundant error check on ecryptfs_find_daemon_by_euid() ecryptfs: ecryptfs_msg_ctx_alloc_to_free(): remove kfree() redundant null check eCryptfs: decrypt_pki_encrypted_session_key(): remove kfree() redundant null check eCryptfs: remove unneeded checks in virt_to_scatterlist() eCryptfs: Fix -Wmissing-prototypes warnings eCryptfs: Fix -Wunused-but-set-variable warnings eCryptfs: initialize payload_len in keystore.c
2013-02-27hlist: drop the node parameter from iteratorsSasha Levin1-4/+2
I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-27eCryptfs: Fix redundant error check on ecryptfs_find_daemon_by_euid()Tyler Hicks1-1/+1
It is sufficient to check the return code of ecryptfs_find_daemon_by_euid(). If it returns 0, it always sets the daemon pointer to point to a valid ecryptfs_daemon. Signed-off-by: Tyler Hicks <tyhicks@canonical.com> Reported-by: Kees Cook <keescook@chromium.org>
2013-02-12ecryptfs: ecryptfs_msg_ctx_alloc_to_free(): remove kfree() redundant null checkTim Gardner1-2/+1
smatch analysis: fs/ecryptfs/messaging.c:101 ecryptfs_msg_ctx_alloc_to_free() info: redundant null check on msg_ctx->msg calling kfree() Cc: Dustin Kirkland <dustin.kirkland@gazzang.com> Cc: ecryptfs@vger.kernel.org Signed-off-by: Tim Gardner <tim.gardner@canonical.com> Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
2012-09-21userns: Convert ecryptfs to use kuid/kgid where appropriateEric W. Biederman1-3/+2
Cc: Tyler Hicks <tyhicks@canonical.com> Cc: Dustin Kirkland <dustin.kirkland@gazzang.com> Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2012-07-08eCryptfs: Make all miscdev functions use daemon ptr in file private_dataTyler Hicks1-89/+16
Now that a pointer to a valid struct ecryptfs_daemon is stored in the private_data of an opened /dev/ecryptfs file, the remaining miscdev functions can utilize the pointer rather than looking up the ecryptfs_daemon at the beginning of each operation. The security model of /dev/ecryptfs is simplified a little bit with this patch. Upon opening /dev/ecryptfs, a per-user ecryptfs_daemon is registered. Another daemon cannot be registered for that user until the last file reference is released. During the lifetime of the ecryptfs_daemon, access checks are not performed on the /dev/ecryptfs operations because it is assumed that the application securely handles the opened file descriptor and does not unintentionally leak it to processes that are not trusted. Signed-off-by: Tyler Hicks <tyhicks@canonical.com> Cc: Sasha Levin <levinsasha928@gmail.com>
2012-07-08eCryptfs: Remove unused messaging declarations and functionTyler Hicks1-31/+0
These are no longer needed. Signed-off-by: Tyler Hicks <tyhicks@canonical.com> Cc: Sasha Levin <levinsasha928@gmail.com>
2012-04-07userns: Use cred->user_ns instead of cred->user->user_nsEric W. Biederman1-1/+1
Optimize performance and prepare for the removal of the user_ns reference from user_struct. Remove the slow long walk through cred->user->user_ns and instead go straight to cred->user_ns. Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2010-08-27ecryptfs: properly mark init functionsJerome Marchand1-1/+1
Some ecryptfs init functions are not prefixed by __init and thus not freed after initialization. This patch saved about 1kB in ecryptfs module. Signed-off-by: Jerome Marchand <jmarchan@redhat.com> Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
2010-08-09ecryptfs: Fix warning in ecryptfs_process_response()Prarit Bhargava1-1/+1
Fix warning seen with "make -j24 CONFIG_DEBUG_SECTION_MISMATCH=y V=1": fs/ecryptfs/messaging.c: In function 'ecryptfs_process_response': fs/ecryptfs/messaging.c:276: warning: 'daemon' may be used uninitialized in this function Signed-off-by: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
2010-07-28ecryptfs: Bugfix for error related to ecryptfs_hash_bucketsAndre Osterhues1-8/+9
The function ecryptfs_uid_hash wrongly assumes that the second parameter to hash_long() is the number of hash buckets instead of the number of hash bits. This patch fixes that and renames the variable ecryptfs_hash_buckets to ecryptfs_hash_bits to make it clearer. Fixes: CVE-2010-2492 Signed-off-by: Andre Osterhues <aosterhues@escrypt.com> Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-30include cleanup: Update gfp.h and slab.h includes to prepare for breaking ↵Tejun Heo1-0/+1
implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2009-04-22eCryptfs: NULL pointer dereference in ecryptfs_send_miscdev()Tyler Hicks1-82/+0
If data is NULL, msg_ctx->msg is set to NULL and then dereferenced afterwards. ecryptfs_send_raw_message() is the only place that ecryptfs_send_miscdev() is called with data being NULL, but the only caller of that function (ecryptfs_process_helo()) is never called. In short, there is currently no way to trigger the NULL pointer dereference. This patch removes the two unused functions and modifies ecryptfs_send_miscdev() to remove the NULL dereferences. Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com>
2009-04-01ecryptfs: use kzfree()Johannes Weiner1-2/+1
Use kzfree() instead of memset() + kfree(). Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi> Acked-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06eCryptfs: Replace %Z with %zMichael Halcrow1-2/+2
%Z is a gcc-ism. Using %z instead. Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com> Cc: Dustin Kirkland <dustin.kirkland@gmail.com> Cc: Eric Sandeen <sandeen@redhat.com> Cc: Tyler Hicks <tchicks@us.ibm.com> Cc: David Kleikamp <shaggy@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-11-24User namespaces: set of cleanups (v2)Serge Hallyn1-7/+6
The user_ns is moved from nsproxy to user_struct, so that a struct cred by itself is sufficient to determine access (which it otherwise would not be). Corresponding ecryptfs fixes (by David Howells) are here as well. Fix refcounting. The following rules now apply: 1. The task pins the user struct. 2. The user struct pins its user namespace. 3. The user namespace pins the struct user which created it. User namespaces are cloned during copy_creds(). Unsharing a new user_ns is no longer possible. (We could re-add that, but it'll cause code duplication and doesn't seem useful if PAM doesn't need to clone user namespaces). When a user namespace is created, its first user (uid 0) gets empty keyrings and a clean group_info. This incorporates a previous patch by David Howells. Here is his original patch description: >I suggest adding the attached incremental patch. It makes the following >changes: > > (1) Provides a current_user_ns() macro to wrap accesses to current's user > namespace. > > (2) Fixes eCryptFS. > > (3) Renames create_new_userns() to create_user_ns() to be more consistent > with the other associated functions and because the 'new' in the name is > superfluous. > > (4) Moves the argument and permission checks made for CLONE_NEWUSER to the > beginning of do_fork() so that they're done prior to making any attempts > at allocation. > > (5) Calls create_user_ns() after prepare_creds(), and gives it the new creds > to fill in rather than have it return the new root user. I don't imagine > the new root user being used for anything other than filling in a cred > struct. > > This also permits me to get rid of a get_uid() and a free_uid(), as the > reference the creds were holding on the old user_struct can just be > transferred to the new namespace's creator pointer. > > (6) Makes create_user_ns() reset the UIDs and GIDs of the creds under > preparation rather than doing it in copy_creds(). > >David >Signed-off-by: David Howells <dhowells@redhat.com> Changelog: Oct 20: integrate dhowells comments 1. leave thread_keyring alone 2. use current_user_ns() in set_user() Signed-off-by: Serge Hallyn <serue@us.ibm.com>
2008-11-14CRED: Wrap task credential accesses in the eCryptFS filesystemDavid Howells1-8/+10
Wrap access to task credentials so that they can be separated more easily from the task_struct during the introduction of COW creds. Change most current->(|e|s|fs)[ug]id to current_(|e|s|fs)[ug]id(). Change some task->e?[ug]id to task_e?[ug]id(). In some places it makes more sense to use RCU directly rather than a convenient wrapper; these will be addressed by later patches. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Cc: Mike Halcrow <mhalcrow@us.ibm.com> Cc: Phillip Hellewell <phillip@hellewell.homeip.net> Cc: ecryptfs-devel@lists.sourceforge.net Signed-off-by: James Morris <jmorris@namei.org>
2008-10-16eCryptfs: remove netlink transportTyler Hicks1-87/+31
The netlink transport code has not worked for a while and the miscdev transport is a simpler solution. This patch removes the netlink code and makes the miscdev transport the only eCryptfs kernel to userspace transport. Signed-off-by: Tyler Hicks <tyhicks@linux.vnet.ibm.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: Dustin Kirkland <kirkland@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29eCryptfs: make key module subsystem respect namespacesMichael Halcrow1-21/+60
Make eCryptfs key module subsystem respect namespaces. Since I will be removing the netlink interface in a future patch, I just made changes to the netlink.c code so that it will not break the build. With my recent patches, the kernel module currently defaults to the device handle interface rather than the netlink interface. [akpm@linux-foundation.org: export free_user_ns()] Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29eCryptfs: integrate eCryptfs device handle into the module.Michael Halcrow1-161/+318
Update the versioning information. Make the message types generic. Add an outgoing message queue to the daemon struct. Make the functions to parse and write the packet lengths available to the rest of the module. Add functions to create and destroy the daemon structs. Clean up some of the comments and make the code a little more consistent with itself. [akpm@linux-foundation.org: printk fixes] Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-12-23ecryptfs: fix unlocking in error pathsEric Sandeen1-0/+1
Thanks to Josef Bacik for finding these. A couple of ecryptfs error paths don't properly unlock things they locked. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Cc: Josef Bacik <jbacik@redhat.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16eCryptfs: remove assignments in if-statementsMichael Halcrow1-2/+3
Remove assignments in if-statements. Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-21Detach sched.h from mm.hAlexey Dobriyan1-1/+1
First thing mm.h does is including sched.h solely for can_do_mlock() inline function which has "current" dereference inside. By dealing with can_do_mlock() mm.h can be detached from sched.h which is good. See below, why. This patch a) removes unconditional inclusion of sched.h from mm.h b) makes can_do_mlock() normal function in mm/mlock.c c) exports can_do_mlock() to not break compilation d) adds sched.h inclusions back to files that were getting it indirectly. e) adds less bloated headers to some files (asm/signal.h, jiffies.h) that were getting them indirectly Net result is: a) mm.h users would get less code to open, read, preprocess, parse, ... if they don't need sched.h b) sched.h stops being dependency for significant number of files: on x86_64 allmodconfig touching sched.h results in recompile of 4083 files, after patch it's only 3744 (-8.3%). Cross-compile tested on all arm defconfigs, all mips defconfigs, all powerpc defconfigs, alpha alpha-up arm i386 i386-up i386-defconfig i386-allnoconfig ia64 ia64-up m68k mips parisc parisc-up powerpc powerpc-up s390 s390-up sparc sparc-up sparc64 sparc64-up um-x86_64 x86_64 x86_64-up x86_64-defconfig x86_64-allnoconfig as well as my two usual configs. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16[PATCH] ecryptfs: fix forgotten format specifierThomas Hisch1-1/+2
Add format specifier %d for uid in ecryptfs_printk Signed-off-by: Thomas Hisch <t.hisch@gmail.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12[PATCH] eCryptfs: Generalize metadata read/writeMichael Halcrow1-8/+10
Generalize the metadata reading and writing mechanisms, with two targets for now: metadata in file header and metadata in the user.ecryptfs xattr of the lower file. [akpm@osdl.org: printk warning fix] [bunk@stusta.de: make some needlessly global code static] Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12[PATCH] eCryptfs: Public key; packet managementMichael Halcrow1-1/+9
Public key support code. This reads and writes packets in the header that contain public key encrypted file keys. It calls the messaging code in the previous patch to send and receive encryption and decryption request packets from the userspace daemon. [akpm@osdl.org: cleab fix] Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com> Cc: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12[PATCH] eCryptfs: Public key transport mechanismMichael Halcrow1-0/+505
This is the transport code for public key functionality in eCryptfs. It manages encryption/decryption request queues with a transport mechanism. Currently, netlink is the only implemented transport. Each inode has a unique File Encryption Key (FEK). Under passphrase, a File Encryption Key Encryption Key (FEKEK) is generated from a salt/passphrase combo on mount. This FEKEK encrypts each FEK and writes it into the header of each file using the packet format specified in RFC 2440. This is all symmetric key encryption, so it can all be done via the kernel crypto API. These new patches introduce public key encryption of the FEK. There is no asymmetric key encryption support in the kernel crypto API, so eCryptfs pushes the FEK encryption and decryption out to a userspace daemon. After considering our requirements and determining the complexity of using various transport mechanisms, we settled on netlink for this communication. eCryptfs stores authentication tokens into the kernel keyring. These tokens correlate with individual keys. For passphrase mode of operation, the authentication token contains the symmetric FEKEK. For public key, the authentication token contains a PKI type and an opaque data blob managed by individual PKI modules in userspace. Each user who opens a file under an eCryptfs partition mounted in public key mode must be running a daemon. That daemon has the user's credentials and has access to all of the keys to which the user should have access. The daemon, when started, initializes the pluggable PKI modules available on the system and registers itself with the eCryptfs kernel module. Userspace utilities register public key authentication tokens into the user session keyring. These authentication tokens correlate key signatures with PKI modules and PKI blobs. The PKI blobs contain PKI-specific information necessary for the PKI module to carry out asymmetric key encryption and decryption. When the eCryptfs module parses the header of an existing file and finds a Tag 1 (Public Key) packet (see RFC 2440), it reads in the public key identifier (signature). The asymmetrically encrypted FEK is in the Tag 1 packet; eCryptfs puts together a decrypt request packet containing the signature and the encrypted FEK, then it passes it to the daemon registered for the current->euid via a netlink unicast to the PID of the daemon, which was registered at the time the daemon was started by the user. The daemon actually just makes calls to libecryptfs, which implements request packet parsing and manages PKI modules. libecryptfs grabs the public key authentication token for the given signature from the user session keyring. This auth tok tells libecryptfs which PKI module should receive the request. libecryptfs then makes a decrypt() call to the PKI module, and it passes along the PKI block from the auth tok. The PKI uses the blob to figure out how it should decrypt the data passed to it; it performs the decryption and passes the decrypted data back to libecryptfs. libecryptfs then puts together a reply packet with the decrypted FEK and passes that back to the eCryptfs module. The eCryptfs module manages these request callouts to userspace code via message context structs. The module maintains an array of message context structs and places the elements of the array on two lists: a free and an allocated list. When eCryptfs wants to make a request, it moves a msg ctx from the free list to the allocated list, sets its state to pending, and fires off the message to the user's registered daemon. When eCryptfs receives a netlink message (via the callback), it correlates the msg ctx struct in the alloc list with the data in the message itself. The msg->index contains the offset of the array of msg ctx structs. It verifies that the registered daemon PID is the same as the PID of the process that sent the message. It also validates a sequence number between the received packet and the msg ctx. Then, it copies the contents of the message (the reply packet) into the msg ctx struct, sets the state in the msg ctx to done, and wakes up the process that was sleeping while waiting for the reply. The sleeping process was whatever was performing the sys_open(). This process originally called ecryptfs_send_message(); it is now in ecryptfs_wait_for_response(). When it wakes up and sees that the msg ctx state was set to done, it returns a pointer to the message contents (the reply packet) and returns. If all went well, this packet contains the decrypted FEK, which is then copied into the crypt_stat struct, and life continues as normal. The case for creation of a new file is very similar, only instead of a decrypt request, eCryptfs sends out an encrypt request. > - We have a great clod of key mangement code in-kernel. Why is that > not suitable (or growable) for public key management? eCryptfs uses Howells' keyring to store persistent key data and PKI state information. It defers public key cryptographic transformations to userspace code. The userspace data manipulation request really is orthogonal to key management in and of itself. What eCryptfs basically needs is a secure way to communicate with a particular daemon for a particular task doing a syscall, based on the UID. Nothing running under another UID should be able to access that channel of communication. > - Is it appropriate that new infrastructure for public key > management be private to a particular fs? The messaging.c file contains a lot of code that, perhaps, could be extracted into a separate kernel service. In essence, this would be a sort of request/reply mechanism that would involve a userspace daemon. I am not aware of anything that does quite what eCryptfs does, so I was not aware of any existing tools to do just what we wanted. > What happens if one of these daemons exits without sending a quit > message? There is a stale uid<->pid association in the hash table for that user. When the user registers a new daemon, eCryptfs cleans up the old association and generates a new one. See ecryptfs_process_helo(). > - _why_ does it use netlink? Netlink provides the transport mechanism that would minimize the complexity of the implementation, given that we can have multiple daemons (one per user). I explored the possibility of using relayfs, but that would involve having to introduce control channels and a protocol for creating and tearing down channels for the daemons. We do not have to worry about any of that with netlink. Signed-off-by: Michael Halcrow <mhalcrow@us.ibm.com> Cc: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>