Age | Commit message (Collapse) | Author | Files | Lines |
|
This patch adds SVE context saving to the hyp FPSIMD context switch
path. This means that it is no longer necessary to save the host
SVE state in advance of entering the guest, when in use.
In order to avoid adding pointless complexity to the code, VHE is
assumed if SVE is in use. VHE is an architectural prerequisite for
SVE, so there is no good reason to turn CONFIG_ARM64_VHE off in
kernels that support both SVE and KVM.
Historically, software models exist that can expose the
architecturally invalid configuration of SVE without VHE, so if
this situation is detected at kvm_init() time then KVM will be
disabled.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
In order to make sve_save_state()/sve_load_state() more easily
reusable and to get rid of a potential branch on context switch
critical paths, this patch makes sve_pffr() inline and moves it to
fpsimd.h.
<asm/processor.h> must be included in fpsimd.h in order to make
this work, and this creates an #include cycle that is tricky to
avoid without modifying core code, due to the way the PR_SVE_*()
prctl helpers are included in the core prctl implementation.
Instead of breaking the cycle, this patch defers inclusion of
<asm/fpsimd.h> in <asm/processor.h> until the point where it is
actually needed: i.e., immediately before the prctl definitions.
No functional change.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
sve_pffr(), which is used to derive the base address used for
low-level SVE save/restore routines, currently takes the relevant
task_struct as an argument.
The only accessed fields are actually part of thread_struct, so
this patch changes the argument type accordingly. This is done in
preparation for moving this function to a header, where we do not
want to have to include <linux/sched.h> due to the consequent
circular #include problems.
No functional change.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Having read_zcr_features() inline in cpufeature.h results in that
header requiring #includes which make it hard to include
<asm/fpsimd.h> elsewhere without triggering header inclusion
cycles.
This is not a hot-path function and arguably should not be in
cpufeature.h in the first place, so this patch moves it to
fpsimd.c, compiled conditionally if CONFIG_ARM64_SVE=y.
This allows some SVE-related #includes to be dropped from
cpufeature.h, which will ease future maintenance.
A couple of missing #includes of <asm/fpsimd.h> are exposed by this
change under arch/arm64/. This patch adds the missing #includes as
necessary.
No functional change.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
This patch refactors KVM to align the host and guest FPSIMD
save/restore logic with each other for arm64. This reduces the
number of redundant save/restore operations that must occur, and
reduces the common-case IRQ blackout time during guest exit storms
by saving the host state lazily and optimising away the need to
restore the host state before returning to the run loop.
Four hooks are defined in order to enable this:
* kvm_arch_vcpu_run_map_fp():
Called on PID change to map necessary bits of current to Hyp.
* kvm_arch_vcpu_load_fp():
Set up FP/SIMD for entering the KVM run loop (parse as
"vcpu_load fp").
* kvm_arch_vcpu_ctxsync_fp():
Get FP/SIMD into a safe state for re-enabling interrupts after a
guest exit back to the run loop.
For arm64 specifically, this involves updating the host kernel's
FPSIMD context tracking metadata so that kernel-mode NEON use
will cause the vcpu's FPSIMD state to be saved back correctly
into the vcpu struct. This must be done before re-enabling
interrupts because kernel-mode NEON may be used by softirqs.
* kvm_arch_vcpu_put_fp():
Save guest FP/SIMD state back to memory and dissociate from the
CPU ("vcpu_put fp").
Also, the arm64 FPSIMD context switch code is updated to enable it
to save back FPSIMD state for a vcpu, not just current. A few
helpers drive this:
* fpsimd_bind_state_to_cpu(struct user_fpsimd_state *fp):
mark this CPU as having context fp (which may belong to a vcpu)
currently loaded in its registers. This is the non-task
equivalent of the static function fpsimd_bind_to_cpu() in
fpsimd.c.
* task_fpsimd_save():
exported to allow KVM to save the guest's FPSIMD state back to
memory on exit from the run loop.
* fpsimd_flush_state():
invalidate any context's FPSIMD state that is currently loaded.
Used to disassociate the vcpu from the CPU regs on run loop exit.
These changes allow the run loop to enable interrupts (and thus
softirqs that may use kernel-mode NEON) without having to save the
guest's FPSIMD state eagerly.
Some new vcpu_arch fields are added to make all this work. Because
host FPSIMD state can now be saved back directly into current's
thread_struct as appropriate, host_cpu_context is no longer used
for preserving the FPSIMD state. However, it is still needed for
preserving other things such as the host's system registers. To
avoid ABI churn, the redundant storage space in host_cpu_context is
not removed for now.
arch/arm is not addressed by this patch and continues to use its
current save/restore logic. It could provide implementations of
the helpers later if desired.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
In struct vcpu_arch, the debug_flags field is used to store
debug-related flags about the vcpu state.
Since we are about to add some more flags related to FPSIMD and
SVE, it makes sense to add them to the existing flags field rather
than adding new fields. Since there is only one debug_flags flag
defined so far, there is plenty of free space for expansion.
In preparation for adding more flags, this patch renames the
debug_flags field to simply "flags", and updates comments
appropriately.
The flag definitions are also moved to <asm/kvm_host.h>, since
their presence in <asm/kvm_asm.h> was for purely historical
reasons: these definitions are not used from asm any more, and not
very likely to be as more Hyp asm is migrated to C.
KVM_ARM64_DEBUG_DIRTY_SHIFT has not been used since commit
1ea66d27e7b0 ("arm64: KVM: Move away from the assembly version of
the world switch"), so this patch gets rid of that too.
No functional change.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
[maz: fixed minor conflict]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
In preparation for optimising the way KVM manages switching the
guest and host FPSIMD state, it is necessary to provide a means for
code outside arch/arm64/kernel/fpsimd.c to restore the user trap
configuration for SVE correctly for the current task.
Rather than requiring external code to duplicate the maintenance
explicitly, this patch moves the trap maintenenace to
fpsimd_bind_to_cpu(), since it is logically part of the work of
associating the current task with the cpu.
Because fpsimd_bind_to_cpu() is rather a cryptic name to publish
alongside fpsimd_bind_state_to_cpu(), the former function is
renamed to fpsimd_bind_task_to_cpu() to make its purpose more
explicit.
This patch makes appropriate changes to ensure that
fpsimd_bind_task_to_cpu() is always called alongside
task_fpsimd_load(), so that the trap maintenance continues to be
done in every situation where it was done prior to this patch.
As a side-effect, the metadata updates done by
fpsimd_bind_task_to_cpu() now change from conditional to
unconditional in the "already bound" case of sigreturn. This is
harmless, and a couple of extra stores on this slow path will not
impact performance. I consider this a reasonable price to pay for
a slightly cleaner interface.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Currently the FPSIMD handling code uses the condition task->mm ==
NULL as a hint that task has no FPSIMD register context.
The ->mm check is only there to filter out tasks that cannot
possibly have FPSIMD context loaded, for optimisation purposes.
Also, TIF_FOREIGN_FPSTATE must always be checked anyway before
saving FPSIMD context back to memory. For these reasons, the ->mm
checks are not useful, providing that TIF_FOREIGN_FPSTATE is
maintained in a consistent way for all threads.
The context switch logic is already deliberately optimised to defer
reloads of the regs until ret_to_user (or sigreturn as a special
case), and save them only if they have been previously loaded.
These paths are the only places where the wrong_task and wrong_cpu
conditions can be made false, by calling fpsimd_bind_task_to_cpu().
Kernel threads by definition never reach these paths. As a result,
the wrong_task and wrong_cpu tests in fpsimd_thread_switch() will
always yield true for kernel threads.
This patch removes the redundant checks and special-case code,
ensuring that TIF_FOREIGN_FPSTATE is set whenever a kernel thread
is scheduled in, and ensures that this flag is set for the init
task. The fpsimd_flush_task_state() call already present in
copy_thread() ensures the same for any new task.
With TIF_FOREIGN_FPSTATE always set for kernel threads, this patch
ensures that no extra context save work is added for kernel
threads, and eliminates the redundant context saving that may
currently occur for kernel threads that have acquired an mm via
use_mm().
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
The init task is started with thread_flags equal to 0, which means
that TIF_FOREIGN_FPSTATE is initially clear.
It is theoretically possible (if unlikely) that the init task could
reach userspace without ever being scheduled out. If this occurs,
data left in the FPSIMD registers by the kernel could be exposed.
This patch fixes this anomaly by ensuring that the init task's
initial TIF_FOREIGN_FPSTATE is set.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Fixes: 005f78cd8849 ("arm64: defer reloading a task's FPSIMD state to userland resume")
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
In preparation for allowing non-task (i.e., KVM vcpu) FPSIMD
contexts to be handled by the fpsimd common code, this patch adapts
task_fpsimd_save() to save back the currently loaded context,
removing the explicit dependency on current.
The relevant storage to write back to in memory is now found by
examining the fpsimd_last_state percpu struct.
fpsimd_save() does nothing unless TIF_FOREIGN_FPSTATE is clear, and
fpsimd_last_state is updated under local_bh_disable() or
local_irq_disable() everywhere that TIF_FOREIGN_FPSTATE is cleared:
thus, fpsimd_save() will write back to the correct storage for the
loaded context.
No functional change.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
To make the lazy FPSIMD context switch trap code easier to hack on,
this patch converts it to C.
This is not amazingly efficient, but the trap should typically only
be taken once per host context switch.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
This patch uses the new update_thread_flag() helpers to simplify a
couple of if () set; else clear; constructs.
No functional change.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
fpsimd_last_state.st is set to NULL as a way of indicating that
current's FPSIMD registers are no longer loaded in the cpu. In
particular, this is done when the kernel temporarily uses or
clobbers the FPSIMD registers for its own purposes, as in CPU PM or
kernel-mode NEON, resulting in them being populated with garbage
data not belonging to a task.
Commit 17eed27b02da ("arm64/sve: KVM: Prevent guests from using
SVE") factors this operation out as a new helper
fpsimd_flush_cpu_state() to make it clearer what is being done
here, and on SVE systems this helper is now used, via
kvm_fpsimd_flush_cpu_state(), to invalidate the registers after KVM
has run a vcpu. The reason for this is that KVM does not yet
understand how to restore the full host SVE registers itself after
loading the guest FPSIMD context into them.
This exposes a particular problem: if fpsimd_last_state.st is set
to NULL without also setting TIF_FOREIGN_FPSTATE, the kernel may
continue to think that current's FPSIMD registers are live even
though they have actually been clobbered.
Prior to the aforementioned commit, the only path where
fpsimd_last_state.st is set to NULL without setting
TIF_FOREIGN_FPSTATE is when kernel_neon_begin() is called by a
kernel thread (where current->mm can be NULL). This does not
matter, because the only harm is that at context-switch time
fpsimd_thread_switch() may unnecessarily save the FPSIMD registers
back to current's thread_struct (even though kernel threads are not
considered to have any FPSIMD context of their own and the
registers will never be reloaded).
Note that although CPU_PM_ENTER lacks the TIF_FOREIGN_FPSTATE
setting, every CPU passing through that path must subsequently pass
through CPU_PM_EXIT before it can re-enter the kernel proper.
CPU_PM_EXIT sets the flag.
The sve_flush_cpu_state() function added by commit 17eed27b02da
also lacks the proper maintenance of TIF_FOREIGN_FPSTATE. This may
cause the bits of a host task's SVE registers that do not alias the
FPSIMD register file to spontaneously appear zeroed if a KVM vcpu
runs in the same task in the meantime. Although this effect is
hidden by the fact that the non-FPSIMD bits of the SVE registers
are zeroed by a syscall anyway, it is doubtless a bad idea to rely
on these different code paths interacting correctly under future
maintenance.
This patch makes TIF_FOREIGN_FPSTATE an unconditional side-effect
of fpsimd_flush_cpu_state(), and removes the set_thread_flag()
calls that become redundant as a result. This ensures that
TIF_FOREIGN_FPSTATE cannot remain clear if the FPSIMD state in the
FPSIMD registers is invalid.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
For historical reasons, we open-code lm_alias() in kvm_ksym_ref().
Let's use lm_alias() to avoid duplication and make things clearer.
As we have to pull this from <linux/mm.h> (which is not safe for
inclusion in assembly), we may as well move the kvm_ksym_ref()
definition into the existing !__ASSEMBLY__ block.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Pll KVM fixes from Radim Krčmář:
"ARM:
- Fix proxying of GICv2 CPU interface accesses
- Fix crash when switching to BE
- Track source vcpu git GICv2 SGIs
- Fix an outdated bit of documentation
x86:
- Speed up injection of expired timers (for stable)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: remove APIC Timer periodic/oneshot spikes
arm64: vgic-v2: Fix proxying of cpuif access
KVM: arm/arm64: vgic_init: Cleanup reference to process_maintenance
KVM: arm64: Fix order of vcpu_write_sys_reg() arguments
KVM: arm/arm64: vgic: Fix source vcpu issues for GICv2 SGI
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fix from Thomas Gleixner:
"Unbreak the CPUID CPUID_8000_0008_EBX reload which got dropped when
the evaluation of physical and virtual bits which uses the same CPUID
leaf was moved out of get_cpu_cap()"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Restore CPUID_8000_0008_EBX reload
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull clocksource fixes from Thomas Gleixner:
"The recent addition of the early TSC clocksource breaks on machines
which have an unstable TSC because in case that TSC is disabled, then
the clocksource selection logic falls back to the early TSC which is
obviously bogus.
That also unearthed a few robustness issues in the clocksource
derating code which are addressed as well"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
clocksource: Rework stale comment
clocksource: Consistent de-rate when marking unstable
x86/tsc: Fix mark_tsc_unstable()
clocksource: Initialize cs->wd_list
clocksource: Allow clocksource_mark_unstable() on unregistered clocksources
x86/tsc: Always unregister clocksource_tsc_early
|
|
Since the commit "8003c9ae204e: add APIC Timer periodic/oneshot mode VMX
preemption timer support", a Windows 10 guest has some erratic timer
spikes.
Here the results on a 150000 times 1ms timer without any load:
Before 8003c9ae204e | After 8003c9ae204e
Max 1834us | 86000us
Mean 1100us | 1021us
Deviation 59us | 149us
Here the results on a 150000 times 1ms timer with a cpu-z stress test:
Before 8003c9ae204e | After 8003c9ae204e
Max 32000us | 140000us
Mean 1006us | 1997us
Deviation 140us | 11095us
The root cause of the problem is starting hrtimer with an expiry time
already in the past can take more than 20 milliseconds to trigger the
timer function. It can be solved by forward such past timers
immediately, rather than submitting them to hrtimer_start().
In case the timer is periodic, update the target expiration and call
hrtimer_start with it.
v2: Check if the tsc deadline is already expired. Thank you Mika.
v3: Execute the past timers immediately rather than submitting them to
hrtimer_start().
v4: Rearm the periodic timer with advance_periodic_target_expiration() a
simpler version of set_target_expiration(). Thank you Paolo.
Cc: Mika Penttilä <mika.penttila@nextfour.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Anthoine Bourgeois <anthoine.bourgeois@blade-group.com>
8003c9ae204e ("KVM: LAPIC: add APIC Timer periodic/oneshot mode VMX preemption timer support")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm
KVM/arm fixes for 4.17, take #2
- Fix proxying of GICv2 CPU interface accesses
- Fix crash when switching to BE
- Track source vcpu git GICv2 SGIs
- Fix an outdated bit of documentation
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen cleanup from Juergen Gross:
"One cleanup to remove VLAs from the kernel"
* tag 'for-linus-4.17-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
x86/xen: Remove use of VLAs
|
|
Proxying the cpuif accesses at EL2 makes use of vcpu_data_guest_to_host
and co, which check the endianness, which call into vcpu_read_sys_reg...
which isn't mapped at EL2 (it was inlined before, and got moved OoL
with the VHE optimizations).
The result is of course a nice panic. Let's add some specialized
cruft to keep the broken platforms that require this hack alive.
But, this code used vcpu_data_guest_to_host(), which expected us to
write the value to host memory, instead we have trapped the guest's
read or write to an mmio-device, and are about to replay it using the
host's readl()/writel() which also perform swabbing based on the host
endianness. This goes wrong when both host and guest are big-endian,
as readl()/writel() will undo the guest's swabbing, causing the
big-endian value to be written to device-memory.
What needs doing?
A big-endian guest will have pre-swabbed data before storing, undo this.
If its necessary for the host, writel() will re-swab it.
For a read a big-endian guest expects to swab the data after the load.
The hosts's readl() will correct for host endianness, giving us the
device-memory's value in the register. For a big-endian guest, swab it
as if we'd only done the load.
For a little-endian guest, nothing needs doing as readl()/writel() leave
the correct device-memory value in registers.
Tested on Juno with that rarest of things: a big-endian 64K host.
Based on a patch from Marc Zyngier.
Reported-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Fixes: bf8feb39642b ("arm64: KVM: vgic-v2: Add GICV access from HYP")
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
A typo in kvm_vcpu_set_be()'s call:
| vcpu_write_sys_reg(vcpu, SCTLR_EL1, sctlr)
causes us to use the 32bit register value as an index into the sys_reg[]
array, and sail off the end of the linear map when we try to bring up
big-endian secondaries.
| Unable to handle kernel paging request at virtual address ffff80098b982c00
| Mem abort info:
| ESR = 0x96000045
| Exception class = DABT (current EL), IL = 32 bits
| SET = 0, FnV = 0
| EA = 0, S1PTW = 0
| Data abort info:
| ISV = 0, ISS = 0x00000045
| CM = 0, WnR = 1
| swapper pgtable: 4k pages, 48-bit VAs, pgdp = 000000002ea0571a
| [ffff80098b982c00] pgd=00000009ffff8803, pud=0000000000000000
| Internal error: Oops: 96000045 [#1] PREEMPT SMP
| Modules linked in:
| CPU: 2 PID: 1561 Comm: kvm-vcpu-0 Not tainted 4.17.0-rc3-00001-ga912e2261ca6-dirty #1323
| Hardware name: ARM Juno development board (r1) (DT)
| pstate: 60000005 (nZCv daif -PAN -UAO)
| pc : vcpu_write_sys_reg+0x50/0x134
| lr : vcpu_write_sys_reg+0x50/0x134
| Process kvm-vcpu-0 (pid: 1561, stack limit = 0x000000006df4728b)
| Call trace:
| vcpu_write_sys_reg+0x50/0x134
| kvm_psci_vcpu_on+0x14c/0x150
| kvm_psci_0_2_call+0x244/0x2a4
| kvm_hvc_call_handler+0x1cc/0x258
| handle_hvc+0x20/0x3c
| handle_exit+0x130/0x1ec
| kvm_arch_vcpu_ioctl_run+0x340/0x614
| kvm_vcpu_ioctl+0x4d0/0x840
| do_vfs_ioctl+0xc8/0x8d0
| ksys_ioctl+0x78/0xa8
| sys_ioctl+0xc/0x18
| el0_svc_naked+0x30/0x34
| Code: 73620291 604d00b0 00201891 1ab10194 (957a33f8)
|---[ end trace 4b4a4f9628596602 ]---
Fix the order of the arguments.
Fixes: 8d404c4c24613 ("KVM: arm64: Rewrite system register accessors to read/write functions")
CC: Christoffer Dall <cdall@cs.columbia.edu>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Pull networking fixes from David Miller:
1) Various sockmap fixes from John Fastabend (pinned map handling,
blocking in recvmsg, double page put, error handling during redirect
failures, etc.)
2) Fix dead code handling in x86-64 JIT, from Gianluca Borello.
3) Missing device put in RDS IB code, from Dag Moxnes.
4) Don't process fast open during repair mode in TCP< from Yuchung
Cheng.
5) Move address/port comparison fixes in SCTP, from Xin Long.
6) Handle add a bond slave's master into a bridge properly, from
Hangbin Liu.
7) IPv6 multipath code can operate on unitialized memory due to an
assumption that the icmp header is in the linear SKB area. Fix from
Eric Dumazet.
8) Don't invoke do_tcp_sendpages() recursively via TLS, from Dave
Watson.
9) Fix memory leaks in x86-64 JIT, from Daniel Borkmann.
10) RDS leaks kernel memory to userspace, from Eric Dumazet.
11) DCCP can invoke a tasklet on a freed socket, take a refcount. Also
from Eric Dumazet.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (78 commits)
dccp: fix tasklet usage
smc: fix sendpage() call
net/smc: handle unregistered buffers
net/smc: call consolidation
qed: fix spelling mistake: "offloded" -> "offloaded"
net/mlx5e: fix spelling mistake: "loobpack" -> "loopback"
tcp: restore autocorking
rds: do not leak kernel memory to user land
qmi_wwan: do not steal interfaces from class drivers
ipv4: fix fnhe usage by non-cached routes
bpf: sockmap, fix error handling in redirect failures
bpf: sockmap, zero sg_size on error when buffer is released
bpf: sockmap, fix scatterlist update on error path in send with apply
net_sched: fq: take care of throttled flows before reuse
ipv6: Revert "ipv6: Allow non-gateway ECMP for IPv6"
bpf, x64: fix memleak when not converging on calls
bpf, x64: fix memleak when not converging after image
net/smc: restrict non-blocking connect finish
8139too: Use disable_irq_nosync() in rtl8139_poll_controller()
sctp: fix the issue that the cookie-ack with auth can't get processed
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux
Pull parisc fixes from Helge Deller:
"Fix two section mismatches, convert to read_persistent_clock64(), add
further documentation regarding the HPMC crash handler and make
bzImage the default build target"
* 'parisc-4.17-4' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux:
parisc: Fix section mismatches
parisc: drivers.c: Fix section mismatches
parisc: time: Convert read_persistent_clock() to read_persistent_clock64()
parisc: Document rules regarding checksum of HPMC handler
parisc: Make bzImage default build target
|
|
Fix three section mismatches:
1) Section mismatch in reference from the function ioread8() to the
function .init.text:pcibios_init_bridge()
2) Section mismatch in reference from the function free_initmem() to the
function .init.text:map_pages()
3) Section mismatch in reference from the function ccio_ioc_init() to
the function .init.text:count_parisc_driver()
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
Fix two section mismatches in drivers.c:
1) Section mismatch in reference from the function alloc_tree_node() to
the function .init.text:create_tree_node().
2) Section mismatch in reference from the function walk_native_bus() to
the function .init.text:alloc_pa_dev().
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
The JIT logic in jit_subprogs() is as follows: for all subprogs we
allocate a bpf_prog_alloc(), populate it (prog->is_func = 1 here),
and pass it to bpf_int_jit_compile(). If a failure occurred during
JIT and prog->jited is not set, then we bail out from attempting to
JIT the whole program, and punt to the interpreter instead. In case
JITing went successful, we fixup BPF call offsets and do another
pass to bpf_int_jit_compile() (extra_pass is true at that point) to
complete JITing calls. Given that requires to pass JIT context around
addrs and jit_data from x86 JIT are freed in the extra_pass in
bpf_int_jit_compile() when calls are involved (if not, they can
be freed immediately). However, if in the original pass, the JIT
image didn't converge then we leak addrs and jit_data since image
itself is NULL, the prog->is_func is set and extra_pass is false
in that case, meaning both will become unreachable and are never
cleaned up, therefore we need to free as well on !image. Only x64
JIT is affected.
Fixes: 1c2a088a6626 ("bpf: x64: add JIT support for multi-function programs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
While reviewing x64 JIT code, I noticed that we leak the prior allocated
JIT image in the case where proglen != oldproglen during the JIT passes.
Prior to the commit e0ee9c12157d ("x86: bpf_jit: fix two bugs in eBPF JIT
compiler") we would just break out of the loop, and using the image as the
JITed prog since it could only shrink in size anyway. After e0ee9c12157d,
we would bail out to out_addrs label where we free addrs and jit_data but
not the image coming from bpf_jit_binary_alloc().
Fixes: e0ee9c12157d ("x86: bpf_jit: fix two bugs in eBPF JIT compiler")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
The recent commt which addresses the x86_phys_bits corruption with
encrypted memory on CPUID reload after a microcode update lost the reload
of CPUID_8000_0008_EBX as well.
As a consequence IBRS and IBRS_FW are not longer detected
Restore the behaviour by bringing the reload of CPUID_8000_0008_EBX
back. This restore has a twist due to the convoluted way the cpuid analysis
works:
CPUID_8000_0008_EBX is used by AMD to enumerate IBRB, IBRS, STIBP. On Intel
EBX is not used. But the speculation control code sets the AMD bits when
running on Intel depending on the Intel specific speculation control
bits. This was done to use the same bits for alternatives.
The change which moved the 8000_0008 evaluation out of get_cpu_cap() broke
this nasty scheme due to ordering. So that on Intel the store to
CPUID_8000_0008_EBX clears the IBRB, IBRS, STIBP bits which had been set
before by software.
So the actual CPUID_8000_0008_EBX needs to go back to the place where it
was and the phys/virt address space calculation cannot touch it.
In hindsight this should have used completely synthetic bits for IBRB,
IBRS, STIBP instead of reusing the AMD bits, but that's for 4.18.
/me needs to find time to cleanup that steaming pile of ...
Fixes: d94a155c59c9 ("x86/cpu: Prevent cpuinfo_x86::x86_phys_bits adjustment corruption")
Reported-by: Jörg Otte <jrg.otte@gmail.com>
Reported-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jörg Otte <jrg.otte@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: kirill.shutemov@linux.intel.com
Cc: Borislav Petkov <bp@alien8.de
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1805021043510.1668@nanos.tec.linutronix.de
|
|
mark_tsc_unstable() also needs to affect tsc_early, Now that
clocksource_mark_unstable() can be used on a clocksource irrespective of
its registration state, use it on both tsc_early and tsc.
This does however require cs->list to be initialized empty, otherwise it
cannot tell the registation state before registation.
Fixes: aa83c45762a2 ("x86/tsc: Introduce early tsc clocksource")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Diego Viola <diego.viola@gmail.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: len.brown@intel.com
Cc: rjw@rjwysocki.net
Cc: rui.zhang@intel.com
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180430100344.533326547@infradead.org
|
|
Don't leave the tsc-early clocksource registered if it errors out
early.
This was reported by Diego, who on his Core2 era machine got TSC
invalidated while it was running with tsc-early (due to C-states).
This results in keeping tsc-early with very bad effects.
Reported-and-Tested-by: Diego Viola <diego.viola@gmail.com>
Fixes: aa83c45762a2 ("x86/tsc: Introduce early tsc clocksource")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: len.brown@intel.com
Cc: rjw@rjwysocki.net
Cc: diego.viola@gmail.com
Cc: rui.zhang@intel.com
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180430100344.350507853@infradead.org
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rkuo/linux-hexagon-kernel
Pull hexagon fixes from Richard Kuo:
"Some small fixes for module compilation"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rkuo/linux-hexagon-kernel:
hexagon: export csum_partial_copy_nocheck
hexagon: add memset_io() helper
|
|
This is needed to link ipv6 as a loadable module, which in turn happens
in allmodconfig.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Richard Kuo <rkuo@codeaurora.org>
|
|
We already have memcpy_toio(), but not memset_io(), so let's
add the obvious version to allow building an allmodconfig kernel
without errors like
drivers/gpu/drm/ttm/ttm_bo_util.c: In function 'ttm_bo_move_memcpy':
drivers/gpu/drm/ttm/ttm_bo_util.c:390:3: error: implicit declaration of function 'memset_io' [-Werror=implicit-function-declaration]
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Richard Kuo <rkuo@codeaurora.org>
|
|
- Fixup license text for oradax driver, from Rob Gardner.
- Release device object with put_device() instead of straight kfree(),
from Arvind Yadav.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc:
sparc: vio: use put_device() instead of kfree()
sparc64: Fix mistake in oradax license text
|
|
Never directly free @dev after calling device_register(), even
if it returned an error. Always use put_device() to give up the
reference initialized.
Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The license text in both oradax files mistakenly specifies "version 3" of
the GNU General Public License. This is corrected to specify "version 2".
Signed-off-by: Rob Gardner <rob.gardner@oracle.com>
Signed-off-by: Jonathan Helman <jonathan.helman@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
"Another set of x86 related updates:
- Fix the long broken x32 version of the IPC user space headers which
was noticed by Arnd Bergman in course of his ongoing y2038 work.
GLIBC seems to have non broken private copies of these headers so
this went unnoticed.
- Two microcode fixlets which address some more fallout from the
recent modifications in that area:
- Unconditionally save the microcode patch, which was only saved
when CPU_HOTPLUG was enabled causing failures in the late
loading mechanism
- Make the later loader synchronization finally work under all
circumstances. It was exiting early and causing timeout failures
due to a missing synchronization point.
- Do not use mwait_play_dead() on AMD systems to prevent excessive
power consumption as the CPU cannot go into deep power states from
there.
- Address an annoying sparse warning due to lost type qualifiers of
the vmemmap and vmalloc base address constants.
- Prevent reserving crash kernel region on Xen PV as this leads to
the wrong perception that crash kernels actually work there which
is not the case. Xen PV has its own crash mechanism handled by the
hypervisor.
- Add missing TLB cpuid values to the table to make the printout on
certain machines correct.
- Enumerate the new CLDEMOTE instruction
- Fix an incorrect SPDX identifier
- Remove stale macros"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ipc: Fix x32 version of shmid64_ds and msqid64_ds
x86/setup: Do not reserve a crash kernel region if booted on Xen PV
x86/cpu/intel: Add missing TLB cpuid values
x86/smpboot: Don't use mwait_play_dead() on AMD systems
x86/mm: Make vmemmap and vmalloc base address constants unsigned long
x86/vector: Remove the unused macro FPU_IRQ
x86/vector: Remove the macro VECTOR_OFFSET_START
x86/cpufeatures: Enumerate cldemote instruction
x86/microcode: Do not exit early from __reload_late()
x86/microcode/intel: Save microcode patch unconditionally
x86/jailhouse: Fix incorrect SPDX identifier
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 pti fixes from Thomas Gleixner:
"A set of updates for the x86/pti related code:
- Preserve r8-r11 in int $0x80. r8-r11 need to be preserved, but the
int$80 entry code removed that quite some time ago. Make it correct
again.
- A set of fixes for the Global Bit work which went into 4.17 and
caused a bunch of interesting regressions:
- Triggering a BUG in the page attribute code due to a missing
check for early boot stage
- Warnings in the page attribute code about holes in the kernel
text mapping which are caused by the freeing of the init code.
Handle such holes gracefully.
- Reduce the amount of kernel memory which is set global to the
actual text and do not incidentally overlap with data.
- Disable the global bit when RANDSTRUCT is enabled as it
partially defeats the hardening.
- Make the page protection setup correct for vma->page_prot
population again. The adjustment of the protections fell through
the crack during the Global bit rework and triggers warnings on
machines which do not support certain features, e.g. NX"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/entry/64/compat: Preserve r8-r11 in int $0x80
x86/pti: Filter at vma->vm_page_prot population
x86/pti: Disallow global kernel text with RANDSTRUCT
x86/pti: Reduce amount of kernel text allowed to be Global
x86/pti: Fix boot warning from Global-bit setting
x86/pti: Fix boot problems from Global-bit setting
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Thomas Gleixner:
"The perf update contains the following bits:
x86:
- Prevent setting freeze_on_smi on PerfMon V1 CPUs to avoid #GP
perf stat:
- Keep the '/' event modifier separator in fallback, for example when
fallbacking from 'cpu/cpu-cycles/' to user level only, where it
should become 'cpu/cpu-cycles/u' and not 'cpu/cpu-cycles/:u' (Jiri
Olsa)
- Fix PMU events parsing rule, improving error reporting for invalid
events (Jiri Olsa)
- Disable write_backward and other event attributes for !group events
in a group, fixing, for instance this group: '{cycles,msr/aperf/}:S'
that has leader sampling (:S) and where just the 'cycles', the
leader event, should have the write_backward attribute set, in this
case it all fails because the PMU where 'msr/aperf/' lives doesn't
accepts write_backward style sampling (Jiri Olsa)
- Only fall back group read for leader (Kan Liang)
- Fix core PMU alias list for x86 platform (Kan Liang)
- Print out hint for mixed PMU group error (Kan Liang)
- Fix duplicate PMU name for interval print (Kan Liang)
Core:
- Set main kernel end address properly when reading kernel and module
maps (Namhyung Kim)
perf mem:
- Fix incorrect entries and add missing man options (Sangwon Hong)
s/390:
- Remove s390 specific strcmp_cpuid_cmp function (Thomas Richter)
- Adapt 'perf test' case record+probe_libc_inet_pton.sh for s390
- Fix s390 undefined record__auxtrace_init() return value in 'perf
record' (Thomas Richter)"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel: Don't enable freeze-on-smi for PerfMon V1
perf stat: Fix duplicate PMU name for interval print
perf evsel: Only fall back group read for leader
perf stat: Print out hint for mixed PMU group error
perf pmu: Fix core PMU alias list for X86 platform
perf record: Fix s390 undefined record__auxtrace_init() return value
perf mem: Document incorrect and missing options
perf evsel: Disable write_backward for leader sampling group events
perf pmu: Fix pmu events parsing rule
perf stat: Keep the / modifier separator in fallback
perf test: Adapt test case record+probe_libc_inet_pton.sh for s390
perf list: Remove s390 specific strcmp_cpuid_cmp function
perf machine: Set main kernel end address properly
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
"A bunch of fixes, mostly for existing code and going to stable.
Our memory hot-unplug path wasn't flushing the cache before removing
memory. That is a problem now that we are doing memory hotplug on bare
metal.
Three fixes for the NPU code that supports devices connected via
NVLink (ie. GPUs). The main one tweaks the TLB flush algorithm to
avoid soft lockups for large flushes.
A fix for our memory error handling where we would loop infinitely,
returning back to the bad access and hard lockup the CPU.
Fixes for the OPAL RTC driver, which wasn't handling some error cases
correctly.
A fix for a hardlockup in the powernv cpufreq driver.
And finally two fixes to our smp_send_stop(), required due to a recent
change to use it on shutdown.
Thanks to: Alistair Popple, Balbir Singh, Laurentiu Tudor, Mahesh
Salgaonkar, Mark Hairgrove, Nicholas Piggin, Rashmica Gupta, Shilpasri
G Bhat"
* tag 'powerpc-4.17-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/kvm/booke: Fix altivec related build break
powerpc: Fix deadlock with multiple calls to smp_send_stop
cpufreq: powernv: Fix hardlockup due to synchronous smp_call in timer interrupt
powerpc: Fix smp_send_stop NMI IPI handling
rtc: opal: Fix OPAL RTC driver OPAL_BUSY loops
powerpc/mce: Fix a bug where mce loops on memory UE.
powerpc/powernv/npu: Do a PID GPU TLB flush when invalidating a large address range
powerpc/powernv/npu: Prevent overwriting of pnv_npu2_init_contex() callback parameters
powerpc/powernv/npu: Add lock to prevent race in concurrent context init/destroy
powerpc/powernv/memtrace: Let the arch hotunplug code flush cache
powerpc/mm: Flush cache on memory hot(un)plug
|
|
Pull KVM fixes from Radim Krčmář:
"ARM:
- PSCI selection API, a leftover from 4.16 (for stable)
- Kick vcpu on active interrupt affinity change
- Plug a VMID allocation race on oversubscribed systems
- Silence debug messages
- Update Christoffer's email address (linaro -> arm)
x86:
- Expose userspace-relevant bits of a newly added feature
- Fix TLB flushing on VMX with VPID, but without EPT"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
x86/headers/UAPI: Move DISABLE_EXITS KVM capability bits to the UAPI
kvm: apic: Flush TLB after APIC mode/address change if VPIDs are in use
arm/arm64: KVM: Add PSCI version selection API
KVM: arm/arm64: vgic: Kick new VCPU on interrupt migration
arm64: KVM: Demote SVE and LORegion warnings to debug only
MAINTAINERS: Update e-mail address for Christoffer Dall
KVM: arm/arm64: Close VMID generation race
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
"Nothing too bad, but the spectre updates to smatch identified a few
places that may need sanitising so we've got those covered.
Details:
- Close some potential spectre-v1 vulnerabilities found by smatch
- Add missing list sentinel for CPUs that don't require KPTI
- Removal of unused 'addr' parameter for I/D cache coherency
- Removal of redundant set_fs(KERNEL_DS) calls in ptrace
- Fix single-stepping state machine handling in response to kernel
traps
- Clang support for 128-bit integers
- Avoid instrumenting our out-of-line atomics in preparation for
enabling LSE atomics by default in 4.18"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: avoid instrumenting atomic_ll_sc.o
KVM: arm/arm64: vgic: fix possible spectre-v1 in vgic_mmio_read_apr()
KVM: arm/arm64: vgic: fix possible spectre-v1 in vgic_get_irq()
arm64: fix possible spectre-v1 in ptrace_hbp_get_event()
arm64: support __int128 with clang
arm64: only advance singlestep for user instruction traps
arm64/kernel: rename module_emit_adrp_veneer->module_emit_veneer_for_adrp
arm64: ptrace: remove addr_limit manipulation
arm64: mm: drop addr parameter from sync icache and dcache
arm64: add sentinel to kpti_safe_list
|
|
Move DISABLE_EXITS KVM capability bits to the UAPI just like the rest of
capabilities.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM SoC fixes from Arnd Bergmann:
"This round of fixes has two larger changes that came in last week:
- a couple of patches all intended to finally turn on USB support on
various Amlogic SoC based boards. The respective driver were not
finalized until very late before the merge window and the DT
portion is the last bit now.
- a defconfig update for gemini that had repeatedly missed the cut
but that is required to actually boot any real machines with the
default build.
The rest are the usual small changes:
- a fix for a nasty build regression on the OMAP memory drivers
- a fix for a boot problem on Intel/Altera SocFPGA
- a MAINTAINER file update
- a couple of fixes for issues found by automated testing (kernelci,
coverity, sparse, ...)
- a few incorrect DT entries are updated to match the hardware"
* tag 'armsoc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc:
ARM: defconfig: Update Gemini defconfig
ARM: s3c24xx: jive: Fix some GPIO names
HISI LPC: Add Kconfig MFD_CORE dependency
ARM: dts: Fix NAS4220B pin config
MAINTAINERS: Remove myself as maintainer
arm64: dts: correct SATA addresses for Stingray
ARM64: dts: meson-gxm-khadas-vim2: enable the USB controller
ARM64: dts: meson-gxl-nexbox-a95x: enable the USB controller
ARM64: dts: meson-gxl-s905x-libretech-cc: enable the USB controller
ARM64: dts: meson-gx-p23x-q20x: enable the USB controller
ARM64: dts: meson-gxl-s905x-p212: enable the USB controller
ARM64: dts: meson-gxm: add GXM specific USB host configuration
ARM64: dts: meson-gxl: add USB host support
ARM: OMAP2+: Fix build when using split object directories
soc: bcm2835: Make !RASPBERRYPI_FIRMWARE dummies return failure
soc: bcm: raspberrypi-power: Fix use of __packed
ARM: dts: Fix cm2 and prm sizes for omap4
ARM: socfpga_defconfig: Remove QSPI Sector 4K size force
firmware: arm_scmi: remove redundant null check on array
arm64: dts: juno: drop unnecessary address-cells and size-cells properties
|
|
Currently, KVM flushes the TLB after a change to the APIC access page
address or the APIC mode when EPT mode is enabled. However, even in
shadow paging mode, a TLB flush is needed if VPIDs are being used, as
specified in the Intel SDM Section 29.4.5.
So replace vmx_flush_tlb_ept_only() with vmx_flush_tlb(), which will
flush if either EPT or VPIDs are in use.
Signed-off-by: Junaid Shahid <junaids@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
|
|
32-bit user code that uses int $80 doesn't care about r8-r11. There is,
however, some 64-bit user code that intentionally uses int $0x80 to invoke
32-bit system calls. From what I've seen, basically all such code assumes
that r8-r15 are all preserved, but the kernel clobbers r8-r11. Since I
doubt that there's any code that depends on int $0x80 zeroing r8-r11,
change the kernel to preserve them.
I suspect that very little user code is broken by the old clobber, since
r8-r11 are only rarely allocated by gcc, and they're clobbered by function
calls, so they only way we'd see a problem is if the same function that
invokes int $0x80 also spills something important to one of these
registers.
The current behavior seems to date back to the historical commit
"[PATCH] x86-64 merge for 2.6.4". Before that, all regs were
preserved. I can't find any explanation of why this change was made.
Update the test_syscall_vdso_32 testcase as well to verify the new
behavior, and it strengthens the test to make sure that the kernel doesn't
accidentally permute r8..r15.
Suggested-by: Denys Vlasenko <dvlasenk@redhat.com>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Link: https://lkml.kernel.org/r/d4c4d9985fbe64f8c9e19291886453914b48caee.1523975710.git.luto@kernel.org
|
|
A bugfix broke the x32 shmid64_ds and msqid64_ds data structure layout
(as seen from user space) a few years ago: Originally, __BITS_PER_LONG
was defined as 64 on x32, so we did not have padding after the 64-bit
__kernel_time_t fields, After __BITS_PER_LONG got changed to 32,
applications would observe extra padding.
In other parts of the uapi headers we seem to have a mix of those
expecting either 32 or 64 on x32 applications, so we can't easily revert
the path that broke these two structures.
Instead, this patch decouples x32 from the other architectures and moves
it back into arch specific headers, partially reverting the even older
commit 73a2d096fdf2 ("x86: remove all now-duplicate header files").
It's not clear whether this ever made any difference, since at least
glibc carries its own (correct) copy of both of these header files,
so possibly no application has ever observed the definitions here.
Based on a suggestion from H.J. Lu, I tried out the tool from
https://github.com/hjl-tools/linux-header to find other such
bugs, which pointed out the same bug in statfs(), which also has
a separate (correct) copy in glibc.
Fixes: f4b4aae18288 ("x86/headers/uapi: Fix __BITS_PER_LONG value for x32 builds")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H . J . Lu" <hjl.tools@gmail.com>
Cc: Jeffrey Walton <noloader@gmail.com>
Cc: stable@vger.kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20180424212013.3967461-1-arnd@arndb.de
|
|
Xen PV domains cannot shut down and start a crash kernel. Instead,
the crashing kernel makes a SCHEDOP_shutdown hypercall with the
reason code SHUTDOWN_crash, cf. xen_crash_shutdown() machine op in
arch/x86/xen/enlighten_pv.c.
A crash kernel reservation is merely a waste of RAM in this case. It
may also confuse users of kexec_load(2) and/or kexec_file_load(2).
When flags include KEXEC_ON_CRASH or KEXEC_FILE_ON_CRASH,
respectively, these syscalls return success, which is technically
correct, but the crash kexec image will never be actually used.
Signed-off-by: Petr Tesarik <ptesarik@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: xen-devel@lists.xenproject.org
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Jean Delvare <jdelvare@suse.de>
Link: https://lkml.kernel.org/r/20180425120835.23cef60c@ezekiel.suse.cz
|
|
Our out-of-line atomics are built with a special calling convention,
preventing pointless stack spilling, and allowing us to patch call sites
with ARMv8.1 atomic instructions.
Instrumentation inserted by the compiler may result in calls to
functions not following this special calling convention, resulting in
registers being unexpectedly clobbered, and various problems resulting
from this.
For example, if a kernel is built with KCOV and ARM64_LSE_ATOMICS, the
compiler inserts calls to __sanitizer_cov_trace_pc in the prologues of
the atomic functions. This has been observed to result in spurious
cmpxchg failures, leading to a hang early on in the boot process.
This patch avoids such issues by preventing instrumentation of our
out-of-line atomics.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|