summaryrefslogtreecommitdiffstats
path: root/fs/cachefiles/cache.c
AgeCommit message (Collapse)AuthorFilesLines
2022-01-21cachefiles: Check that the backing filesystem supports tmpfilesDavid Howells1-0/+2
Add a check that the backing filesystem supports the creation of tmpfiles[1]. Suggested-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/568749bd7cc02908ecf6f3d6a611b6f9cf5c4afd.camel@kernel.org/ [1] Link: https://lore.kernel.org/r/164251406558.3435901.1249023136670058162.stgit@warthog.procyon.org.uk/ # v1
2022-01-21cachefiles: Explain checks in a commentDavid Howells1-1/+7
Add a comment to explain the checks that cachefiles is making of the backing filesystem[1]. Suggested-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/568749bd7cc02908ecf6f3d6a611b6f9cf5c4afd.camel@kernel.org/ [1] Link: https://lore.kernel.org/r/164251405621.3435901.771439791811515914.stgit@warthog.procyon.org.uk/ # v1
2022-01-21cachefiles: Calculate the blockshift in terms of bytes, not pagesDavid Howells1-5/+2
Cachefiles keeps track of how much space is available on the backing filesystem and refuses new writes permission to start if there isn't enough (we especially don't want ENOSPC happening). It also tracks the amount of data pending in DIO writes (cache->b_writing) and reduces the amount of free space available by this amount before deciding if it can set up a new write. However, the old fscache I/O API was very much page-granularity dependent and, as such, cachefiles's cache->bshift was meant to be a multiplier to get from PAGE_SIZE to block size (ie. a blocksize of 512 would give a shift of 3 for a 4KiB page) - and this was incorrectly being used to turn the number of bytes in a DIO write into a number of blocks, leading to a massive over estimation of the amount of data in flight. Fix this by changing cache->bshift to be a multiplier from bytes to blocksize and deal with quantities of blocks, not quantities of pages. Fix also the rounding in the calculation in cachefiles_write() which needs a "- 1" inserting. Fixes: 047487c947e8 ("cachefiles: Implement the I/O routines") Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/164251398954.3435901.7138806620218474123.stgit@warthog.procyon.org.uk/ # v1
2022-01-12Merge tag 'fscache-rewrite-20220111' of ↵Linus Torvalds1-0/+378
git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs Pull fscache rewrite from David Howells: "This is a set of patches that rewrites the fscache driver and the cachefiles driver, significantly simplifying the code compared to what's upstream, removing the complex operation scheduling and object state machine in favour of something much smaller and simpler. The series is structured such that the first few patches disable fscache use by the network filesystems using it, remove the cachefiles driver entirely and as much of the fscache driver as can be got away with without causing build failures in the network filesystems. The patches after that recreate fscache and then cachefiles, attempting to add the pieces in a logical order. Finally, the filesystems are reenabled and then the very last patch changes the documentation. [!] Note: I have dropped the cifs patch for the moment, leaving local caching in cifs disabled. I've been having trouble getting that working. I think I have it done, but it needs more testing (there seem to be some test failures occurring with v5.16 also from xfstests), so I propose deferring that patch to the end of the merge window. WHY REWRITE? ============ Fscache's operation scheduling API was intended to handle sequencing of cache operations, which were all required (where possible) to run asynchronously in parallel with the operations being done by the network filesystem, whilst allowing the cache to be brought online and offline and to interrupt service for invalidation. With the advent of the tmpfile capacity in the VFS, however, an opportunity arises to do invalidation much more simply, without having to wait for I/O that's actually in progress: Cachefiles can simply create a tmpfile, cut over the file pointer for the backing object attached to a cookie and abandon the in-progress I/O, dismissing it upon completion. Future work here would involve using Omar Sandoval's vfs_link() with AT_LINK_REPLACE[1] to allow an extant file to be displaced by a new hard link from a tmpfile as currently I have to unlink the old file first. These patches can also simplify the object state handling as I/O operations to the cache don't all have to be brought to a stop in order to invalidate a file. To that end, and with an eye on to writing a new backing cache model in the future, I've taken the opportunity to simplify the indexing structure. I've separated the index cookie concept from the file cookie concept by C type now. The former is now called a "volume cookie" (struct fscache_volume) and there is a container of file cookies. There are then just the two levels. All the index cookie levels are collapsed into a single volume cookie, and this has a single printable string as a key. For instance, an AFS volume would have a key of something like "afs,example.com,1000555", combining the filesystem name, cell name and volume ID. This is freeform, but must not have '/' chars in it. I've also eliminated all pointers back from fscache into the network filesystem. This required the duplication of a little bit of data in the cookie (cookie key, coherency data and file size), but it's not actually that much. This gets rid of problems with making sure we keep netfs data structures around so that the cache can access them. These patches mean that most of the code that was in the drivers before is simply gone and those drivers are now almost entirely new code. That being the case, there doesn't seem any particular reason to try and maintain bisectability across it. Further, there has to be a point in the middle where things are cut over as there's a single point everything has to go through (ie. /dev/cachefiles) and it can't be in use by two drivers at once. ISSUES YET OUTSTANDING ====================== There are some issues still outstanding, unaddressed by this patchset, that will need fixing in future patchsets, but that don't stop this series from being usable: (1) The cachefiles driver needs to stop using the backing filesystem's metadata to store information about what parts of the cache are populated. This is not reliable with modern extent-based filesystems. Fixing this is deferred to a separate patchset as it involves negotiation with the network filesystem and the VM as to how much data to download to fulfil a read - which brings me on to (2)... (2) NFS (and CIFS with the dropped patch) do not take account of how the cache would like I/O to be structured to meet its granularity requirements. Previously, the cache used page granularity, which was fine as the network filesystems also dealt in page granularity, and the backing filesystem (ext4, xfs or whatever) did whatever it did out of sight. However, we now have folios to deal with and the cache will now have to store its own metadata to track its contents. The change I'm looking at making for cachefiles is to store content bitmaps in one or more xattrs and making a bit in the map correspond to something like a 256KiB block. However, the size of an xattr and the fact that they have to be read/updated in one go means that I'm looking at covering 1GiB of data per 512-byte map and storing each map in an xattr. Cachefiles has the potential to grow into a fully fledged filesystem of its very own if I'm not careful. However, I'm also looking at changing things even more radically and going to a different model of how the cache is arranged and managed - one that's more akin to the way, say, openafs does things - which brings me on to (3)... (3) The way cachefilesd does culling is very inefficient for large caches and it would be better to move it into the kernel if I can as cachefilesd has to keep asking the kernel if it can cull a file. Changing the way the backend works would allow this to be addressed. BITS THAT MAY BE CONTROVERSIAL ============================== There are some bits I've added that may be controversial: (1) I've provided a flag, S_KERNEL_FILE, that cachefiles uses to check if a files is already being used by some other kernel service (e.g. a duplicate cachefiles cache in the same directory) and reject it if it is. This isn't entirely necessary, but it helps prevent accidental data corruption. I don't want to use S_SWAPFILE as that has other effects, but quite possibly swapon() should set S_KERNEL_FILE too. Note that it doesn't prevent userspace from interfering, though perhaps it should. (I have made it prevent a marked directory from being rmdir-able). (2) Cachefiles wants to keep the backing file for a cookie open whilst we might need to write to it from network filesystem writeback. The problem is that the network filesystem unuses its cookie when its file is closed, and so we have nothing pinning the cachefiles file open and it will get closed automatically after a short time to avoid EMFILE/ENFILE problems. Reopening the cache file, however, is a problem if this is being done due to writeback triggered by exit(). Some filesystems will oops if we try to open a file in that context because they want to access current->fs or suchlike. To get around this, I added the following: (A) An inode flag, I_PINNING_FSCACHE_WB, to be set on a network filesystem inode to indicate that we have a usage count on the cookie caching that inode. (B) A flag in struct writeback_control, unpinned_fscache_wb, that is set when __writeback_single_inode() clears the last dirty page from i_pages - at which point it clears I_PINNING_FSCACHE_WB and sets this flag. This has to be done here so that clearing I_PINNING_FSCACHE_WB can be done atomically with the check of PAGECACHE_TAG_DIRTY that clears I_DIRTY_PAGES. (C) A function, fscache_set_page_dirty(), which if it is not set, sets I_PINNING_FSCACHE_WB and calls fscache_use_cookie() to pin the cache resources. (D) A function, fscache_unpin_writeback(), to be called by ->write_inode() to unuse the cookie. (E) A function, fscache_clear_inode_writeback(), to be called when the inode is evicted, before clear_inode() is called. This cleans up any lingering I_PINNING_FSCACHE_WB. The network filesystem can then use these tools to make sure that fscache_write_to_cache() can write locally modified data to the cache as well as to the server. For the future, I'm working on write helpers for netfs lib that should allow this facility to be removed by keeping track of the dirty regions separately - but that's incomplete at the moment and is also going to be affected by folios, one way or another, since it deals with pages" Link: https://lore.kernel.org/all/510611.1641942444@warthog.procyon.org.uk/ Tested-by: Dominique Martinet <asmadeus@codewreck.org> # 9p Tested-by: kafs-testing@auristor.com # afs Tested-by: Jeff Layton <jlayton@kernel.org> # ceph Tested-by: Dave Wysochanski <dwysocha@redhat.com> # nfs Tested-by: Daire Byrne <daire@dneg.com> # nfs * tag 'fscache-rewrite-20220111' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: (67 commits) 9p, afs, ceph, nfs: Use current_is_kswapd() rather than gfpflags_allow_blocking() fscache: Add a tracepoint for cookie use/unuse fscache: Rewrite documentation ceph: add fscache writeback support ceph: conversion to new fscache API nfs: Implement cache I/O by accessing the cache directly nfs: Convert to new fscache volume/cookie API 9p: Copy local writes to the cache when writing to the server 9p: Use fscache indexing rewrite and reenable caching afs: Skip truncation on the server of data we haven't written yet afs: Copy local writes to the cache when writing to the server afs: Convert afs to use the new fscache API fscache, cachefiles: Display stat of culling events fscache, cachefiles: Display stats of no-space events cachefiles: Allow cachefiles to actually function fscache, cachefiles: Store the volume coherency data cachefiles: Implement the I/O routines cachefiles: Implement cookie resize for truncate cachefiles: Implement begin and end I/O operation cachefiles: Implement backing file wrangling ...
2022-01-07fscache, cachefiles: Display stats of no-space eventsDavid Howells1-3/+15
Add stat counters of no-space events that caused caching not to happen and display in /proc/fs/fscache/stats. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/163819653216.215744.17210522251617386509.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/163906958369.143852.7257100711818401748.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/163967166917.1823006.14842444049198947892.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/164021566184.640689.4417328329632709265.stgit@warthog.procyon.org.uk/ # v4
2022-01-07cachefiles: Implement backing file wranglingDavid Howells1-1/+31
Implement the wrangling of backing files, including the following pieces: (1) Lookup and creation of a file on disk, using a tmpfile if the file isn't yet present. The file is then opened, sized for DIO and the file handle is attached to the cachefiles_object struct. The inode is marked to indicate that it's in use by a kernel service. (2) Invalidation of an object, creating a tmpfile and switching the file pointer in the cachefiles object. (3) Committing a file to disk, including setting the coherency xattr on it and, if necessary, creating a hard link to it. Note that this would be a good place to use Omar Sandoval's vfs_link() with AT_LINK_REPLACE[1] as I may have to unlink an old file before I can link a tmpfile into place. (4) Withdrawal of open objects when a cache is being withdrawn or a cookie is relinquished. This involves committing or discarding the file. Changes ======= ver #2: - Fix logging of wrong error[1]. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/20211203094950.GA2480@kili/ [1] Link: https://lore.kernel.org/r/163819644097.215744.4505389616742411239.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/163906949512.143852.14222856795032602080.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/163967158526.1823006.17482695321424642675.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/164021557060.640689.16373541458119269871.stgit@warthog.procyon.org.uk/ # v4
2022-01-07cachefiles: Implement volume supportDavid Howells1-1/+27
Implement support for creating the directory layout for a volume on disk and setting up and withdrawing volume caching. Each volume has a directory named for the volume key under the root of the cache (prefixed with an 'I' to indicate to cachefilesd that it's an index) and then creates a bunch of hash bucket subdirectories under that (named as '@' plus a hex number) in which cookie files will be created. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/163819635314.215744.13081522301564537723.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/163906936397.143852.17788457778396467161.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/163967143860.1823006.7185205806080225038.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/164021545212.640689.5064821392307582927.stgit@warthog.procyon.org.uk/ # v4
2022-01-07cachefiles: Implement cache registration and withdrawalDavid Howells1-0/+207
Do the following: (1) Fill out cachefiles_daemon_add_cache() so that it sets up the cache directories and registers the cache with cachefiles. (2) Add a function to do the top-level part of cache withdrawal and unregistration. (3) Add a function to sync a cache. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/163819633175.215744.10857127598041268340.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/163906935445.143852.15545194974036410029.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/163967142904.1823006.244055483596047072.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/164021543872.640689.14370017789605073222.stgit@warthog.procyon.org.uk/ # v4
2022-01-07cachefiles: Provide a function to check how much space there isDavid Howells1-0/+103
Provide a function to check how much space there is. This also flips the state on the cache and will signal the daemon to inform it of the change and to ask it to do some culling if necessary. We will also need to subtract the amount of data currently being written to the cache (cache->b_writing) from the amount of available space to avoid hitting ENOSPC accidentally. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/163819629322.215744.13457425294680841213.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/163906930100.143852.1681026700865762069.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/163967140058.1823006.7781243664702837128.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/164021539957.640689.12477177372616805706.stgit@warthog.procyon.org.uk/ # v4