Age | Commit message (Collapse) | Author | Files | Lines |
|
implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/teigland/dlm
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/teigland/dlm:
dlm: always use GFP_NOFS
|
|
That is "success", "unknown", "through", "performance", "[re|un]mapping"
, "access", "default", "reasonable", "[con]currently", "temperature"
, "channel", "[un]used", "application", "example","hierarchy", "therefore"
, "[over|under]flow", "contiguous", "threshold", "enough" and others.
Signed-off-by: André Goddard Rosa <andre.goddard@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
Replace all GFP_KERNEL and ls_allocation with GFP_NOFS.
ls_allocation would be GFP_KERNEL for userland lockspaces
and GFP_NOFS for file system lockspaces.
It was discovered that any lockspaces on the system can
affect all others by triggering memory reclaim in the
file system which could in turn call back into the dlm
to acquire locks, deadlocking dlm threads that were
shared by all lockspaces, like dlm_recv.
Signed-off-by: David Teigland <teigland@redhat.com>
|
|
Fix a regression from the original addition of nfs lock support
586759f03e2e9031ac5589912a51a909ed53c30a. When a synchronous
(non-nfs) plock completes, the waiting thread will wake up and
free the op struct. This races with the user thread in
dev_write() which goes on to read the op's callback field to
check if the lock is async and needs a callback. This check
can happen on the freed op. The fix is to note the callback
value before the op can be freed.
Signed-off-by: David Teigland <teigland@redhat.com>
|
|
dlm_posix_get fills out the relevant fields in the file_lock before
returning when there is a lock conflict, but doesn't clean out any of
the other fields in the file_lock.
When nfsd does a NFSv4 lockt call, it sets the fl_lmops to
nfsd_posix_mng_ops before calling the lower fs. When the lock comes back
after testing a lock on GFS2, it still has that field set. This confuses
nfsd into thinking that the file_lock is a nfsd4 lock.
Fix this by making DLM reinitialize the file_lock before copying the
fields from the conflicting lock.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: David Teigland <teigland@redhat.com>
|
|
We should use the original copy of the file_lock, fl, instead
of the copy, flc in the lockd notify callback. The range in flc has
been modified by posix_lock_file(), so it will not match a copy of the
lock in lockd.
Signed-off-by: David Teigland <teigland@redhat.com>
|
|
Use a special error value FILE_LOCK_DEFERRED to mean that a locking
operation returned asynchronously. This is returned by
posix_lock_file() for sleeping locks to mean that the lock has been
queued on the block list, and will be woken up when it might become
available and needs to be retried (either fl_lmops->fl_notify() is
called or fl_wait is woken up).
f_op->lock() to mean either the above, or that the filesystem will
call back with fl_lmops->fl_grant() when the result of the locking
operation is known. The filesystem can do this for sleeping as well
as non-sleeping locks.
This is to make sure, that return values of -EAGAIN and -EINPROGRESS by
filesystems are not mistaken to mean an asynchronous locking.
This also makes error handling in fs/locks.c and lockd/svclock.c slightly
cleaner.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Matthew Wilcox <matthew@wil.cx>
Cc: David Teigland <teigland@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The return value on writes to the plock device should be
the number of bytes written. It was returning 0 instead
when an nfs lock callback was involved.
Reported-by: Nathan Straz <nstraz@redhat.com>
Signed-off-by: David Teigland <teigland@redhat.com>
|
|
Move the code that handles cluster posix locks from gfs2 into the dlm
so that it can be used by both gfs2 and ocfs2.
Signed-off-by: David Teigland <teigland@redhat.com>
|