summaryrefslogtreecommitdiffstats
path: root/arch/x86/mm/mem_encrypt_identity.c
AgeCommit message (Collapse)AuthorFilesLines
2022-04-07x86/sev: Add SEV-SNP feature detection/setupMichael Roth1-0/+8
Initial/preliminary detection of SEV-SNP is done via the Confidential Computing blob. Check for it prior to the normal SEV/SME feature initialization, and add some sanity checks to confirm it agrees with SEV-SNP CPUID/MSR bits. Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20220307213356.2797205-39-brijesh.singh@amd.com
2022-02-23x86/coco: Add API to handle encryption maskKirill A. Shutemov1-0/+1
AMD SME/SEV uses a bit in the page table entries to indicate that the page is encrypted and not accessible to the VMM. TDX uses a similar approach, but the polarity of the mask is opposite to AMD: if the bit is set the page is accessible to VMM. Provide vendor-neutral API to deal with the mask: cc_mkenc() and cc_mkdec() modify given address to make it encrypted/decrypted. It can be applied to phys_addr_t, pgprotval_t or page table entry value. pgprot_encrypted() and pgprot_decrypted() reimplemented using new helpers. The implementation will be extended to cover TDX. pgprot_decrypted() is used by drivers (i915, virtio_gpu, vfio). cc_mkdec() called by pgprot_decrypted(). Export cc_mkdec(). Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lore.kernel.org/r/20220222185740.26228-5-kirill.shutemov@linux.intel.com
2022-02-23x86/coco: Explicitly declare type of confidential computing platformKirill A. Shutemov1-4/+7
The kernel derives the confidential computing platform type it is running as from sme_me_mask on AMD or by using hv_is_isolation_supported() on HyperV isolation VMs. This detection process will be more complicated as more platforms get added. Declare a confidential computing vendor variable explicitly and set it via cc_set_vendor() on the respective platform. [ bp: Massage commit message, fixup HyperV check. ] Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lore.kernel.org/r/20220222185740.26228-4-kirill.shutemov@linux.intel.com
2021-11-01Merge tag 'x86_sev_for_v5.16_rc1' of ↵Linus Torvalds1-0/+9
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 SEV updates from Borislav Petkov: - Export sev_es_ghcb_hv_call() so that HyperV Isolation VMs can use it too - Non-urgent fixes and cleanups * tag 'x86_sev_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/sev: Expose sev_es_ghcb_hv_call() for use by HyperV x86/sev: Allow #VC exceptions on the VC2 stack x86/sev: Fix stack type check in vc_switch_off_ist() x86/sme: Use #define USE_EARLY_PGTABLE_L5 in mem_encrypt_identity.c x86/sev: Carve out HV call's return value verification
2021-10-19x86/sme: Use #define USE_EARLY_PGTABLE_L5 in mem_encrypt_identity.cTom Lendacky1-0/+9
When runtime support for converting between 4-level and 5-level pagetables was added to the kernel, the SME code that built pagetables was updated to use the pagetable functions, e.g. p4d_offset(), etc., in order to simplify the code. However, the use of the pagetable functions in early boot code requires the use of the USE_EARLY_PGTABLE_L5 #define in order to ensure that the proper definition of pgtable_l5_enabled() is used. Without the #define, pgtable_l5_enabled() is #defined as cpu_feature_enabled(X86_FEATURE_LA57). In early boot, the CPU features have not yet been discovered and populated, so pgtable_l5_enabled() will return false even when 5-level paging is enabled. This causes the SME code to always build 4-level pagetables to perform the in-place encryption. If 5-level paging is enabled, switching to the SME pagetables results in a page-fault that kills the boot. Adding the #define results in pgtable_l5_enabled() using the __pgtable_l5_enabled variable set in early boot and the SME code building pagetables for the proper paging level. Fixes: aad983913d77 ("x86/mm/encrypt: Simplify sme_populate_pgd() and sme_populate_pgd_large()") Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: <stable@vger.kernel.org> # 4.18.x Link: https://lkml.kernel.org/r/2cb8329655f5c753905812d951e212022a480475.1634318656.git.thomas.lendacky@amd.com
2021-10-04x86/sme: Replace occurrences of sme_active() with cc_platform_has()Tom Lendacky1-1/+8
Replace uses of sme_active() with the more generic cc_platform_has() using CC_ATTR_HOST_MEM_ENCRYPT. If future support is added for other memory encryption technologies, the use of CC_ATTR_HOST_MEM_ENCRYPT can be updated, as required. This also replaces two usages of sev_active() that are really geared towards detecting if SME is active. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20210928191009.32551-6-bp@alien8.de
2021-06-04x86/sev: Check SME/SEV support in CPUID firstPu Wen1-5/+6
The first two bits of the CPUID leaf 0x8000001F EAX indicate whether SEV or SME is supported, respectively. It's better to check whether SEV or SME is actually supported before accessing the MSR_AMD64_SEV to check whether SEV or SME is enabled. This is both a bare-metal issue and a guest/VM issue. Since the first generation Hygon Dhyana CPU doesn't support the MSR_AMD64_SEV, reading that MSR results in a #GP - either directly from hardware in the bare-metal case or via the hypervisor (because the RDMSR is actually intercepted) in the guest/VM case, resulting in a failed boot. And since this is very early in the boot phase, rdmsrl_safe()/native_read_msr_safe() can't be used. So check the CPUID bits first, before accessing the MSR. [ tlendacky: Expand and improve commit message. ] [ bp: Massage commit message. ] Fixes: eab696d8e8b9 ("x86/sev: Do not require Hypervisor CPUID bit for SEV guests") Signed-off-by: Pu Wen <puwen@hygon.cn> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Tom Lendacky <thomas.lendacky@amd.com> Cc: <stable@vger.kernel.org> # v5.10+ Link: https://lkml.kernel.org/r/20210602070207.2480-1-puwen@hygon.cn
2021-05-10x86/msr: Rename MSR_K8_SYSCFG to MSR_AMD64_SYSCFGBrijesh Singh1-3/+3
The SYSCFG MSR continued being updated beyond the K8 family; drop the K8 name from it. Suggested-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Joerg Roedel <jroedel@suse.de> Link: https://lkml.kernel.org/r/20210427111636.1207-4-brijesh.singh@amd.com
2021-05-01Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds1-1/+0
Pull kvm updates from Paolo Bonzini: "This is a large update by KVM standards, including AMD PSP (Platform Security Processor, aka "AMD Secure Technology") and ARM CoreSight (debug and trace) changes. ARM: - CoreSight: Add support for ETE and TRBE - Stage-2 isolation for the host kernel when running in protected mode - Guest SVE support when running in nVHE mode - Force W^X hypervisor mappings in nVHE mode - ITS save/restore for guests using direct injection with GICv4.1 - nVHE panics now produce readable backtraces - Guest support for PTP using the ptp_kvm driver - Performance improvements in the S2 fault handler x86: - AMD PSP driver changes - Optimizations and cleanup of nested SVM code - AMD: Support for virtual SPEC_CTRL - Optimizations of the new MMU code: fast invalidation, zap under read lock, enable/disably dirty page logging under read lock - /dev/kvm API for AMD SEV live migration (guest API coming soon) - support SEV virtual machines sharing the same encryption context - support SGX in virtual machines - add a few more statistics - improved directed yield heuristics - Lots and lots of cleanups Generic: - Rework of MMU notifier interface, simplifying and optimizing the architecture-specific code - a handful of "Get rid of oprofile leftovers" patches - Some selftests improvements" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (379 commits) KVM: selftests: Speed up set_memory_region_test selftests: kvm: Fix the check of return value KVM: x86: Take advantage of kvm_arch_dy_has_pending_interrupt() KVM: SVM: Skip SEV cache flush if no ASIDs have been used KVM: SVM: Remove an unnecessary prototype declaration of sev_flush_asids() KVM: SVM: Drop redundant svm_sev_enabled() helper KVM: SVM: Move SEV VMCB tracking allocation to sev.c KVM: SVM: Explicitly check max SEV ASID during sev_hardware_setup() KVM: SVM: Unconditionally invoke sev_hardware_teardown() KVM: SVM: Enable SEV/SEV-ES functionality by default (when supported) KVM: SVM: Condition sev_enabled and sev_es_enabled on CONFIG_KVM_AMD_SEV=y KVM: SVM: Append "_enabled" to module-scoped SEV/SEV-ES control variables KVM: SEV: Mask CPUID[0x8000001F].eax according to supported features KVM: SVM: Move SEV module params/variables to sev.c KVM: SVM: Disable SEV/SEV-ES if NPT is disabled KVM: SVM: Free sev_asid_bitmap during init if SEV setup fails KVM: SVM: Zero out the VMCB array used to track SEV ASID association x86/sev: Drop redundant and potentially misleading 'sev_enabled' KVM: x86: Move reverse CPUID helpers to separate header file KVM: x86: Rename GPR accessors to make mode-aware variants the defaults ...
2021-04-26x86/sev: Drop redundant and potentially misleading 'sev_enabled'Sean Christopherson1-1/+0
Drop the sev_enabled flag and switch its one user over to sev_active(). sev_enabled was made redundant with the introduction of sev_status in commit b57de6cd1639 ("x86/sev-es: Add SEV-ES Feature Detection"). sev_enabled and sev_active() are guaranteed to be equivalent, as each is true iff 'sev_status & MSR_AMD64_SEV_ENABLED' is true, and are only ever written in tandem (ignoring compressed boot's version of sev_status). Removing sev_enabled avoids confusion over whether it refers to the guest or the host, and will also allow KVM to usurp "sev_enabled" for its own purposes. No functional change intended. Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210422021125.3417167-7-seanjc@google.com> Acked-by: Borislav Petkov <bp@suse.de> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-18x86/sev: Do not require Hypervisor CPUID bit for SEV guestsJoerg Roedel1-16/+19
A malicious hypervisor could disable the CPUID intercept for an SEV or SEV-ES guest and trick it into the no-SEV boot path, where it could potentially reveal secrets. This is not an issue for SEV-SNP guests, as the CPUID intercept can't be disabled for those. Remove the Hypervisor CPUID bit check from the SEV detection code to protect against this kind of attack and add a Hypervisor bit equals zero check to the SME detection path to prevent non-encrypted guests from trying to enable SME. This handles the following cases: 1) SEV(-ES) guest where CPUID intercept is disabled. The guest will still see leaf 0x8000001f and the SEV bit. It can retrieve the C-bit and boot normally. 2) Non-encrypted guests with intercepted CPUID will check the SEV_STATUS MSR and find it 0 and will try to enable SME. This will fail when the guest finds MSR_K8_SYSCFG to be zero, as it is emulated by KVM. But we can't rely on that, as there might be other hypervisors which return this MSR with bit 23 set. The Hypervisor bit check will prevent that the guest tries to enable SME in this case. 3) Non-encrypted guests on SEV capable hosts with CPUID intercept disabled (by a malicious hypervisor) will try to boot into the SME path. This will fail, but it is also not considered a problem because non-encrypted guests have no protection against the hypervisor anyway. [ bp: s/non-SEV/non-encrypted/g ] Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lkml.kernel.org/r/20210312123824.306-3-joro@8bytes.org
2020-12-10x86/mm/mem_encrypt: Fix definition of PMD_FLAGS_DEC_WPArvind Sankar1-2/+2
The PAT bit is in different locations for 4k and 2M/1G page table entries. Add a definition for _PAGE_LARGE_CACHE_MASK to represent the three caching bits (PWT, PCD, PAT), similar to _PAGE_CACHE_MASK for 4k pages, and use it in the definition of PMD_FLAGS_DEC_WP to get the correct PAT index for write-protected pages. Fixes: 6ebcb060713f ("x86/mm: Add support to encrypt the kernel in-place") Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Signed-off-by: Borislav Petkov <bp@suse.de> Tested-by: Tom Lendacky <thomas.lendacky@amd.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20201111160946.147341-1-nivedita@alum.mit.edu
2020-10-25treewide: Convert macro and uses of __section(foo) to __section("foo")Joe Perches1-1/+1
Use a more generic form for __section that requires quotes to avoid complications with clang and gcc differences. Remove the quote operator # from compiler_attributes.h __section macro. Convert all unquoted __section(foo) uses to quoted __section("foo"). Also convert __attribute__((section("foo"))) uses to __section("foo") even if the __attribute__ has multiple list entry forms. Conversion done using the script at: https://lore.kernel.org/lkml/75393e5ddc272dc7403de74d645e6c6e0f4e70eb.camel@perches.com/2-convert_section.pl Signed-off-by: Joe Perches <joe@perches.com> Reviewed-by: Nick Desaulniers <ndesaulniers@gooogle.com> Reviewed-by: Miguel Ojeda <ojeda@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-07x86/sev-es: Add SEV-ES Feature DetectionJoerg Roedel1-0/+3
Add a sev_es_active() function for checking whether SEV-ES is enabled. Also cache the value of MSR_AMD64_SEV at boot to speed up the feature checking in the running code. [ bp: Remove "!!" in sev_active() too. ] Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20200907131613.12703-37-joro@8bytes.org
2019-07-09Merge branch 'x86-kdump-for-linus' of ↵Linus Torvalds1-2/+20
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x865 kdump updates from Thomas Gleixner: "Yet more kexec/kdump updates: - Properly support kexec when AMD's memory encryption (SME) is enabled - Pass reserved e820 ranges to the kexec kernel so both PCI and SME can work" * 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: fs/proc/vmcore: Enable dumping of encrypted memory when SEV was active x86/kexec: Set the C-bit in the identity map page table when SEV is active x86/kexec: Do not map kexec area as decrypted when SEV is active x86/crash: Add e820 reserved ranges to kdump kernel's e820 table x86/mm: Rework ioremap resource mapping determination x86/e820, ioport: Add a new I/O resource descriptor IORES_DESC_RESERVED x86/mm: Create a workarea in the kernel for SME early encryption x86/mm: Identify the end of the kernel area to be reserved
2019-06-20x86/mm: Create a workarea in the kernel for SME early encryptionThomas Lendacky1-2/+20
In order for the kernel to be encrypted "in place" during boot, a workarea outside of the kernel must be used. This SME workarea used during early encryption of the kernel is situated on a 2MB boundary after the end of the kernel text, data, etc. sections (_end). This works well during initial boot of a compressed kernel because of the relocation used for decompression of the kernel. But when performing a kexec boot, there's a chance that the SME workarea may not be mapped by the kexec pagetables or that some of the other data used by kexec could exist in this range. Create a section for SME in vmlinux.lds.S. Position it after "_end", which is after "__end_of_kernel_reserve", so that the memory will be reclaimed during boot and since this area is all zeroes, it compresses well. This new section will be part of the kernel image, so kexec will account for it in pagetable mappings and placement of data after the kernel. Here's an example of a kernel size without and with the SME section: without: vmlinux: 36,501,616 bzImage: 6,497,344 100000000-47f37ffff : System RAM 1e4000000-1e47677d4 : Kernel code (0x7677d4) 1e47677d5-1e4e2e0bf : Kernel data (0x6c68ea) 1e5074000-1e5372fff : Kernel bss (0x2fefff) with: vmlinux: 44,419,408 bzImage: 6,503,136 880000000-c7ff7ffff : System RAM 8cf000000-8cf7677d4 : Kernel code (0x7677d4) 8cf7677d5-8cfe2e0bf : Kernel data (0x6c68ea) 8d0074000-8d0372fff : Kernel bss (0x2fefff) Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Baoquan He <bhe@redhat.com> Reviewed-by: Dave Hansen <dave.hansen@intel.com> Tested-by: Lianbo Jiang <lijiang@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Kees Cook <keescook@chromium.org> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Rafael Ávila de Espíndola" <rafael@espindo.la> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "x86@kernel.org" <x86@kernel.org> Link: https://lkml.kernel.org/r/3c483262eb4077b1654b2052bd14a8d011bffde3.1560969363.git.thomas.lendacky@amd.com
2019-06-19treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500Thomas Gleixner1-4/+1
Based on 2 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license version 2 as published by the free software foundation this program is free software you can redistribute it and or modify it under the terms of the gnu general public license version 2 as published by the free software foundation # extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 4122 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Enrico Weigelt <info@metux.net> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-01-15x86/mm/mem_encrypt: Fix erroneous sizeof()Peng Hao1-2/+2
Using sizeof(pointer) for determining the size of a memset() only works when the size of the pointer and the size of type to which it points are the same. For pte_t this is only true for 64bit and 32bit-NONPAE. On 32bit PAE systems this is wrong as the pointer size is 4 byte but the PTE entry is 8 bytes. It's actually not a real world issue as this code depends on 64bit, but it's wrong nevertheless. Use sizeof(*p) for correctness sake. Fixes: aad983913d77 ("x86/mm/encrypt: Simplify sme_populate_pgd() and sme_populate_pgd_large()") Signed-off-by: Peng Hao <peng.hao2@zte.com.cn> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: dave.hansen@linux.intel.com Cc: peterz@infradead.org Cc: luto@kernel.org Link: https://lkml.kernel.org/r/1546065252-97996-1-git-send-email-peng.hao2@zte.com.cn
2018-09-03x86/paravirt: Introduce new config option PARAVIRT_XXLJuergen Gross1-0/+1
A large amount of paravirt ops is used by Xen PV guests only. Add a new config option PARAVIRT_XXL which is selected by XEN_PV. Later we can put the Xen PV only paravirt ops under the PARAVIRT_XXL umbrella. Since irq related paravirt ops are used only by VSMP and Xen PV, let VSMP select PARAVIRT_XXL, too, in order to enable moving the irq ops under PARAVIRT_XXL. Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: xen-devel@lists.xenproject.org Cc: virtualization@lists.linux-foundation.org Cc: akataria@vmware.com Cc: rusty@rustcorp.com.au Cc: boris.ostrovsky@oracle.com Cc: hpa@zytor.com Link: https://lkml.kernel.org/r/20180828074026.820-11-jgross@suse.com
2018-06-06x86/mm: Decouple dynamic __PHYSICAL_MASK from AMD SMEKirill A. Shutemov1-0/+3
AMD SME claims one bit from physical address to indicate whether the page is encrypted or not. To achieve that we clear out the bit from __PHYSICAL_MASK. The capability to adjust __PHYSICAL_MASK is required beyond AMD SME. For instance for upcoming Intel Multi-Key Total Memory Encryption. Factor it out into a separate feature with own Kconfig handle. It also helps with overhead of AMD SME. It saves more than 3k in .text on defconfig + AMD_MEM_ENCRYPT: add/remove: 3/2 grow/shrink: 5/110 up/down: 189/-3753 (-3564) We would need to return to this once we have infrastructure to patch constants in code. That's good candidate for it. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Cc: linux-mm@kvack.org Cc: "H. Peter Anvin" <hpa@zytor.com> Link: https://lkml.kernel.org/r/20180518113028.79825-1-kirill.shutemov@linux.intel.com
2018-02-28x86/mm/sme: Disable stack protection for mem_encrypt_identity.cTom Lendacky1-2/+2
Stack protection is not compatible with early boot code. All of the early SME boot code is now isolated in a separate file, mem_encrypt_identity.c, so arch/x86/mm/Makefile can be updated to turn off stack protection for the entire file. This eliminates the need to worry about other functions within the file being instrumented with stack protection (as was seen when a newer version of GCC instrumented sme_encrypt_kernel() where an older version hadn't). It also allows removal of the __nostackprotector attribute from individual functions. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Link: https://lkml.kernel.org/r/20180226232554.14108.16881.stgit@tlendack-t1.amdoffice.net
2018-02-13x86/mm/encrypt: Simplify sme_pgtable_calc()Kirill A. Shutemov1-30/+12
sme_pgtable_calc() is unnecessary complex. It can be re-written in a more stream-lined way. As a side effect, we would get the code ready to boot-time switching between paging modes. Tested-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20180131135404.40692-4-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-13x86/mm/encrypt: Simplify sme_populate_pgd() and sme_populate_pgd_large()Kirill A. Shutemov1-87/+72
sme_populate_pgd() and sme_populate_pgd_large() operate on the identity mapping, which means they want virtual addresses to be equal to physical one, without PAGE_OFFSET shift. We also need to avoid paravirtualization call there. Getting this done is tricky. We cannot use usual page table helpers. It forces us to open-code a lot of things. It makes code ugly and hard to modify. We can get it work with the page table helpers, but it requires few preprocessor tricks. - Define __pa() and __va() to be compatible with identity mapping. - Undef CONFIG_PARAVIRT and CONFIG_PARAVIRT_SPINLOCKS before including any file. This way we can avoid paravirtualization calls. Now we can user normal page table helpers just fine. Tested-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20180131135404.40692-3-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-13x86/mm/encrypt: Move page table helpers into separate translation unitKirill A. Shutemov1-0/+597
There are bunch of functions in mem_encrypt.c that operate on the identity mapping, which means they want virtual addresses to be equal to physical one, without PAGE_OFFSET shift. We also need to avoid paravirtualizaion call there. Getting this done is tricky. We cannot use usual page table helpers. It forces us to open-code a lot of things. It makes code ugly and hard to modify. We can get it work with the page table helpers, but it requires few preprocessor tricks. These tricks may have side effects for the rest of the file. Let's isolate such functions into own translation unit. Tested-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20180131135404.40692-2-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>