Age | Commit message (Collapse) | Author | Files | Lines |
|
Make kvm_gpc_refresh() use kvm instance cached in gfn_to_pfn_cache.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michal Luczaj <mhal@rbox.co>
[sean: leave kvm_gpc_unmap() as-is]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
|
|
Make kvm_gpc_check() use kvm instance cached in gfn_to_pfn_cache.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
|
|
Move the assignment of immutable properties @kvm, @vcpu, and @usage to
the initializer. Make _activate() and _deactivate() use stored values.
Note, @len is also effectively immutable for most cases, but not in the
case of the Xen runstate cache, which may be split across two pages and
the length of the first segment will depend on its address.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michal Luczaj <mhal@rbox.co>
[sean: handle @len in a separate patch]
Signed-off-by: Sean Christopherson <seanjc@google.com>
[dwmw2: acknowledge that @len can actually change for some use cases]
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
|
|
This patch introduces compat version of struct sched_poll for
SCHEDOP_poll sub-operation of sched_op hypercall, reads correct amount
of data (16 bytes in 32-bit case, 24 bytes otherwise) by using new
compat_sched_poll struct, copies it to sched_poll properly, and lets
rest of the code run as is.
Signed-off-by: Metin Kaya <metikaya@amazon.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
|
|
If a triple fault was fixed by kvm_x86_ops.nested_ops->triple_fault (by
turning it into a vmexit), there is no need to leave vcpu_enter_guest().
Any vcpu->requests will be caught later before the actual vmentry,
and in fact vcpu_enter_guest() was not initializing the "r" variable.
Depending on the compiler's whims, this could cause the
x86_64/triple_fault_event_test test to fail.
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Fixes: 92e7d5c83aff ("KVM: x86: allow L1 to not intercept triple fault")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
If a triple fault was fixed by kvm_x86_ops.nested_ops->triple_fault (by
turning it into a vmexit), there is no need to leave vcpu_enter_guest().
Any vcpu->requests will be caught later before the actual vmentry,
and in fact vcpu_enter_guest() was not initializing the "r" variable.
Depending on the compiler's whims, this could cause the
x86_64/triple_fault_event_test test to fail.
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Fixes: 92e7d5c83aff ("KVM: x86: allow L1 to not intercept triple fault")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Formalize "gpc" as the acronym and use it in function names.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Torture test the cases where the runstate crosses a page boundary, and
and especially the case where it's configured in 32-bit mode and doesn't,
but then switching to 64-bit mode makes it go onto the second page.
To simplify this, make the KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST ioctl
also update the guest runstate area. It already did so if the actual
runstate changed, as a side-effect of kvm_xen_update_runstate(). So
doing it in the plain adjustment case is making it more consistent, as
well as giving us a nice way to trigger the update without actually
running the vCPU again and changing the values.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Closer inspection of the Xen code shows that we aren't supposed to be
using the XEN_RUNSTATE_UPDATE flag unconditionally. It should be
explicitly enabled by guests through the HYPERVISOR_vm_assist hypercall.
If we randomly set the top bit of ->state_entry_time for a guest that
hasn't asked for it and doesn't expect it, that could make the runtimes
fail to add up and confuse the guest. Without the flag it's perfectly
safe for a vCPU to read its own vcpu_runstate_info; just not for one
vCPU to read *another's*.
I briefly pondered adding a word for the whole set of VMASST_TYPE_*
flags but the only one we care about for HVM guests is this, so it
seemed a bit pointless.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20221127122210.248427-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The guest runstate area can be arbitrarily byte-aligned. In fact, even
when a sane 32-bit guest aligns the overall structure nicely, the 64-bit
fields in the structure end up being unaligned due to the fact that the
32-bit ABI only aligns them to 32 bits.
So setting the ->state_entry_time field to something|XEN_RUNSTATE_UPDATE
is buggy, because if it's unaligned then we can't update the whole field
atomically; the low bytes might be observable before the _UPDATE bit is.
Xen actually updates the *byte* containing that top bit, on its own. KVM
should do the same.
In addition, we cannot assume that the runstate area fits within a single
page. One option might be to make the gfn_to_pfn cache cope with regions
that cross a page — but getting a contiguous virtual kernel mapping of a
discontiguous set of IOMEM pages is a distinctly non-trivial exercise,
and it seems this is the *only* current use case for the GPC which would
benefit from it.
An earlier version of the runstate code did use a gfn_to_hva cache for
this purpose, but it still had the single-page restriction because it
used the uhva directly — because it needs to be able to do so atomically
when the vCPU is being scheduled out, so it used pagefault_disable()
around the accesses and didn't just use kvm_write_guest_cached() which
has a fallback path.
So... use a pair of GPCs for the first and potential second page covering
the runstate area. We can get away with locking both at once because
nothing else takes more than one GPC lock at a time so we can invent
a trivial ordering rule.
The common case where it's all in the same page is kept as a fast path,
but in both cases, the actual guest structure (compat or not) is built
up from the fields in @vx, following preset pointers to the state and
times fields. The only difference is whether those pointers point to
the kernel stack (in the split case) or to guest memory directly via
the GPC. The fast path is also fixed to use a byte access for the
XEN_RUNSTATE_UPDATE bit, then the only real difference is the dual
memcpy.
Finally, Xen also does write the runstate area immediately when it's
configured. Flip the kvm_xen_update_runstate() and …_guest() functions
and call the latter directly when the runstate area is set. This means
that other ioctls which modify the runstate also write it immediately
to the guest when they do so, which is also intended.
Update the xen_shinfo_test to exercise the pathological case where the
XEN_RUNSTATE_UPDATE flag in the top byte of the state_entry_time is
actually in a different page to the rest of the 64-bit word.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Latest Intel platform Granite Rapids has introduced a new instruction -
PREFETCHIT0/1, which moves code to memory (cache) closer to the
processor depending on specific hints.
The bit definition:
CPUID.(EAX=7,ECX=1):EDX[bit 14]
PREFETCHIT0/1 is on a KVM-only subleaf. Plus an x86_FEATURE definition
for this feature bit to direct it to the KVM entry.
Advertise PREFETCHIT0/1 to KVM userspace. This is safe because there are
no new VMX controls or additional host enabling required for guests to
use this feature.
Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Message-Id: <20221125125845.1182922-9-jiaxi.chen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
AVX-NE-CONVERT is a new set of instructions which can convert low
precision floating point like BF16/FP16 to high precision floating point
FP32, and can also convert FP32 elements to BF16. This instruction
allows the platform to have improved AI capabilities and better
compatibility.
The bit definition:
CPUID.(EAX=7,ECX=1):EDX[bit 5]
AVX-NE-CONVERT is on a KVM-only subleaf. Plus an x86_FEATURE definition
for this feature bit to direct it to the KVM entry.
Advertise AVX-NE-CONVERT to KVM userspace. This is safe because there
are no new VMX controls or additional host enabling required for guests
to use this feature.
Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Message-Id: <20221125125845.1182922-8-jiaxi.chen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
AVX-VNNI-INT8 is a new set of instructions in the latest Intel platform
Sierra Forest, aims for the platform to have superior AI capabilities.
This instruction multiplies the individual bytes of two unsigned or
unsigned source operands, then adds and accumulates the results into the
destination dword element size operand.
The bit definition:
CPUID.(EAX=7,ECX=1):EDX[bit 4]
AVX-VNNI-INT8 is on a new and sparse CPUID leaf and all bits on this
leaf have no truly kernel use case for now. Given that and to save space
for kernel feature bits, move this new leaf to KVM-only subleaf and plus
an x86_FEATURE definition for AVX-VNNI-INT8 to direct it to the KVM
entry.
Advertise AVX-VNNI-INT8 to KVM userspace. This is safe because there are
no new VMX controls or additional host enabling required for guests to
use this feature.
Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Message-Id: <20221125125845.1182922-7-jiaxi.chen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
AVX-IFMA is a new instruction in the latest Intel platform Sierra
Forest. This instruction packed multiplies unsigned 52-bit integers and
adds the low/high 52-bit products to Qword Accumulators.
The bit definition:
CPUID.(EAX=7,ECX=1):EAX[bit 23]
AVX-IFMA is on an expected-dense CPUID leaf and some other bits on this
leaf have kernel usages. Given that, define this feature bit like
X86_FEATURE_<name> in kernel. Considering AVX-IFMA itself has no truly
kernel usages and /proc/cpuinfo has too much unreadable flags, hide this
one in /proc/cpuinfo.
Advertise AVX-IFMA to KVM userspace. This is safe because there are no
new VMX controls or additional host enabling required for guests to use
this feature.
Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Message-Id: <20221125125845.1182922-6-jiaxi.chen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Latest Intel platform Granite Rapids has introduced a new instruction -
AMX-FP16, which performs dot-products of two FP16 tiles and accumulates
the results into a packed single precision tile. AMX-FP16 adds FP16
capability and also allows a FP16 GPU trained model to run faster
without loss of accuracy or added SW overhead.
The bit definition:
CPUID.(EAX=7,ECX=1):EAX[bit 21]
AMX-FP16 is on an expected-dense CPUID leaf and some other bits on this
leaf have kernel usages. Given that, define this feature bit like
X86_FEATURE_<name> in kernel. Considering AMX-FP16 itself has no truly
kernel usages and /proc/cpuinfo has too much unreadable flags, hide this
one in /proc/cpuinfo.
Advertise AMX-FP16 to KVM userspace. This is safe because there are no
new VMX controls or additional host enabling required for guests to use
this feature.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Message-Id: <20221125125845.1182922-5-jiaxi.chen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
CMPccXADD is a new set of instructions in the latest Intel platform
Sierra Forest. This new instruction set includes a semaphore operation
that can compare and add the operands if condition is met, which can
improve database performance.
The bit definition:
CPUID.(EAX=7,ECX=1):EAX[bit 7]
CMPccXADD is on an expected-dense CPUID leaf and some other bits on this
leaf have kernel usages. Given that, define this feature bit like
X86_FEATURE_<name> in kernel. Considering CMPccXADD itself has no truly
kernel usages and /proc/cpuinfo has too much unreadable flags, hide this
one in /proc/cpuinfo.
Advertise CMPCCXADD to KVM userspace. This is safe because there are no
new VMX controls or additional host enabling required for guests to use
this feature.
Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Message-Id: <20221125125845.1182922-4-jiaxi.chen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Rename kvm_cpu_cap_init_scattered() to kvm_cpu_cap_init_kvm_defined() in
anticipation of adding KVM-only CPUID leafs that aren't recognized by the
kernel and thus not scattered, i.e. for leafs that are 100% KVM-defined.
Adjust/add comments to kvm_only_cpuid_leafs and KVM_X86_FEATURE to
document how to create new kvm_only_cpuid_leafs entries for scattered
features as well as features that are entirely unknown to the kernel.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221125125845.1182922-3-jiaxi.chen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a compile-time assert in the SF() macro to detect improper usage,
i.e. to detect passing in an X86_FEATURE_* flag that isn't actually
scattered by the kernel. Upcoming feature flags will be 100% KVM-only
and will have X86_FEATURE_* macros that point at a kvm_only_cpuid_leafs
word, not a kernel-defined word. Using SF() and thus boot_cpu_has() for
such feature flags would access memory beyond x86_capability[NCAPINTS]
and at best incorrectly hide a feature, and at worst leak kernel state to
userspace.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221125125845.1182922-2-jiaxi.chen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Pull kvm fixes from Paolo Bonzini:
"x86:
- Fixes for Xen emulation. While nobody should be enabling it in the
kernel (the only public users of the feature are the selftests),
the bug effectively allows userspace to read arbitrary memory.
- Correctness fixes for nested hypervisors that do not intercept INIT
or SHUTDOWN on AMD; the subsequent CPU reset can cause a
use-after-free when it disables virtualization extensions. While
downgrading the panic to a WARN is quite easy, the full fix is a
bit more laborious; there are also tests. This is the bulk of the
pull request.
- Fix race condition due to incorrect mmu_lock use around
make_mmu_pages_available().
Generic:
- Obey changes to the kvm.halt_poll_ns module parameter in VMs not
using KVM_CAP_HALT_POLL, restoring behavior from before the
introduction of the capability"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: Update gfn_to_pfn_cache khva when it moves within the same page
KVM: x86/xen: Only do in-kernel acceleration of hypercalls for guest CPL0
KVM: x86/xen: Validate port number in SCHEDOP_poll
KVM: x86/mmu: Fix race condition in direct_page_fault
KVM: x86: remove exit_int_info warning in svm_handle_exit
KVM: selftests: add svm part to triple_fault_test
KVM: x86: allow L1 to not intercept triple fault
kvm: selftests: add svm nested shutdown test
KVM: selftests: move idt_entry to header
KVM: x86: forcibly leave nested mode on vCPU reset
KVM: x86: add kvm_leave_nested
KVM: x86: nSVM: harden svm_free_nested against freeing vmcb02 while still in use
KVM: x86: nSVM: leave nested mode on vCPU free
KVM: Obey kvm.halt_poll_ns in VMs not using KVM_CAP_HALT_POLL
KVM: Avoid re-reading kvm->max_halt_poll_ns during halt-polling
KVM: Cap vcpu->halt_poll_ns before halting rather than after
|
|
This brings in a few important fixes for Xen emulation.
While nobody should be enabling it, the bug effectively
allows userspace to read arbitrary memory.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
This brings in a few important fixes for Xen emulation.
While nobody should be enabling it, the bug effectively
allows userspace to read arbitrary memory.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
There are almost no hypercalls which are valid from CPL > 0, and definitely
none which are handled by the kernel.
Fixes: 2fd6df2f2b47 ("KVM: x86/xen: intercept EVTCHNOP_send from guests")
Reported-by: Michal Luczaj <mhal@rbox.co>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Cc: stable@kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
We shouldn't allow guests to poll on arbitrary port numbers off the end
of the event channel table.
Fixes: 1a65105a5aba ("KVM: x86/xen: handle PV spinlocks slowpath")
[dwmw2: my bug though; the original version did check the validity as a
side-effect of an idr_find() which I ripped out in refactoring.]
Reported-by: Michal Luczaj <mhal@rbox.co>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Cc: stable@kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
make_mmu_pages_available() must be called with mmu_lock held for write.
However, if the TDP MMU is used, it will be called with mmu_lock held for
read.
This function does nothing unless shadow pages are used, so there is no
race unless nested TDP is used.
Since nested TDP uses shadow pages, old shadow pages may be zapped by this
function even when the TDP MMU is enabled.
Since shadow pages are never allocated by kvm_tdp_mmu_map(), a race
condition can be avoided by not calling make_mmu_pages_available() if the
TDP MMU is currently in use.
I encountered this when repeatedly starting and stopping nested VM.
It can be artificially caused by allocating a large number of nested TDP
SPTEs.
For example, the following BUG and general protection fault are caused in
the host kernel.
pte_list_remove: 00000000cd54fc10 many->many
------------[ cut here ]------------
kernel BUG at arch/x86/kvm/mmu/mmu.c:963!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
RIP: 0010:pte_list_remove.cold+0x16/0x48 [kvm]
Call Trace:
<TASK>
drop_spte+0xe0/0x180 [kvm]
mmu_page_zap_pte+0x4f/0x140 [kvm]
__kvm_mmu_prepare_zap_page+0x62/0x3e0 [kvm]
kvm_mmu_zap_oldest_mmu_pages+0x7d/0xf0 [kvm]
direct_page_fault+0x3cb/0x9b0 [kvm]
kvm_tdp_page_fault+0x2c/0xa0 [kvm]
kvm_mmu_page_fault+0x207/0x930 [kvm]
npf_interception+0x47/0xb0 [kvm_amd]
svm_invoke_exit_handler+0x13c/0x1a0 [kvm_amd]
svm_handle_exit+0xfc/0x2c0 [kvm_amd]
kvm_arch_vcpu_ioctl_run+0xa79/0x1780 [kvm]
kvm_vcpu_ioctl+0x29b/0x6f0 [kvm]
__x64_sys_ioctl+0x95/0xd0
do_syscall_64+0x5c/0x90
general protection fault, probably for non-canonical address
0xdead000000000122: 0000 [#1] PREEMPT SMP NOPTI
RIP: 0010:kvm_mmu_commit_zap_page.part.0+0x4b/0xe0 [kvm]
Call Trace:
<TASK>
kvm_mmu_zap_oldest_mmu_pages+0xae/0xf0 [kvm]
direct_page_fault+0x3cb/0x9b0 [kvm]
kvm_tdp_page_fault+0x2c/0xa0 [kvm]
kvm_mmu_page_fault+0x207/0x930 [kvm]
npf_interception+0x47/0xb0 [kvm_amd]
CVE: CVE-2022-45869
Fixes: a2855afc7ee8 ("KVM: x86/mmu: Allow parallel page faults for the TDP MMU")
Signed-off-by: Kazuki Takiguchi <takiguchi.kazuki171@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Resolve conflicts between these commits in arch/x86/kernel/asm-offsets.c:
# upstream:
debc5a1ec0d1 ("KVM: x86: use a separate asm-offsets.c file")
# retbleed work in x86/core:
5d8213864ade ("x86/retbleed: Add SKL return thunk")
... and these commits in include/linux/bpf.h:
# upstram:
18acb7fac22f ("bpf: Revert ("Fix dispatcher patchable function entry to 5 bytes nop")")
# x86/core commits:
931ab63664f0 ("x86/ibt: Implement FineIBT")
bea75b33895f ("x86/Kconfig: Introduce function padding")
The latter two modify BPF_DISPATCHER_ATTRIBUTES(), which was removed upstream.
Conflicts:
arch/x86/kernel/asm-offsets.c
include/linux/bpf.h
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
With both nSVM and nVMX implementations in place, KVM can now expose
Hyper-V L2 TLB flush feature to userspace.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-30-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Implement Hyper-V L2 TLB flush for nSVM. The feature needs to be enabled
both in extended 'nested controls' in VMCB and VP assist page.
According to Hyper-V TLFS, synthetic vmexit to L1 is performed with
- HV_SVM_EXITCODE_ENL exit_code.
- HV_SVM_ENL_EXITCODE_TRAP_AFTER_FLUSH exit_info_1.
Note: VP assist page is cached in 'struct kvm_vcpu_hv' so
recalc_intercepts() doesn't need to read from guest's memory. KVM
needs to update the case upon each VMRUN and after svm_set_nested_state
(svm_get_nested_state_pages()) to handle the case when the guest got
migrated while L2 was running.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-29-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Convert kvm_hv_get_assist_page() to return 'int' and propagate possible
errors from kvm_read_guest_cached().
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-28-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Enable L2 TLB flush feature on nVMX when:
- Enlightened VMCS is in use.
- The feature flag is enabled in eVMCS.
- The feature flag is enabled in partition assist page.
Perform synthetic vmexit to L1 after processing TLB flush call upon
request (HV_VMX_SYNTHETIC_EXIT_REASON_TRAP_AFTER_FLUSH).
Note: nested_evmcs_l2_tlb_flush_enabled() uses cached VP assist page copy
which gets updated from nested_vmx_handle_enlightened_vmptrld(). This is
also guaranteed to happen post migration with eVMCS backed L2 running.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-27-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
In preparation to enabling L2 TLB flush, cache VP assist page in
'struct kvm_vcpu_hv'. While on it, rename nested_enlightened_vmentry()
to nested_get_evmptr() and make it return eVMCS GPA directly.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-26-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Introduce a helper to quickly check if KVM needs to handle VMCALL/VMMCALL
from L2 in L0 to process L2 TLB flush requests.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-25-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Handle L2 TLB flush requests by going through all vCPUs and checking
whether there are vCPUs running the same VM_ID with a VP_ID specified
in the requests. Perform synthetic exit to L2 upon finish.
Note, while checking VM_ID/VP_ID of running vCPUs seem to be a bit
racy, we count on the fact that KVM flushes the whole L2 VPID upon
transition. Also, KVM_REQ_HV_TLB_FLUSH request needs to be done upon
transition between L1 and L2 to make sure all pending requests are
always processed.
For the reference, Hyper-V TLFS refers to the feature as "Direct
Virtual Flush".
Note, nVMX/nSVM code does not handle VMCALL/VMMCALL from L2 yet.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-24-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The newly introduced helper checks whether vCPU is performing a
Hyper-V TLB flush hypercall. This is required to filter out L2 TLB
flush hypercalls for processing.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-23-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Hyper-V supports injecting synthetic L2->L1 exit after performing
L2 TLB flush operation but the procedure is vendor specific. Introduce
.hv_inject_synthetic_vmexit_post_tlb_flush nested hook for it.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-22-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Similar to nSVM, KVM needs to know L2's VM_ID/VP_ID and Partition
assist page address to handle L2 TLB flush requests.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-21-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
To handle L2 TLB flush requests, KVM needs to keep track of L2's VM_ID/
VP_IDs which are set by L1 hypervisor. 'Partition assist page' address is
also needed to handle post-flush exit to L1 upon request.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-20-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
of on-stack 'sparse_banks'
To make kvm_hv_flush_tlb() ready to handle L2 TLB flush requests, KVM needs
to allow for all 64 sparse vCPU banks regardless of KVM_MAX_VCPUs as L1
may use vCPU overcommit for L2. To avoid growing on-stack allocation, make
'sparse_banks' part of per-vCPU 'struct kvm_vcpu_hv' which is allocated
dynamically.
Note: sparse_set_to_vcpu_mask() can't currently be used to handle L2
requests as KVM does not keep L2 VM_ID -> L2 VCPU_ID -> L1 vCPU mappings,
i.e. its vp_bitmap array is still bounded by the number of L1 vCPUs and so
can remain an on-stack allocation.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-19-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
To handle L2 TLB flush requests, KVM needs to use a separate fifo from
regular (L1) Hyper-V TLB flush requests: e.g. when a request to flush
something in L2 is made, the target vCPU can transition from L2 to L1,
receive a request to flush a GVA for L1 and then try to enter L2 back.
The first request needs to be processed at this point. Similarly,
requests to flush GVAs in L1 must wait until L2 exits to L1.
No functional change as KVM doesn't handle L2 TLB flush requests from
L2 yet.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-18-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Get rid of on-stack allocation of vcpu_mask and optimize kvm_hv_send_ipi()
for a smaller number of vCPUs in the request. When Hyper-V TLB flush
is in use, HvSendSyntheticClusterIpi{,Ex} calls are not commonly used to
send IPIs to a large number of vCPUs (and are rarely used in general).
Introduce hv_is_vp_in_sparse_set() to directly check if the specified
VP_ID is present in sparse vCPU set.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-17-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
instead of raw '64'
It may not be clear from where the '64' limit for the maximum sparse
bank number comes from, use HV_MAX_SPARSE_VCPU_BANKS define instead.
Use HV_VCPUS_PER_SPARSE_BANK in KVM_HV_MAX_SPARSE_VCPU_SET_BITS's
definition. Opportunistically adjust the comment around BUILD_BUG_ON().
No functional change.
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-16-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
To handle L2 TLB flush requests, KVM needs to translate the specified
L2 GPA to L1 GPA to read hypercall arguments from there.
No functional change as KVM doesn't handle VMCALL/VMMCALL from L2 yet.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-14-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Extended GVA ranges support bit seems to indicate whether lower 12
bits of GVA can be used to specify up to 4095 additional consequent
GVAs to flush. This is somewhat described in TLFS.
Previously, KVM was handling HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST{,EX}
requests by flushing the whole VPID so technically, extended GVA
ranges were already supported. As such requests are handled more
gently now, advertizing support for extended ranges starts making
sense to reduce the size of TLB flush requests.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-13-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Currently, HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST{,EX} calls are handled
the exact same way as HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE{,EX}: by
flushing the whole VPID and this is sub-optimal. Switch to handling
these requests with 'flush_tlb_gva()' hooks instead. Use the newly
introduced TLB flush fifo to queue the requests.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-12-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move the guts of kvm_get_sparse_vp_set() to a helper so that the code for
reading a guest-provided array can be reused in the future, e.g. for
getting a list of virtual addresses whose TLB entries need to be flushed.
Opportunisticaly swap the order of the data and XMM adjustment so that
the XMM/gpa offsets are bundled together.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-11-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
To allow flushing individual GVAs instead of always flushing the whole
VPID a per-vCPU structure to pass the requests is needed. Use standard
'kfifo' to queue two types of entries: individual GVA (GFN + up to 4095
following GFNs in the lower 12 bits) and 'flush all'.
The size of the fifo is arbitrarily set to '16'.
Note, kvm_hv_flush_tlb() only queues 'flush all' entries for now and
kvm_hv_vcpu_flush_tlb() doesn't actually read the fifo just resets the
queue before returning -EOPNOTSUPP (which triggers full TLB flush) so
the functional change is very small but the infrastructure is prepared
to handle individual GVA flush requests.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-10-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
In preparation to implementing fine-grained Hyper-V TLB flush and
L2 TLB flush, resurrect dedicated KVM_REQ_HV_TLB_FLUSH request bit. As
KVM_REQ_TLB_FLUSH_GUEST is a stronger operation, clear KVM_REQ_HV_TLB_FLUSH
request in kvm_vcpu_flush_tlb_guest().
The flush itself is temporary handled by kvm_vcpu_flush_tlb_guest().
No functional change intended.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-9-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Clear KVM_REQ_TLB_FLUSH_CURRENT in kvm_vcpu_flush_tlb_all() instead of in
its sole caller that processes KVM_REQ_TLB_FLUSH. Regardless of why/when
kvm_vcpu_flush_tlb_all() is called, flushing "all" TLB entries also
flushes "current" TLB entries.
Ideally, there will never be another caller of kvm_vcpu_flush_tlb_all(),
and moving the handling "requires" extra work to document the ordering
requirement, but future Hyper-V paravirt TLB flushing support will add
similar logic for flush "guest" (Hyper-V can flush a subset of "guest"
entries). And in the Hyper-V case, KVM needs to do more than just clear
the request, the queue of GPAs to flush also needs to purged, and doing
all only in the request path is undesirable as kvm_vcpu_flush_tlb_guest()
does have multiple callers (though it's unlikely KVM's paravirt TLB flush
will coincide with Hyper-V's paravirt TLB flush).
Move the logic even though it adds extra "work" so that KVM will be
consistent with how flush requests are processed when the Hyper-V support
lands.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-8-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
To conform with SVM, rename VMX specific Hyper-V files from "evmcs.{ch}"
to "hyperv.{ch}". While Enlightened VMCS is a lion's share of these
files, some stuff (e.g. enlightened MSR bitmap, the upcoming Hyper-V
L2 TLB flush, ...) goes beyond that.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-7-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
To make terminology between Hyper-V-on-KVM and KVM-on-Hyper-V consistent,
rename 'enable_direct_tlbflush' to 'enable_l2_tlb_flush'. The change
eliminates the use of confusing 'direct' and adds the missing underscore.
No functional change.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221101145426.251680-6-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|