summaryrefslogtreecommitdiffstats
path: root/drivers/perf/Makefile
AgeCommit message (Collapse)AuthorFilesLines
2020-11-25driver/perf: Add PMU driver for the ARM DMC-620 memory controllerTuan Phan1-0/+1
DMC-620 PMU supports total 10 counters which each is independently programmable to different events and can be started and stopped individually. Currently, it only supports ACPI. Other platforms feel free to test and add support for device tree. Usage example: #perf stat -e arm_dmc620_10008c000/clk_cycle_count/ -C 0 Get perf event for clk_cycle_count counter. #perf stat -e arm_dmc620_10008c000/clkdiv2_allocate,mask=0x1f,match=0x2f, incr=2,invert=1/ -C 0 The above example shows how to specify mask, match, incr, invert parameters for clkdiv2_allocate event. Reviewed-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Tuan Phan <tuanphan@os.amperecomputing.com> Link: https://lore.kernel.org/r/1604518246-6198-1-git-send-email-tuanphan@os.amperecomputing.com Signed-off-by: Will Deacon <will@kernel.org>
2020-09-28perf: Add Arm CMN-600 PMU driverRobin Murphy1-0/+1
Initial driver for PMU event counting on the Arm CMN-600 interconnect. CMN sports an obnoxiously complex distributed PMU system as part of its debug and trace features, which can do all manner of things like sampling, cross-triggering and generating CoreSight trace. This driver covers the PMU functionality, plus the relevant aspects of watchpoints for simply counting matching flits. Tested-by: Tsahi Zidenberg <tsahee@amazon.com> Tested-by: Tuan Phan <tuanphan@os.amperecomputing.com> Signed-off-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Will Deacon <will@kernel.org>
2019-06-13drivers/perf: imx_ddr: Add DDR performance counter support to perfFrank Li1-0/+1
Add DDR performance monitor support for iMX8QXP. The PMU consists of 3 programmable event counters and a single dedicated cycle counter. Example usage: $ perf stat -a -e \ imx8_ddr0/read-cycles/,imx8_ddr0/write-cycles/,imx8_ddr0/precharge/ ls - or - $ perf stat -a -e \ imx8_ddr0/cycles/,imx8_ddr0/read-access/,imx8_ddr0/write-access/ ls Other events are supported, and advertised via perf list. Reviewed-by: Andrey Smirnov <andrew.smirnov@gmail.com> Signed-off-by: Frank Li <Frank.Li@nxp.com> [will: rewrote commit message/kconfig and used #defines for dev/cpuhp names] Signed-off-by: Will Deacon <will.deacon@arm.com>
2019-04-04perf/smmuv3: Add arm64 smmuv3 pmu driverNeil Leeder1-0/+1
Adds a new driver to support the SMMUv3 PMU and add it into the perf events framework. Each SMMU node may have multiple PMUs associated with it, each of which may support different events. SMMUv3 PMCG devices are named as smmuv3_pmcg_<phys_addr_page> where <phys_addr_page> is the physical page address of the SMMU PMCG wrapped to 4K boundary. For example, the PMCG at 0xff88840000 is named smmuv3_pmcg_ff88840 Filtering by stream id is done by specifying filtering parameters with the event. options are: filter_enable - 0 = no filtering, 1 = filtering enabled filter_span - 0 = exact match, 1 = pattern match filter_stream_id - pattern to filter against Example: perf stat -e smmuv3_pmcg_ff88840/transaction,filter_enable=1, filter_span=1,filter_stream_id=0x42/ -a netperf Applies filter pattern 0x42 to transaction events, which means events matching stream ids 0x42 & 0x43 are counted as only upper StreamID bits are required to match the given filter. Further filtering information is available in the SMMU documentation. SMMU events are not attributable to a CPU, so task mode and sampling are not supported. Signed-off-by: Neil Leeder <nleeder@codeaurora.org> Signed-off-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com> Reviewed-by: Robin Murphy <robin.murphy@arm.com> [will: fold in review feedback from Robin] [will: rewrite Kconfig text and allow building as a module] Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-12-06drivers/perf: Add Cavium ThunderX2 SoC UNCORE PMU driverKulkarni, Ganapatrao1-0/+1
This patch adds a perf driver for the PMU UNCORE devices DDR4 Memory Controller(DMC) and Level 3 Cache(L3C). Each PMU supports up to 4 counters. All counters lack overflow interrupt and are sampled periodically. Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Ganapatrao Kulkarni <ganapatrao.kulkarni@cavium.com> [will: consistent enum cpuhp_state naming] Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-06drivers/bus: Split Arm CCI driverRobin Murphy1-0/+1
The arm-cci driver is really two entirely separate drivers; one for MCPM port control and the other for the performance monitors. Since they are already relatively self-contained, let's take the plunge and move the PMU parts out to drivers/perf where they belong these days. For non-MCPM systems this leaves a small dependency on the remaining "bus" stub for initial probing and discovery, but we end up with something that still fits the general pattern of its fellow system PMU drivers to ease future maintenance. Moving code to a new file also offers a perfect excuse to modernise the license/copyright headers and clean up some funky linewraps on the way. Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Reviewed-by: Suzuki Poulose <suzuki.poulose@arm.com> Acked-by: Punit Agrawal <punit.agrawal@arm.com> Signed-off-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-03-06drivers/bus: Move Arm CCN PMU driverRobin Murphy1-0/+1
The arm-ccn driver is purely a perf driver for the CCN PMU, not a bus driver in the sense of the other residents of drivers/bus/, so let's move it to the appropriate place for SoC PMU drivers. Not to mention moving the documentation accordingly as well. Acked-by: Pawel Moll <pawel.moll@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-01-02perf: ARM DynamIQ Shared Unit PMU supportSuzuki K Poulose1-0/+1
Add support for the Cluster PMU part of the ARM DynamIQ Shared Unit (DSU). The DSU integrates one or more cores with an L3 memory system, control logic, and external interfaces to form a multicore cluster. The PMU allows counting the various events related to L3, SCU etc, along with providing a cycle counter. The PMU can be accessed via system registers, which are common to the cores in the same cluster. The PMU registers follow the semantics of the ARMv8 PMU, mostly, with the exception that the counters record the cluster wide events. This driver is mostly based on the ARMv8 and CCI PMU drivers. The driver only supports ARM64 at the moment. It can be extended to support ARM32 by providing register accessors like we do in arch/arm64/include/arm_dsu_pmu.h. Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-11-15Merge tag 'arm64-upstream' of ↵Linus Torvalds1-0/+2
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "The big highlight is support for the Scalable Vector Extension (SVE) which required extensive ABI work to ensure we don't break existing applications by blowing away their signal stack with the rather large new vector context (<= 2 kbit per vector register). There's further work to be done optimising things like exception return, but the ABI is solid now. Much of the line count comes from some new PMU drivers we have, but they're pretty self-contained and I suspect we'll have more of them in future. Plenty of acronym soup here: - initial support for the Scalable Vector Extension (SVE) - improved handling for SError interrupts (required to handle RAS events) - enable GCC support for 128-bit integer types - remove kernel text addresses from backtraces and register dumps - use of WFE to implement long delay()s - ACPI IORT updates from Lorenzo Pieralisi - perf PMU driver for the Statistical Profiling Extension (SPE) - perf PMU driver for Hisilicon's system PMUs - misc cleanups and non-critical fixes" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (97 commits) arm64: Make ARMV8_DEPRECATED depend on SYSCTL arm64: Implement __lshrti3 library function arm64: support __int128 on gcc 5+ arm64/sve: Add documentation arm64/sve: Detect SVE and activate runtime support arm64/sve: KVM: Hide SVE from CPU features exposed to guests arm64/sve: KVM: Treat guest SVE use as undefined instruction execution arm64/sve: KVM: Prevent guests from using SVE arm64/sve: Add sysctl to set the default vector length for new processes arm64/sve: Add prctl controls for userspace vector length management arm64/sve: ptrace and ELF coredump support arm64/sve: Preserve SVE registers around EFI runtime service calls arm64/sve: Preserve SVE registers around kernel-mode NEON use arm64/sve: Probe SVE capabilities and usable vector lengths arm64: cpufeature: Move sys_caps_initialised declarations arm64/sve: Backend logic for setting the vector length arm64/sve: Signal handling support arm64/sve: Support vector length resetting for new processes arm64/sve: Core task context handling arm64/sve: Low-level CPU setup ...
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman1-0/+1
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-10-19perf: hisi: Add support for HiSilicon SoC uncore PMU driverShaokun Zhang1-0/+1
This patch adds support HiSilicon SoC uncore PMU driver framework and interfaces. Acked-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com> Signed-off-by: Anurup M <anurup.m@huawei.com> [will: Fix leader accounting in uncore group validation] Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-18drivers/perf: Add support for ARMv8.2 Statistical Profiling ExtensionWill Deacon1-0/+1
The ARMv8.2 architecture introduces the optional Statistical Profiling Extension (SPE). SPE can be used to profile a population of operations in the CPU pipeline after instruction decode. These are either architected instructions (i.e. a dynamic instruction trace) or CPU-specific uops and the choice is fixed statically in the hardware and advertised to userspace via caps/. Sampling is controlled using a sampling interval, similar to a regular PMU counter, but also with an optional random perturbation to avoid falling into patterns where you continuously profile the same instruction in a hot loop. After each operation is decoded, the interval counter is decremented. When it hits zero, an operation is chosen for profiling and tracked within the pipeline until it retires. Along the way, information such as TLB lookups, cache misses, time spent to issue etc is captured in the form of a sample. The sample is then filtered according to certain criteria (e.g. load latency) that can be specified in the event config (described under format/) and, if the sample satisfies the filter, it is written out to memory as a record, otherwise it is discarded. Only one operation can be sampled at a time. The in-memory buffer is linear and virtually addressed, raising an interrupt when it fills up. The PMU driver handles these interrupts to give the appearance of a ring buffer, as expected by the AUX code. The in-memory trace-like format is self-describing (though not parseable in reverse) and written as a series of records, with each record corresponding to a sample and consisting of a sequence of packets. These packets are defined by the architecture, although some have CPU-specific fields for recording information specific to the microarchitecture. As a simple example, a record generated for a branch instruction may consist of the following packets: 0 (Address) : Virtual PC of the branch instruction 1 (Type) : Conditional direct branch 2 (Counter) : Number of cycles taken from Dispatch to Issue 3 (Address) : Virtual branch target + condition flags 4 (Counter) : Number of cycles taken from Dispatch to Complete 5 (Events) : Mispredicted as not-taken 6 (END) : End of record It is also possible to toggle properties such as timestamp packets in each record. This patch adds support for SPE in the form of a new perf driver. Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-04-11drivers/perf: arm_pmu: add ACPI frameworkMark Rutland1-0/+1
This patch adds framework code to handle parsing PMU data out of the MADT, sanity checking this, and managing the association of CPUs (and their interrupts) with appropriate logical PMUs. For the time being, we expect that only one PMU driver (PMUv3) will make use of this, and we simply pass in a single probe function. This is based on an earlier patch from Jeremy Linton. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-04-11drivers/perf: arm_pmu: split out platform device probe logicMark Rutland1-1/+1
Now that we've split the pdev and DT probing logic from the runtime management, let's move the former into its own file. We gain a few lines due to the copyright header and includes, but this should keep the logic clearly separated, and paves the way for adding ACPI support in a similar fashion. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Jeremy Linton <jeremy.linton@arm.com> [will: rename nr_irqs to avoid conflict with global variable] Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-04-03perf: qcom: Add L3 cache PMU driverAgustin Vega-Frias1-0/+1
This adds a new dynamic PMU to the Perf Events framework to program and control the L3 cache PMUs in some Qualcomm Technologies SOCs. The driver supports a distributed cache architecture where the overall cache for a socket is comprised of multiple slices each with its own PMU. Access to each individual PMU is provided even though all CPUs share all the slices. User space needs to aggregate to individual counts to provide a global picture. The driver exports formatting and event information to sysfs so it can be used by the perf user space tools with the syntaxes: perf stat -a -e l3cache_0_0/read-miss/ perf stat -a -e l3cache_0_0/event=0x21/ Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Agustin Vega-Frias <agustinv@codeaurora.org> [will: fixed sparse issues] Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-02-08perf: add qcom l2 cache perf events driverNeil Leeder1-0/+1
Adds perf events support for L2 cache PMU. The L2 cache PMU driver is named 'l2cache_0' and can be used with perf events to profile L2 events such as cache hits and misses on Qualcomm Technologies processors. Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Neil Leeder <nleeder@codeaurora.org> [will: minimise nesting in l2_cache_associate_cpu_with_cluster] [will: use kstrtoul for unsigned long, remove redunant .owner setting] Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-09-15perf: xgene: Add APM X-Gene SoC Performance Monitoring Unit driverTai Nguyen1-0/+1
This patch adds a driver for the SoC-wide (AKA uncore) PMU hardware found in APM X-Gene SoCs. Signed-off-by: Tai Nguyen <ttnguyen@apm.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com>
2015-07-31arm: perf: factor arm_pmu core out to driversMark Rutland1-0/+1
To enable sharing of the arm_pmu code with arm64, this patch factors it out to drivers/perf/. A new drivers/perf directory is added for performance monitor drivers to live under. MAINTAINERS is updated accordingly. Files added previously without a corresponsing MAINTAINERS update (perf_regs.c, perf_callchain.c, and perf_event.h) are also added. Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Linus Walleij <linus.walleij@linaro.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Russell King <linux@arm.linux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> [will: augmented Kconfig help slightly] Signed-off-by: Will Deacon <will.deacon@arm.com>