Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"Highlights:
- chunks that have been trimmed and unchanged since last mount are
tracked and skipped on repeated trims
- use hw assissed crc32c on more arches, speedups if native
instructions or optimized implementation is available
- the RAID56 incompat bit is automatically removed when the last
block group of that type is removed
Fixes:
- fsync fix for reflink on NODATACOW files that could lead to ENOSPC
- fix data loss after inode eviction, renaming it, and fsync it
- fix fsync not persisting dentry deletions due to inode evictions
- update ctime/mtime/iversion after hole punching
- fix compression type validation (reported by KASAN)
- send won't be allowed to start when relocation is in progress, this
can cause spurious errors or produce incorrect send stream
Core:
- new tracepoints for space update
- tree-checker: better check for end of extents for some tree items
- preparatory work for more checksum algorithms
- run delayed iput at unlink time and don't push the work to cleaner
thread where it's not properly throttled
- wrap block mapping to structures and helpers, base for further
refactoring
- split large files, part 1:
- space info handling
- block group reservations
- delayed refs
- delayed allocation
- other cleanups and refactoring"
* tag 'for-5.3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (103 commits)
btrfs: fix memory leak of path on error return path
btrfs: move the subvolume reservation stuff out of extent-tree.c
btrfs: migrate the delalloc space stuff to it's own home
btrfs: migrate btrfs_trans_release_chunk_metadata
btrfs: migrate the delayed refs rsv code
btrfs: Evaluate io_tree in find_lock_delalloc_range()
btrfs: migrate the global_block_rsv helpers to block-rsv.c
btrfs: migrate the block-rsv code to block-rsv.c
btrfs: stop using block_rsv_release_bytes everywhere
btrfs: cleanup the target logic in __btrfs_block_rsv_release
btrfs: export __btrfs_block_rsv_release
btrfs: export btrfs_block_rsv_add_bytes
btrfs: move btrfs_block_rsv definitions into it's own header
btrfs: Simplify update of space_info in __reserve_metadata_bytes()
btrfs: unexport can_overcommit
btrfs: move reserve_metadata_bytes and supporting code to space-info.c
btrfs: move dump_space_info to space-info.c
btrfs: export block_rsv_use_bytes
btrfs: move btrfs_space_info_add_*_bytes to space-info.c
btrfs: move the space info update macro to space-info.h
...
|
|
git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull common SETFLAGS/FSSETXATTR parameter checking from Darrick Wong:
"Here's a patch series that sets up common parameter checking functions
for the FS_IOC_SETFLAGS and FS_IOC_FSSETXATTR ioctl implementations.
The goal here is to reduce the amount of behaviorial variance between
the filesystems where those ioctls originated (ext2 and XFS,
respectively) and everybody else.
- Standardize parameter checking for the SETFLAGS and FSSETXATTR
ioctls (which were the file attribute setters for ext4 and xfs and
have now been hoisted to the vfs)
- Only allow the DAX flag to be set on files and directories"
* tag 'vfs-fix-ioctl-checking-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
vfs: only allow FSSETXATTR to set DAX flag on files and dirs
vfs: teach vfs_ioc_fssetxattr_check to check extent size hints
vfs: teach vfs_ioc_fssetxattr_check to check project id info
vfs: create a generic checking function for FS_IOC_FSSETXATTR
vfs: create a generic checking and prep function for FS_IOC_SETFLAGS
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
Pull fsnotify updates from Jan Kara:
"This contains cleanups of the fsnotify name removal hook and also a
patch to disable fanotify permission events for 'proc' filesystem"
* tag 'fsnotify_for_v5.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs:
fsnotify: get rid of fsnotify_nameremove()
fsnotify: move fsnotify_nameremove() hook out of d_delete()
configfs: call fsnotify_rmdir() hook
debugfs: call fsnotify_{unlink,rmdir}() hooks
debugfs: simplify __debugfs_remove_file()
devpts: call fsnotify_unlink() hook
tracefs: call fsnotify_{unlink,rmdir}() hooks
rpc_pipefs: call fsnotify_{unlink,rmdir}() hooks
btrfs: call fsnotify_rmdir() hook
fsnotify: add empty fsnotify_{unlink,rmdir}() hooks
fanotify: Disallow permission events for proc filesystem
|
|
We have code for data and metadata reservations for delalloc. There's
quite a bit of code here, and it's used in a lot of places so I've
separated it out to it's own file. inode.c and file.c are already
pretty large, and this code is complicated enough to live in its own
space.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Migrate the struct definition and the one helper that's in ctree.h into
space-info.h
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Create a generic checking function for the incoming FS_IOC_FSSETXATTR
fsxattr values so that we can standardize some of the implementation
behaviors.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Jan Kara <jack@suse.cz>
|
|
Create a generic function to check incoming FS_IOC_SETFLAGS flag values
and later prepare the inode for updates so that we can standardize the
implementations that follow ext4's flag values.
Note that the efivarfs implementation no longer fails a no-op SETFLAGS
without CAP_LINUX_IMMUTABLE since that's the behavior in ext*.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: David Sterba <dsterba@suse.com>
Reviewed-by: Bob Peterson <rpeterso@redhat.com>
|
|
back to COW without data reservation
[BUG]
The following script can cause unexpected fsync failure:
#!/bin/bash
dev=/dev/test/test
mnt=/mnt/btrfs
mkfs.btrfs -f $dev -b 512M > /dev/null
mount $dev $mnt -o nospace_cache
# Prealloc one extent
xfs_io -f -c "falloc 8k 64m" $mnt/file1
# Fill the remaining data space
xfs_io -f -c "pwrite 0 -b 4k 512M" $mnt/padding
sync
# Write into the prealloc extent
xfs_io -c "pwrite 1m 16m" $mnt/file1
# Reflink then fsync, fsync would fail due to ENOSPC
xfs_io -c "reflink $mnt/file1 8k 0 4k" -c "fsync" $mnt/file1
umount $dev
The fsync fails with ENOSPC, and the last page of the buffered write is
lost.
[CAUSE]
This is caused by:
- Btrfs' back reference only has extent level granularity
So write into shared extent must be COWed even only part of the extent
is shared.
So for above script we have:
- fallocate
Create a preallocated extent where we can do NOCOW write.
- fill all the remaining data and unallocated space
- buffered write into preallocated space
As we have not enough space available for data and the extent is not
shared (yet) we fall into NOCOW mode.
- reflink
Now part of the large preallocated extent is shared, later write
into that extent must be COWed.
- fsync triggers writeback
But now the extent is shared and therefore we must fallback into COW
mode, which fails with ENOSPC since there's not enough space to
allocate data extents.
[WORKAROUND]
The workaround is to ensure any buffered write in the related extents
(not just the reflink source range) get flushed before reflink/dedupe,
so that NOCOW writes succeed that happened before reflinking succeed.
The workaround is expensive, we could do it better by only flushing
NOCOW range, but that needs extra accounting for NOCOW range.
For now, fix the possible data loss first.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This will allow generating fsnotify delete events after the
fsnotify_nameremove() hook is removed from d_delete().
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Jan Kara <jack@suse.cz>
|
|
After the recent series of cleanups in the properties and xattrs modules
that landed in the 5.2 merge window, we ended up with a regression where
after deleting the compression xattr property through the setflags ioctl,
we don't set the BTRFS_INODE_COPY_EVERYTHING flag in the inode anymore.
As a consequence, if the inode was fsync'ed when it had the compression
property set, after deleting the compression property through the setflags
ioctl and fsync'ing again the inode, the log will still contain the
compression xattr, because the inode did not had that bit set, which
made the fsync not delete all xattrs from the log and copy all xattrs
from the subvolume tree to the log tree.
This regression happens due to the fact that that series of cleanups
made btrfs_set_prop() call the old function do_setxattr() (which is now
named btrfs_setxattr()), and not the old version of btrfs_setxattr(),
which is now called btrfs_setxattr_trans().
Fix this by setting the BTRFS_INODE_COPY_EVERYTHING bit in the current
btrfs_setxattr() function and remove it from everywhere else, including
its setup at btrfs_ioctl_setflags(). This is cleaner, avoids similar
regressions in the future, and centralizes the setup of the bit. After
all, the need to setup this bit should only be in the xattrs module,
since it is an implementation of xattrs.
Fixes: 04e6863b19c722 ("btrfs: split btrfs_setxattr calls regarding transaction")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
There isn't real use of making struct inode::i_mode a local copy, it
saves a dereference one time, not much. Just use it directly.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
btrfs_inode_flags_to_fsflags() is copied into @old_fsflags and used only
once. Instead used it directly.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Instead of updating the binode::flags directly, update a local copy, and
then at the point of no error, store copy it to the binode::flags.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The patch ("btrfs: start transaction in btrfs_ioctl_setflags()") used
btrfs_set_prop() instead of btrfs_set_prop_trans() by which now the
inode::i_flags update functions such as
btrfs_sync_inode_flags_to_i_flags() and btrfs_update_inode() is called
in btrfs_ioctl_setflags() instead of
btrfs_set_prop_trans()->btrfs_setxattr() as earlier. So the
inode::i_flags remains unmodified until the thread has checked all the
conditions. So drop the saved inode::i_flags in out_i_flags.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Inode attribute can be set through the FS_IOC_SETFLAGS ioctl. This
flags also includes compression attribute for which we would set/reset
the compression extended attribute. While doing this there is a bit of
duplicate code, the following things happens twice:
- start/end_transaction
- inode_inc_iversion()
- current_time update to inode->i_ctime
- and btrfs_update_inode()
These are updated both at btrfs_ioctl_setflags() and btrfs_set_props()
as well. This patch merges these two duplicate codes at
btrfs_ioctl_setflags().
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
In preparation to merge multiple transactions when setting the
compression flags, split btrfs_set_props() validation part outside of
it.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Send operates on read only trees and expects them to never change while it
is using them. This is part of its initial design, and this expection is
due to two different reasons:
1) When it was introduced, no operations were allowed to modifiy read-only
subvolumes/snapshots (including defrag for example).
2) It keeps send from having an impact on other filesystem operations.
Namely send does not need to keep locks on the trees nor needs to hold on
to transaction handles and delay transaction commits. This ends up being
a consequence of the former reason.
However the deduplication feature was introduced later (on September 2013,
while send was introduced in July 2012) and it allowed for deduplication
with destination files that belong to read-only trees (subvolumes and
snapshots).
That means that having a send operation (either full or incremental) running
in parallel with a deduplication that has the destination inode in one of
the trees used by the send operation, can result in tree nodes and leaves
getting freed and reused while send is using them. This problem is similar
to the problem solved for the root nodes getting freed and reused when a
snapshot is made against one tree that is currenly being used by a send
operation, fixed in commits [1] and [2]. These commits explain in detail
how the problem happens and the explanation is valid for any node or leaf
that is not the root of a tree as well. This problem was also discussed
and explained recently in a thread [3].
The problem is very easy to reproduce when using send with large trees
(snapshots) and just a few concurrent deduplication operations that target
files in the trees used by send. A stress test case is being sent for
fstests that triggers the issue easily. The most common error to hit is
the send ioctl return -EIO with the following messages in dmesg/syslog:
[1631617.204075] BTRFS error (device sdc): did not find backref in send_root. inode=63292, offset=0, disk_byte=5228134400 found extent=5228134400
[1631633.251754] BTRFS error (device sdc): parent transid verify failed on 32243712 wanted 24 found 27
The first one is very easy to hit while the second one happens much less
frequently, except for very large trees (in that test case, snapshots
with 100000 files having large xattrs to get deep and wide trees).
Less frequently, at least one BUG_ON can be hit:
[1631742.130080] ------------[ cut here ]------------
[1631742.130625] kernel BUG at fs/btrfs/ctree.c:1806!
[1631742.131188] invalid opcode: 0000 [#6] SMP DEBUG_PAGEALLOC PTI
[1631742.131726] CPU: 1 PID: 13394 Comm: btrfs Tainted: G B D W 5.0.0-rc8-btrfs-next-45 #1
[1631742.132265] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014
[1631742.133399] RIP: 0010:read_node_slot+0x122/0x130 [btrfs]
(...)
[1631742.135061] RSP: 0018:ffffb530021ebaa0 EFLAGS: 00010246
[1631742.135615] RAX: ffff93ac8912e000 RBX: 000000000000009d RCX: 0000000000000002
[1631742.136173] RDX: 000000000000009d RSI: ffff93ac564b0d08 RDI: ffff93ad5b48c000
[1631742.136759] RBP: ffffb530021ebb7d R08: 0000000000000001 R09: ffffb530021ebb7d
[1631742.137324] R10: ffffb530021eba70 R11: 0000000000000000 R12: ffff93ac87d0a708
[1631742.137900] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000001
[1631742.138455] FS: 00007f4cdb1528c0(0000) GS:ffff93ad76a80000(0000) knlGS:0000000000000000
[1631742.139010] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[1631742.139568] CR2: 00007f5acb3d0420 CR3: 000000012be3e006 CR4: 00000000003606e0
[1631742.140131] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[1631742.140719] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[1631742.141272] Call Trace:
[1631742.141826] ? do_raw_spin_unlock+0x49/0xc0
[1631742.142390] tree_advance+0x173/0x1d0 [btrfs]
[1631742.142948] btrfs_compare_trees+0x268/0x690 [btrfs]
[1631742.143533] ? process_extent+0x1070/0x1070 [btrfs]
[1631742.144088] btrfs_ioctl_send+0x1037/0x1270 [btrfs]
[1631742.144645] _btrfs_ioctl_send+0x80/0x110 [btrfs]
[1631742.145161] ? trace_sched_stick_numa+0xe0/0xe0
[1631742.145685] btrfs_ioctl+0x13fe/0x3120 [btrfs]
[1631742.146179] ? account_entity_enqueue+0xd3/0x100
[1631742.146662] ? reweight_entity+0x154/0x1a0
[1631742.147135] ? update_curr+0x20/0x2a0
[1631742.147593] ? check_preempt_wakeup+0x103/0x250
[1631742.148053] ? do_vfs_ioctl+0xa2/0x6f0
[1631742.148510] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
[1631742.148942] do_vfs_ioctl+0xa2/0x6f0
[1631742.149361] ? __fget+0x113/0x200
[1631742.149767] ksys_ioctl+0x70/0x80
[1631742.150159] __x64_sys_ioctl+0x16/0x20
[1631742.150543] do_syscall_64+0x60/0x1b0
[1631742.150931] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[1631742.151326] RIP: 0033:0x7f4cd9f5add7
(...)
[1631742.152509] RSP: 002b:00007ffe91017708 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
[1631742.152892] RAX: ffffffffffffffda RBX: 0000000000000105 RCX: 00007f4cd9f5add7
[1631742.153268] RDX: 00007ffe91017790 RSI: 0000000040489426 RDI: 0000000000000007
[1631742.153633] RBP: 0000000000000007 R08: 00007f4cd9e79700 R09: 00007f4cd9e79700
[1631742.153999] R10: 00007f4cd9e799d0 R11: 0000000000000202 R12: 0000000000000003
[1631742.154365] R13: 0000555dfae53020 R14: 0000000000000000 R15: 0000000000000001
(...)
[1631742.156696] ---[ end trace 5dac9f96dcc3fd6b ]---
That BUG_ON happens because while send is using a node, that node is COWed
by a concurrent deduplication, gets freed and gets reused as a leaf (because
a transaction commit happened in between), so when it attempts to read a
slot from the extent buffer, at ctree.c:read_node_slot(), the extent buffer
contents were wiped out and it now matches a leaf (which can even belong to
some other tree now), hitting the BUG_ON(level == 0).
Fix this concurrency issue by not allowing send and deduplication to run
in parallel if both operate on the same readonly trees, returning EAGAIN
to user space and logging an exlicit warning in dmesg/syslog.
[1] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=be6821f82c3cc36e026f5afd10249988852b35ea
[2] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6f2f0b394b54e2b159ef969a0b5274e9bbf82ff2
[3] https://lore.kernel.org/linux-btrfs/CAL3q7H7iqSEEyFaEtpRZw3cp613y+4k2Q8b4W7mweR3tZA05bQ@mail.gmail.com/
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Use the new btrfs_ref structure and replace parameter list to clean up
the usage of owner and level to distinguish the extent types.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Move code to make it more readable, so as locking and unlocking is
done in the same function. The generic checks that are now performed in
the locked section are unaffected.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
btrfs_set_prop() takes transaction pointer as the first argument,
however in ioctl.c for the purpose of setting the compression property,
we call btrfs_set_prop() with NULL transaction pointer. Down in
the call chain btrfs_setxattr() starts transaction to update the
attribute and also to update the inode.
So for clarity, create btrfs_set_prop_trans() with no transaction
pointer as argument, in preparation to start transaction here instead of
doing it down the call chain at btrfs_setxattr().
Also now the btrfs_set_prop() is a static function.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
btrfs_set_prop() is a redirect to __btrfs_set_prop() with the
transaction handle equal to NULL. __btrfs_set_prop() in turn passes
this to do_setxattr() which then transaction is actually created.
Instead merge __btrfs_set_prop() to btrfs_set_prop(), and update the
caller with NULL argument.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Whan a filesystem is mounted with the nologreplay mount option, which
requires it to be mounted in RO mode as well, we can not allow discard on
free space inside block groups, because log trees refer to extents that
are not pinned in a block group's free space cache (pinning the extents is
precisely the first phase of replaying a log tree).
So do not allow the fitrim ioctl to do anything when the filesystem is
mounted with the nologreplay option, because later it can be mounted RW
without that option, which causes log replay to happen and result in
either a failure to replay the log trees (leading to a mount failure), a
crash or some silent corruption.
Reported-by: Darrick J. Wong <darrick.wong@oracle.com>
Fixes: 96da09192cda ("btrfs: Introduce new mount option to disable tree log replay")
CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Reflinking (clone/dedupe) and rename are operations that operate on two
inodes and therefore need to lock them in the same order to avoid ABBA
deadlocks. It happens that Btrfs' reflink implementation always locked
them in a different order from VFS's lock_two_nondirectories() helper,
which is used by the rename code in VFS, resulting in ABBA type deadlocks.
Btrfs' locking order:
static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
{
if (inode1 < inode2)
swap(inode1, inode2);
inode_lock_nested(inode1, I_MUTEX_PARENT);
inode_lock_nested(inode2, I_MUTEX_CHILD);
}
VFS's locking order:
void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
{
if (inode1 > inode2)
swap(inode1, inode2);
if (inode1 && !S_ISDIR(inode1->i_mode))
inode_lock(inode1);
if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
inode_lock_nested(inode2, I_MUTEX_NONDIR2);
}
Fix this by killing the btrfs helper function that does the double inode
locking and replace it with VFS's helper lock_two_nondirectories().
Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Fixes: 416161db9b63e3 ("btrfs: offline dedupe")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Comparing the content of the pages in the range to deduplicate is now
done in generic_remap_checks called by the generic helper
generic_remap_file_range_prep(), which takes care of ensuring we do not
compare/deduplicate undefined data beyond a file's EOF (range from EOF
to the next block boundary). So remove these checks which are now
redundant.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Both btrfs_find_device() and find_device() does the same thing except
that the latter does not take the seed device onto account in the device
scanning context. We can merge them.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
btrfs_find_device() accepts fs_info as an argument and retrieves
fs_devices from fs_info.
Instead use fs_devices, so that this function can be used in non-mount
(during device scanning) context as well.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Move the check that verifies if both inodes have checksums disabled or
both have them enabled, from the clone and deduplication functions into
the new common helper btrfs_remap_file_range_prep().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
If the call to btrfs_balance() failed we would overwrite the error
returned to user space with -EFAULT if the call to copy_to_user() failed
as well. Fix that by calling copy_to_user() only if btrfs_balance()
returned success or was canceled.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
If the call to btrfs_dev_replace_by_ioctl() failed we would overwrite the
error returned to user space with -EFAULT if the call to copy_to_user()
failed as well. Fix that by calling copy_to_user() only if no error
happened before or a device replace operation was canceled.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Checking if either of the inodes corresponds to a swapfile is already
performed by generic_remap_file_range_prep(), so we do not need to do
it in the btrfs clone and deduplication functions.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Fixes gcc '-Wunused-but-set-variable' warning:
fs/btrfs/ioctl.c: In function 'btrfs_extent_same':
fs/btrfs/ioctl.c:3260:6: warning:
variable 'num_pages' set but not used [-Wunused-but-set-variable]
It not used any more since commit 9ee8234e6220 ("Btrfs: use
generic_remap_file_range_prep() for cloning and deduplication")
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
If the call to btrfs_get_dev_stats() failed we would overwrite the error
returned to user space with -EFAULT if the call to copy_to_user() failed
as well. Fix that by calling copy_to_user() only if btrfs_get_dev_stats()
returned success.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
If the call to btrfs_scrub_progress() failed we would overwrite the error
returned to user space with -EFAULT if the call to copy_to_user() failed
as well. Fix that by calling copy_to_user() only if btrfs_scrub_progress()
returned success.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
If scrub returned an error and then the copy_to_user() call did not
succeed, we would overwrite the error returned by scrub with -EFAULT.
Fix that by calling copy_to_user() only if btrfs_scrub_dev() returned
success.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The recent rework that makes btrfs' remap_file_range operation use the
generic helper generic_remap_file_range_prep() introduced a race between
relocation and reflinking (for both cloning and deduplication) the file
extents between the source and destination inodes.
This happens because we no longer lock the source range anymore, and we do
not lock it anymore because we wait for direct IO writes and writeback to
complete early on the code path right after locking the inodes, which
guarantees no other file operations interfere with the reflinking. However
there is one exception which is relocation, since it replaces the byte
number of file extents items in the fs tree after locking the range the
file extent items represent. This is a problem because after finding each
file extent to clone in the fs tree, the reflink process copies the file
extent item into a local buffer, releases the search path, inserts new
file extent items in the destination range and then increments the
reference count for the extent mentioned in the file extent item that it
previously copied to the buffer. If right after copying the file extent
item into the buffer and releasing the path the relocation process
updates the file extent item to point to the new extent, the reflink
process ends up creating a delayed reference to increment the reference
count of the old extent, for which the relocation process already created
a delayed reference to drop it. This results in failure to run delayed
references because we will attempt to increment the count of a reference
that was already dropped. This is illustrated by the following diagram:
CPU 1 CPU 2
relocation is running
btrfs_clone_files()
btrfs_clone()
--> finds extent item
in source range
point to extent
at bytenr X
--> copies it into a
local buffer
--> releases path
replace_file_extents()
--> successfully locks the
range represented by
the file extent item
--> replaces disk_bytenr
field in the file
extent item with some
other value Y
--> creates delayed reference
to increment reference
count for extent at
bytenr Y
--> creates delayed reference
to drop the extent at
bytenr X
--> starts transaction
--> creates delayed
reference to
increment extent
at bytenr X
<delayed references are run, due to a transaction
commit for example, and the transaction is aborted
with -EIO because we attempt to increment reference
count for the extent at bytenr X after we freed it>
When this race is hit the running transaction ends up getting aborted with
an -EIO error and a trace like the following is produced:
[ 4382.553858] WARNING: CPU: 2 PID: 3648 at fs/btrfs/extent-tree.c:1552 lookup_inline_extent_backref+0x4f4/0x650 [btrfs]
(...)
[ 4382.556293] CPU: 2 PID: 3648 Comm: btrfs Tainted: G W 4.20.0-rc6-btrfs-next-41 #1
[ 4382.556294] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014
[ 4382.556308] RIP: 0010:lookup_inline_extent_backref+0x4f4/0x650 [btrfs]
(...)
[ 4382.556310] RSP: 0018:ffffac784408f738 EFLAGS: 00010202
[ 4382.556311] RAX: 0000000000000001 RBX: ffff8980673c3a48 RCX: 0000000000000001
[ 4382.556312] RDX: 0000000000000008 RSI: 0000000000000000 RDI: 0000000000000000
[ 4382.556312] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000001
[ 4382.556313] R10: 0000000000000001 R11: ffff897f40000000 R12: 0000000000001000
[ 4382.556313] R13: 00000000c224f000 R14: ffff89805de9bd40 R15: ffff8980453f4548
[ 4382.556315] FS: 00007f5e759178c0(0000) GS:ffff89807b300000(0000) knlGS:0000000000000000
[ 4382.563130] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 4382.563562] CR2: 00007f2e9789fcbc CR3: 0000000120512001 CR4: 00000000003606e0
[ 4382.564005] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 4382.564451] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 4382.564887] Call Trace:
[ 4382.565343] insert_inline_extent_backref+0x55/0xe0 [btrfs]
[ 4382.565796] __btrfs_inc_extent_ref.isra.60+0x88/0x260 [btrfs]
[ 4382.566249] ? __btrfs_run_delayed_refs+0x93/0x1650 [btrfs]
[ 4382.566702] __btrfs_run_delayed_refs+0xa22/0x1650 [btrfs]
[ 4382.567162] btrfs_run_delayed_refs+0x7e/0x1d0 [btrfs]
[ 4382.567623] btrfs_commit_transaction+0x50/0x9c0 [btrfs]
[ 4382.568112] ? _raw_spin_unlock+0x24/0x30
[ 4382.568557] ? block_rsv_release_bytes+0x14e/0x410 [btrfs]
[ 4382.569006] create_subvol+0x3c8/0x830 [btrfs]
[ 4382.569461] ? btrfs_mksubvol+0x317/0x600 [btrfs]
[ 4382.569906] btrfs_mksubvol+0x317/0x600 [btrfs]
[ 4382.570383] ? rcu_sync_lockdep_assert+0xe/0x60
[ 4382.570822] ? __sb_start_write+0xd4/0x1c0
[ 4382.571262] ? mnt_want_write_file+0x24/0x50
[ 4382.571712] btrfs_ioctl_snap_create_transid+0x117/0x1a0 [btrfs]
[ 4382.572155] ? _copy_from_user+0x66/0x90
[ 4382.572602] btrfs_ioctl_snap_create+0x66/0x80 [btrfs]
[ 4382.573052] btrfs_ioctl+0x7c1/0x30e0 [btrfs]
[ 4382.573502] ? mem_cgroup_commit_charge+0x8b/0x570
[ 4382.573946] ? do_raw_spin_unlock+0x49/0xc0
[ 4382.574379] ? _raw_spin_unlock+0x24/0x30
[ 4382.574803] ? __handle_mm_fault+0xf29/0x12d0
[ 4382.575215] ? do_vfs_ioctl+0xa2/0x6f0
[ 4382.575622] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
[ 4382.576020] do_vfs_ioctl+0xa2/0x6f0
[ 4382.576405] ksys_ioctl+0x70/0x80
[ 4382.576776] __x64_sys_ioctl+0x16/0x20
[ 4382.577137] do_syscall_64+0x60/0x1b0
[ 4382.577488] entry_SYSCALL_64_after_hwframe+0x49/0xbe
(...)
[ 4382.578837] RSP: 002b:00007ffe04bf64c8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
[ 4382.579174] RAX: ffffffffffffffda RBX: 00005564136f3050 RCX: 00007f5e74724dd7
[ 4382.579505] RDX: 00007ffe04bf64d0 RSI: 000000005000940e RDI: 0000000000000003
[ 4382.579848] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000044
[ 4382.580164] R10: 0000000000000541 R11: 0000000000000202 R12: 00005564136f3010
[ 4382.580477] R13: 0000000000000003 R14: 00005564136f3035 R15: 00005564136f3050
[ 4382.580792] irq event stamp: 0
[ 4382.581106] hardirqs last enabled at (0): [<0000000000000000>] (null)
[ 4382.581441] hardirqs last disabled at (0): [<ffffffff8d085842>] copy_process.part.32+0x6e2/0x2320
[ 4382.581772] softirqs last enabled at (0): [<ffffffff8d085842>] copy_process.part.32+0x6e2/0x2320
[ 4382.582095] softirqs last disabled at (0): [<0000000000000000>] (null)
[ 4382.582413] ---[ end trace d3c188e3e9367382 ]---
[ 4382.623855] BTRFS: error (device sdc) in btrfs_run_delayed_refs:2981: errno=-5 IO failure
[ 4382.624295] BTRFS info (device sdc): forced readonly
Fix this by locking the source range before searching for the file extent
items in the fs tree, since the relocation process will try to lock the
range a file extent item represents before updating it with the new extent
location.
Fixes: 34a28e3d7753 ("Btrfs: use generic_remap_file_range_prep() for cloning and deduplication")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The recent rework that makes btrfs' remap_file_range operation use the
generic helper generic_remap_file_range_prep() introduced a race between
writeback and cloning a range that covers the eof extent of the source
file into a destination offset that is greater then the same file's size.
This happens because we now wait for writeback to complete before doing
the truncation of the eof block, while previously we did the truncation
and then waited for writeback to complete. This leads to a race between
writeback of the truncated block and cloning the file extents in the
source range, because we copy each file extent item we find in the fs
root into a buffer, then release the path and then increment the reference
count for the extent referred in that file extent item we copied, which
can no longer exist if writeback of the truncated eof block completes
after we copied the file extent item into the buffer and before we
incremented the reference count. This is illustrated by the following
diagram:
CPU 1 CPU 2
btrfs_clone_files()
btrfs_cont_expand()
btrfs_truncate_block()
--> zeroes part of the
page containg eof,
marking it for
delalloc
btrfs_clone()
--> finds extent item
covering eof,
points to extent
at bytenr X
--> copies it into a
local buffer
--> releases path
writeback starts
btrfs_finish_ordered_io()
insert_reserved_file_extent()
__btrfs_drop_extents()
--> creates delayed
reference to drop
the extent at
bytenr X
--> starts transaction
--> creates delayed
reference to
increment extent
at bytenr X
<delayed references are run, due to a transaction
commit for example, and the transaction is aborted
with -EIO because we attempt to increment reference
count for the extent at bytenr X after we freed it>
When this race is hit the running transaction ends up getting aborted with
an -EIO error and a trace like the following is produced:
[ 4382.553858] WARNING: CPU: 2 PID: 3648 at fs/btrfs/extent-tree.c:1552 lookup_inline_extent_backref+0x4f4/0x650 [btrfs]
(...)
[ 4382.556293] CPU: 2 PID: 3648 Comm: btrfs Tainted: G W 4.20.0-rc6-btrfs-next-41 #1
[ 4382.556294] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014
[ 4382.556308] RIP: 0010:lookup_inline_extent_backref+0x4f4/0x650 [btrfs]
(...)
[ 4382.556310] RSP: 0018:ffffac784408f738 EFLAGS: 00010202
[ 4382.556311] RAX: 0000000000000001 RBX: ffff8980673c3a48 RCX: 0000000000000001
[ 4382.556312] RDX: 0000000000000008 RSI: 0000000000000000 RDI: 0000000000000000
[ 4382.556312] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000001
[ 4382.556313] R10: 0000000000000001 R11: ffff897f40000000 R12: 0000000000001000
[ 4382.556313] R13: 00000000c224f000 R14: ffff89805de9bd40 R15: ffff8980453f4548
[ 4382.556315] FS: 00007f5e759178c0(0000) GS:ffff89807b300000(0000) knlGS:0000000000000000
[ 4382.563130] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 4382.563562] CR2: 00007f2e9789fcbc CR3: 0000000120512001 CR4: 00000000003606e0
[ 4382.564005] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 4382.564451] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 4382.564887] Call Trace:
[ 4382.565343] insert_inline_extent_backref+0x55/0xe0 [btrfs]
[ 4382.565796] __btrfs_inc_extent_ref.isra.60+0x88/0x260 [btrfs]
[ 4382.566249] ? __btrfs_run_delayed_refs+0x93/0x1650 [btrfs]
[ 4382.566702] __btrfs_run_delayed_refs+0xa22/0x1650 [btrfs]
[ 4382.567162] btrfs_run_delayed_refs+0x7e/0x1d0 [btrfs]
[ 4382.567623] btrfs_commit_transaction+0x50/0x9c0 [btrfs]
[ 4382.568112] ? _raw_spin_unlock+0x24/0x30
[ 4382.568557] ? block_rsv_release_bytes+0x14e/0x410 [btrfs]
[ 4382.569006] create_subvol+0x3c8/0x830 [btrfs]
[ 4382.569461] ? btrfs_mksubvol+0x317/0x600 [btrfs]
[ 4382.569906] btrfs_mksubvol+0x317/0x600 [btrfs]
[ 4382.570383] ? rcu_sync_lockdep_assert+0xe/0x60
[ 4382.570822] ? __sb_start_write+0xd4/0x1c0
[ 4382.571262] ? mnt_want_write_file+0x24/0x50
[ 4382.571712] btrfs_ioctl_snap_create_transid+0x117/0x1a0 [btrfs]
[ 4382.572155] ? _copy_from_user+0x66/0x90
[ 4382.572602] btrfs_ioctl_snap_create+0x66/0x80 [btrfs]
[ 4382.573052] btrfs_ioctl+0x7c1/0x30e0 [btrfs]
[ 4382.573502] ? mem_cgroup_commit_charge+0x8b/0x570
[ 4382.573946] ? do_raw_spin_unlock+0x49/0xc0
[ 4382.574379] ? _raw_spin_unlock+0x24/0x30
[ 4382.574803] ? __handle_mm_fault+0xf29/0x12d0
[ 4382.575215] ? do_vfs_ioctl+0xa2/0x6f0
[ 4382.575622] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs]
[ 4382.576020] do_vfs_ioctl+0xa2/0x6f0
[ 4382.576405] ksys_ioctl+0x70/0x80
[ 4382.576776] __x64_sys_ioctl+0x16/0x20
[ 4382.577137] do_syscall_64+0x60/0x1b0
[ 4382.577488] entry_SYSCALL_64_after_hwframe+0x49/0xbe
(...)
[ 4382.578837] RSP: 002b:00007ffe04bf64c8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
[ 4382.579174] RAX: ffffffffffffffda RBX: 00005564136f3050 RCX: 00007f5e74724dd7
[ 4382.579505] RDX: 00007ffe04bf64d0 RSI: 000000005000940e RDI: 0000000000000003
[ 4382.579848] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000044
[ 4382.580164] R10: 0000000000000541 R11: 0000000000000202 R12: 00005564136f3010
[ 4382.580477] R13: 0000000000000003 R14: 00005564136f3035 R15: 00005564136f3050
[ 4382.580792] irq event stamp: 0
[ 4382.581106] hardirqs last enabled at (0): [<0000000000000000>] (null)
[ 4382.581441] hardirqs last disabled at (0): [<ffffffff8d085842>] copy_process.part.32+0x6e2/0x2320
[ 4382.581772] softirqs last enabled at (0): [<ffffffff8d085842>] copy_process.part.32+0x6e2/0x2320
[ 4382.582095] softirqs last disabled at (0): [<0000000000000000>] (null)
[ 4382.582413] ---[ end trace d3c188e3e9367382 ]---
[ 4382.623855] BTRFS: error (device sdc) in btrfs_run_delayed_refs:2981: errno=-5 IO failure
[ 4382.624295] BTRFS info (device sdc): forced readonly
Fix this by waiting for writeback to complete after truncating the eof
block.
Fixes: 34a28e3d7753 ("Btrfs: use generic_remap_file_range_prep() for cloning and deduplication")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Since cloning and deduplication are no longer Btrfs specific operations, we
now have generic code to handle parameter validation, compare file ranges
used for deduplication, clear capabilities when cloning, etc. This change
makes Btrfs use it, eliminating a lot of code in Btrfs and also fixing a
few bugs, such as:
1) When cloning, the destination file's capabilities were not dropped
(the fstest generic/513 tests this);
2) We were not checking if the destination file is immutable;
3) Not checking if either the source or destination files are swap
files (swap file support is coming soon for Btrfs);
4) System limits were not checked (resource limits and O_LARGEFILE).
Note that the generic helper generic_remap_file_range_prep() does start
and waits for writeback by calling filemap_write_and_wait_range(), however
that is not enough for Btrfs for two reasons:
1) With compression, we need to start writeback twice in order to get the
pages marked for writeback and ordered extents created;
2) filemap_write_and_wait_range() (and all its other variants) only waits
for the IO to complete, but we need to wait for the ordered extents to
finish, so that when we do the actual reflinking operations the file
extent items are in the fs tree. This is also important due to the fact
that the generic helper, for the deduplication case, compares the
contents of the pages in the requested range, which might require
reading extents from disk in the very unlikely case that pages get
invalidated after writeback finishes (so the file extent items must be
up to date in the fs tree).
Since these reasons are specific to Btrfs we have to do it in the Btrfs
code before calling generic_remap_file_range_prep(). This also results
in a simpler way of dealing with existing delalloc in the source/target
ranges, specially for the deduplication case where we used to lock all
the pages first and then if we found any dealloc for the range, or
ordered extent, we would unlock the pages trigger writeback and wait for
ordered extents to complete, then lock all the pages again and check if
deduplication can be done. So now we get a simpler approach: lock the
inodes, then trigger writeback and then wait for ordered extents to
complete.
So make btrfs use generic_remap_file_range_prep() (XFS and OCFS2 use it)
to eliminate duplicated code, fix a few bugs and benefit from future bug
fixes done there - for example the recent clone and dedupe bugs involving
reflinking a partial EOF block got a counterpart fix in the generic
helper, since it affected all filesystems supporting these operations,
so we no longer need special checks in Btrfs for them.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Currently btrfs_fs_info structure contains a copy of the
fsid/metadata_uuid fields. Same values are also contained in the
btrfs_fs_devices structure which fs_info has a reference to. Let's
reduce duplication by removing the fields from fs_info and always refer
to the ones in fs_devices. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Snapshot is expected to be fast. But if there are writers steadily
creating dirty pages in our subvolume, the snapshot may take a very long
time to complete. To fix the problem, we use tagged writepage for
snapshot flusher as we do in the generic write_cache_pages(), so we can
omit pages dirtied after the snapshot command.
This does not change the semantics regarding which data get to the
snapshot, if there are pages being dirtied during the snapshotting
operation. There's a sync called before snapshot is taken in old/new
case, any IO in flight just after that may be in the snapshot but this
depends on other system effects that might still sync the IO.
We do a simple snapshot speed test on a Intel D-1531 box:
fio --ioengine=libaio --iodepth=32 --bs=4k --rw=write --size=64G
--direct=0 --thread=1 --numjobs=1 --time_based --runtime=120
--filename=/mnt/sub/testfile --name=job1 --group_reporting & sleep 5;
time btrfs sub snap -r /mnt/sub /mnt/snap; killall fio
original: 1m58sec
patched: 6.54sec
This is the best case for this patch since for a sequential write case,
we omit nearly all pages dirtied after the snapshot command.
For a multi writers, random write test:
fio --ioengine=libaio --iodepth=32 --bs=4k --rw=randwrite --size=64G
--direct=0 --thread=1 --numjobs=4 --time_based --runtime=120
--filename=/mnt/sub/testfile --name=job1 --group_reporting & sleep 5;
time btrfs sub snap -r /mnt/sub /mnt/snap; killall fio
original: 15.83sec
patched: 10.35sec
The improvement is smaller compared to the sequential write case,
since we omit only half of the pages dirtied after snapshot command.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Ethan Lien <ethanlien@synology.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
A later patch will implement swap file support for Btrfs, but before we
do that, we need to make sure that the various Btrfs ioctls cannot
change a swap file.
When a swap file is active, we must make sure that the extents of the
file are not moved and that they don't become shared. That means that
the following are not safe:
- chattr +c (enable compression)
- reflink
- dedupe
- snapshot
- defrag
Don't allow those to happen on an active swap file.
Additionally, balance, resize, device remove, and device replace are
also unsafe if they affect an active swapfile. Add a red-black tree of
block groups and devices which contain an active swapfile. Relocation
checks each block group against this tree and skips it or errors out for
balance or resize, respectively. Device remove and device replace check
the tree for the device they will operate on.
Note that we don't have to worry about chattr -C (disable nocow), which
we ignore for non-empty files, because an active swapfile must be
non-empty and can't be truncated. We also don't have to worry about
autodefrag because it's only done on COW files. Truncate and fallocate
are already taken care of by the generic code. Device add doesn't do
relocation so it's not an issue, either.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Several fixes to recent release (4.19, fixes tagged for stable) and
other fixes"
* tag 'for-4.20-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
Btrfs: fix missing delayed iputs on unmount
Btrfs: fix data corruption due to cloning of eof block
Btrfs: fix infinite loop on inode eviction after deduplication of eof block
Btrfs: fix deadlock on tree root leaf when finding free extent
btrfs: avoid link error with CONFIG_NO_AUTO_INLINE
btrfs: tree-checker: Fix misleading group system information
Btrfs: fix missing data checksums after a ranged fsync (msync)
btrfs: fix pinned underflow after transaction aborted
Btrfs: fix cur_offset in the error case for nocow
|
|
We currently allow cloning a range from a file which includes the last
block of the file even if the file's size is not aligned to the block
size. This is fine and useful when the destination file has the same size,
but when it does not and the range ends somewhere in the middle of the
destination file, it leads to corruption because the bytes between the EOF
and the end of the block have undefined data (when there is support for
discard/trimming they have a value of 0x00).
Example:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ export foo_size=$((256 * 1024 + 100))
$ xfs_io -f -c "pwrite -S 0x3c 0 $foo_size" /mnt/foo
$ xfs_io -f -c "pwrite -S 0xb5 0 1M" /mnt/bar
$ xfs_io -c "reflink /mnt/foo 0 512K $foo_size" /mnt/bar
$ od -A d -t x1 /mnt/bar
0000000 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5
*
0524288 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c
*
0786528 3c 3c 3c 3c 00 00 00 00 00 00 00 00 00 00 00 00
0786544 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
0790528 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5
*
1048576
The bytes in the range from 786532 (512Kb + 256Kb + 100 bytes) to 790527
(512Kb + 256Kb + 4Kb - 1) got corrupted, having now a value of 0x00 instead
of 0xb5.
This is similar to the problem we had for deduplication that got recently
fixed by commit de02b9f6bb65 ("Btrfs: fix data corruption when
deduplicating between different files").
Fix this by not allowing such operations to be performed and return the
errno -EINVAL to user space. This is what XFS is doing as well at the VFS
level. This change however now makes us return -EINVAL instead of
-EOPNOTSUPP for cases where the source range maps to an inline extent and
the destination range's end is smaller then the destination file's size,
since the detection of inline extents is done during the actual process of
dropping file extent items (at __btrfs_drop_extents()). Returning the
-EINVAL error is done early on and solely based on the input parameters
(offsets and length) and destination file's size. This makes us consistent
with XFS and anyone else supporting cloning since this case is now checked
at a higher level in the VFS and is where the -EINVAL will be returned
from starting with kernel 4.20 (the VFS changed was introduced in 4.20-rc1
by commit 07d19dc9fbe9 ("vfs: avoid problematic remapping requests into
partial EOF block"). So this change is more geared towards stable kernels,
as it's unlikely the new VFS checks get removed intentionally.
A test case for fstests follows soon, as well as an update to filter
existing tests that expect -EOPNOTSUPP to accept -EINVAL as well.
CC: <stable@vger.kernel.org> # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
If we attempt to deduplicate the last block of a file A into the middle of
a file B, and file A's size is not a multiple of the block size, we end
rounding the deduplication length to 0 bytes, to avoid the data corruption
issue fixed by commit de02b9f6bb65 ("Btrfs: fix data corruption when
deduplicating between different files"). However a length of zero will
cause the insertion of an extent state with a start value greater (by 1)
then the end value, leading to a corrupt extent state that will trigger a
warning and cause chaos such as an infinite loop during inode eviction.
Example trace:
[96049.833585] ------------[ cut here ]------------
[96049.833714] WARNING: CPU: 0 PID: 24448 at fs/btrfs/extent_io.c:436 insert_state+0x101/0x120 [btrfs]
[96049.833767] CPU: 0 PID: 24448 Comm: xfs_io Not tainted 4.19.0-rc7-btrfs-next-39 #1
[96049.833768] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014
[96049.833780] RIP: 0010:insert_state+0x101/0x120 [btrfs]
[96049.833783] RSP: 0018:ffffafd2c3707af0 EFLAGS: 00010282
[96049.833785] RAX: 0000000000000000 RBX: 000000000004dfff RCX: 0000000000000006
[96049.833786] RDX: 0000000000000007 RSI: ffff99045c143230 RDI: ffff99047b2168a0
[96049.833787] RBP: ffff990457851cd0 R08: 0000000000000001 R09: 0000000000000000
[96049.833787] R10: ffffafd2c3707ab8 R11: 0000000000000000 R12: ffff9903b93b12c8
[96049.833788] R13: 000000000004e000 R14: ffffafd2c3707b80 R15: ffffafd2c3707b78
[96049.833790] FS: 00007f5c14e7d700(0000) GS:ffff99047b200000(0000) knlGS:0000000000000000
[96049.833791] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[96049.833792] CR2: 00007f5c146abff8 CR3: 0000000115f4c004 CR4: 00000000003606f0
[96049.833795] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[96049.833796] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[96049.833796] Call Trace:
[96049.833809] __set_extent_bit+0x46c/0x6a0 [btrfs]
[96049.833823] lock_extent_bits+0x6b/0x210 [btrfs]
[96049.833831] ? _raw_spin_unlock+0x24/0x30
[96049.833841] ? test_range_bit+0xdf/0x130 [btrfs]
[96049.833853] lock_extent_range+0x8e/0x150 [btrfs]
[96049.833864] btrfs_double_extent_lock+0x78/0xb0 [btrfs]
[96049.833875] btrfs_extent_same_range+0x14e/0x550 [btrfs]
[96049.833885] ? rcu_read_lock_sched_held+0x3f/0x70
[96049.833890] ? __kmalloc_node+0x2b0/0x2f0
[96049.833899] ? btrfs_dedupe_file_range+0x19a/0x280 [btrfs]
[96049.833909] btrfs_dedupe_file_range+0x270/0x280 [btrfs]
[96049.833916] vfs_dedupe_file_range_one+0xd9/0xe0
[96049.833919] vfs_dedupe_file_range+0x131/0x1b0
[96049.833924] do_vfs_ioctl+0x272/0x6e0
[96049.833927] ? __fget+0x113/0x200
[96049.833931] ksys_ioctl+0x70/0x80
[96049.833933] __x64_sys_ioctl+0x16/0x20
[96049.833937] do_syscall_64+0x60/0x1b0
[96049.833939] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[96049.833941] RIP: 0033:0x7f5c1478ddd7
[96049.833943] RSP: 002b:00007ffe15b196a8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
[96049.833945] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f5c1478ddd7
[96049.833946] RDX: 00005625ece322d0 RSI: 00000000c0189436 RDI: 0000000000000004
[96049.833947] RBP: 0000000000000000 R08: 00007f5c14a46f48 R09: 0000000000000040
[96049.833948] R10: 0000000000000541 R11: 0000000000000202 R12: 0000000000000000
[96049.833949] R13: 0000000000000000 R14: 0000000000000004 R15: 00005625ece322d0
[96049.833954] irq event stamp: 6196
[96049.833956] hardirqs last enabled at (6195): [<ffffffff91b00663>] console_unlock+0x503/0x640
[96049.833958] hardirqs last disabled at (6196): [<ffffffff91a037dd>] trace_hardirqs_off_thunk+0x1a/0x1c
[96049.833959] softirqs last enabled at (6114): [<ffffffff92600370>] __do_softirq+0x370/0x421
[96049.833964] softirqs last disabled at (6095): [<ffffffff91a8dd4d>] irq_exit+0xcd/0xe0
[96049.833965] ---[ end trace db7b05f01b7fa10c ]---
[96049.935816] R13: 0000000000000000 R14: 00005562e5259240 R15: 00007ffff092b910
[96049.935822] irq event stamp: 6584
[96049.935823] hardirqs last enabled at (6583): [<ffffffff91b00663>] console_unlock+0x503/0x640
[96049.935825] hardirqs last disabled at (6584): [<ffffffff91a037dd>] trace_hardirqs_off_thunk+0x1a/0x1c
[96049.935827] softirqs last enabled at (6328): [<ffffffff92600370>] __do_softirq+0x370/0x421
[96049.935828] softirqs last disabled at (6313): [<ffffffff91a8dd4d>] irq_exit+0xcd/0xe0
[96049.935829] ---[ end trace db7b05f01b7fa123 ]---
[96049.935840] ------------[ cut here ]------------
[96049.936065] WARNING: CPU: 1 PID: 24463 at fs/btrfs/extent_io.c:436 insert_state+0x101/0x120 [btrfs]
[96049.936107] CPU: 1 PID: 24463 Comm: umount Tainted: G W 4.19.0-rc7-btrfs-next-39 #1
[96049.936108] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014
[96049.936117] RIP: 0010:insert_state+0x101/0x120 [btrfs]
[96049.936119] RSP: 0018:ffffafd2c3637bc0 EFLAGS: 00010282
[96049.936120] RAX: 0000000000000000 RBX: 000000000004dfff RCX: 0000000000000006
[96049.936121] RDX: 0000000000000007 RSI: ffff990445cf88e0 RDI: ffff99047b2968a0
[96049.936122] RBP: ffff990457851cd0 R08: 0000000000000001 R09: 0000000000000000
[96049.936123] R10: ffffafd2c3637b88 R11: 0000000000000000 R12: ffff9904574301e8
[96049.936124] R13: 000000000004e000 R14: ffffafd2c3637c50 R15: ffffafd2c3637c48
[96049.936125] FS: 00007fe4b87e72c0(0000) GS:ffff99047b280000(0000) knlGS:0000000000000000
[96049.936126] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[96049.936128] CR2: 00005562e52618d8 CR3: 00000001151c8005 CR4: 00000000003606e0
[96049.936129] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[96049.936131] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[96049.936131] Call Trace:
[96049.936141] __set_extent_bit+0x46c/0x6a0 [btrfs]
[96049.936154] lock_extent_bits+0x6b/0x210 [btrfs]
[96049.936167] btrfs_evict_inode+0x1e1/0x5a0 [btrfs]
[96049.936172] evict+0xbf/0x1c0
[96049.936174] dispose_list+0x51/0x80
[96049.936176] evict_inodes+0x193/0x1c0
[96049.936180] generic_shutdown_super+0x3f/0x110
[96049.936182] kill_anon_super+0xe/0x30
[96049.936189] btrfs_kill_super+0x13/0x100 [btrfs]
[96049.936191] deactivate_locked_super+0x3a/0x70
[96049.936193] cleanup_mnt+0x3b/0x80
[96049.936195] task_work_run+0x93/0xc0
[96049.936198] exit_to_usermode_loop+0xfa/0x100
[96049.936201] do_syscall_64+0x17f/0x1b0
[96049.936202] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[96049.936204] RIP: 0033:0x7fe4b80cfb37
[96049.936206] RSP: 002b:00007ffff092b688 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[96049.936207] RAX: 0000000000000000 RBX: 00005562e5259060 RCX: 00007fe4b80cfb37
[96049.936208] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 00005562e525faa0
[96049.936209] RBP: 00005562e525faa0 R08: 00005562e525f770 R09: 0000000000000015
[96049.936210] R10: 00000000000006b4 R11: 0000000000000246 R12: 00007fe4b85d1e64
[96049.936211] R13: 0000000000000000 R14: 00005562e5259240 R15: 00007ffff092b910
[96049.936211] R13: 0000000000000000 R14: 00005562e5259240 R15: 00007ffff092b910
[96049.936216] irq event stamp: 6616
[96049.936219] hardirqs last enabled at (6615): [<ffffffff91b00663>] console_unlock+0x503/0x640
[96049.936219] hardirqs last disabled at (6616): [<ffffffff91a037dd>] trace_hardirqs_off_thunk+0x1a/0x1c
[96049.936222] softirqs last enabled at (6328): [<ffffffff92600370>] __do_softirq+0x370/0x421
[96049.936222] softirqs last disabled at (6313): [<ffffffff91a8dd4d>] irq_exit+0xcd/0xe0
[96049.936223] ---[ end trace db7b05f01b7fa124 ]---
The second stack trace, from inode eviction, is repeated forever due to
the infinite loop during eviction.
This is the same type of problem fixed way back in 2015 by commit
113e8283869b ("Btrfs: fix inode eviction infinite loop after extent_same
ioctl") and commit ccccf3d67294 ("Btrfs: fix inode eviction infinite loop
after cloning into it").
So fix this by returning immediately if the deduplication range length
gets rounded down to 0 bytes, as there is nothing that needs to be done in
such case.
Example reproducer:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ xfs_io -f -c "pwrite -S 0xe6 0 100" /mnt/foo
$ xfs_io -f -c "pwrite -S 0xe6 0 1M" /mnt/bar
# Unmount the filesystem and mount it again so that we start without any
# extent state records when we ask for the deduplication.
$ umount /mnt
$ mount /dev/sdb /mnt
$ xfs_io -c "dedupe /mnt/foo 0 500K 100" /mnt/bar
# This unmount triggers the infinite loop.
$ umount /mnt
A test case for fstests will follow soon.
Fixes: de02b9f6bb65 ("Btrfs: fix data corruption when deduplicating between different files")
CC: <stable@vger.kernel.org> # 4.19+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Pull vfs dedup fixes from Dave Chinner:
"This reworks the vfs data cloning infrastructure.
We discovered many issues with these interfaces late in the 4.19 cycle
- the worst of them (data corruption, setuid stripping) were fixed for
XFS in 4.19-rc8, but a larger rework of the infrastructure fixing all
the problems was needed. That rework is the contents of this pull
request.
Rework the vfs_clone_file_range and vfs_dedupe_file_range
infrastructure to use a common .remap_file_range method and supply
generic bounds and sanity checking functions that are shared with the
data write path. The current VFS infrastructure has problems with
rlimit, LFS file sizes, file time stamps, maximum filesystem file
sizes, stripping setuid bits, etc and so they are addressed in these
commits.
We also introduce the ability for the ->remap_file_range methods to
return short clones so that clones for vfs_copy_file_range() don't get
rejected if the entire range can't be cloned. It also allows
filesystems to sliently skip deduplication of partial EOF blocks if
they are not capable of doing so without requiring errors to be thrown
to userspace.
Existing filesystems are converted to user the new remap_file_range
method, and both XFS and ocfs2 are modified to make use of the new
generic checking infrastructure"
* tag 'xfs-4.20-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (28 commits)
xfs: remove [cm]time update from reflink calls
xfs: remove xfs_reflink_remap_range
xfs: remove redundant remap partial EOF block checks
xfs: support returning partial reflink results
xfs: clean up xfs_reflink_remap_blocks call site
xfs: fix pagecache truncation prior to reflink
ocfs2: remove ocfs2_reflink_remap_range
ocfs2: support partial clone range and dedupe range
ocfs2: fix pagecache truncation prior to reflink
ocfs2: truncate page cache for clone destination file before remapping
vfs: clean up generic_remap_file_range_prep return value
vfs: hide file range comparison function
vfs: enable remap callers that can handle short operations
vfs: plumb remap flags through the vfs dedupe functions
vfs: plumb remap flags through the vfs clone functions
vfs: make remap_file_range functions take and return bytes completed
vfs: remap helper should update destination inode metadata
vfs: pass remap flags to generic_remap_checks
vfs: pass remap flags to generic_remap_file_range_prep
vfs: combine the clone and dedupe into a single remap_file_range
...
|
|
Change the remap_file_range functions to take a number of bytes to
operate upon and return the number of bytes they operated on. This is a
requirement for allowing fs implementations to return short clone/dedupe
results to the user, which will enable us to obey resource limits in a
graceful manner.
A subsequent patch will enable copy_file_range to signal to the
->clone_file_range implementation that it can handle a short length,
which will be returned in the function's return value. For now the
short return is not implemented anywhere so the behavior won't change --
either copy_file_range manages to clone the entire range or it tries an
alternative.
Neither clone ioctl can take advantage of this, alas.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
Combine the clone_file_range and dedupe_file_range operations into a
single remap_file_range file operation dispatch since they're
fundamentally the same operation. The differences between the two can
be made in the prep functions.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
[BUG]
fstrim on some btrfs only trims the unallocated space, not trimming any
space in existing block groups.
[CAUSE]
Before fstrim_range passed to btrfs_trim_fs(), it gets truncated to
range [0, super->total_bytes). So later btrfs_trim_fs() will only be
able to trim block groups in range [0, super->total_bytes).
While for btrfs, any bytenr aligned to sectorsize is valid, since btrfs
uses its logical address space, there is nothing limiting the location
where we put block groups.
For filesystem with frequent balance, it's quite easy to relocate all
block groups and bytenr of block groups will start beyond
super->total_bytes.
In that case, btrfs will not trim existing block groups.
[FIX]
Just remove the truncation in btrfs_ioctl_fitrim(), so btrfs_trim_fs()
can get the unmodified range, which is normally set to [0, U64_MAX].
Reported-by: Chris Murphy <lists@colorremedies.com>
Fixes: f4c697e6406d ("btrfs: return EINVAL if start > total_bytes in fitrim ioctl")
CC: <stable@vger.kernel.org> # v4.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Since commit 8b62f87bad9c ("Btrfs: rework outstanding_extents"),
manual operations of outstanding_extent in btrfs_inode are replaced by
btrfs_mod_outstanding_extents().
The one in cluster_pages_for_defrag seems to be lost, so replace it
of btrfs_mod_outstanding_extents().
Fixes: 8b62f87bad9c ("Btrfs: rework outstanding_extents")
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
There are two members in struct btrfs_root which indicate root's
objectid: objectid and root_key.objectid.
They are both set to the same value in __setup_root():
static void __setup_root(struct btrfs_root *root,
struct btrfs_fs_info *fs_info,
u64 objectid)
{
...
root->objectid = objectid;
...
root->root_key.objectid = objecitd;
...
}
and not changed to other value after initialization.
grep in btrfs directory shows both are used in many places:
$ grep -rI "root->root_key.objectid" | wc -l
133
$ grep -rI "root->objectid" | wc -l
55
(4.17, inc. some noise)
It is confusing to have two similar variable names and it seems
that there is no rule about which should be used in a certain case.
Since ->root_key itself is needed for tree reloc tree, let's remove
'objecitd' member and unify code to use ->root_key.objectid in all places.
Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
All callers pass the root tree of dir, we can push that down to the
function itself.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|