summaryrefslogtreecommitdiffstats
path: root/arch
AgeCommit message (Collapse)AuthorFilesLines
2018-03-19KVM: arm64: Cleanup __activate_traps and __deactive_traps for VHE and non-VHEChristoffer Dall1-12/+10
To make the code more readable and to avoid the overhead of a function call, let's get rid of a pair of the alternative function selectors and explicitly call the VHE and non-VHE functions using the has_vhe() static key based selector instead, telling the compiler to try to inline the static function if it can. Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Configure c15, PMU, and debug register traps on cpu load/put for VHEChristoffer Dall3-9/+29
We do not have to change the c15 trap setting on each switch to/from the guest on VHE systems, because this setting only affects guest EL1/EL0 (and therefore not the VHE host). The PMU and debug trap configuration can also be done on vcpu load/put instead, because they don't affect how the VHE host kernel can access the debug registers while executing KVM kernel code. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Directly call VHE and non-VHE FPSIMD enabled functionsChristoffer Dall1-12/+3
There is no longer a need for an alternative to choose the right function to tell us whether or not FPSIMD was enabled for the VM, because we can simply can the appropriate functions directly from within the _vhe and _nvhe run functions. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Move common VHE/non-VHE trap config in separate functionsChristoffer Dall1-31/+46
As we are about to be more lazy with some of the trap configuration register read/writes for VHE systems, move the logic that is currently shared between VHE and non-VHE into a separate function which can be called from either the world-switch path or from vcpu_load/vcpu_put. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Defer saving/restoring 32-bit sysregs to vcpu load/putChristoffer Dall3-11/+27
When running a 32-bit VM (EL1 in AArch32), the AArch32 system registers can be deferred to vcpu load/put on VHE systems because neither the host kernel nor host userspace uses these registers. Note that we can't save DBGVCR32_EL2 conditionally based on the state of the debug dirty flag on VHE after this change, because during vcpu_load() we haven't calculated a valid debug flag yet, and when we've restored the register during vcpu_load() we also have to save it during vcpu_put(). This means that we'll always restore/save the register for VHE on load/put, but luckily vcpu load/put are called rarely, so saving an extra register unconditionally shouldn't significantly hurt performance. We can also not defer saving FPEXC32_32 because this register only holds a guest-valid value for 32-bit guests during the exit path when the guest has used FPSIMD registers and restored the register in the early assembly handler from taking the EL2 fault, and therefore we have to check if fpsimd is enabled for the guest in the exit path and save the register then, for both VHE and non-VHE guests. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Prepare to handle deferred save/restore of 32-bit registersChristoffer Dall2-40/+59
32-bit registers are not used by a 64-bit host kernel and can be deferred, but we need to rework the accesses to these register to access the latest values depending on whether or not guest system registers are loaded on the CPU or only reside in memory. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Defer saving/restoring 64-bit sysregs to vcpu load/put on VHEChristoffer Dall2-8/+80
Some system registers do not affect the host kernel's execution and can therefore be loaded when we are about to run a VCPU and we don't have to restore the host state to the hardware before the time when we are actually about to return to userspace or schedule out the VCPU thread. The EL1 system registers and the userspace state registers only affecting EL0 execution do not need to be saved and restored on every switch between the VM and the host, because they don't affect the host kernel's execution. We mark all registers which are now deffered as such in the vcpu_{read,write}_sys_reg accessors in sys-regs.c to ensure the most up-to-date copy is always accessed. Note MPIDR_EL1 (controlled via VMPIDR_EL2) is accessed from other vcpu threads, for example via the GIC emulation, and therefore must be declared as immediate, which is fine as the guest cannot modify this value. The 32-bit sysregs can also be deferred but we do this in a separate patch as it requires a bit more infrastructure. Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Prepare to handle deferred save/restore of ELR_EL1Christoffer Dall2-3/+19
ELR_EL1 is not used by a VHE host kernel and can be deferred, but we need to rework the accesses to this register to access the latest value depending on whether or not guest system registers are loaded on the CPU or only reside in memory. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm/arm64: Prepare to handle deferred save/restore of SPSR_EL1Christoffer Dall4-9/+50
SPSR_EL1 is not used by a VHE host kernel and can be deferred, but we need to rework the accesses to this register to access the latest value depending on whether or not guest system registers are loaded on the CPU or only reside in memory. The handling of accessing the various banked SPSRs for 32-bit VMs is a bit clunky, but this will be improved in following patches which will first prepare and subsequently implement deferred save/restore of the 32-bit registers, including the 32-bit SPSRs. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Introduce framework for accessing deferred sysregsChristoffer Dall2-2/+39
We are about to defer saving and restoring some groups of system registers to vcpu_put and vcpu_load on supported systems. This means that we need some infrastructure to access system registes which supports either accessing the memory backing of the register or directly accessing the system registers, depending on the state of the system when we access the register. We do this by defining read/write accessor functions, which can handle both "immediate" and "deferrable" system registers. Immediate registers are always saved/restored in the world-switch path, but deferrable registers are only saved/restored in vcpu_put/vcpu_load when supported and sysregs_loaded_on_cpu will be set in that case. Note that we don't use the deferred mechanism yet in this patch, but only introduce infrastructure. This is to improve convenience of review in the subsequent patches where it is clear which registers become deferred. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Rewrite system register accessors to read/write functionsChristoffer Dall8-58/+83
Currently we access the system registers array via the vcpu_sys_reg() macro. However, we are about to change the behavior to some times modify the register file directly, so let's change this to two primitives: * Accessor macros vcpu_write_sys_reg() and vcpu_read_sys_reg() * Direct array access macro __vcpu_sys_reg() The accessor macros should be used in places where the code needs to access the currently loaded VCPU's state as observed by the guest. For example, when trapping on cache related registers, a write to a system register should go directly to the VCPU version of the register. The direct array access macro can be used in places where the VCPU is known to never be running (for example userspace access) or for registers which are never context switched (for example all the PMU system registers). This rewrites all users of vcpu_sys_regs to one of the macros described above. No functional change. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Change 32-bit handling of VM system registersChristoffer Dall2-13/+15
We currently handle 32-bit accesses to trapped VM system registers using the 32-bit index into the coproc array on the vcpu structure, which is a union of the coproc array and the sysreg array. Since all the 32-bit coproc indices are created to correspond to the architectural mapping between 64-bit system registers and 32-bit coprocessor registers, and because the AArch64 system registers are the double in size of the AArch32 coprocessor registers, we can always find the system register entry that we must update by dividing the 32-bit coproc index by 2. This is going to make our lives much easier when we have to start accessing system registers that use deferred save/restore and might have to be read directly from the physical CPU. Reviewed-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Don't save the host ELR_EL2 and SPSR_EL2 on VHE systemsChristoffer Dall1-0/+13
On non-VHE systems we need to save the ELR_EL2 and SPSR_EL2 so that we can return to the host in EL1 in the same state and location where we issued a hypercall to EL2, but on VHE ELR_EL2 and SPSR_EL2 are not useful because we never enter a guest as a result of an exception entry that would be directly handled by KVM. The kernel entry code already saves ELR_EL1/SPSR_EL1 on exception entry, which is enough. Therefore, factor out these registers into separate save/restore functions, making it easy to exclude them from the VHE world-switch path later on. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Unify non-VHE host/guest sysreg save and restore functionsChristoffer Dall3-25/+9
There is no need to have multiple identical functions with different names for saving host and guest state. When saving and restoring state for the host and guest, the state is the same for both contexts, and that's why we have the kvm_cpu_context structure. Delete one version and rename the other into simply save/restore. Reviewed-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm/arm64: Remove leftover comment from kvm_vcpu_run_vheChristoffer Dall1-4/+0
The comment only applied to SPE on non-VHE systems, so we simply remove it. Suggested-by: Andrew Jones <drjones@redhat.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Introduce separate VHE/non-VHE sysreg save/restore functionsChristoffer Dall3-22/+50
As we are about to handle system registers quite differently between VHE and non-VHE systems. In preparation for that, we need to split some of the handling functions between VHE and non-VHE functionality. For now, we simply copy the non-VHE functions, but we do change the use of static keys for VHE and non-VHE functionality now that we have separate functions. Reviewed-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Rewrite sysreg alternatives to static keysChristoffer Dall1-13/+4
As we are about to move calls around in the sysreg save/restore logic, let's first rewrite the alternative function callers, because it is going to make the next patches much easier to read. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Move userspace system registers into separate functionChristoffer Dall1-13/+35
There's a semantic difference between the EL1 registers that control operation of a kernel running in EL1 and EL1 registers that only control userspace execution in EL0. Since we can defer saving/restoring the latter, move them into their own function. The ARMv8 ARM (ARM DDI 0487C.a) Section D10.2.1 recommends that ACTLR_EL1 has no effect on the processor when running the VHE host, and we can therefore move this register into the EL1 state which is only saved/restored on vcpu_put/load for a VHE host. We also take this chance to rename the function saving/restoring the remaining system register to make it clear this function deals with the EL1 system registers. Reviewed-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Remove noop calls to timer save/restore from VHE switchChristoffer Dall1-2/+0
The VHE switch function calls __timer_enable_traps and __timer_disable_traps which don't do anything on VHE systems. Therefore, simply remove these calls from the VHE switch function and make the functions non-conditional as they are now only called from the non-VHE switch path. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Don't deactivate VM on VHE systemsChristoffer Dall1-5/+3
There is no need to reset the VTTBR to zero when exiting the guest on VHE systems. VHE systems don't use stage 2 translations for the EL2&0 translation regime used by the host. Reviewed-by: Andrew Jones <drjones@redhat.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Remove kern_hyp_va() use in VHE switch functionChristoffer Dall1-3/+1
VHE kernels run completely in EL2 and therefore don't have a notion of kernel and hyp addresses, they are all just kernel addresses. Therefore don't call kern_hyp_va() in the VHE switch function. Reviewed-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Introduce VHE-specific kvm_vcpu_runChristoffer Dall5-4/+80
So far this is mostly (see below) a copy of the legacy non-VHE switch function, but we will start reworking these functions in separate directions to work on VHE and non-VHE in the most optimal way in later patches. The only difference after this patch between the VHE and non-VHE run functions is that we omit the branch-predictor variant-2 hardening for QC Falkor CPUs, because this workaround is specific to a series of non-VHE ARMv8.0 CPUs. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Factor out fault info population and gic workaroundsChristoffer Dall1-47/+57
The current world-switch function has functionality to detect a number of cases where we need to fixup some part of the exit condition and possibly run the guest again, before having restored the host state. This includes populating missing fault info, emulating GICv2 CPU interface accesses when mapped at unaligned addresses, and emulating the GICv3 CPU interface on systems that need it. As we are about to have an alternative switch function for VHE systems, but VHE systems still need the same early fixup logic, factor out this logic into a separate function that can be shared by both switch functions. No functional change. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Improve debug register save/restore flowChristoffer Dall3-30/+42
Instead of having multiple calls from the world switch path to the debug logic, each figuring out if the dirty bit is set and if we should save/restore the debug registers, let's just provide two hooks to the debug save/restore functionality, one for switching to the guest context, and one for switching to the host context, and we get the benefit of only having to evaluate the dirty flag once on each path, plus we give the compiler some more room to inline some of this functionality. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Slightly improve debug save/restore functionsChristoffer Dall1-14/+12
The debug save/restore functions can be improved by using the has_vhe() static key instead of the instruction alternative. Using the static key uses the same paradigm as we're going to use elsewhere, it makes the code more readable, and it generates slightly better code (no stack setups and function calls unless necessary). We also use a static key on the restore path, because it will be marginally faster than loading a value from memory. Finally, we don't have to conditionally clear the debug dirty flag if it's set, we can just clear it. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Move debug dirty flag calculation out of world switchChristoffer Dall2-6/+5
There is no need to figure out inside the world-switch if we should save/restore the debug registers or not, we might as well do that in the higher level debug setup code, making it easier to optimize down the line. Reviewed-by: Julien Thierry <julien.thierry@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm/arm64: Introduce vcpu_el1_is_32bitChristoffer Dall4-12/+17
We have numerous checks around that checks if the HCR_EL2 has the RW bit set to figure out if we're running an AArch64 or AArch32 VM. In some cases, directly checking the RW bit (given its unintuitive name), is a bit confusing, and that's not going to improve as we move logic around for the following patches that optimize KVM on AArch64 hosts with VHE. Therefore, introduce a helper, vcpu_el1_is_32bit, and replace existing direct checks of HCR_EL2.RW with the helper. Reviewed-by: Julien Grall <julien.grall@arm.com> Reviewed-by: Julien Thierry <julien.thierry@arm.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm/arm64: Add kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregsChristoffer Dall3-0/+36
As we are about to move a bunch of save/restore logic for VHE kernels to the load and put functions, we need some infrastructure to do this. Reviewed-by: Andrew Jones <drjones@redhat.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm/arm64: Get rid of vcpu->arch.irq_linesChristoffer Dall8-29/+7
We currently have a separate read-modify-write of the HCR_EL2 on entry to the guest for the sole purpose of setting the VF and VI bits, if set. Since this is most rarely the case (only when using userspace IRQ chip and interrupts are in flight), let's get rid of this operation and instead modify the bits in the vcpu->arch.hcr[_el2] directly when needed. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Julien Thierry <julien.thierry@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Move HCR_INT_OVERRIDE to default HCR_EL2 guest flagShih-Wei Li2-5/+2
We always set the IMO and FMO bits in the HCR_EL2 when running the guest, regardless if we use the vgic or not. By moving these flags to HCR_GUEST_FLAGS we can avoid one of the extra save/restore operations of HCR_EL2 in the world switch code, and we can also soon get rid of the other one. This is safe, because even though the IMO and FMO bits control both taking the interrupts to EL2 and remapping ICC_*_EL1 to ICV_*_EL1 when executed at EL1, as long as we ensure that these bits are clear when running the EL1 host, we're OK, because we reset the HCR_EL2 to only have the HCR_RW bit set when returning to EL1 on non-VHE systems. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Shih-Wei Li <shihwei@cs.columbia.edu> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Rework hyp_panic for VHE and non-VHEChristoffer Dall1-19/+23
VHE actually doesn't rely on clearing the VTTBR when returning to the host kernel, and that is the current key mechanism of hyp_panic to figure out how to attempt to return to a state good enough to print a panic statement. Therefore, we split the hyp_panic function into two functions, a VHE and a non-VHE, keeping the non-VHE version intact, but changing the VHE behavior. The vttbr_el2 check on VHE doesn't really make that much sense, because the only situation where we can get here on VHE is when the hypervisor assembly code actually called into hyp_panic, which only happens when VBAR_EL2 has been set to the KVM exception vectors. On VHE, we can always safely disable the traps and restore the host registers at this point, so we simply do that unconditionally and call into the panic function directly. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm64: Avoid storing the vcpu pointer on the stackChristoffer Dall7-27/+48
We already have the percpu area for the host cpu state, which points to the VCPU, so there's no need to store the VCPU pointer on the stack on every context switch. We can be a little more clever and just use tpidr_el2 for the percpu offset and load the VCPU pointer from the host context. This has the benefit of being able to retrieve the host context even when our stack is corrupted, and it has a potential performance benefit because we trade a store plus a load for an mrs and a load on a round trip to the guest. This does require us to calculate the percpu offset without including the offset from the kernel mapping of the percpu array to the linear mapping of the array (which is what we store in tpidr_el1), because a PC-relative generated address in EL2 is already giving us the hyp alias of the linear mapping of a kernel address. We do this in __cpu_init_hyp_mode() by using kvm_ksym_ref(). The code that accesses ESR_EL2 was previously using an alternative to use the _EL1 accessor on VHE systems, but this was actually unnecessary as the _EL1 accessor aliases the ESR_EL2 register on VHE, and the _EL2 accessor does the same thing on both systems. Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-03-19KVM: arm/arm64: Avoid vcpu_load for other vcpu ioctls than KVM_RUNChristoffer Dall1-3/+0
Calling vcpu_load() registers preempt notifiers for this vcpu and calls kvm_arch_vcpu_load(). The latter will soon be doing a lot of heavy lifting on arm/arm64 and will try to do things such as enabling the virtual timer and setting us up to handle interrupts from the timer hardware. Loading state onto hardware registers and enabling hardware to signal interrupts can be problematic when we're not actually about to run the VCPU, because it makes it difficult to establish the right context when handling interrupts from the timer, and it makes the register access code difficult to reason about. Luckily, now when we call vcpu_load in each ioctl implementation, we can simply remove the call from the non-KVM_RUN vcpu ioctls, and our kvm_arch_vcpu_load() is only used for loading vcpu content to the physical CPU when we're actually going to run the vcpu. Reviewed-by: Julien Grall <julien.grall@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-02-26KVM: arm: Enable emulation of the physical timerJérémy Fanguède1-0/+61
Set the handlers to emulate read and write operations for CNTP_CTL, CNTP_CVAL and CNTP_TVAL registers in such a way that VMs can use the physical timer. Signed-off-by: Jérémy Fanguède <j.fanguede@virtualopensystems.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2018-02-26KVM: arm64: Enable the EL1 physical timer for AArch32 guestsJérémy Fanguède1-0/+6
Some 32bits guest OS can use the CNTP timer, however KVM does not handle the accesses, injecting a fault instead. Use the proper handlers to emulate the EL1 Physical Timer (CNTP) register accesses of AArch32 guests. Signed-off-by: Jérémy Fanguède <j.fanguede@virtualopensystems.com> Signed-off-by: Alvise Rigo <a.rigo@virtualopensystems.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2018-02-26arm64: KVM: Move CPU ID reg trap setup off the world switch pathDave Martin2-4/+8
The HCR_EL2.TID3 flag needs to be set when trapping guest access to the CPU ID registers is required. However, the decision about whether to set this bit does not need to be repeated at every switch to the guest. Instead, it's sufficient to make this decision once and record the outcome. This patch moves the decision to vcpu_reset_hcr() and records the choice made in vcpu->arch.hcr_el2. The world switch code can then load this directly when switching to the guest without the need for conditional logic on the critical path. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Suggested-by: Christoffer Dall <christoffer.dall@linaro.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2018-02-26arm64/kvm: Prohibit guest LOR accessesMark Rutland4-1/+36
We don't currently limit guest accesses to the LOR registers, which we neither virtualize nor context-switch. As such, guests are provided with unusable information/controls, and are not isolated from each other (or the host). To prevent these issues, we can trap register accesses and present the illusion LORegions are unssupported by the CPU. To do this, we mask ID_AA64MMFR1.LO, and set HCR_EL2.TLOR to trap accesses to the following registers: * LORC_EL1 * LOREA_EL1 * LORID_EL1 * LORN_EL1 * LORSA_EL1 ... when trapped, we inject an UNDEFINED exception to EL1, simulating their non-existence. As noted in D7.2.67, when no LORegions are implemented, LoadLOAcquire and StoreLORelease must behave as LoadAcquire and StoreRelease respectively. We can ensure this by clearing LORC_EL1.EN when a CPU's EL2 is first initialized, as the host kernel will not modify this. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Vladimir Murzin <vladimir.murzin@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christoffer Dall <christoffer.dall@linaro.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: kvmarm@lists.cs.columbia.edu Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2018-02-25Merge tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensaLinus Torvalds2-17/+93
Pull Xtensa fixes from Max Filippov: "Two fixes for reserved memory/DMA buffers allocation in high memory on xtensa architecture - fix memory accounting when reserved memory is in high memory region - fix DMA allocation from high memory" * tag 'xtensa-20180225' of git://github.com/jcmvbkbc/linux-xtensa: xtensa: support DMA buffers in high memory xtensa: fix high memory/reserved memory collision
2018-02-25Merge branch 'x86-urgent-for-linus' of ↵Linus Torvalds4-12/+33
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Thomas Gleixner: "A small set of fixes: - UAPI data type correction for hyperv - correct the cpu cores field in /proc/cpuinfo on CPU hotplug - return proper error code in the resctrl file system failure path to avoid silent subsequent failures - correct a subtle accounting issue in the new vector allocation code which went unnoticed for a while and caused suspend/resume failures" * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/topology: Update the 'cpu cores' field in /proc/cpuinfo correctly across CPU hotplug operations x86/topology: Fix function name in documentation x86/intel_rdt: Fix incorrect returned value when creating rdgroup sub-directory in resctrl file system x86/apic/vector: Handle vector release on CPU unplug correctly genirq/matrix: Handle CPU offlining proper x86/headers/UAPI: Use __u64 instead of u64 in <uapi/asm/hyperv.h>
2018-02-25Merge branch 'perf-urgent-for-linus' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf fix from Thomas Gleixner: "A single commit which shuts up a bogus GCC-8 warning" * 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/oprofile: Fix bogus GCC-8 warning in nmi_setup()
2018-02-25Merge branch 'locking-urgent-for-linus' of ↵Linus Torvalds2-18/+26
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull locking fixes from Thomas Gleixner: "Three patches to fix memory ordering issues on ALPHA and a comment to clarify the usage scope of a mutex internal function" * 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: locking/xchg/alpha: Fix xchg() and cmpxchg() memory ordering bugs locking/xchg/alpha: Clean up barrier usage by using smp_mb() in place of __ASM__MB locking/xchg/alpha: Add unconditional memory barrier to cmpxchg() locking/mutex: Add comment to __mutex_owner() to deter usage
2018-02-25Merge branch 'core-urgent-for-linus' of ↵Linus Torvalds7-8/+8
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull cleanup patchlet from Thomas Gleixner: "A single commit removing a bunch of bogus double semicolons all over the tree" * 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: treewide/trivial: Remove ';;$' typo noise
2018-02-24Merge tag 'powerpc-4.16-4' of ↵Linus Torvalds7-7/+16
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux Pull powerpc fixes from Michael Ellerman: - Add handling for a missing instruction in our 32-bit BPF JIT so that it can be used for seccomp filtering. - Add a missing NULL pointer check before a function call in new EEH code. - Fix an error path in the new ocxl driver to correctly return EFAULT. - The support for the new ibm,drc-info device tree property turns out to need several fixes, so for now we just stop advertising to firmware that we support it until the bugs can be ironed out. - One fix for the new drmem code which was incorrectly modifying the device tree in place. - Finally two fixes for the RFI flush support, so that firmware can advertise to us that it should be disabled entirely so as not to affect performance. Thanks to: Bharata B Rao, Frederic Barrat, Juan J. Alvarez, Mark Lord, Michael Bringmann. * tag 'powerpc-4.16-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: powerpc/powernv: Support firmware disable of RFI flush powerpc/pseries: Support firmware disable of RFI flush powerpc/mm/drmem: Fix unexpected flag value in ibm,dynamic-memory-v2 powerpc/bpf/jit: Fix 32-bit JIT for seccomp_data access powerpc/pseries: Revert support for ibm,drc-info devtree property powerpc/pseries: Fix duplicate firmware feature for DRC_INFO ocxl: Fix potential bad errno on irq allocation powerpc/eeh: Fix crashes in eeh_report_resume()
2018-02-23Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netLinus Torvalds3-6/+45
Pull networking fixes from David Miller: 1) Fix TTL offset calculation in mac80211 mesh code, from Peter Oh. 2) Fix races with procfs in ipt_CLUSTERIP, from Cong Wang. 3) Memory leak fix in lpm_trie BPF map code, from Yonghong Song. 4) Need to use GFP_ATOMIC in BPF cpumap allocations, from Jason Wang. 5) Fix potential deadlocks in netfilter getsockopt() code paths, from Paolo Abeni. 6) Netfilter stackpointer size checks really are needed to validate user input, from Florian Westphal. 7) Missing timer init in x_tables, from Paolo Abeni. 8) Don't use WQ_MEM_RECLAIM in mac80211 hwsim, from Johannes Berg. 9) When an ibmvnic device is brought down then back up again, it can be sent queue entries from a previous session, handle this properly instead of crashing. From Thomas Falcon. 10) Fix TCP checksum on LRO buffers in mlx5e, from Gal Pressman. 11) When we are dumping filters in cls_api, the output SKB is empty, and the filter we are dumping is too large for the space in the SKB, we should return -EMSGSIZE like other netlink dump operations do. Otherwise userland has no signal that is needs to increase the size of its read buffer. From Roman Kapl. 12) Several XDP fixes for virtio_net, from Jesper Dangaard Brouer. 13) Module refcount leak in netlink when a dump start fails, from Jason Donenfeld. 14) Handle sub-optimal GSO sizes better in TCP BBR congestion control, from Eric Dumazet. 15) Releasing bpf per-cpu arraymaps can take a long time, add a condtional scheduling point. From Eric Dumazet. 16) Implement retpolines for tail calls in x64 and arm64 bpf JITs. From Daniel Borkmann. 17) Fix page leak in gianfar driver, from Andy Spencer. 18) Missed clearing of estimator scratch buffer, from Eric Dumazet. * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (76 commits) net_sched: gen_estimator: fix broken estimators based on percpu stats gianfar: simplify FCS handling and fix memory leak ipv6 sit: work around bogus gcc-8 -Wrestrict warning macvlan: fix use-after-free in macvlan_common_newlink() bpf, arm64: fix out of bounds access in tail call bpf, x64: implement retpoline for tail call rxrpc: Fix send in rxrpc_send_data_packet() net: aquantia: Fix error handling in aq_pci_probe() bpf: fix rcu lockdep warning for lpm_trie map_free callback bpf: add schedule points in percpu arrays management regulatory: add NUL to request alpha2 ibmvnic: Fix early release of login buffer net/smc9194: Remove bogus CONFIG_MAC reference net: ipv4: Set addr_type in hash_keys for forwarded case tcp_bbr: better deal with suboptimal GSO smsc75xx: fix smsc75xx_set_features() netlink: put module reference if dump start fails selftests/bpf/test_maps: exit child process without error in ENOMEM case selftests/bpf: update gitignore with test_libbpf_open selftests/bpf: tcpbpf_kern: use in6_* macros from glibc ..
2018-02-23Merge tag 'arm64-fixes' of ↵Linus Torvalds13-61/+44
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Catalin Marinas: "arm64 and perf fixes: - build error when accessing MPIDR_HWID_BITMASK from .S - fix CTR_EL0 field definitions - remove/disable some kernel messages on user faults (unhandled signals, unimplemented syscalls) - fix kernel page fault in unwind_frame() with function graph tracing - fix perf sleeping while atomic errors when booting with ACPI" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64: fix unwind_frame() for filtered out fn for function graph tracing arm64: Enforce BBM for huge IO/VMAP mappings arm64: perf: correct PMUVer probing arm_pmu: acpi: request IRQs up-front arm_pmu: note IRQs and PMUs per-cpu arm_pmu: explicitly enable/disable SPIs at hotplug arm_pmu: acpi: check for mismatched PPIs arm_pmu: add armpmu_alloc_atomic() arm_pmu: fold platform helpers into platform code arm_pmu: kill arm_pmu_platdata ARM: ux500: remove PMU IRQ bouncer arm64: __show_regs: Only resolve kernel symbols when running at EL1 arm64: Remove unimplemented syscall log message arm64: Disable unhandled signal log messages by default arm64: cpufeature: Fix CTR_EL0 field definitions arm64: uaccess: Formalise types for access_ok() arm64: Fix compilation error while accessing MPIDR_HWID_BITMASK from .S files
2018-02-23Merge tag 'mips_fixes_4.16_3' of ↵Linus Torvalds1-1/+0
git://git.kernel.org/pub/scm/linux/kernel/git/jhogan/mips Pull MIPS fix from James Hogan: "A single MIPS fix for mismatching struct compat_flock, resulting in bus errors starting Firefox on Debian 8 since 4.13" * tag 'mips_fixes_4.16_3' of git://git.kernel.org/pub/scm/linux/kernel/git/jhogan/mips: MIPS: Drop spurious __unused in struct compat_flock
2018-02-23arm64: fix unwind_frame() for filtered out fn for function graph tracingPratyush Anand3-2/+7
do_task_stat() calls get_wchan(), which further does unwind_frame(). unwind_frame() restores frame->pc to original value in case function graph tracer has modified a return address (LR) in a stack frame to hook a function return. However, if function graph tracer has hit a filtered function, then we can't unwind it as ftrace_push_return_trace() has biased the index(frame->graph) with a 'huge negative' offset(-FTRACE_NOTRACE_DEPTH). Moreover, arm64 stack walker defines index(frame->graph) as unsigned int, which can not compare a -ve number. Similar problem we can have with calling of walk_stackframe() from save_stack_trace_tsk() or dump_backtrace(). This patch fixes unwind_frame() to test the index for -ve value and restore index accordingly before we can restore frame->pc. Reproducer: cd /sys/kernel/debug/tracing/ echo schedule > set_graph_notrace echo 1 > options/display-graph echo wakeup > current_tracer ps -ef | grep -i agent Above commands result in: Unable to handle kernel paging request at virtual address ffff801bd3d1e000 pgd = ffff8003cbe97c00 [ffff801bd3d1e000] *pgd=0000000000000000, *pud=0000000000000000 Internal error: Oops: 96000006 [#1] SMP [...] CPU: 5 PID: 11696 Comm: ps Not tainted 4.11.0+ #33 [...] task: ffff8003c21ba000 task.stack: ffff8003cc6c0000 PC is at unwind_frame+0x12c/0x180 LR is at get_wchan+0xd4/0x134 pc : [<ffff00000808892c>] lr : [<ffff0000080860b8>] pstate: 60000145 sp : ffff8003cc6c3ab0 x29: ffff8003cc6c3ab0 x28: 0000000000000001 x27: 0000000000000026 x26: 0000000000000026 x25: 00000000000012d8 x24: 0000000000000000 x23: ffff8003c1c04000 x22: ffff000008c83000 x21: ffff8003c1c00000 x20: 000000000000000f x19: ffff8003c1bc0000 x18: 0000fffffc593690 x17: 0000000000000000 x16: 0000000000000001 x15: 0000b855670e2b60 x14: 0003e97f22cf1d0f x13: 0000000000000001 x12: 0000000000000000 x11: 00000000e8f4883e x10: 0000000154f47ec8 x9 : 0000000070f367c0 x8 : 0000000000000000 x7 : 00008003f7290000 x6 : 0000000000000018 x5 : 0000000000000000 x4 : ffff8003c1c03cb0 x3 : ffff8003c1c03ca0 x2 : 00000017ffe80000 x1 : ffff8003cc6c3af8 x0 : ffff8003d3e9e000 Process ps (pid: 11696, stack limit = 0xffff8003cc6c0000) Stack: (0xffff8003cc6c3ab0 to 0xffff8003cc6c4000) [...] [<ffff00000808892c>] unwind_frame+0x12c/0x180 [<ffff000008305008>] do_task_stat+0x864/0x870 [<ffff000008305c44>] proc_tgid_stat+0x3c/0x48 [<ffff0000082fde0c>] proc_single_show+0x5c/0xb8 [<ffff0000082b27e0>] seq_read+0x160/0x414 [<ffff000008289e6c>] __vfs_read+0x58/0x164 [<ffff00000828b164>] vfs_read+0x88/0x144 [<ffff00000828c2e8>] SyS_read+0x60/0xc0 [<ffff0000080834a0>] __sys_trace_return+0x0/0x4 Fixes: 20380bb390a4 (arm64: ftrace: fix a stack tracer's output under function graph tracer) Signed-off-by: Pratyush Anand <panand@redhat.com> Signed-off-by: Jerome Marchand <jmarchan@redhat.com> [catalin.marinas@arm.com: replace WARN_ON with WARN_ON_ONCE] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-02-23x86/topology: Update the 'cpu cores' field in /proc/cpuinfo correctly across ↵Samuel Neves1-0/+1
CPU hotplug operations Without this fix, /proc/cpuinfo will display an incorrect amount of CPU cores, after bringing them offline and online again, as exemplified below: $ cat /proc/cpuinfo | grep cores cpu cores : 4 cpu cores : 8 cpu cores : 8 cpu cores : 20 cpu cores : 4 cpu cores : 3 cpu cores : 2 cpu cores : 2 This patch fixes this by always zeroing the booted_cores variable upon turning off a logical CPU. Tested-by: Dou Liyang <douly.fnst@cn.fujitsu.com> Signed-off-by: Samuel Neves <sneves@dei.uc.pt> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: jgross@suse.com Cc: luto@kernel.org Cc: prarit@redhat.com Cc: vkuznets@redhat.com Link: http://lkml.kernel.org/r/20180221205036.5244-1-sneves@dei.uc.pt Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-23locking/xchg/alpha: Fix xchg() and cmpxchg() memory ordering bugsAndrea Parri1-3/+18
Successful RMW operations are supposed to be fully ordered, but Alpha's xchg() and cmpxchg() do not meet this requirement. Will Deacon noticed the bug: > So MP using xchg: > > WRITE_ONCE(x, 1) > xchg(y, 1) > > smp_load_acquire(y) == 1 > READ_ONCE(x) == 0 > > would be allowed. ... which thus violates the above requirement. Fix it by adding a leading smp_mb() to the xchg() and cmpxchg() implementations. Reported-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrea Parri <parri.andrea@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-alpha@vger.kernel.org Link: http://lkml.kernel.org/r/1519291488-5752-1-git-send-email-parri.andrea@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-23locking/xchg/alpha: Clean up barrier usage by using smp_mb() in place of ↵Andrea Parri2-14/+8
__ASM__MB Replace each occurrence of __ASM__MB with a (trailing) smp_mb() in xchg(), cmpxchg(), and remove the now unused __ASM__MB definitions; this improves readability, with no additional synchronization cost. Suggested-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrea Parri <parri.andrea@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-alpha@vger.kernel.org Link: http://lkml.kernel.org/r/1519291469-5702-1-git-send-email-parri.andrea@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>