Age | Commit message (Collapse) | Author | Files | Lines |
|
per the Intel 64 and IA-32 Architecture Software Developer's Manual...
Add the reference clock for Intel Atom Processors
Based on the Airmont Microarchitecture.
Reported-by: Stephane Gasparini <stephane.gasparini@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/abc6a0f4b18281410da1a3f26e2819d8e03e144f.1466138954.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Atom processors use a 19.2 MHz crystal oscillator.
Early processors generate 100 MHz via 19.2 MHz * 26 / 5 = 99.84 MHz.
Later preocessor generate 100 MHz via 19.2 MHz * 125 / 24 = 100 MHz.
Update the Silvermont-based tables accordingly,
matching the Software Developers Manual.
Also, correct a 166 MHz entry that should have been 116 MHz,
and add a missing 80 MHz entry.
Reported-by: Stephane Gasparini <stephane.gasparini@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5d7561655dfb066ff10801b423405bae4d1cfbe2.1466138954.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Syntax only, no functional change.
Signed-off-by: Len Brown <len.brown@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/8653a2dba21fef122fc7b29eafb750e2004d3976.1466138954.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Debugging messages are not necessary after all of the
possible hardware failures that never occur.
Instead, this code can simply return 0.
This code also doesn't need to print in the success case.
tsc_init() already prints the TSC frequency,
and apic=debug is available if anybody really is
interested in printing the LAPIC frequency.
Signed-off-by: Len Brown <len.brown@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/cf03279a125b95dfa9b8d3d5b4a66de09cd04050.1466138954.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
try_msr_calibrate_tsc() is currently Intel-specific,
and should not execute on any other vendor's parts.
Signed-off-by: Len Brown <len.brown@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1fe23c052826bdcfeb3d45045aa02246078cb5a7.1466138954.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
This reverts commit:
e2724e9d9692 ("x86/tsc: Add missing Cherrytrail frequency to the table")
... as it is incomplete, and is replaced by a more complete patch
later in this series.
Signed-off-by: Len Brown <len.brown@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/2199d0e959f7f71a18827268b5d060f8d3831639.1466138954.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
"A couple of late fixes here, but one that we've been sitting on for a
few weeks while the details were worked out. Specifically, we now
enforce USER_DS on taking exceptions whilst in the kernel, which
avoids leaking kernel data to userspace through things like perf. The
other patch is an update to a workaround for a hardware erratum on
some Cavium SoCs.
Summary:
- Enforce USER_DS on exception entry from EL1
- Apply workaround for Cavium errata #27456 on Thunderx-81xx parts"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: Enable workaround for Cavium erratum 27456 on thunderx-81xx
arm64: kernel: Save and restore UAO and addr_limit on exception entry
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
"Three fixes:
- A boot crash fix with certain configs
- a MAINTAINERS entry update
- Documentation typo fixes"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/Documentation: Fix various typos in Documentation/x86/ files
x86/amd_nb: Fix boot crash on non-AMD systems
MAINTAINERS: Update the Calgary IOMMU entry
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Ingo Molnar:
"Various fixes:
- 32-bit callgraph bug fix
- suboptimal event group scheduling bug fix
- event constraint fixes for Broadwell/Skylake
- RAPL module name collision fix"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/core: Fix pmu::filter_match for SW-led groups
x86/perf/intel/rapl: Fix module name collision with powercap intel-rapl
perf/x86: Fix 32-bit perf user callgraph collection
perf/x86/intel: Update event constraints when HT is off
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI fixes from Rafael Wysocki:
"All of these fix recent regressions in ACPICA, in the ACPI PCI IRQ
management code and in the ACPI AML debugger.
Specifics:
- Fix a lock ordering issue in ACPICA introduced by a recent commit
that attempted to fix a deadlock in the dynamic table loading code
which in turn appeared after changes related to the handling of
module-level AML also made in this cycle (Lv Zheng).
- Fix a recent regression in the ACPI IRQ management code that may
cause PCI drivers to be unable to register an IRQ if that IRQ
happens to be shared with a device on the ISA bus, like the
parallel port, by reverting one commit entirely and restoring the
previous behavior in two other places (Sinan Kaya).
- Fix a recent regression in the ACPI AML debugger introduced by the
commit that removed incorrect usage of IS_ERR_VALUE() from multiple
places (Lv Zheng)"
* tag 'acpi-4.7-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
ACPI / debugger: Fix regression introduced by IS_ERR_VALUE() removal
ACPICA: Namespace: Fix namespace/interpreter lock ordering
ACPI,PCI,IRQ: separate ISA penalty calculation
Revert "ACPI, PCI, IRQ: remove redundant code in acpi_irq_penalty_init()"
ACPI,PCI,IRQ: factor in PCI possible
|
|
* acpica-fixes:
ACPICA: Namespace: Fix namespace/interpreter lock ordering
* acpi-pci-fixes:
ACPI,PCI,IRQ: separate ISA penalty calculation
Revert "ACPI, PCI, IRQ: remove redundant code in acpi_irq_penalty_init()"
ACPI,PCI,IRQ: factor in PCI possible
* acpi-debug-fixes:
ACPI / debugger: Fix regression introduced by IS_ERR_VALUE() removal
|
|
* pm-cpuidle-fixes:
cpuidle: Fix last_residency division
* pm-sleep-fixes:
x86/power/64: Fix kernel text mapping corruption during image restoration
|
|
Cavium erratum 27456 commit 104a0c02e8b1
("arm64: Add workaround for Cavium erratum 27456")
is applicable for thunderx-81xx pass1.0 SoC as well.
Adding code to enable to 81xx.
Signed-off-by: Ganapatrao Kulkarni <gkulkarni@cavium.com>
Reviewed-by: Andrew Pinski <apinski@cavium.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
If we take an exception while at EL1, the exception handler inherits
the original context's addr_limit and PSTATE.UAO values. To be consistent
always reset addr_limit and PSTATE.UAO on (re-)entry to EL1. This
prevents accidental re-use of the original context's addr_limit.
Based on a similar patch for arm from Russell King.
Cc: <stable@vger.kernel.org> # 4.6-
Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Since commit 4b6e2571bf00 the rapl perf module calls itself intel-rapl. That
name was already in use by the rapl powercap driver, which now fails to load
if the perf module is loaded. Fix the problem by renaming the perf module to
intel-rapl-perf, so that both modules can coexist.
Fixes: 4b6e2571bf00 ("x86/perf/intel/rapl: Make the Intel RAPL PMU driver modular")
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/1466694409-3620-1-git-send-email-ville.syrjala@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
A basic perf callgraph record operation causes an immediate panic on a
32-bit kernel compiled with CONFIG_CC_STACKPROTECTOR=y:
$ perf record -g ls
Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: c0404fbd
CPU: 0 PID: 998 Comm: ls Not tainted 4.7.0-rc5+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.9.1-1.fc24 04/01/2014
c0dd5967 ff7afe1c 00000086 f41dbc2c c07445a0 464c457f f41dbca8 f41dbc44
c05646f4 f41dbca8 464c457f f41dbca8 464c457f f41dbc54 c04625be c0ce56fc
c0404fbd f41dbc88 c0404fbd b74668f0 f41dc000 00000000 c0000000 00000000
Call Trace:
[<c07445a0>] dump_stack+0x58/0x78
[<c05646f4>] panic+0x8e/0x1c6
[<c04625be>] __stack_chk_fail+0x1e/0x30
[<c0404fbd>] ? perf_callchain_user+0x22d/0x230
[<c0404fbd>] perf_callchain_user+0x22d/0x230
[<c055f89f>] get_perf_callchain+0x1ff/0x270
[<c055f988>] perf_callchain+0x78/0x90
[<c055c7eb>] perf_prepare_sample+0x24b/0x370
[<c055c934>] perf_event_output_forward+0x24/0x70
[<c05531c0>] __perf_event_overflow+0xa0/0x210
[<c0550a93>] ? cpu_clock_event_read+0x43/0x50
[<c0553431>] perf_swevent_hrtimer+0x101/0x180
[<c0456235>] ? kmap_atomic_prot+0x35/0x140
[<c056dc69>] ? get_page_from_freelist+0x279/0x950
[<c058fdd8>] ? vma_interval_tree_remove+0x158/0x230
[<c05939f4>] ? wp_page_copy.isra.82+0x2f4/0x630
[<c05a050d>] ? page_add_file_rmap+0x1d/0x50
[<c0565611>] ? unlock_page+0x61/0x80
[<c0566755>] ? filemap_map_pages+0x305/0x320
[<c059769f>] ? handle_mm_fault+0xb7f/0x1560
[<c074cbeb>] ? timerqueue_del+0x1b/0x70
[<c04cfefe>] ? __remove_hrtimer+0x2e/0x60
[<c04d017b>] __hrtimer_run_queues+0xcb/0x2a0
[<c0553330>] ? __perf_event_overflow+0x210/0x210
[<c04d0a2a>] hrtimer_interrupt+0x8a/0x180
[<c043ecc2>] local_apic_timer_interrupt+0x32/0x60
[<c043f643>] smp_apic_timer_interrupt+0x33/0x50
[<c0b0cd38>] apic_timer_interrupt+0x34/0x3c
Kernel Offset: disabled
---[ end Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: c0404fbd
The panic is caused by the fact that perf_callchain_user() mistakenly
assumes it's 64-bit only and ends up corrupting the stack.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: stable@vger.kernel.org # v4.5+
Fixes: 75925e1ad7f5 ("perf/x86: Optimize stack walk user accesses")
Link: http://lkml.kernel.org/r/1a547f5077ec30f75f9b57074837c3c80df86e5e.1467432113.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
This patch updates the event constraints for non-PEBS mode for
Intel Broadwell and Skylake processors. When HT is off, each
CPU gets 8 generic counters. However, not all events can be
programmed on any of the 8 counters. This patch adds the
constraints for the MEM_* events which can only be measured on the
bottom 4 counters. The constraints are also valid when HT is off
because, then, there are only 4 generic counters and they are the
bottom counters.
Signed-off-by: Stephane Eranian <eranian@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: kan.liang@intel.com
Link: http://lkml.kernel.org/r/1467411742-13245-1-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Pull MIPS fix from Ralf Baechle:
"Only a single fix for 4.7 pending at this point. It fixes an issue
that may lead to corruption of the cache mode bits in the page table"
* 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus:
MIPS: Fix possible corruption of cache mode by mprotect.
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
- tm: Always reclaim in start_thread() for exec() class syscalls from
Cyril Bur
- tm: Avoid SLB faults in treclaim/trecheckpoint when RI=0 from Michael
Neuling
- eeh: Fix wrong argument passed to eeh_rmv_device() from Gavin Shan
- Initialise pci_io_base as early as possible from Darren Stevens
* tag 'powerpc-4.7-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc: Initialise pci_io_base as early as possible
powerpc/tm: Avoid SLB faults in treclaim/trecheckpoint when RI=0
powerpc/eeh: Fix wrong argument passed to eeh_rmv_device()
powerpc/tm: Always reclaim in start_thread() for exec() class syscalls
|
|
The following testcase may result in a page table entries with a invalid
CCA field being generated:
static void *bindstack;
static int sysrqfd;
static void protect_low(int protect)
{
mprotect(bindstack, BINDSTACK_SIZE, protect);
}
static void sigbus_handler(int signal, siginfo_t * info, void *context)
{
void *addr = info->si_addr;
write(sysrqfd, "x", 1);
printf("sigbus, fault address %p (should not happen, but might)\n",
addr);
abort();
}
static void run_bind_test(void)
{
unsigned int *p = bindstack;
p[0] = 0xf001f001;
write(sysrqfd, "x", 1);
/* Set trap on access to p[0] */
protect_low(PROT_NONE);
write(sysrqfd, "x", 1);
/* Clear trap on access to p[0] */
protect_low(PROT_READ | PROT_WRITE | PROT_EXEC);
write(sysrqfd, "x", 1);
/* Check the contents of p[0] */
if (p[0] != 0xf001f001) {
write(sysrqfd, "x", 1);
/* Reached, but shouldn't be */
printf("badness, shouldn't happen but does\n");
abort();
}
}
int main(void)
{
struct sigaction sa;
sysrqfd = open("/proc/sysrq-trigger", O_WRONLY);
if (sigprocmask(SIG_BLOCK, NULL, &sa.sa_mask)) {
perror("sigprocmask");
return 0;
}
sa.sa_sigaction = sigbus_handler;
sa.sa_flags = SA_SIGINFO | SA_NODEFER | SA_RESTART;
if (sigaction(SIGBUS, &sa, NULL)) {
perror("sigaction");
return 0;
}
bindstack = mmap(NULL,
BINDSTACK_SIZE,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (bindstack == MAP_FAILED) {
perror("mmap bindstack");
return 0;
}
printf("bindstack: %p\n", bindstack);
run_bind_test();
printf("done\n");
return 0;
}
There are multiple ingredients for this:
1) PAGE_NONE is defined to _CACHE_CACHABLE_NONCOHERENT, which is CCA 3
on all platforms except SB1 where it's CCA 5.
2) _page_cachable_default must have bits set which are not set
_CACHE_CACHABLE_NONCOHERENT.
3) Either the defective version of pte_modify for XPA or the standard
version must be in used. However pte_modify for the 36 bit address
space support is no affected.
In that case additional bits in the final CCA mode may generate an invalid
value for the CCA field. On the R10000 system where this was tracked
down for example a CCA 7 has been observed, which is Uncached Accelerated.
Fixed by:
1) Using the proper CCA mode for PAGE_NONE just like for all the other
PAGE_* pte/pmd bits.
2) Fix the two affected variants of pte_modify.
Further code inspection also shows the same issue to exist in pmd_modify
which would affect huge page systems.
Issue in pte_modify tracked down by Alastair Bridgewater, PAGE_NONE
and pmd_modify issue found by me.
The history of this goes back beyond Linus' git history. Chris Dearman's
commit 351336929ccf222ae38ff0cb7a8dd5fd5c6236a0 ("[MIPS] Allow setting of
the cache attribute at run time.") missed the opportunity to fix this
but it was originally introduced in lmo commit
d523832cf12007b3242e50bb77d0c9e63e0b6518 ("Missing from last commit.")
and 32cc38229ac7538f2346918a09e75413e8861f87 ("New configuration option
CONFIG_MIPS_UNCACHED.")
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Reported-by: Alastair Bridgewater <alastair.bridgewater@gmail.com>
|
|
Trying to make the ISA and PCI init functionality common turned out
to be a bad idea, because the ISA path depends on external
functionality.
Restore the previous behavior and limit the refactoring to PCI
interrupts only.
Fixes: 1fcb6a813c4f "ACPI,PCI,IRQ: remove redundant code in acpi_irq_penalty_init()"
Signed-off-by: Sinan Kaya <okaya@codeaurora.org>
Tested-by: Wim Osterholt <wim@djo.tudelft.nl>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Fix boot crash that triggers if this driver is built into a kernel and
run on non-AMD systems.
AMD northbridges users call amd_cache_northbridges() and it returns
a negative value to signal that we weren't able to cache/detect any
northbridges on the system.
At least, it should do so as all its callers expect it to do so. But it
does return a negative value only when kmalloc() fails.
Fix it to return -ENODEV if there are no NBs cached as otherwise, amd_nb
users like amd64_edac, for example, which relies on it to know whether
it should load or not, gets loaded on systems like Intel Xeons where it
shouldn't.
Reported-and-tested-by: Tony Battersby <tonyb@cybernetics.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1466097230-5333-2-git-send-email-bp@alien8.de
Link: https://lkml.kernel.org/r/5761BEB0.9000807@cybernetics.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Logan Gunthorpe reports that hibernation stopped working reliably for
him after commit ab76f7b4ab23 (x86/mm: Set NX on gap between __ex_table
and rodata).
That turns out to be a consequence of a long-standing issue with the
64-bit image restoration code on x86, which is that the temporary
page tables set up by it to avoid page tables corruption when the
last bits of the image kernel's memory contents are copied into
their original page frames re-use the boot kernel's text mapping,
but that mapping may very well get corrupted just like any other
part of the page tables. Of course, if that happens, the final
jump to the image kernel's entry point will go to nowhere.
The exact reason why commit ab76f7b4ab23 matters here is that it
sometimes causes a PMD of a large page to be split into PTEs
that are allocated dynamically and get corrupted during image
restoration as described above.
To fix that issue note that the code copying the last bits of the
image kernel's memory contents to the page frames occupied by them
previoulsy doesn't use the kernel text mapping, because it runs from
a special page covered by the identity mapping set up for that code
from scratch. Hence, the kernel text mapping is only needed before
that code starts to run and then it will only be used just for the
final jump to the image kernel's entry point.
Accordingly, the temporary page tables set up in swsusp_arch_resume()
on x86-64 need to contain the kernel text mapping too. That mapping
is only going to be used for the final jump to the image kernel, so
it only needs to cover the image kernel's entry point, because the
first thing the image kernel does after getting control back is to
switch over to its own original page tables. Moreover, the virtual
address of the image kernel's entry point in that mapping has to be
the same as the one mapped by the image kernel's page tables.
With that in mind, modify the x86-64's arch_hibernation_header_save()
and arch_hibernation_header_restore() routines to pass the physical
address of the image kernel's entry point (in addition to its virtual
address) to the boot kernel (a small piece of assembly code involved
in passing the entry point's virtual address to the image kernel is
not necessary any more after that, so drop it). Update RESTORE_MAGIC
too to reflect the image header format change.
Next, in set_up_temporary_mappings(), use the physical and virtual
addresses of the image kernel's entry point passed in the image
header to set up a minimum kernel text mapping (using memory pages
that won't be overwritten by the image kernel's memory contents) that
will map those addresses to each other as appropriate.
This makes the concern about the possible corruption of the original
boot kernel text mapping go away and if the the minimum kernel text
mapping used for the final jump marks the image kernel's entry point
memory as executable, the jump to it is guaraneed to succeed.
Fixes: ab76f7b4ab23 (x86/mm: Set NX on gap between __ex_table and rodata)
Link: http://marc.info/?l=linux-pm&m=146372852823760&w=2
Reported-by: Logan Gunthorpe <logang@deltatee.com>
Reported-and-tested-by: Borislav Petkov <bp@suse.de>
Tested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Pull KVM fixes from Paolo Bonzini:
"ARM and x86 fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: nVMX: VMX instructions: fix segment checks when L1 is in long mode.
KVM: LAPIC: cap __delay at lapic_timer_advance_ns
KVM: x86: move nsec_to_cycles from x86.c to x86.h
pvclock: Get rid of __pvclock_read_cycles in function pvclock_read_flags
pvclock: Cleanup to remove function pvclock_get_nsec_offset
pvclock: Add CPU barriers to get correct version value
KVM: arm/arm64: Stop leaking vcpu pid references
arm64: KVM: fix build with CONFIG_ARM_PMU disabled
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
Pull ARC fix from Vineet Gupta:
"Reinstate dwarf unwinder/loadable-modules with new gnu tools"
* tag 'arc-4.7-rc6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc:
arc: unwind: warn only once if DW2_UNWIND is disabled
ARC: unwind: ensure that .debug_frame is generated (vs. .eh_frame)
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-master
KVM/ARM Fixes for v4.7-rc6:
Fixes a build issue without CONFIG_ARM_PMU and plugs pid leak on arm/arm64.
|
|
Commit d6a9996e84ac ("powerpc/mm: vmalloc abstraction in preparation for
radix") turned kernel memory and IO addresses from #defined constants to
variables initialised at runtime.
On PA6T (pasemi) systems the setup_arch() machine call initialises the
onboard PCI-e root-ports, and uses pci_io_base to do this, which is now
before its value has been set, resulting in a panic early in boot before
console IO is initialised.
Move the pci_io_base initialisation to the same place as vmalloc ranges
are set (hash__early_init_mmu()/radix__early_init_mmu()) - this is the
earliest possible place we can initialise it.
Fixes: d6a9996e84ac ("powerpc/mm: vmalloc abstraction in preparation for radix")
Reported-by: Christian Zigotzky <chzigotzky@xenosoft.de>
Signed-off-by: Darren Stevens <darren@stevens-zone.net>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[mpe: Add #ifdef CONFIG_PCI, massage change log slightly]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Currently we have 2 segments that are bolted for the kernel linear
mapping (ie 0xc000... addresses). This is 0 to 1TB and also the kernel
stacks. Anything accessed outside of these regions may need to be
faulted in. (In practice machines with TM always have 1T segments)
If a machine has < 2TB of memory we never fault on the kernel linear
mapping as these two segments cover all physical memory. If a machine
has > 2TB of memory, there may be structures outside of these two
segments that need to be faulted in. This faulting can occur when
running as a guest as the hypervisor may remove any SLB that's not
bolted.
When we treclaim and trecheckpoint we have a window where we need to
run with the userspace GPRs. This means that we no longer have a valid
stack pointer in r1. For this window we therefore clear MSR RI to
indicate that any exceptions taken at this point won't be able to be
handled. This means that we can't take segment misses in this RI=0
window.
In this RI=0 region, we currently access the thread_struct for the
process being context switched to or from. This thread_struct access
may cause a segment fault since it's not guaranteed to be covered by
the two bolted segment entries described above.
We've seen this with a crash when running as a guest with > 2TB of
memory on PowerVM:
Unrecoverable exception 4100 at c00000000004f138
Oops: Unrecoverable exception, sig: 6 [#1]
SMP NR_CPUS=2048 NUMA pSeries
CPU: 1280 PID: 7755 Comm: kworker/1280:1 Tainted: G X 4.4.13-46-default #1
task: c000189001df4210 ti: c000189001d5c000 task.ti: c000189001d5c000
NIP: c00000000004f138 LR: 0000000010003a24 CTR: 0000000010001b20
REGS: c000189001d5f730 TRAP: 4100 Tainted: G X (4.4.13-46-default)
MSR: 8000000100001031 <SF,ME,IR,DR,LE> CR: 24000048 XER: 00000000
CFAR: c00000000004ed18 SOFTE: 0
GPR00: ffffffffc58d7b60 c000189001d5f9b0 00000000100d7d00 000000003a738288
GPR04: 0000000000002781 0000000000000006 0000000000000000 c0000d1f4d889620
GPR08: 000000000000c350 00000000000008ab 00000000000008ab 00000000100d7af0
GPR12: 00000000100d7ae8 00003ffe787e67a0 0000000000000000 0000000000000211
GPR16: 0000000010001b20 0000000000000000 0000000000800000 00003ffe787df110
GPR20: 0000000000000001 00000000100d1e10 0000000000000000 00003ffe787df050
GPR24: 0000000000000003 0000000000010000 0000000000000000 00003fffe79e2e30
GPR28: 00003fffe79e2e68 00000000003d0f00 00003ffe787e67a0 00003ffe787de680
NIP [c00000000004f138] restore_gprs+0xd0/0x16c
LR [0000000010003a24] 0x10003a24
Call Trace:
[c000189001d5f9b0] [c000189001d5f9f0] 0xc000189001d5f9f0 (unreliable)
[c000189001d5fb90] [c00000000001583c] tm_recheckpoint+0x6c/0xa0
[c000189001d5fbd0] [c000000000015c40] __switch_to+0x2c0/0x350
[c000189001d5fc30] [c0000000007e647c] __schedule+0x32c/0x9c0
[c000189001d5fcb0] [c0000000007e6b58] schedule+0x48/0xc0
[c000189001d5fce0] [c0000000000deabc] worker_thread+0x22c/0x5b0
[c000189001d5fd80] [c0000000000e7000] kthread+0x110/0x130
[c000189001d5fe30] [c000000000009538] ret_from_kernel_thread+0x5c/0xa4
Instruction dump:
7cb103a6 7cc0e3a6 7ca222a6 78a58402 38c00800 7cc62838 08860000 7cc000a6
38a00006 78c60022 7cc62838 0b060000 <e8c701a0> 7ccff120 e8270078 e8a70098
---[ end trace 602126d0a1dedd54 ]---
This fixes this by copying the required data from the thread_struct to
the stack before we clear MSR RI. Then once we clear RI, we only access
the stack, guaranteeing there's no segment miss.
We also tighten the region over which we set RI=0 on the treclaim()
path. This may have a slight performance impact since we're adding an
mtmsr instruction.
Fixes: 090b9284d725 ("powerpc/tm: Clear MSR RI in non-recoverable TM code")
Signed-off-by: Michael Neuling <mikey@neuling.org>
Reviewed-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
When calling eeh_rmv_device() in eeh_reset_device() for partial hotplug
case, @rmv_data instead of its address is the proper argument.
Otherwise, the stack frame is corrupted when writing to
@rmv_data (actually its address) in eeh_rmv_device(). It results in
kernel crash as observed.
This fixes the issue by passing @rmv_data, not its address to
eeh_rmv_device() in eeh_reset_device().
Fixes: 67086e32b564 ("powerpc/eeh: powerpc/eeh: Support error recovery for VF PE")
Reported-by: Pridhiviraj Paidipeddi <ppaidipe@in.ibm.com>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The test_fp_ctl function is used to test if a given value is a valid
floating-point control. The inline assembly in test_fp_ctl uses an
incorrect constraint for the 'orig_fpc' variable. If the compiler
chooses the same register for 'fpc' and 'orig_fpc' the test_fp_ctl()
function always returns true. This allows user space to trigger
kernel oopses with invalid floating-point control values on the
signal stack.
This problem has been introduced with git commit 4725c86055f5bbdcdf
"s390: fix save and restore of the floating-point-control register"
Cc: stable@vger.kernel.org # v3.13+
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
This reverts commit 852ffd0f4e23248b47531058e531066a988434b5.
There are use cases where an intermediate boot kernel (1) uses kexec
to boot the final production kernel (2). For this scenario we should
provide the original boot information to the production kernel (2).
Therefore clearing the boot information during kexec() should not
be done.
Cc: stable@vger.kernel.org # v3.17+
Reported-by: Steffen Maier <maier@linux.vnet.ibm.com>
Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
If CONFIG_ARC_DW2_UNWIND is disabled every time arc_unwind_core()
gets called following message gets printed in debug console:
----------------->8---------------
CONFIG_ARC_DW2_UNWIND needs to be enabled
----------------->8---------------
That message makes sense if user indeed wants to see a backtrace or
get nice function call-graphs in perf but what if user disabled
unwinder for the purpose? Why pollute his debug console?
So instead we'll warn user about possibly missing feature once and
let him decide if that was what he or she really wanted.
Signed-off-by: Alexey Brodkin <abrodkin@synopsys.com>
Cc: stable@vger.kernel.org
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
With recent binutils update to support dwarf CFI pseudo-ops in gas, we
now get .eh_frame vs. .debug_frame. Although the call frame info is
exactly the same in both, the CIE differs, which the current kernel
unwinder can't cope with.
This broke both the kernel unwinder as well as loadable modules (latter
because of a new unhandled relo R_ARC_32_PCREL from .rela.eh_frame in
the module loader)
The ideal solution would be to switch unwinder to .eh_frame.
For now however we can make do by just ensureing .debug_frame is
generated by removing -fasynchronous-unwind-tables
.eh_frame generated with -gdwarf-2 -fasynchronous-unwind-tables
.debug_frame generated with -gdwarf-2
Fixes STAR 9001058196
Cc: stable@vger.kernel.org
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
|
|
I couldn't get Xen to boot a L2 HVM when it was nested under KVM - it was
getting a GP(0) on a rather unspecial vmread from Xen:
(XEN) ----[ Xen-4.7.0-rc x86_64 debug=n Not tainted ]----
(XEN) CPU: 1
(XEN) RIP: e008:[<ffff82d0801e629e>] vmx_get_segment_register+0x14e/0x450
(XEN) RFLAGS: 0000000000010202 CONTEXT: hypervisor (d1v0)
(XEN) rax: ffff82d0801e6288 rbx: ffff83003ffbfb7c rcx: fffffffffffab928
(XEN) rdx: 0000000000000000 rsi: 0000000000000000 rdi: ffff83000bdd0000
(XEN) rbp: ffff83000bdd0000 rsp: ffff83003ffbfab0 r8: ffff830038813910
(XEN) r9: ffff83003faf3958 r10: 0000000a3b9f7640 r11: ffff83003f82d418
(XEN) r12: 0000000000000000 r13: ffff83003ffbffff r14: 0000000000004802
(XEN) r15: 0000000000000008 cr0: 0000000080050033 cr4: 00000000001526e0
(XEN) cr3: 000000003fc79000 cr2: 0000000000000000
(XEN) ds: 0000 es: 0000 fs: 0000 gs: 0000 ss: 0000 cs: e008
(XEN) Xen code around <ffff82d0801e629e> (vmx_get_segment_register+0x14e/0x450):
(XEN) 00 00 41 be 02 48 00 00 <44> 0f 78 74 24 08 0f 86 38 56 00 00 b8 08 68 00
(XEN) Xen stack trace from rsp=ffff83003ffbfab0:
...
(XEN) Xen call trace:
(XEN) [<ffff82d0801e629e>] vmx_get_segment_register+0x14e/0x450
(XEN) [<ffff82d0801f3695>] get_page_from_gfn_p2m+0x165/0x300
(XEN) [<ffff82d0801bfe32>] hvmemul_get_seg_reg+0x52/0x60
(XEN) [<ffff82d0801bfe93>] hvm_emulate_prepare+0x53/0x70
(XEN) [<ffff82d0801ccacb>] handle_mmio+0x2b/0xd0
(XEN) [<ffff82d0801be591>] emulate.c#_hvm_emulate_one+0x111/0x2c0
(XEN) [<ffff82d0801cd6a4>] handle_hvm_io_completion+0x274/0x2a0
(XEN) [<ffff82d0801f334a>] __get_gfn_type_access+0xfa/0x270
(XEN) [<ffff82d08012f3bb>] timer.c#add_entry+0x4b/0xb0
(XEN) [<ffff82d08012f80c>] timer.c#remove_entry+0x7c/0x90
(XEN) [<ffff82d0801c8433>] hvm_do_resume+0x23/0x140
(XEN) [<ffff82d0801e4fe7>] vmx_do_resume+0xa7/0x140
(XEN) [<ffff82d080164aeb>] context_switch+0x13b/0xe40
(XEN) [<ffff82d080128e6e>] schedule.c#schedule+0x22e/0x570
(XEN) [<ffff82d08012c0cc>] softirq.c#__do_softirq+0x5c/0x90
(XEN) [<ffff82d0801602c5>] domain.c#idle_loop+0x25/0x50
(XEN)
(XEN)
(XEN) ****************************************
(XEN) Panic on CPU 1:
(XEN) GENERAL PROTECTION FAULT
(XEN) [error_code=0000]
(XEN) ****************************************
Tracing my host KVM showed it was the one injecting the GP(0) when
emulating the VMREAD and checking the destination segment permissions in
get_vmx_mem_address():
3) | vmx_handle_exit() {
3) | handle_vmread() {
3) | nested_vmx_check_permission() {
3) | vmx_get_segment() {
3) 0.074 us | vmx_read_guest_seg_base();
3) 0.065 us | vmx_read_guest_seg_selector();
3) 0.066 us | vmx_read_guest_seg_ar();
3) 1.636 us | }
3) 0.058 us | vmx_get_rflags();
3) 0.062 us | vmx_read_guest_seg_ar();
3) 3.469 us | }
3) | vmx_get_cs_db_l_bits() {
3) 0.058 us | vmx_read_guest_seg_ar();
3) 0.662 us | }
3) | get_vmx_mem_address() {
3) 0.068 us | vmx_cache_reg();
3) | vmx_get_segment() {
3) 0.074 us | vmx_read_guest_seg_base();
3) 0.068 us | vmx_read_guest_seg_selector();
3) 0.071 us | vmx_read_guest_seg_ar();
3) 1.756 us | }
3) | kvm_queue_exception_e() {
3) 0.066 us | kvm_multiple_exception();
3) 0.684 us | }
3) 4.085 us | }
3) 9.833 us | }
3) + 10.366 us | }
Cross-checking the KVM/VMX VMREAD emulation code with the Intel Software
Developper Manual Volume 3C - "VMREAD - Read Field from Virtual-Machine
Control Structure", I found that we're enforcing that the destination
operand is NOT located in a read-only data segment or any code segment when
the L1 is in long mode - BUT that check should only happen when it is in
protected mode.
Shuffling the code a bit to make our emulation follow the specification
allows me to boot a Xen dom0 in a nested KVM and start HVM L2 guests
without problems.
Fixes: f9eb4af67c9d ("KVM: nVMX: VMX instructions: add checks for #GP/#SS exceptions")
Signed-off-by: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Eugene Korenevsky <ekorenevsky@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: linux-stable <stable@vger.kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The host timer which emulates the guest LAPIC TSC deadline
timer has its expiration diminished by lapic_timer_advance_ns
nanoseconds. Therefore if, at wait_lapic_expire, a difference
larger than lapic_timer_advance_ns is encountered, delay at most
lapic_timer_advance_ns.
This fixes a problem where the guest can cause the host
to delay for large amounts of time.
Reported-by: Alan Jenkins <alan.christopher.jenkins@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move the inline function nsec_to_cycles from x86.c to x86.h, as
the next patch uses it from lapic.c.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
There is a generic function __pvclock_read_cycles to be used to get both
flags and cycles. For function pvclock_read_flags, it's useless to get
cycles value. To make this function be more effective, get this variable
flags directly in function.
Signed-off-by: Minfei Huang <mnghuan@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Function __pvclock_read_cycles is short enough, so there is no need to
have another function pvclock_get_nsec_offset to calculate tsc delta.
It's better to combine it into function __pvclock_read_cycles.
Remove useless variables in function __pvclock_read_cycles.
Signed-off-by: Minfei Huang <mnghuan@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Protocol for the "version" fields is: hypervisor raises it (making it
uneven) before it starts updating the fields and raises it again (making
it even) when it is done. Thus the guest can make sure the time values
it got are consistent by checking the version before and after reading
them.
Add CPU barries after getting version value just like what function
vread_pvclock does, because all of callees in this function is inline.
Fixes: 502dfeff239e8313bfbe906ca0a1a6827ac8481b
Cc: stable@vger.kernel.org
Signed-off-by: Minfei Huang <mnghuan@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
kvm provides kvm_vcpu_uninit(), which amongst other things, releases the
last reference to the struct pid of the task that was last running the vcpu.
On arm64 built with CONFIG_DEBUG_KMEMLEAK, starting a guest with kvmtool,
then killing it with SIGKILL results (after some considerable time) in:
> cat /sys/kernel/debug/kmemleak
> unreferenced object 0xffff80007d5ea080 (size 128):
> comm "lkvm", pid 2025, jiffies 4294942645 (age 1107.776s)
> hex dump (first 32 bytes):
> 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
> 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
> backtrace:
> [<ffff8000001b30ec>] create_object+0xfc/0x278
> [<ffff80000071da34>] kmemleak_alloc+0x34/0x70
> [<ffff80000019fa2c>] kmem_cache_alloc+0x16c/0x1d8
> [<ffff8000000d0474>] alloc_pid+0x34/0x4d0
> [<ffff8000000b5674>] copy_process.isra.6+0x79c/0x1338
> [<ffff8000000b633c>] _do_fork+0x74/0x320
> [<ffff8000000b66b0>] SyS_clone+0x18/0x20
> [<ffff800000085cb0>] el0_svc_naked+0x24/0x28
> [<ffffffffffffffff>] 0xffffffffffffffff
On x86 kvm_vcpu_uninit() is called on the path from kvm_arch_destroy_vm(),
on arm no equivalent call is made. Add the call to kvm_arch_vcpu_free().
Signed-off-by: James Morse <james.morse@arm.com>
Fixes: 749cf76c5a36 ("KVM: ARM: Initial skeleton to compile KVM support")
Cc: <stable@vger.kernel.org> # 3.10+
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
Userspace can quite legitimately perform an exec() syscall with a
suspended transaction. exec() does not return to the old process, rather
it load a new one and starts that, the expectation therefore is that the
new process starts not in a transaction. Currently exec() is not treated
any differently to any other syscall which creates problems.
Firstly it could allow a new process to start with a suspended
transaction for a binary that no longer exists. This means that the
checkpointed state won't be valid and if the suspended transaction were
ever to be resumed and subsequently aborted (a possibility which is
exceedingly likely as exec()ing will likely doom the transaction) the
new process will jump to invalid state.
Secondly the incorrect attempt to keep the transactional state while
still zeroing state for the new process creates at least two TM Bad
Things. The first triggers on the rfid to return to userspace as
start_thread() has given the new process a 'clean' MSR but the suspend
will still be set in the hardware MSR. The second TM Bad Thing triggers
in __switch_to() as the processor is still transactionally suspended but
__switch_to() wants to zero the TM sprs for the new process.
This is an example of the outcome of calling exec() with a suspended
transaction. Note the first 700 is likely the first TM bad thing
decsribed earlier only the kernel can't report it as we've loaded
userspace registers. c000000000009980 is the rfid in
fast_exception_return()
Bad kernel stack pointer 3fffcfa1a370 at c000000000009980
Oops: Bad kernel stack pointer, sig: 6 [#1]
CPU: 0 PID: 2006 Comm: tm-execed Not tainted
NIP: c000000000009980 LR: 0000000000000000 CTR: 0000000000000000
REGS: c00000003ffefd40 TRAP: 0700 Not tainted
MSR: 8000000300201031 <SF,ME,IR,DR,LE,TM[SE]> CR: 00000000 XER: 00000000
CFAR: c0000000000098b4 SOFTE: 0
PACATMSCRATCH: b00000010000d033
GPR00: 0000000000000000 00003fffcfa1a370 0000000000000000 0000000000000000
GPR04: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
GPR08: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
GPR12: 00003fff966611c0 0000000000000000 0000000000000000 0000000000000000
NIP [c000000000009980] fast_exception_return+0xb0/0xb8
LR [0000000000000000] (null)
Call Trace:
Instruction dump:
f84d0278 e9a100d8 7c7b03a6 e84101a0 7c4ff120 e8410170 7c5a03a6 e8010070
e8410080 e8610088 e8810090 e8210078 <4c000024> 48000000 e8610178 88ed023b
Kernel BUG at c000000000043e80 [verbose debug info unavailable]
Unexpected TM Bad Thing exception at c000000000043e80 (msr 0x201033)
Oops: Unrecoverable exception, sig: 6 [#2]
CPU: 0 PID: 2006 Comm: tm-execed Tainted: G D
task: c0000000fbea6d80 ti: c00000003ffec000 task.ti: c0000000fb7ec000
NIP: c000000000043e80 LR: c000000000015a24 CTR: 0000000000000000
REGS: c00000003ffef7e0 TRAP: 0700 Tainted: G D
MSR: 8000000300201033 <SF,ME,IR,DR,RI,LE,TM[SE]> CR: 28002828 XER: 00000000
CFAR: c000000000015a20 SOFTE: 0
PACATMSCRATCH: b00000010000d033
GPR00: 0000000000000000 c00000003ffefa60 c000000000db5500 c0000000fbead000
GPR04: 8000000300001033 2222222222222222 2222222222222222 00000000ff160000
GPR08: 0000000000000000 800000010000d033 c0000000fb7e3ea0 c00000000fe00004
GPR12: 0000000000002200 c00000000fe00000 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
GPR20: 0000000000000000 0000000000000000 c0000000fbea7410 00000000ff160000
GPR24: c0000000ffe1f600 c0000000fbea8700 c0000000fbea8700 c0000000fbead000
GPR28: c000000000e20198 c0000000fbea6d80 c0000000fbeab680 c0000000fbea6d80
NIP [c000000000043e80] tm_restore_sprs+0xc/0x1c
LR [c000000000015a24] __switch_to+0x1f4/0x420
Call Trace:
Instruction dump:
7c800164 4e800020 7c0022a6 f80304a8 7c0222a6 f80304b0 7c0122a6 f80304b8
4e800020 e80304a8 7c0023a6 e80304b0 <7c0223a6> e80304b8 7c0123a6 4e800020
This fixes CVE-2016-5828.
Fixes: bc2a9408fa65 ("powerpc: Hook in new transactional memory code")
Cc: stable@vger.kernel.org # v3.9+
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 kprobe fix from Thomas Gleixner:
"A single fix clearing the TF bit when a fault is single stepped"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
kprobes/x86: Clear TF bit in fault on single-stepping
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
"mm/radix (Aneesh Kumar K.V):
- Update to tlb functions ric argument
- Flush page walk cache when freeing page table
- Update Radix tree size as per ISA 3.0
mm/hash (Aneesh Kumar K.V):
- Use the correct PPP mask when updating HPTE
- Don't add memory coherence if cache inhibited is set
eeh (Gavin Shan):
- Fix invalid cached PE primary bus
bpf/jit (Naveen N. Rao):
- Disable classic BPF JIT on ppc64le
.. and fix faults caused by radix patching of SLB miss handler
(Michael Ellerman)"
* tag 'powerpc-4.7-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/bpf/jit: Disable classic BPF JIT on ppc64le
powerpc: Fix faults caused by radix patching of SLB miss handler
powerpc/eeh: Fix invalid cached PE primary bus
powerpc/mm/radix: Update Radix tree size as per ISA 3.0
powerpc/mm/hash: Don't add memory coherence if cache inhibited is set
powerpc/mm/hash: Use the correct PPP mask when updating HPTE
powerpc/mm/radix: Flush page walk cache when freeing page table
powerpc/mm/radix: Update to tlb functions ric argument
|
|
Merge misc fixes from Andrew Morton:
"Two weeks worth of fixes here"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (41 commits)
init/main.c: fix initcall_blacklisted on ia64, ppc64 and parisc64
autofs: don't get stuck in a loop if vfs_write() returns an error
mm/page_owner: avoid null pointer dereference
tools/vm/slabinfo: fix spelling mistake: "Ocurrences" -> "Occurrences"
fs/nilfs2: fix potential underflow in call to crc32_le
oom, suspend: fix oom_reaper vs. oom_killer_disable race
ocfs2: disable BUG assertions in reading blocks
mm, compaction: abort free scanner if split fails
mm: prevent KASAN false positives in kmemleak
mm/hugetlb: clear compound_mapcount when freeing gigantic pages
mm/swap.c: flush lru pvecs on compound page arrival
memcg: css_alloc should return an ERR_PTR value on error
memcg: mem_cgroup_migrate() may be called with irq disabled
hugetlb: fix nr_pmds accounting with shared page tables
Revert "mm: disable fault around on emulated access bit architecture"
Revert "mm: make faultaround produce old ptes"
mailmap: add Boris Brezillon's email
mailmap: add Antoine Tenart's email
mm, sl[au]b: add __GFP_ATOMIC to the GFP reclaim mask
mm: mempool: kasan: don't poot mempool objects in quarantine
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen bug fixes from David Vrabel:
- fix x86 PV dom0 crash during early boot on some hardware
- fix two pciback bugs affects certain devices
- fix potential overflow when clearing page tables in x86 PV
* tag 'for-linus-4.7b-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen-pciback: return proper values during BAR sizing
x86/xen: avoid m2p lookup when setting early page table entries
xen/pciback: Fix conf_space read/write overlap check.
x86/xen: fix upper bound of pmd loop in xen_cleanhighmap()
xen/balloon: Fix declared-but-not-defined warning
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
"Here are a few more arm64 fixes, but things do finally appear to be
slowing down. The main fix is avoiding hibernation in a previously
unanticipated situation where we have CPUs parked in the kernel, but
it's all good stuff.
- Fix icache/dcache sync for anonymous pages under migration
- Correct the ASID limit check
- Fix parallel builds of Image and Image.gz
- Refuse to hibernate when we have CPUs that we can't offline"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: hibernate: Don't hibernate on systems with stuck CPUs
arm64: smp: Add function to determine if cpus are stuck in the kernel
arm64: mm: remove page_mapping check in __sync_icache_dcache
arm64: fix boot image dependencies to not generate invalid images
arm64: update ASID limit
|
|
__GFP_REPEAT has a rather weak semantic but since it has been introduced
around 2.6.12 it has been ignored for low order allocations.
PGALLOC_GFP uses __GFP_REPEAT but it is only used in pte_alloc_one,
pte_alloc_one_kernel which does order-0 request. This means that this
flag has never been actually useful here because it has always been used
only for PAGE_ALLOC_COSTLY requests.
Link: http://lkml.kernel.org/r/1464599699-30131-17-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
__GFP_REPEAT has a rather weak semantic but since it has been introduced
around 2.6.12 it has been ignored for low order allocations.
pgtable_alloc_one uses __GFP_REPEAT flag for L2_USER_PGTABLE_ORDER but
the order is either 0 or 3 if L2_KERNEL_PGTABLE_SHIFT for HPAGE_SHIFT.
This means that this flag has never been actually useful here because it
has always been used only for PAGE_ALLOC_COSTLY requests.
Link: http://lkml.kernel.org/r/1464599699-30131-16-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Chris Metcalf <cmetcalf@mellanox.com> [for tile]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
__GFP_REPEAT has a rather weak semantic but since it has been introduced
around 2.6.12 it has been ignored for low order allocations.
PGALLOC_GFP uses __GFP_REPEAT but {pgd,pmd}_alloc allocate from
{pgd,pmd}_cache but both caches are allocating up to PAGE_SIZE objects.
This means that this flag has never been actually useful here because it
has always been used only for PAGE_ALLOC_COSTLY requests.
Link: http://lkml.kernel.org/r/1464599699-30131-15-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
__GFP_REPEAT has a rather weak semantic but since it has been introduced
around 2.6.12 it has been ignored for low order allocations.
page_table_alloc then uses the flag for a single page allocation. This
means that this flag has never been actually useful here because it has
always been used only for PAGE_ALLOC_COSTLY requests.
Link: http://lkml.kernel.org/r/1464599699-30131-14-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|