Age | Commit message (Collapse) | Author | Files | Lines |
|
Add a new pseudo-board, within the existing SH boards/machine-vectors
framework, which does not represent any actual hardware but instead
requires all hardware to be described by the device tree blob provided
by the boot loader. Changes made are thus non-invasive and do not risk
breaking support for legacy boards.
New hardware, including the open-hardware J2 and associated SoC
devices, will use device free from the outset. Legacy SH boards can
transition to device tree once all their hardware has device tree
bindings, driver support for device tree, and a dts file for the
board.
It is intented that, once all boards are supported in the new
framework, the existing machine-vectors framework should be removed
and the new device tree setup code integrated directly.
Signed-off-by: Rich Felker <dalias@libc.org>
|
|
The code being removed was copied from arm, where the corresponding
code was removed in 2013. The only functional change should be that
the rating of the dummy local timer changes from 400 to 100.
Signed-off-by: Rich Felker <dalias@libc.org>
|
|
This is a prerequisite for adding NOMMU SMP support.
Signed-off-by: Rich Felker <dalias@libc.org>
|
|
Historically SH-2 Linux (and originally uClinux) used a syscall
calling convention incompatible with the established SH-3/4 Linux ABI.
This choice was made because the trap range used by the existing ABI,
0x10-0x17, overlaps with the hardware exception/interrupt trap range
reserved by SH-2, and in particular, with the SH-2A divide-by-zero and
division-overflow exceptions.
Despite the documented syscall convention using the low bits of the
trap number to signal the number of arguments the kernel should
expect, no version of the kernel has ever used this information, nor
is it useful; all of the registers need to be saved anyway. Therefore,
it is possible to pick a new trap number, 0x1f, that is both supported
by all existing SH-3/4 kernels and unassigned as a hardware trap in
the SH-2 range. This makes it possible to produce SH-2 application
binaries that are forwards-compatible with running on SH-3/4 kernels
and to treat SH as a unified platform with varying ISA support levels
rather than multiple gratuitously-incompatible platforms.
This patch adjusts the range checking SH-2 and SH-2A kernels make for
the syscall trap to accept the range 0x1f-0x2f rather than just
0x20-0x2f. As a result, trap 0x1f now acts as a syscall for all SH
models.
Signed-off-by: Rich Felker <dalias@libc.org>
|
|
New gcc (4.8 or later) used new shift helper functions.
So we need added new helper to private libgcc.
Signed-off-by: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Rich Felker <dalias@libc.org>
|
|
Signed-off-by: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Rich Felker <dalias@libc.org>
|
|
The generic header file is almost equivalent to the SH one. The
only difference is that the SH one supports allocating clkdev
lookups early using bootmem allocators instead of the slabs. From
what I can tell using visual inspection, the slab is initialized
before any clkdev allocation is made under arch/sh. So let's
remove the arch specific clkdev.h header and use the generic one
instead.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Rich Felker <dalias@libc.org>
|
|
Pull MIPS fixes from Ralf Baechle:
"Another round of MIPS fixes for 4.5:
- Fix JZ4780 build with DEBUG_ZBOOT and MACH_JZ4780
- Fix build with DEBUG_ZBOOT and MACH_JZ4780
- Fix issue with uninitialised temp_foreign_map
- Fix awk regex compile failure with certain versions of awk. At
this time, the sole user, ld-ifversion, is only used on MIPS"
* 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus:
MIPS: smp.c: Fix uninitialised temp_foreign_map
MIPS: Fix build error when SMP is used without GIC
ld-version: Fix awk regex compile failure
MIPS: Fix build with DEBUG_ZBOOT and MACH_JZ4780
|
|
When calculate_cpu_foreign_map() recalculates the cpu_foreign_map
cpumask it uses the local variable temp_foreign_map without initialising
it to zero. Since the calculation only ever sets bits in this cpumask
any existing bits at that memory location will remain set and find their
way into cpu_foreign_map too. This could potentially lead to cache
operations suboptimally doing smp calls to multiple VPEs in the same
core, even though the VPEs share primary caches.
Therefore initialise temp_foreign_map using cpumask_clear() before use.
Fixes: cccf34e9411c ("MIPS: c-r4k: Fix cache flushing for MT cores")
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/12759/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
The MIPS_GIC_IPI should only be selected when MIPS_GIC is also
selected, otherwise it results in a compile error. smp-gic.c uses some
functions from include/linux/irqchip/mips-gic.h like
plat_ipi_call_int_xlate() which are only added to the header file when
MIPS_GIC is set. The Lantiq SoC does not use the GIC, but supports SMP.
The calls top the functions from smp-gic.c are already protected by
some #ifdefs
The first part of this was introduced in commit 72e20142b2bf ("MIPS:
Move GIC IPI functions out of smp-cmp.c")
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: stable@vger.kernel.org # v3.15+
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/12774/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
Ingenic SoC declares ZBOOT support, but debug definitions are missing
for MACH_JZ4780 resulting in a build failure when DEBUG_ZBOOT is set.
The UART addresses are same as with JZ4740, so fix by covering JZ4780
with those as well.
Signed-off-by: Aaro Koskinen <aaro.koskinen@iki.fi>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/12830/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
"This fixes 3 FPU handling related bugs, an EFI boot crash and a
runtime warning.
The EFI fix arrived late but I didn't want to delay it to after v4.5
because the effects are pretty bad for the systems that are affected
by it"
[ Actually, I don't think the EFI fix really matters yet, because we
haven't switched to the separate EFI page tables in mainline yet ]
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/efi: Fix boot crash by always mapping boot service regions into new EFI page tables
x86/fpu: Fix eager-FPU handling on legacy FPU machines
x86/delay: Avoid preemptible context checks in delay_mwaitx()
x86/fpu: Revert ("x86/fpu: Disable AVX when eagerfpu is off")
x86/fpu: Fix 'no387' regression
|
|
page tables
Some machines have EFI regions in page zero (physical address
0x00000000) and historically that region has been added to the e820
map via trim_bios_range(), and ultimately mapped into the kernel page
tables. It was not mapped via efi_map_regions() as one would expect.
Alexis reports that with the new separate EFI page tables some boot
services regions, such as page zero, are not mapped. This triggers an
oops during the SetVirtualAddressMap() runtime call.
For the EFI boot services quirk on x86 we need to memblock_reserve()
boot services regions until after SetVirtualAddressMap(). Doing that
while respecting the ownership of regions that may have already been
reserved by the kernel was the motivation behind this commit:
7d68dc3f1003 ("x86, efi: Do not reserve boot services regions within reserved areas")
That patch was merged at a time when the EFI runtime virtual mappings
were inserted into the kernel page tables as described above, and the
trick of setting ->numpages (and hence the region size) to zero to
track regions that should not be freed in efi_free_boot_services()
meant that we never mapped those regions in efi_map_regions(). Instead
we were relying solely on the existing kernel mappings.
Now that we have separate page tables we need to make sure the EFI
boot services regions are mapped correctly, even if someone else has
already called memblock_reserve(). Instead of stashing a tag in
->numpages, set the EFI_MEMORY_RUNTIME bit of ->attribute. Since it
generally makes no sense to mark a boot services region as required at
runtime, it's pretty much guaranteed the firmware will not have
already set this bit.
For the record, the specific circumstances under which Alexis
triggered this bug was that an EFI runtime driver on his machine was
responding to the EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event during
SetVirtualAddressMap().
The event handler for this driver looks like this,
sub rsp,0x28
lea rdx,[rip+0x2445] # 0xaa948720
mov ecx,0x4
call func_aa9447c0 ; call to ConvertPointer(4, & 0xaa948720)
mov r11,QWORD PTR [rip+0x2434] # 0xaa948720
xor eax,eax
mov BYTE PTR [r11+0x1],0x1
add rsp,0x28
ret
Which is pretty typical code for an EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE
handler. The "mov r11, QWORD PTR [rip+0x2424]" was the faulting
instruction because ConvertPointer() was being called to convert the
address 0x0000000000000000, which when converted is left unchanged and
remains 0x0000000000000000.
The output of the oops trace gave the impression of a standard NULL
pointer dereference bug, but because we're accessing physical
addresses during ConvertPointer(), it wasn't. EFI boot services code
is stored at that address on Alexis' machine.
Reported-by: Alexis Murzeau <amurzeau@gmail.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Raphael Hertzog <hertzog@debian.org>
Cc: Roger Shimizu <rogershimizu@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1457695163-29632-2-git-send-email-matt@codeblueprint.co.uk
Link: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=815125
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
i486 derived cores like Intel Quark support only the very old,
legacy x87 FPU (FSAVE/FRSTOR, CPUID bit FXSR is not set), and
our FPU code wasn't handling the saving and restoring there
properly in the 'eagerfpu' case.
So after we made eagerfpu the default for all CPU types:
58122bf1d856 x86/fpu: Default eagerfpu=on on all CPUs
these old FPU designs broke. First, Andy Shevchenko reported a splat:
WARNING: CPU: 0 PID: 823 at arch/x86/include/asm/fpu/internal.h:163 fpu__clear+0x8c/0x160
which was us trying to execute FXRSTOR on those machines even though
they don't support it.
After taking care of that, Bryan O'Donoghue reported that a simple FPU
test still failed because we weren't initializing the FPU state properly
on those machines.
Take care of all that.
Reported-and-tested-by: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Reported-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yu-cheng <yu-cheng.yu@intel.com>
Link: http://lkml.kernel.org/r/20160311113206.GD4312@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM SoC fixes from Olof Johansson:
"Two more fixes for 4.5:
- One is a fix for OMAP that is urgently needed to avoid DRA7xx chips
from premature aging, by always keeping the Ethernet clock enabled.
- The other solves a I/O memory layout issue on Armada, where SROM
and PCI memory windows were conflicting in some configurations"
* tag 'armsoc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc:
ARM: mvebu: fix overlap of Crypto SRAM with PCIe memory window
ARM: dts: dra7: do not gate cpsw clock due to errata i877
ARM: OMAP2+: hwmod: Introduce ti,no-idle dt property
|
|
When the Crypto SRAM mappings were added to the Device Tree files
describing the Armada XP boards in commit c466d997bb16 ("ARM: mvebu:
define crypto SRAM ranges for all armada-xp boards"), the fact that
those mappings were overlaping with the PCIe memory aperture was
overlooked. Due to this, we currently have for all Armada XP platforms
a situation that looks like this:
Memory mapping on Armada XP boards with internal registers at
0xf1000000:
- 0x00000000 -> 0xf0000000 3.75G RAM
- 0xf0000000 -> 0xf1000000 16M NOR flashes (AXP GP / AXP DB)
- 0xf1000000 -> 0xf1100000 1M internal registers
- 0xf8000000 -> 0xffe0000 126M PCIe memory aperture
- 0xf8100000 -> 0xf8110000 64KB Crypto SRAM #0 => OVERLAPS WITH PCIE !
- 0xf8110000 -> 0xf8120000 64KB Crypto SRAM #1 => OVERLAPS WITH PCIE !
- 0xffe00000 -> 0xfff00000 1M PCIe I/O aperture
- 0xfff0000 -> 0xffffffff 1M BootROM
The overlap means that when PCIe devices are added, depending on their
memory window needs, they might or might not be mapped into the
physical address space. Indeed, they will not be mapped if the area
allocated in the PCIe memory aperture by the PCI core overlaps with
one of the Crypto SRAM. Typically, a Intel IGB PCIe NIC that needs 8MB
of PCIe memory will see its PCIe memory window allocated from
0xf80000000 for 8MB, which overlaps with the Crypto SRAM windows. Due
to this, the PCIe window is not created, and any attempt to access the
PCIe window makes the kernel explode:
[ 3.302213] igb: Copyright (c) 2007-2014 Intel Corporation.
[ 3.307841] pci 0000:00:09.0: enabling device (0140 -> 0143)
[ 3.313539] mvebu_mbus: cannot add window '4:f8', conflicts with another window
[ 3.320870] mvebu-pcie soc:pcie-controller: Could not create MBus window at [mem 0xf8000000-0xf87fffff]: -22
[ 3.330811] Unhandled fault: external abort on non-linefetch (0x1008) at 0xf08c0018
This problem does not occur on Armada 370 boards, because we use the
following memory mapping (for boards that have internal registers at
0xf1000000):
- 0x00000000 -> 0xf0000000 3.75G RAM
- 0xf0000000 -> 0xf1000000 16M NOR flashes (AXP GP / AXP DB)
- 0xf1000000 -> 0xf1100000 1M internal registers
- 0xf1100000 -> 0xf1110000 64KB Crypto SRAM #0 => OK !
- 0xf8000000 -> 0xffe0000 126M PCIe memory
- 0xffe00000 -> 0xfff00000 1M PCIe I/O
- 0xfff0000 -> 0xffffffff 1M BootROM
Obviously, the solution is to align the location of the Crypto SRAM
mappings of Armada XP to be similar with the ones on Armada 370, i.e
have them between the "internal registers" area and the beginning of
the PCIe aperture.
However, we have a special case with the OpenBlocks AX3-4 platform,
which has a 128 MB NOR flash. Currently, this NOR flash is mapped from
0xf0000000 to 0xf8000000. This is possible because on OpenBlocks
AX3-4, the internal registers are not at 0xf1000000. And this explains
why the Crypto SRAM mappings were not configured at the same place on
Armada XP.
Hence, the solution is two-fold:
(1) Move the NOR flash mapping on Armada XP OpenBlocks AX3-4 from
0xe8000000 to 0xf0000000. This frees the 0xf0000000 ->
0xf80000000 space.
(2) Move the Crypto SRAM mappings on Armada XP to be similar to
Armada 370 (except of course that Armada XP has two Crypto SRAM
and not one).
After this patch, the memory mapping on Armada XP boards with
registers at 0xf1 is:
- 0x00000000 -> 0xf0000000 3.75G RAM
- 0xf0000000 -> 0xf1000000 16M NOR flashes (AXP GP / AXP DB)
- 0xf1000000 -> 0xf1100000 1M internal registers
- 0xf1100000 -> 0xf1110000 64KB Crypto SRAM #0
- 0xf1110000 -> 0xf1120000 64KB Crypto SRAM #1
- 0xf8000000 -> 0xffe0000 126M PCIe memory
- 0xffe00000 -> 0xfff00000 1M PCIe I/O
- 0xfff0000 -> 0xffffffff 1M BootROM
And the memory mapping for the special case of the OpenBlocks AX3-4
(internal registers at 0xd0000000, NOR of 128 MB):
- 0x00000000 -> 0xc0000000 3G RAM
- 0xd0000000 -> 0xd1000000 1M internal registers
- 0xe800000 -> 0xf0000000 128M NOR flash
- 0xf1100000 -> 0xf1110000 64KB Crypto SRAM #0
- 0xf1110000 -> 0xf1120000 64KB Crypto SRAM #1
- 0xf8000000 -> 0xffe0000 126M PCIe memory
- 0xffe00000 -> 0xfff00000 1M PCIe I/O
- 0xfff0000 -> 0xffffffff 1M BootROM
Fixes: c466d997bb16 ("ARM: mvebu: define crypto SRAM ranges for all armada-xp boards")
Reported-by: Phil Sutter <phil@nwl.cc>
Cc: Phil Sutter <phil@nwl.cc>
Cc: <stable@vger.kernel.org>
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Acked-by: Gregory CLEMENT <gregory.clement@free-electrons.com>
Signed-off-by: Olof Johansson <olof@lixom.net>
|
|
Pull KVM fixes from Paolo Bonzini:
"A few simple fixes for ARM, x86, PPC and generic code.
The x86 MMU fix is a bit larger because the surrounding code needed a
cleanup, but nothing worrisome"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: MMU: fix reserved bit check for ept=0/CR0.WP=0/CR4.SMEP=1/EFER.NX=0
KVM: MMU: fix ept=0/pte.u=1/pte.w=0/CR0.WP=0/CR4.SMEP=1/EFER.NX=0 combo
kvm: cap halt polling at exactly halt_poll_ns
KVM: s390: correct fprs on SIGP (STOP AND) STORE STATUS
KVM: VMX: disable PEBS before a guest entry
KVM: PPC: Book3S HV: Sanitize special-purpose register values on guest exit
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
"I thought we were done for 4.5, but then the 64k-page chaps came
crawling out of the woodwork. *sigh*
The vmemmap fix I sent for -rc7 caused a regression with 64k pages and
sparsemem and at some point during the release cycle the new hugetlb
code using contiguous ptes started failing the libhugetlbfs tests with
64k pages enabled.
So here are a couple of patches that fix the vmemmap alignment and
disable the new hugetlb page sizes whilst a proper fix is being
developed:
- Temporarily disable huge pages built using contiguous ptes
- Ensure vmemmap region is sufficiently aligned for sparsemem
sections"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: hugetlb: partial revert of 66b3923a1a0f
arm64: account for sparsemem section alignment when choosing vmemmap offset
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 fixes from Martin Schwidefsky:
"Three bug fixes:
- The fix for the page table corruption (CVE-2016-2143)
- The diagnose statistics introduced a regression for the dasd diag
driver
- Boot crash on systems without the set-program-parameters facility"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux:
s390/mm: four page table levels vs. fork
s390/cpumf: Fix lpp detection
s390/dasd: fix diag 0x250 inline assembly
|
|
We do use this_cpu_ptr(&cpu_tss) as a cacheline-aligned, seldomly
accessed per-cpu var as the MONITORX target in delay_mwaitx(). However,
when called in preemptible context, this_cpu_ptr -> smp_processor_id() ->
debug_smp_processor_id() fires:
BUG: using smp_processor_id() in preemptible [00000000] code: udevd/312
caller is delay_mwaitx+0x40/0xa0
But we don't care about that check - we only need cpu_tss as a MONITORX
target and it doesn't really matter which CPU's var we're touching as
we're going idle anyway. Fix that.
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Huang Rui <ray.huang@amd.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: spg_linux_kernel@amd.com
Link: http://lkml.kernel.org/r/20160309205622.GG6564@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
KVM has special logic to handle pages with pte.u=1 and pte.w=0 when
CR0.WP=1. These pages' SPTEs flip continuously between two states:
U=1/W=0 (user and supervisor reads allowed, supervisor writes not allowed)
and U=0/W=1 (supervisor reads and writes allowed, user writes not allowed).
When SMEP is in effect, however, U=0 will enable kernel execution of
this page. To avoid this, KVM also sets NX=1 in the shadow PTE together
with U=0, making the two states U=1/W=0/NX=gpte.NX and U=0/W=1/NX=1.
When guest EFER has the NX bit cleared, the reserved bit check thinks
that the latter state is invalid; teach it that the smep_andnot_wp case
will also use the NX bit of SPTEs.
Cc: stable@vger.kernel.org
Reviewed-by: Xiao Guangrong <guangrong.xiao@linux.inel.com>
Fixes: c258b62b264fdc469b6d3610a907708068145e3b
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Yes, all of these are needed. :) This is admittedly a bit odd, but
kvm-unit-tests access.flat tests this if you run it with "-cpu host"
and of course ept=0.
KVM runs the guest with CR0.WP=1, so it must handle supervisor writes
specially when pte.u=1/pte.w=0/CR0.WP=0. Such writes cause a fault
when U=1 and W=0 in the SPTE, but they must succeed because CR0.WP=0.
When KVM gets the fault, it sets U=0 and W=1 in the shadow PTE and
restarts execution. This will still cause a user write to fault, while
supervisor writes will succeed. User reads will fault spuriously now,
and KVM will then flip U and W again in the SPTE (U=1, W=0). User reads
will be enabled and supervisor writes disabled, going back to the
originary situation where supervisor writes fault spuriously.
When SMEP is in effect, however, U=0 will enable kernel execution of
this page. To avoid this, KVM also sets NX=1 in the shadow PTE together
with U=0. If the guest has not enabled NX, the result is a continuous
stream of page faults due to the NX bit being reserved.
The fix is to force EFER.NX=1 even if the CPU is taking care of the EFER
switch. (All machines with SMEP have the CPU_LOAD_IA32_EFER vm-entry
control, so they do not use user-return notifiers for EFER---if they did,
EFER.NX would be forced to the same value as the host).
There is another bug in the reserved bit check, which I've split to a
separate patch for easier application to stable kernels.
Cc: stable@vger.kernel.org
Cc: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Fixes: f6577a5fa15d82217ca73c74cd2dcbc0f6c781dd
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Leonid Shatz noticed that the SDM interpretation of the following
recent commit:
394db20ca240741 ("x86/fpu: Disable AVX when eagerfpu is off")
... is incorrect and that the original behavior of the FPU code was correct.
Because AVX is not stated in CR0 TS bit description, it was mistakenly
believed to be not supported for lazy context switch. This turns out
to be false:
Intel Software Developer's Manual Vol. 3A, Sec. 2.5 Control Registers:
'TS Task Switched bit (bit 3 of CR0) -- Allows the saving of the x87 FPU/
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 context on a task switch to be delayed until
an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is actually executed
by the new task.'
Intel Software Developer's Manual Vol. 2A, Sec. 2.4 Instruction Exception
Specification:
'AVX instructions refer to exceptions by classes that include #NM
"Device Not Available" exception for lazy context switch.'
So revert the commit.
Reported-by: Leonid Shatz <leonid.shatz@ravellosystems.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi V. Shankar <ravi.v.shankar@intel.com>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1457569734-3785-1-git-send-email-yu-cheng.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The fork of a process with four page table levels is broken since
git commit 6252d702c5311ce9 "[S390] dynamic page tables."
All new mm contexts are created with three page table levels and
an asce limit of 4TB. If the parent has four levels dup_mmap will
add vmas to the new context which are outside of the asce limit.
The subsequent call to copy_page_range will walk the three level
page table structure of the new process with non-zero pgd and pud
indexes. This leads to memory clobbers as the pgd_index *and* the
pud_index is added to the mm->pgd pointer without a pgd_deref
in between.
The init_new_context() function is selecting the number of page
table levels for a new context. The function is used by mm_init()
which in turn is called by dup_mm() and mm_alloc(). These two are
used by fork() and exec(). The init_new_context() function can
distinguish the two cases by looking at mm->context.asce_limit,
for fork() the mm struct has been copied and the number of page
table levels may not change. For exec() the mm_alloc() function
set the new mm structure to zero, in this case a three-level page
table is created as the temporary stack space is located at
STACK_TOP_MAX = 4TB.
This fixes CVE-2016-2143.
Reported-by: Marcin Kościelnicki <koriakin@0x04.net>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: stable@vger.kernel.org
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
Functions which the compiler has instrumented for KASAN place poison on
the stack shadow upon entry and remove this poison prior to returning.
In the case of cpuidle, CPUs exit the kernel a number of levels deep in
C code. Any instrumented functions on this critical path will leave
portions of the stack shadow poisoned.
If CPUs lose context and return to the kernel via a cold path, we
restore a prior context saved in __cpu_suspend_enter are forgotten, and
we never remove the poison they placed in the stack shadow area by
functions calls between this and the actual exit of the kernel.
Thus, (depending on stackframe layout) subsequent calls to instrumented
functions may hit this stale poison, resulting in (spurious) KASAN
splats to the console.
To avoid this, clear any stale poison from the idle thread for a CPU
prior to bringing a CPU online.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/pjw/omap-pending into fixes
ARM: OMAP2+: critical DRA7xx fix for v4.5-rc
Force the DRA7xx Ethernet internal clock source to stay enabled
per TI erratum i877:
http://www.ti.com/lit/er/sprz429h/sprz429h.pdf
Otherwise, if the Ethernet internal clock source is disabled, the
chip will age prematurely, and the RGMII I/O timing will soon
fail to meet the delay time and skew specifications for 1000Mbps
Ethernet.
This fix should go in as soon as possible.
Basic build, boot, and PM test results are available here:
http://www.pwsan.com/omap/testlogs/omap-critical-fixes-for-v4.5-rc/20160307014209/
* tag 'for-v4.5-rc/omap-critical-fixes-a' of git://git.kernel.org/pub/scm/linux/kernel/git/pjw/omap-pending:
ARM: dts: dra7: do not gate cpsw clock due to errata i877
ARM: OMAP2+: hwmod: Introduce ti,no-idle dt property
Signed-off-by: Olof Johansson <olof@lixom.net>
|
|
Commit 66b3923a1a0f ("arm64: hugetlb: add support for PTE contiguous bit")
introduced support for huge pages using the contiguous bit in the PTE
as opposed to block mappings, which may be slightly unwieldy (512M) in
64k page configurations.
Unfortunately, this support has resulted in some late regressions when
running the libhugetlbfs test suite with 64k pages and CONFIG_DEBUG_VM
as a result of a BUG:
| readback (2M: 64): ------------[ cut here ]------------
| kernel BUG at fs/hugetlbfs/inode.c:446!
| Internal error: Oops - BUG: 0 [#1] SMP
| Modules linked in:
| CPU: 7 PID: 1448 Comm: readback Not tainted 4.5.0-rc7 #148
| Hardware name: linux,dummy-virt (DT)
| task: fffffe0040964b00 ti: fffffe00c2668000 task.ti: fffffe00c2668000
| PC is at remove_inode_hugepages+0x44c/0x480
| LR is at remove_inode_hugepages+0x264/0x480
Rather than revert the entire patch, simply avoid advertising the
contiguous huge page sizes for now while people are actively working on
a fix. This patch can then be reverted once things have been sorted out.
Cc: David Woods <dwoods@ezchip.com>
Reported-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Commit dfd55ad85e4a ("arm64: vmemmap: use virtual projection of linear
region") fixed an issue where the struct page array would overflow into the
adjacent virtual memory region if system RAM was placed so high up in
physical memory that its addresses were not representable in the build time
configured virtual address size.
However, the fix failed to take into account that the vmemmap region needs
to be relatively aligned with respect to the sparsemem section size, so that
a sequence of page structs corresponding with a sparsemem section in the
linear region appears naturally aligned in the vmemmap region.
So round up vmemmap to sparsemem section size. Since this essentially moves
the projection of the linear region up in memory, also revert the reduction
of the size of the vmemmap region.
Cc: <stable@vger.kernel.org>
Fixes: dfd55ad85e4a ("arm64: vmemmap: use virtual projection of linear region")
Tested-by: Mark Langsdorf <mlangsdo@redhat.com>
Tested-by: David Daney <david.daney@cavium.com>
Tested-by: Robert Richter <rrichter@cavium.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
After fixing FPU option parsing, we now parse the 'no387' boot option
too early: no387 clears X86_FEATURE_FPU before it's even probed, so
the boot CPU promptly re-enables it.
I suspect it gets even more confused on SMP.
Fix the probing code to leave X86_FEATURE_FPU off if it's been
disabled by setup_clear_cpu_cap().
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: yu-cheng yu <yu-cheng.yu@intel.com>
Fixes: 4f81cbafcce2 ("x86/fpu: Fix early FPU command-line parsing")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
With MACHINE_HAS_VX, we convert the floating point registers from the
vector registeres when storing the status. For other VCPUs, these are
stored to vcpu->run->s.regs.vrs, but we are using current->thread.fpu.vxrs,
which resolves to the currently loaded VCPU.
So kvm_s390_store_status_unloaded() currently writes the wrong floating
point registers (converted from the vector registers) when called from
another VCPU on a z13.
This is only the case for old user space not handling SIGP STORE STATUS and
SIGP STOP AND STORE STATUS, but relying on the kernel implementation. All
other calls come from the loaded VCPU via kvm_s390_store_status().
Fixes: 9abc2a08a7d6 (KVM: s390: fix memory overwrites when vx is disabled)
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: stable@vger.kernel.org # v4.4+
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into HEAD
|
|
Linux guests on Haswell (and also SandyBridge and Broadwell, at least)
would crash if you decided to run a host command that uses PEBS, like
perf record -e 'cpu/mem-stores/pp' -a
This happens because KVM is using VMX MSR switching to disable PEBS, but
SDM [2015-12] 18.4.4.4 Re-configuring PEBS Facilities explains why it
isn't safe:
When software needs to reconfigure PEBS facilities, it should allow a
quiescent period between stopping the prior event counting and setting
up a new PEBS event. The quiescent period is to allow any latent
residual PEBS records to complete its capture at their previously
specified buffer address (provided by IA32_DS_AREA).
There might not be a quiescent period after the MSR switch, so a CPU
ends up using host's MSR_IA32_DS_AREA to access an area in guest's
memory. (Or MSR switching is just buggy on some models.)
The guest can learn something about the host this way:
If the guest doesn't map address pointed by MSR_IA32_DS_AREA, it results
in #PF where we leak host's MSR_IA32_DS_AREA through CR2.
After that, a malicious guest can map and configure memory where
MSR_IA32_DS_AREA is pointing and can therefore get an output from
host's tracing.
This is not a critical leak as the host must initiate with PEBS tracing
and I have not been able to get a record from more than one instruction
before vmentry in vmx_vcpu_run() (that place has most registers already
overwritten with guest's).
We could disable PEBS just few instructions before vmentry, but
disabling it earlier shouldn't affect host tracing too much.
We also don't need to switch MSR_IA32_PEBS_ENABLE on VMENTRY, but that
optimization isn't worth its code, IMO.
(If you are implementing PEBS for guests, be sure to handle the case
where both host and guest enable PEBS, because this patch doesn't.)
Fixes: 26a4f3c08de4 ("perf/x86: disable PEBS on a guest entry.")
Cc: <stable@vger.kernel.org>
Reported-by: Jiří Olša <jolsa@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
we have to check bit 40 of the facility list before issuing LPP
and not bit 48. Otherwise a guest running on a system with
"The decimal-floating-point zoned-conversion facility" and without
the "The set-program-parameters facility" might crash on an lpp
instruction.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: stable@vger.kernel.org # v4.4+
Fixes: e22cf8ca6f75 ("s390/cpumf: rework program parameter setting to detect guest samples")
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
Thomas Huth discovered that a guest could cause a hard hang of a
host CPU by setting the Instruction Authority Mask Register (IAMR)
to a suitable value. It turns out that this is because when the
code was added to context-switch the new special-purpose registers
(SPRs) that were added in POWER8, we forgot to add code to ensure
that they were restored to a sane value on guest exit.
This adds code to set those registers where a bad value could
compromise the execution of the host kernel to a suitable neutral
value on guest exit.
Cc: stable@vger.kernel.org # v3.14+
Fixes: b005255e12a3
Reported-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
Errata id: i877
Description:
------------
The RGMII 1000 Mbps Transmit timing is based on the output clock
(rgmiin_txc) being driven relative to the rising edge of an internal
clock and the output control/data (rgmiin_txctl/txd) being driven relative
to the falling edge of an internal clock source. If the internal clock
source is allowed to be static low (i.e., disabled) for an extended period
of time then when the clock is actually enabled the timing delta between
the rising edge and falling edge can change over the lifetime of the
device. This can result in the device switching characteristics degrading
over time, and eventually failing to meet the Data Manual Delay Time/Skew
specs.
To maintain RGMII 1000 Mbps IO Timings, SW should minimize the
duration that the Ethernet internal clock source is disabled. Note that
the device reset state for the Ethernet clock is "disabled".
Other RGMII modes (10 Mbps, 100Mbps) are not affected
Workaround:
-----------
If the SoC Ethernet interface(s) are used in RGMII mode at 1000 Mbps,
SW should minimize the time the Ethernet internal clock source is disabled
to a maximum of 200 hours in a device life cycle. This is done by enabling
the clock as early as possible in IPL (QNX) or SPL/u-boot (Linux/Android)
by setting the register CM_GMAC_CLKSTCTRL[1:0]CLKTRCTRL = 0x2:SW_WKUP.
So, do not allow to gate the cpsw clocks using ti,no-idle property in
cpsw node assuming 1000 Mbps is being used all the time. If someone does
not need 1000 Mbps and wants to gate clocks to cpsw, this property needs
to be deleted in their respective board files.
Signed-off-by: Mugunthan V N <mugunthanvnm@ti.com>
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Paul Walmsley <paul@pwsan.com>
|
|
Introduce a dt property, ti,no-idle, that prevents an IP to idle at any
point. This is to handle Errata i877, which tells that GMAC clocks
cannot be disabled.
Acked-by: Roger Quadros <rogerq@ti.com>
Tested-by: Mugunthan V N <mugunthanvnm@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Sekhar Nori <nsekhar@ti.com>
Signed-off-by: Dave Gerlach <d-gerlach@ti.com>
Acked-by: Rob Herring <robh@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Paul Walmsley <paul@pwsan.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
Pull ARM SoC fix from Olof Johansson:
"Tiny fixes branch this week, in fact only one patch.
Turns out the USB support for a Renesas board was developed on a
pre-release board that ended up being changed before shipping. To
avoid breakage on those boards, and avoid confusion, it's a reasonable
idea to patch now instead of later. There are no known users of the
pre-release variant any more"
* tag 'armsoc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc:
ARM: dts: porter: remove enable prop from HS-USB device node
|
|
Pull ARM fixes from Russell King:
"Just two ARM fixes this time: one to fix the hyp-stub for older ARM
CPUs, and another to fix the set_memory_xx() permission functions to
deal with zero sizes correctly"
* 'fixes' of git://ftp.arm.linux.org.uk/~rmk/linux-arm:
ARM: 8544/1: set_memory_xx fixes
ARM: 8534/1: virt: fix hyp-stub build for pre-ARMv7 CPUs
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rw/uml
Pull UML fixes from Richard Weinberger:
"This contains three bug/build fixes"
* 'for-linus-4.5-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rw/uml:
um: use %lx format specifiers for unsigned longs
um: Export pm_power_off
Revert "um: Fix get_signal() usage"
|
|
Pull MIPS fixes from Ralf Baechle:
"Another round of fixes for 4.5:
- Fix the use of an undocumented syntactial variant of the .type
pseudo op which is not supported by the LLVM assembler.
- Fix invalid initialization on S-cache-less systems.
- Fix possible information leak from the kernel stack for SIGFPE.
- Fix handling of copy_{from,to}_user() return value in KVM
- Fix the last instance of irq_to_gpio() which now was causing build
errors"
* 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus:
MIPS: traps: Fix SIGFPE information leak from `do_ov' and `do_trap_or_bp'
MIPS: kvm: Fix ioctl error handling.
MIPS: scache: Fix scache init with invalid line size.
MIPS: Avoid variant of .type unsupported by LLVM Assembler
MIPS: jz4740: Fix surviving instance of irq_to_gpio()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
- cxl: Fix PSL timebase synchronization detection from Frederic Barrat
- Fix oops when destroying hw_breakpoint event from Ravi Bangoria
- Avoid lbarx on e5500 from Scott Wood
* tag 'powerpc-4.5-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/fsl-book3e: Avoid lbarx on e5500
powerpc/hw_breakpoint: Fix oops when destroying hw_breakpoint event
cxl: Fix PSL timebase synchronization detection
|
|
static analysis from cppcheck detected %x being used for
unsigned longs:
[arch/x86/um/os-Linux/task_size.c:112]: (warning) %x in format
string (no. 1) requires 'unsigned int' but the argument type
is 'unsigned long'.
Use %lx instead of %x
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
...modules are using this symbol.
Export it like all other archs to.
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
Commit db2f24dc240856fb1d78005307f1523b7b3c121b
was plain wrong. I did not realize the we are
allowed to loop here.
In fact we have to loop and must not return to userspace
before all SIGSEGVs have been delivered.
Other archs do this directly in their entry code, UML
does it here.
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management and ACPI fixes from Rafael Wysocki:
"Two build fixes for cpufreq drivers (including one for breakage
introduced recently) and a fix for a graph tracer crash when used over
suspend-to-RAM on x86.
Specifics:
- Prevent the graph tracer from crashing when used over suspend-to-
RAM on x86 by pausing it before invoking do_suspend_lowlevel() and
un-pausing it when that function has returned (Todd Brandt).
- Fix build issues in the qoriq and mediatek cpufreq drivers related
to broken dependencies on THERMAL (Arnd Bergmann)"
* tag 'pm+acpi-4.5-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
PM / sleep / x86: Fix crash on graph trace through x86 suspend
cpufreq: mediatek: allow building as a module
cpufreq: qoriq: allow building as module with THERMAL=m
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fix from Will Deacon:
"Arm64 fix for -rc7. Without it, our struct page array can overflow
the vmemmap region on systems with a large PHYS_OFFSET.
Nothing else on the radar at the moment, so hopefully that's it for
4.5 from us.
Summary: Ensure struct page array fits within vmemmap area"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: vmemmap: use virtual projection of linear region
|
|
Allow zero size updates. This makes set_memory_xx() consistent with x86, s390 and arm64 and makes apply_to_page_range() not to BUG() when loading modules.
Signed-off-by: Mika Penttilä mika.penttila@nextfour.com
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Avoid sending a partially initialised `siginfo_t' structure along SIGFPE
signals issued from `do_ov' and `do_trap_or_bp', leading to information
leaking from the kernel stack.
Signed-off-by: Maciej W. Rozycki <macro@imgtec.com>
Cc: stable@vger.kernel.org
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
lbarx/stbcx. are implemented on e6500, but not on e5500.
Likewise, SMT is on e6500, but not on e5500.
So, avoid executing an unimplemented instruction by only locking
when needed (i.e. in the presence of SMT).
Signed-off-by: Scott Wood <oss@buserror.net>
|
|
Pull KVM fixes from Paolo Bonzini:
- ARM/MIPS: Fixes for ioctls when copy_from_user returns nonzero
- x86: Small fix for Skylake TSC scaling
- x86: Improved fix for last week's missed hardware breakpoint bug
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: x86: Update tsc multiplier on change.
mips/kvm: fix ioctl error handling
arm/arm64: KVM: Fix ioctl error handling
KVM: x86: fix root cause for missed hardware breakpoints
|