Age | Commit message (Collapse) | Author | Files | Lines |
|
Fix the lookup method on the dynamic root directory such that creation
calls, such as mkdir, open(O_CREAT), symlink, etc. fail with EOPNOTSUPP
rather than failing with some odd error (such as EEXIST).
lookup() itself tries to create automount directories when it is invoked.
These are cached locally in RAM and not committed to storage.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Marc Dionne <marc.dionne@auristor.com>
Tested-by: Jonathan Billings <jsbillings@jsbillings.org>
|
|
no point reinventing it (with wrong ->read(), BTW).
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull keyring namespacing from David Howells:
"These patches help make keys and keyrings more namespace aware.
Firstly some miscellaneous patches to make the process easier:
- Simplify key index_key handling so that the word-sized chunks
assoc_array requires don't have to be shifted about, making it
easier to add more bits into the key.
- Cache the hash value in the key so that we don't have to calculate
on every key we examine during a search (it involves a bunch of
multiplications).
- Allow keying_search() to search non-recursively.
Then the main patches:
- Make it so that keyring names are per-user_namespace from the point
of view of KEYCTL_JOIN_SESSION_KEYRING so that they're not
accessible cross-user_namespace.
keyctl_capabilities() shows KEYCTL_CAPS1_NS_KEYRING_NAME for this.
- Move the user and user-session keyrings to the user_namespace
rather than the user_struct. This prevents them propagating
directly across user_namespaces boundaries (ie. the KEY_SPEC_*
flags will only pick from the current user_namespace).
- Make it possible to include the target namespace in which the key
shall operate in the index_key. This will allow the possibility of
multiple keys with the same description, but different target
domains to be held in the same keyring.
keyctl_capabilities() shows KEYCTL_CAPS1_NS_KEY_TAG for this.
- Make it so that keys are implicitly invalidated by removal of a
domain tag, causing them to be garbage collected.
- Institute a network namespace domain tag that allows keys to be
differentiated by the network namespace in which they operate. New
keys that are of a type marked 'KEY_TYPE_NET_DOMAIN' are assigned
the network domain in force when they are created.
- Make it so that the desired network namespace can be handed down
into the request_key() mechanism. This allows AFS, NFS, etc. to
request keys specific to the network namespace of the superblock.
This also means that the keys in the DNS record cache are
thenceforth namespaced, provided network filesystems pass the
appropriate network namespace down into dns_query().
For DNS, AFS and NFS are good, whilst CIFS and Ceph are not. Other
cache keyrings, such as idmapper keyrings, also need to set the
domain tag - for which they need access to the network namespace of
the superblock"
* tag 'keys-namespace-20190627' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
keys: Pass the network namespace into request_key mechanism
keys: Network namespace domain tag
keys: Garbage collect keys for which the domain has been removed
keys: Include target namespace in match criteria
keys: Move the user and user-session keyrings to the user_namespace
keys: Namespace keyring names
keys: Add a 'recurse' flag for keyring searches
keys: Cache the hash value to avoid lots of recalculation
keys: Simplify key description management
|
|
Create a request_key_net() function and use it to pass the network
namespace domain tag into DNS revolver keys and rxrpc/AFS keys so that keys
for different domains can coexist in the same keyring.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: netdev@vger.kernel.org
cc: linux-nfs@vger.kernel.org
cc: linux-cifs@vger.kernel.org
cc: linux-afs@lists.infradead.org
|
|
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public licence as published by
the free software foundation either version 2 of the licence or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 114 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520170857.552531963@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Make dynamic root population wait uninterruptibly for proc_cells_lock.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Allow used DNS resolver keys to be invalidated after use if the caller is
doing its own caching of the results. This reduces the amount of resources
required.
Fix AFS to invalidate DNS results to kill off permanent failure records
that get lodged in the resolver keyring and prevent future lookups from
happening.
Fixes: 0a5143f2f89c ("afs: Implement VL server rotation")
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Increase the sizes of the volume ID to 64 bits and the vnode ID (inode
number equivalent) to 96 bits to allow the support of YFS.
This requires the iget comparator to check the vnode->fid rather than i_ino
and i_generation as i_ino is not sufficiently capacious. It also requires
this data to be placed into the vnode cache key for fscache.
For the moment, just discard the top 32 bits of the vnode ID when returning
it though stat.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Track VL servers as independent entities rather than lumping all their
addresses together into one set and implement server-level rotation by:
(1) Add the concept of a VL server list, where each server has its own
separate address list. This code is similar to the FS server list.
(2) Use the DNS resolver to retrieve a set of servers and their associated
addresses, ports, preference and weight ratings.
(3) In the case of a legacy DNS resolver or an address list given directly
through /proc/net/afs/cells, create a list containing just a dummy
server record and attach all the addresses to that.
(4) Implement a simple rotation policy, for the moment ignoring the
priorities and weights assigned to the servers.
(5) Show the address list through /proc/net/afs/<cell>/vlservers. This
also displays the source and status of the data as indicated by the
upcall.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Access to the list of cells by /proc/net/afs/cells has a couple of
problems:
(1) It should be checking against SEQ_START_TOKEN for the keying the
header line.
(2) It's only holding the RCU read lock, so it can't just walk over the
list without following the proper RCU methods.
Fix these by using an hlist instead of an ordinary list and using the
appropriate accessor functions to follow it with RCU.
Since the code that adds a cell to the list must also necessarily change,
sort the list on insertion whilst we're at it.
Fixes: 989782dcdc91 ("afs: Overhaul cell database management")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
simpler logics in callers that way
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
->lookup() methods can (and should) use d_splice_alias() instead of
d_add(). Even if they are not going to be hit by open_by_handle(),
code does get copied around...
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Alter the dynroot mount so that cells created by manipulation of
/proc/fs/afs/cells and /proc/fs/afs/rootcell and by specification of a root
cell as a module parameter will cause directories for those cells to be
created in the dynamic root superblock for the network namespace[*].
To this end:
(1) Only one dynamic root superblock is now created per network namespace
and this is shared between all attempts to mount it. This makes it
easier to find the superblock to modify.
(2) When a dynamic root superblock is created, the list of cells is walked
and directories created for each cell already defined.
(3) When a new cell is added, if a dynamic root superblock exists, a
directory is created for it.
(4) When a cell is destroyed, the directory is removed.
(5) These directories are created by calling lookup_one_len() on the root
dir which automatically creates them if they don't exist.
[*] Inasmuch as network namespaces are currently supported here.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Remove the restriction on DNS lookup upcalls that prevents ipv6 addresses
from being looked up.
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Split the AFS dynamic root stuff out of the main directory handling file
and into its own file as they share little in common.
The dynamic root code also gets its own dentry and inode ops tables.
Signed-off-by: David Howells <dhowells@redhat.com>
|