summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/cpu/resctrl
AgeCommit message (Collapse)AuthorFilesLines
2020-06-09mmap locking API: convert mmap_sem commentsMichel Lespinasse2-6/+6
Convert comments that reference mmap_sem to reference mmap_lock instead. [akpm@linux-foundation.org: fix up linux-next leftovers] [akpm@linux-foundation.org: s/lockaphore/lock/, per Vlastimil] [akpm@linux-foundation.org: more linux-next fixups, per Michel] Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Liam Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ying Han <yinghan@google.com> Link: http://lkml.kernel.org/r/20200520052908.204642-13-walken@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-05-06x86/resctrl: Support wider MBM countersReinette Chatre2-2/+14
The original Memory Bandwidth Monitoring (MBM) architectural definition defines counters of up to 62 bits in the IA32_QM_CTR MSR while the first-generation MBM implementation uses statically defined 24 bit counters. The MBM CPUID enumeration properties have been expanded to include the MBM counter width, encoded as an offset from 24 bits. While eight bits are available for the counter width offset IA32_QM_CTR MSR only supports 62 bit counters. Add a sanity check, with warning printed when encountered, to ensure counters cannot exceed the 62 bit limit. Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/69d52abd5b14794d3a0f05ba7c755ed1f4c0d5ed.1588715690.git.reinette.chatre@intel.com
2020-05-06x86/resctrl: Support CPUID enumeration of MBM counter widthReinette Chatre1-0/+5
The original Memory Bandwidth Monitoring (MBM) architectural definition defines counters of up to 62 bits in the IA32_QM_CTR MSR while the first-generation MBM implementation uses statically defined 24 bit counters. Expand the MBM CPUID enumeration properties to include the MBM counter width. The previously undefined EAX output register contains, in bits [7:0], the MBM counter width encoded as an offset from 24 bits. Enumerating this property is only specified for Intel CPUs. Suggested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/afa3af2f753f6bc301fb743bc8944e749cb24afa.1588715690.git.reinette.chatre@intel.com
2020-05-06x86/resctrl: Maintain MBM counter width per resourceReinette Chatre4-14/+24
The original Memory Bandwidth Monitoring (MBM) architectural definition defines counters of up to 62 bits in the IA32_QM_CTR MSR, and the first-generation MBM implementation uses 24 bit counters. Software is required to poll at 1 second or faster to ensure that data is retrieved before a counter rollover occurs more than once under worst conditions. As system bandwidths scale the software requirement is maintained with the introduction of a per-resource enumerable MBM counter width. In preparation for supporting hardware with an enumerable MBM counter width the current globally static MBM counter width is moved to a per-resource MBM counter width. Currently initialized to 24 always to result in no functional change. In essence there is one function, mbm_overflow_count() that needs to know the counter width to handle rollovers. The static value used within mbm_overflow_count() will be replaced with a value discovered from the hardware. Support for learning the MBM counter width from hardware is added in the change that follows. Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/e36743b9800f16ce600f86b89127391f61261f23.1588715690.git.reinette.chatre@intel.com
2020-05-06x86/resctrl: Query LLC monitoring properties once during bootReinette Chatre1-0/+1
Cache and memory bandwidth monitoring are features that are part of x86 CPU resource control that is supported by the resctrl subsystem. The monitoring properties are obtained via CPUID from every CPU and only used within the resctrl subsystem where the properties are only read from boot_cpu_data. Obtain the monitoring properties once, placed in boot_cpu_data, via the ->c_bsp_init() helpers of the vendors that support X86_FEATURE_CQM_LLC. Suggested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/6d74a6ac3e69f4b7a8b4115835f9455faf0f468d.1588715690.git.reinette.chatre@intel.com
2020-05-06x86/cpu: Move resctrl CPUID code to resctrl/Reinette Chatre1-0/+24
The function determining a platform's support and properties of cache occupancy and memory bandwidth monitoring (properties of X86_FEATURE_CQM_LLC) can be found among the common CPU code. After the feature's properties is populated in the per-CPU data the resctrl subsystem is the only consumer (via boot_cpu_data). Move the function that obtains the CPU information used by resctrl to the resctrl subsystem and rename it from init_cqm() to resctrl_cpu_detect(). The function continues to be called from the common CPU code. This move is done in preparation of the addition of some vendor specific code. No functional change. Suggested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/38433b99f9d16c8f4ee796f8cc42b871531fa203.1588715690.git.reinette.chatre@intel.com
2020-05-06x86/resctrl: Rename asm/resctrl_sched.h to asm/resctrl.hReinette Chatre3-3/+3
asm/resctrl_sched.h is dedicated to the code used for configuration of the CPU resource control state when a task is scheduled. Rename resctrl_sched.h to resctrl.h in preparation of additions that will no longer make this file dedicated to work done during scheduling. No functional change. Suggested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/6914e0ef880b539a82a6d889f9423496d471ad1d.1588715690.git.reinette.chatre@intel.com
2020-04-17x86/resctrl: Preserve CDP enable over CPU hotplugJames Morse3-0/+16
Resctrl assumes that all CPUs are online when the filesystem is mounted, and that CPUs remember their CDP-enabled state over CPU hotplug. This goes wrong when resctrl's CDP-enabled state changes while all the CPUs in a domain are offline. When a domain comes online, enable (or disable!) CDP to match resctrl's current setting. Fixes: 5ff193fbde20 ("x86/intel_rdt: Add basic resctrl filesystem support") Suggested-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20200221162105.154163-1-james.morse@arm.com
2020-04-17x86/resctrl: Fix invalid attempt at removing the default resource groupReinette Chatre1-1/+2
The default resource group ("rdtgroup_default") is associated with the root of the resctrl filesystem and should never be removed. New resource groups can be created as subdirectories of the resctrl filesystem and they can be removed from user space. There exists a safeguard in the directory removal code (rdtgroup_rmdir()) that ensures that only subdirectories can be removed by testing that the directory to be removed has to be a child of the root directory. A possible deadlock was recently fixed with 334b0f4e9b1b ("x86/resctrl: Fix a deadlock due to inaccurate reference"). This fix involved associating the private data of the "mon_groups" and "mon_data" directories to the resource group to which they belong instead of NULL as before. A consequence of this change was that the original safeguard code preventing removal of "mon_groups" and "mon_data" found in the root directory failed resulting in attempts to remove the default resource group that ends in a BUG: kernel BUG at mm/slub.c:3969! invalid opcode: 0000 [#1] SMP PTI Call Trace: rdtgroup_rmdir+0x16b/0x2c0 kernfs_iop_rmdir+0x5c/0x90 vfs_rmdir+0x7a/0x160 do_rmdir+0x17d/0x1e0 do_syscall_64+0x55/0x1d0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fix this by improving the directory removal safeguard to ensure that subdirectories of the resctrl root directory can only be removed if they are a child of the resctrl filesystem's root _and_ not associated with the default resource group. Fixes: 334b0f4e9b1b ("x86/resctrl: Fix a deadlock due to inaccurate reference") Reported-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com> Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Tested-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/884cbe1773496b5dbec1b6bd11bb50cffa83603d.1584461853.git.reinette.chatre@intel.com
2020-02-08Merge branch 'merge.nfs-fs_parse.1' of ↵Linus Torvalds1-8/+3
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull vfs file system parameter updates from Al Viro: "Saner fs_parser.c guts and data structures. The system-wide registry of syntax types (string/enum/int32/oct32/.../etc.) is gone and so is the horror switch() in fs_parse() that would have to grow another case every time something got added to that system-wide registry. New syntax types can be added by filesystems easily now, and their namespace is that of functions - not of system-wide enum members. IOW, they can be shared or kept private and if some turn out to be widely useful, we can make them common library helpers, etc., without having to do anything whatsoever to fs_parse() itself. And we already get that kind of requests - the thing that finally pushed me into doing that was "oh, and let's add one for timeouts - things like 15s or 2h". If some filesystem really wants that, let them do it. Without somebody having to play gatekeeper for the variants blessed by direct support in fs_parse(), TYVM. Quite a bit of boilerplate is gone. And IMO the data structures make a lot more sense now. -200LoC, while we are at it" * 'merge.nfs-fs_parse.1' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (25 commits) tmpfs: switch to use of invalfc() cgroup1: switch to use of errorfc() et.al. procfs: switch to use of invalfc() hugetlbfs: switch to use of invalfc() cramfs: switch to use of errofc() et.al. gfs2: switch to use of errorfc() et.al. fuse: switch to use errorfc() et.al. ceph: use errorfc() and friends instead of spelling the prefix out prefix-handling analogues of errorf() and friends turn fs_param_is_... into functions fs_parse: handle optional arguments sanely fs_parse: fold fs_parameter_desc/fs_parameter_spec fs_parser: remove fs_parameter_description name field add prefix to fs_context->log ceph_parse_param(), ceph_parse_mon_ips(): switch to passing fc_log new primitive: __fs_parse() switch rbd and libceph to p_log-based primitives struct p_log, variants of warnf() et.al. taking that one instead teach logfc() to handle prefices, give it saner calling conventions get rid of cg_invalf() ...
2020-02-07fs_parse: fold fs_parameter_desc/fs_parameter_specAl Viro1-7/+3
The former contains nothing but a pointer to an array of the latter... Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-02-07fs_parser: remove fs_parameter_description name fieldEric Sandeen1-1/+0
Unused now. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-01-31Merge branch 'x86-urgent-for-linus' of ↵Linus Torvalds1-23/+25
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Ingo Molnar: "Misc fixes: - three fixes and a cleanup for the resctrl code - a HyperV fix - a fix to /proc/kcore contents in live debugging sessions - a fix for the x86 decoder opcode map" * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/decoder: Add TEST opcode to Group3-2 x86/resctrl: Clean up unused function parameter in mkdir path x86/resctrl: Fix a deadlock due to inaccurate reference x86/resctrl: Fix use-after-free due to inaccurate refcount of rdtgroup x86/resctrl: Fix use-after-free when deleting resource groups x86/hyper-v: Add "polling" bit to hv_synic_sint x86/crash: Define arch_crash_save_vmcoreinfo() if CONFIG_CRASH_CORE=y
2020-01-28Merge branch 'x86-cache-for-linus' of ↵Linus Torvalds3-2/+93
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 resource control updates from Ingo Molnar: "The main change in this tree is the extension of the resctrl procfs ABI with a new file that helps tooling to navigate from tasks back to resctrl groups: /proc/{pid}/cpu_resctrl_groups. Also fix static key usage for certain feature combinations and simplify the task exit resctrl case" * 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/resctrl: Add task resctrl information display x86/resctrl: Check monitoring static key in the MBM overflow handler x86/resctrl: Do not reconfigure exiting tasks
2020-01-20x86/resctrl: Clean up unused function parameter in mkdir pathXiaochen Shen1-11/+5
Commit 334b0f4e9b1b ("x86/resctrl: Fix a deadlock due to inaccurate reference") changed the argument to rdtgroup_kn_lock_live()/rdtgroup_kn_unlock() within mkdir_rdt_prepare(). That change resulted in an unused function parameter to mkdir_rdt_prepare(). Clean up the unused function parameter in mkdir_rdt_prepare() and its callers rdtgroup_mkdir_mon() and rdtgroup_mkdir_ctrl_mon(). Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Reinette Chatre <reinette.chatre@intel.com> Reviewed-by: Tony Luck <tony.luck@intel.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/1578500886-21771-5-git-send-email-xiaochen.shen@intel.com
2020-01-20x86/resctrl: Fix a deadlock due to inaccurate referenceXiaochen Shen1-8/+8
There is a race condition which results in a deadlock when rmdir and mkdir execute concurrently: $ ls /sys/fs/resctrl/c1/mon_groups/m1/ cpus cpus_list mon_data tasks Thread 1: rmdir /sys/fs/resctrl/c1 Thread 2: mkdir /sys/fs/resctrl/c1/mon_groups/m1 3 locks held by mkdir/48649: #0: (sb_writers#17){.+.+}, at: [<ffffffffb4ca2aa0>] mnt_want_write+0x20/0x50 #1: (&type->i_mutex_dir_key#8/1){+.+.}, at: [<ffffffffb4c8c13b>] filename_create+0x7b/0x170 #2: (rdtgroup_mutex){+.+.}, at: [<ffffffffb4a4389d>] rdtgroup_kn_lock_live+0x3d/0x70 4 locks held by rmdir/48652: #0: (sb_writers#17){.+.+}, at: [<ffffffffb4ca2aa0>] mnt_want_write+0x20/0x50 #1: (&type->i_mutex_dir_key#8/1){+.+.}, at: [<ffffffffb4c8c3cf>] do_rmdir+0x13f/0x1e0 #2: (&type->i_mutex_dir_key#8){++++}, at: [<ffffffffb4c86d5d>] vfs_rmdir+0x4d/0x120 #3: (rdtgroup_mutex){+.+.}, at: [<ffffffffb4a4389d>] rdtgroup_kn_lock_live+0x3d/0x70 Thread 1 is deleting control group "c1". Holding rdtgroup_mutex, kernfs_remove() removes all kernfs nodes under directory "c1" recursively, then waits for sub kernfs node "mon_groups" to drop active reference. Thread 2 is trying to create a subdirectory "m1" in the "mon_groups" directory. The wrapper kernfs_iop_mkdir() takes an active reference to the "mon_groups" directory but the code drops the active reference to the parent directory "c1" instead. As a result, Thread 1 is blocked on waiting for active reference to drop and never release rdtgroup_mutex, while Thread 2 is also blocked on trying to get rdtgroup_mutex. Thread 1 (rdtgroup_rmdir) Thread 2 (rdtgroup_mkdir) (rmdir /sys/fs/resctrl/c1) (mkdir /sys/fs/resctrl/c1/mon_groups/m1) ------------------------- ------------------------- kernfs_iop_mkdir /* * kn: "m1", parent_kn: "mon_groups", * prgrp_kn: parent_kn->parent: "c1", * * "mon_groups", parent_kn->active++: 1 */ kernfs_get_active(parent_kn) kernfs_iop_rmdir /* "c1", kn->active++ */ kernfs_get_active(kn) rdtgroup_kn_lock_live atomic_inc(&rdtgrp->waitcount) /* "c1", kn->active-- */ kernfs_break_active_protection(kn) mutex_lock rdtgroup_rmdir_ctrl free_all_child_rdtgrp sentry->flags = RDT_DELETED rdtgroup_ctrl_remove rdtgrp->flags = RDT_DELETED kernfs_get(kn) kernfs_remove(rdtgrp->kn) __kernfs_remove /* "mon_groups", sub_kn */ atomic_add(KN_DEACTIVATED_BIAS, &sub_kn->active) kernfs_drain(sub_kn) /* * sub_kn->active == KN_DEACTIVATED_BIAS + 1, * waiting on sub_kn->active to drop, but it * never drops in Thread 2 which is blocked * on getting rdtgroup_mutex. */ Thread 1 hangs here ----> wait_event(sub_kn->active == KN_DEACTIVATED_BIAS) ... rdtgroup_mkdir rdtgroup_mkdir_mon(parent_kn, prgrp_kn) mkdir_rdt_prepare(parent_kn, prgrp_kn) rdtgroup_kn_lock_live(prgrp_kn) atomic_inc(&rdtgrp->waitcount) /* * "c1", prgrp_kn->active-- * * The active reference on "c1" is * dropped, but not matching the * actual active reference taken * on "mon_groups", thus causing * Thread 1 to wait forever while * holding rdtgroup_mutex. */ kernfs_break_active_protection( prgrp_kn) /* * Trying to get rdtgroup_mutex * which is held by Thread 1. */ Thread 2 hangs here ----> mutex_lock ... The problem is that the creation of a subdirectory in the "mon_groups" directory incorrectly releases the active protection of its parent directory instead of itself before it starts waiting for rdtgroup_mutex. This is triggered by the rdtgroup_mkdir() flow calling rdtgroup_kn_lock_live()/rdtgroup_kn_unlock() with kernfs node of the parent control group ("c1") as argument. It should be called with kernfs node "mon_groups" instead. What is currently missing is that the kn->priv of "mon_groups" is NULL instead of pointing to the rdtgrp. Fix it by pointing kn->priv to rdtgrp when "mon_groups" is created. Then it could be passed to rdtgroup_kn_lock_live()/rdtgroup_kn_unlock() instead. And then it operates on the same rdtgroup structure but handles the active reference of kernfs node "mon_groups" to prevent deadlock. The same changes are also made to the "mon_data" directories. This results in some unused function parameters that will be cleaned up in follow-up patch as the focus here is on the fix only in support of backporting efforts. Fixes: c7d9aac61311 ("x86/intel_rdt/cqm: Add mkdir support for RDT monitoring") Suggested-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Reinette Chatre <reinette.chatre@intel.com> Reviewed-by: Tony Luck <tony.luck@intel.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/1578500886-21771-4-git-send-email-xiaochen.shen@intel.com
2020-01-20x86/resctrl: Fix use-after-free due to inaccurate refcount of rdtgroupXiaochen Shen1-2/+2
There is a race condition in the following scenario which results in an use-after-free issue when reading a monitoring file and deleting the parent ctrl_mon group concurrently: Thread 1 calls atomic_inc() to take refcount of rdtgrp and then calls kernfs_break_active_protection() to drop the active reference of kernfs node in rdtgroup_kn_lock_live(). In Thread 2, kernfs_remove() is a blocking routine. It waits on all sub kernfs nodes to drop the active reference when removing all subtree kernfs nodes recursively. Thread 2 could block on kernfs_remove() until Thread 1 calls kernfs_break_active_protection(). Only after kernfs_remove() completes the refcount of rdtgrp could be trusted. Before Thread 1 calls atomic_inc() and kernfs_break_active_protection(), Thread 2 could call kfree() when the refcount of rdtgrp (sentry) is 0 instead of 1 due to the race. In Thread 1, in rdtgroup_kn_unlock(), referring to earlier rdtgrp memory (rdtgrp->waitcount) which was already freed in Thread 2 results in use-after-free issue. Thread 1 (rdtgroup_mondata_show) Thread 2 (rdtgroup_rmdir) -------------------------------- ------------------------- rdtgroup_kn_lock_live /* * kn active protection until * kernfs_break_active_protection(kn) */ rdtgrp = kernfs_to_rdtgroup(kn) rdtgroup_kn_lock_live atomic_inc(&rdtgrp->waitcount) mutex_lock rdtgroup_rmdir_ctrl free_all_child_rdtgrp /* * sentry->waitcount should be 1 * but is 0 now due to the race. */ kfree(sentry)*[1] /* * Only after kernfs_remove() * completes, the refcount of * rdtgrp could be trusted. */ atomic_inc(&rdtgrp->waitcount) /* kn->active-- */ kernfs_break_active_protection(kn) rdtgroup_ctrl_remove rdtgrp->flags = RDT_DELETED /* * Blocking routine, wait for * all sub kernfs nodes to drop * active reference in * kernfs_break_active_protection. */ kernfs_remove(rdtgrp->kn) rdtgroup_kn_unlock mutex_unlock atomic_dec_and_test( &rdtgrp->waitcount) && (flags & RDT_DELETED) kernfs_unbreak_active_protection(kn) kfree(rdtgrp) mutex_lock mon_event_read rdtgroup_kn_unlock mutex_unlock /* * Use-after-free: refer to earlier rdtgrp * memory which was freed in [1]. */ atomic_dec_and_test(&rdtgrp->waitcount) && (flags & RDT_DELETED) /* kn->active++ */ kernfs_unbreak_active_protection(kn) kfree(rdtgrp) Fix it by moving free_all_child_rdtgrp() to after kernfs_remove() in rdtgroup_rmdir_ctrl() to ensure it has the accurate refcount of rdtgrp. Fixes: f3cbeacaa06e ("x86/intel_rdt/cqm: Add rmdir support") Suggested-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Reinette Chatre <reinette.chatre@intel.com> Reviewed-by: Tony Luck <tony.luck@intel.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/1578500886-21771-3-git-send-email-xiaochen.shen@intel.com
2020-01-20x86/resctrl: Fix use-after-free when deleting resource groupsXiaochen Shen1-2/+10
A resource group (rdtgrp) contains a reference count (rdtgrp->waitcount) that indicates how many waiters expect this rdtgrp to exist. Waiters could be waiting on rdtgroup_mutex or some work sitting on a task's workqueue for when the task returns from kernel mode or exits. The deletion of a rdtgrp is intended to have two phases: (1) while holding rdtgroup_mutex the necessary cleanup is done and rdtgrp->flags is set to RDT_DELETED, (2) after releasing the rdtgroup_mutex, the rdtgrp structure is freed only if there are no waiters and its flag is set to RDT_DELETED. Upon gaining access to rdtgroup_mutex or rdtgrp, a waiter is required to check for the RDT_DELETED flag. When unmounting the resctrl file system or deleting ctrl_mon groups, all of the subdirectories are removed and the data structure of rdtgrp is forcibly freed without checking rdtgrp->waitcount. If at this point there was a waiter on rdtgrp then a use-after-free issue occurs when the waiter starts running and accesses the rdtgrp structure it was waiting on. See kfree() calls in [1], [2] and [3] in these two call paths in following scenarios: (1) rdt_kill_sb() -> rmdir_all_sub() -> free_all_child_rdtgrp() (2) rdtgroup_rmdir() -> rdtgroup_rmdir_ctrl() -> free_all_child_rdtgrp() There are several scenarios that result in use-after-free issue in following: Scenario 1: ----------- In Thread 1, rdtgroup_tasks_write() adds a task_work callback move_myself(). If move_myself() is scheduled to execute after Thread 2 rdt_kill_sb() is finished, referring to earlier rdtgrp memory (rdtgrp->waitcount) which was already freed in Thread 2 results in use-after-free issue. Thread 1 (rdtgroup_tasks_write) Thread 2 (rdt_kill_sb) ------------------------------- ---------------------- rdtgroup_kn_lock_live atomic_inc(&rdtgrp->waitcount) mutex_lock rdtgroup_move_task __rdtgroup_move_task /* * Take an extra refcount, so rdtgrp cannot be freed * before the call back move_myself has been invoked */ atomic_inc(&rdtgrp->waitcount) /* Callback move_myself will be scheduled for later */ task_work_add(move_myself) rdtgroup_kn_unlock mutex_unlock atomic_dec_and_test(&rdtgrp->waitcount) && (flags & RDT_DELETED) mutex_lock rmdir_all_sub /* * sentry and rdtgrp are freed * without checking refcount */ free_all_child_rdtgrp kfree(sentry)*[1] kfree(rdtgrp)*[2] mutex_unlock /* * Callback is scheduled to execute * after rdt_kill_sb is finished */ move_myself /* * Use-after-free: refer to earlier rdtgrp * memory which was freed in [1] or [2]. */ atomic_dec_and_test(&rdtgrp->waitcount) && (flags & RDT_DELETED) kfree(rdtgrp) Scenario 2: ----------- In Thread 1, rdtgroup_tasks_write() adds a task_work callback move_myself(). If move_myself() is scheduled to execute after Thread 2 rdtgroup_rmdir() is finished, referring to earlier rdtgrp memory (rdtgrp->waitcount) which was already freed in Thread 2 results in use-after-free issue. Thread 1 (rdtgroup_tasks_write) Thread 2 (rdtgroup_rmdir) ------------------------------- ------------------------- rdtgroup_kn_lock_live atomic_inc(&rdtgrp->waitcount) mutex_lock rdtgroup_move_task __rdtgroup_move_task /* * Take an extra refcount, so rdtgrp cannot be freed * before the call back move_myself has been invoked */ atomic_inc(&rdtgrp->waitcount) /* Callback move_myself will be scheduled for later */ task_work_add(move_myself) rdtgroup_kn_unlock mutex_unlock atomic_dec_and_test(&rdtgrp->waitcount) && (flags & RDT_DELETED) rdtgroup_kn_lock_live atomic_inc(&rdtgrp->waitcount) mutex_lock rdtgroup_rmdir_ctrl free_all_child_rdtgrp /* * sentry is freed without * checking refcount */ kfree(sentry)*[3] rdtgroup_ctrl_remove rdtgrp->flags = RDT_DELETED rdtgroup_kn_unlock mutex_unlock atomic_dec_and_test( &rdtgrp->waitcount) && (flags & RDT_DELETED) kfree(rdtgrp) /* * Callback is scheduled to execute * after rdt_kill_sb is finished */ move_myself /* * Use-after-free: refer to earlier rdtgrp * memory which was freed in [3]. */ atomic_dec_and_test(&rdtgrp->waitcount) && (flags & RDT_DELETED) kfree(rdtgrp) If CONFIG_DEBUG_SLAB=y, Slab corruption on kmalloc-2k can be observed like following. Note that "0x6b" is POISON_FREE after kfree(). The corrupted bits "0x6a", "0x64" at offset 0x424 correspond to waitcount member of struct rdtgroup which was freed: Slab corruption (Not tainted): kmalloc-2k start=ffff9504c5b0d000, len=2048 420: 6b 6b 6b 6b 6a 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkjkkkkkkkkkkk Single bit error detected. Probably bad RAM. Run memtest86+ or a similar memory test tool. Next obj: start=ffff9504c5b0d800, len=2048 000: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk 010: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk Slab corruption (Not tainted): kmalloc-2k start=ffff9504c58ab800, len=2048 420: 6b 6b 6b 6b 64 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkdkkkkkkkkkkk Prev obj: start=ffff9504c58ab000, len=2048 000: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk 010: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk Fix this by taking reference count (waitcount) of rdtgrp into account in the two call paths that currently do not do so. Instead of always freeing the resource group it will only be freed if there are no waiters on it. If there are waiters, the resource group will have its flags set to RDT_DELETED. It will be left to the waiter to free the resource group when it starts running and finding that it was the last waiter and the resource group has been removed (rdtgrp->flags & RDT_DELETED) since. (1) rdt_kill_sb() -> rmdir_all_sub() -> free_all_child_rdtgrp() (2) rdtgroup_rmdir() -> rdtgroup_rmdir_ctrl() -> free_all_child_rdtgrp() Fixes: f3cbeacaa06e ("x86/intel_rdt/cqm: Add rmdir support") Fixes: 60cf5e101fd4 ("x86/intel_rdt: Add mkdir to resctrl file system") Suggested-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Reinette Chatre <reinette.chatre@intel.com> Reviewed-by: Tony Luck <tony.luck@intel.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/1578500886-21771-2-git-send-email-xiaochen.shen@intel.com
2020-01-20x86/resctrl: Add task resctrl information displayChen Yu1-0/+86
Monitoring tools that want to find out which resctrl control and monitor groups a task belongs to must currently read the "tasks" file in every group until they locate the process ID. Add an additional file /proc/{pid}/cpu_resctrl_groups to provide this information: 1) res: mon: resctrl is not available. 2) res:/ mon: Task is part of the root resctrl control group, and it is not associated to any monitor group. 3) res:/ mon:mon0 Task is part of the root resctrl control group and monitor group mon0. 4) res:group0 mon: Task is part of resctrl control group group0, and it is not associated to any monitor group. 5) res:group0 mon:mon1 Task is part of resctrl control group group0 and monitor group mon1. Signed-off-by: Chen Yu <yu.c.chen@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Tested-by: Jinshi Chen <jinshi.chen@intel.com> Link: https://lkml.kernel.org/r/20200115092851.14761-1-yu.c.chen@intel.com
2020-01-17x86/resctrl: Check monitoring static key in the MBM overflow handlerXiaochen Shen2-2/+3
Currently, there are three static keys in the resctrl file system: rdt_mon_enable_key and rdt_alloc_enable_key indicate if the monitoring feature and the allocation feature are enabled, respectively. The rdt_enable_key is enabled when either the monitoring feature or the allocation feature is enabled. If no monitoring feature is present (either hardware doesn't support a monitoring feature or the feature is disabled by the kernel command line option "rdt="), rdt_enable_key is still enabled but rdt_mon_enable_key is disabled. MBM is a monitoring feature. The MBM overflow handler intends to check if the monitoring feature is not enabled for fast return. So check the rdt_mon_enable_key in it instead of the rdt_enable_key as former is the more accurate check. [ bp: Massage commit message. ] Fixes: e33026831bdb ("x86/intel_rdt/mbm: Handle counter overflow") Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/1576094705-13660-1-git-send-email-xiaochen.shen@intel.com
2020-01-13x86/resctrl: Do not reconfigure exiting tasksXiaochen Shen1-0/+4
When writing a pid to file "tasks", a callback function move_myself() is queued to this task to be called when the task returns from kernel mode or exits. The purpose of move_myself() is to activate the newly assigned closid and/or rmid associated with this task. This activation is done by calling resctrl_sched_in() from move_myself(), the same function that is called when switching to this task. If this work is successfully queued but then the task enters PF_EXITING status (e.g., receiving signal SIGKILL, SIGTERM) prior to the execution of the callback move_myself(), move_myself() still calls resctrl_sched_in() since the task status is not currently considered. When a task is exiting, the data structure of the task itself will be freed soon. Calling resctrl_sched_in() to write the register that controls the task's resources is unnecessary and it implies extra performance overhead. Add check on task status in move_myself() and return immediately if the task is PF_EXITING. [ bp: Massage. ] Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Reinette Chatre <reinette.chatre@intel.com> Link: https://lkml.kernel.org/r/1578500026-21152-1-git-send-email-xiaochen.shen@intel.com
2020-01-02x86/resctrl: Fix potential memory leakShakeel Butt1-3/+3
set_cache_qos_cfg() is leaking memory when the given level is not RDT_RESOURCE_L3 or RDT_RESOURCE_L2. At the moment, this function is called with only valid levels but move the allocation after the valid level checks in order to make it more robust and future proof. [ bp: Massage commit message. ] Fixes: 99adde9b370de ("x86/intel_rdt: Enable L2 CDP in MSR IA32_L2_QOS_CFG") Signed-off-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Reinette Chatre <reinette.chatre@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20200102165844.133133-1-shakeelb@google.com
2019-12-30x86/resctrl: Fix an imbalance in domain_remove_cpu()Qian Cai1-1/+1
A system that supports resource monitoring may have multiple resources while not all of these resources are capable of monitoring. Monitoring related state is initialized only for resources that are capable of monitoring and correspondingly this state should subsequently only be removed from these resources that are capable of monitoring. domain_add_cpu() calls domain_setup_mon_state() only when r->mon_capable is true where it will initialize d->mbm_over. However, domain_remove_cpu() calls cancel_delayed_work(&d->mbm_over) without checking r->mon_capable resulting in an attempt to cancel d->mbm_over on all resources, even those that never initialized d->mbm_over because they are not capable of monitoring. Hence, it triggers a debugobjects warning when offlining CPUs because those timer debugobjects are never initialized: ODEBUG: assert_init not available (active state 0) object type: timer_list hint: 0x0 WARNING: CPU: 143 PID: 789 at lib/debugobjects.c:484 debug_print_object Hardware name: HP Synergy 680 Gen9/Synergy 680 Gen9 Compute Module, BIOS I40 05/23/2018 RIP: 0010:debug_print_object Call Trace: debug_object_assert_init del_timer try_to_grab_pending cancel_delayed_work resctrl_offline_cpu cpuhp_invoke_callback cpuhp_thread_fun smpboot_thread_fn kthread ret_from_fork Fixes: e33026831bdb ("x86/intel_rdt/mbm: Handle counter overflow") Signed-off-by: Qian Cai <cai@lca.pw> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Reinette Chatre <reinette.chatre@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: john.stultz@linaro.org Cc: sboyd@kernel.org Cc: <stable@vger.kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: tj@kernel.org Cc: Tony Luck <tony.luck@intel.com> Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20191211033042.2188-1-cai@lca.pw
2019-11-13x86/resctrl: Fix potential lockdep warningXiaochen Shen1-4/+0
rdtgroup_cpus_write() and mkdir_rdt_prepare() call rdtgroup_kn_lock_live() -> kernfs_to_rdtgroup() to get 'rdtgrp', and then call the rdt_last_cmd_{clear,puts,...}() functions which will check if rdtgroup_mutex is held/requires its caller to hold rdtgroup_mutex. But if 'rdtgrp' returned from kernfs_to_rdtgroup() is NULL, rdtgroup_mutex is not held and calling rdt_last_cmd_{clear,puts,...}() will result in a self-incurred, potential lockdep warning. Remove the rdt_last_cmd_{clear,puts,...}() calls in these two paths. Just returning error should be sufficient to report to the user that the entry doesn't exist any more. [ bp: Massage. ] Fixes: 94457b36e8a5 ("x86/intel_rdt: Add diagnostics when writing the cpus file") Fixes: cfd0f34e4cd5 ("x86/intel_rdt: Add diagnostics when making directories") Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Tony Luck <tony.luck@intel.com> Reviewed-by: Fenghua Yu <fenghua.yu@intel.com> Reviewed-by: Reinette Chatre <reinette.chatre@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: pei.p.jia@intel.com Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/1573079796-11713-1-git-send-email-xiaochen.shen@intel.com
2019-11-03x86/resctrl: Prevent NULL pointer dereference when reading mondataXiaochen Shen1-0/+4
When a mon group is being deleted, rdtgrp->flags is set to RDT_DELETED in rdtgroup_rmdir_mon() firstly. The structure of rdtgrp will be freed until rdtgrp->waitcount is dropped to 0 in rdtgroup_kn_unlock() later. During the window of deleting a mon group, if an application calls rdtgroup_mondata_show() to read mondata under this mon group, 'rdtgrp' returned from rdtgroup_kn_lock_live() is a NULL pointer when rdtgrp->flags is RDT_DELETED. And then 'rdtgrp' is passed in this path: rdtgroup_mondata_show() --> mon_event_read() --> mon_event_count(). Thus it results in NULL pointer dereference in mon_event_count(). Check 'rdtgrp' in rdtgroup_mondata_show(), and return -ENOENT immediately when reading mondata during the window of deleting a mon group. Fixes: d89b7379015f ("x86/intel_rdt/cqm: Add mon_data") Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Fenghua Yu <fenghua.yu@intel.com> Reviewed-by: Tony Luck <tony.luck@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: pei.p.jia@intel.com Cc: Reinette Chatre <reinette.chatre@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/1572326702-27577-1-git-send-email-xiaochen.shen@intel.com
2019-07-19Merge branch 'work.mount0' of ↵Linus Torvalds1-2/+1
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull vfs mount updates from Al Viro: "The first part of mount updates. Convert filesystems to use the new mount API" * 'work.mount0' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (63 commits) mnt_init(): call shmem_init() unconditionally constify ksys_mount() string arguments don't bother with registering rootfs init_rootfs(): don't bother with init_ramfs_fs() vfs: Convert smackfs to use the new mount API vfs: Convert selinuxfs to use the new mount API vfs: Convert securityfs to use the new mount API vfs: Convert apparmorfs to use the new mount API vfs: Convert openpromfs to use the new mount API vfs: Convert xenfs to use the new mount API vfs: Convert gadgetfs to use the new mount API vfs: Convert oprofilefs to use the new mount API vfs: Convert ibmasmfs to use the new mount API vfs: Convert qib_fs/ipathfs to use the new mount API vfs: Convert efivarfs to use the new mount API vfs: Convert configfs to use the new mount API vfs: Convert binfmt_misc to use the new mount API convenience helper: get_tree_single() convenience helper get_tree_nodev() vfs: Kill sget_userns() ...
2019-07-08Merge branch 'x86-cache-for-linus' of ↵Linus Torvalds2-11/+7
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 cache resource control update from Ingo Molnar: "Two cleanup patches" * 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/resctrl: Cleanup cbm_ensure_valid() x86/resctrl: Use _ASM_BX to avoid ifdeffery
2019-07-08Merge branch 'sched-core-for-linus' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: - Remove the unused per rq load array and all its infrastructure, by Dietmar Eggemann. - Add utilization clamping support by Patrick Bellasi. This is a refinement of the energy aware scheduling framework with support for boosting of interactive and capping of background workloads: to make sure critical GUI threads get maximum frequency ASAP, and to make sure background processing doesn't unnecessarily move to cpufreq governor to higher frequencies and less energy efficient CPU modes. - Add the bare minimum of tracepoints required for LISA EAS regression testing, by Qais Yousef - which allows automated testing of various power management features, including energy aware scheduling. - Restructure the former tsk_nr_cpus_allowed() facility that the -rt kernel used to modify the scheduler's CPU affinity logic such as migrate_disable() - introduce the task->cpus_ptr value instead of taking the address of &task->cpus_allowed directly - by Sebastian Andrzej Siewior. - Misc optimizations, fixes, cleanups and small enhancements - see the Git log for details. * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits) sched/uclamp: Add uclamp support to energy_compute() sched/uclamp: Add uclamp_util_with() sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks sched/uclamp: Set default clamps for RT tasks sched/uclamp: Reset uclamp values on RESET_ON_FORK sched/uclamp: Extend sched_setattr() to support utilization clamping sched/core: Allow sched_setattr() to use the current policy sched/uclamp: Add system default clamps sched/uclamp: Enforce last task's UCLAMP_MAX sched/uclamp: Add bucket local max tracking sched/uclamp: Add CPU's clamp buckets refcounting sched/fair: Rename weighted_cpuload() to cpu_runnable_load() sched/debug: Export the newly added tracepoints sched/debug: Add sched_overutilized tracepoint sched/debug: Add new tracepoint to track PELT at se level sched/debug: Add new tracepoints to track PELT at rq level sched/debug: Add a new sched_trace_*() helper functions sched/autogroup: Make autogroup_path() always available sched/wait: Deduplicate code with do-while sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity() ...
2019-06-29Merge branch 'x86-urgent-for-linus' of ↵Linus Torvalds1-19/+16
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Ingo Molnar: "Misc fixes all over the place: - might_sleep() atomicity fix in the microcode loader - resctrl boundary condition fix - APIC arithmethics bug fix for frequencies >= 4.2 GHz - three 5-level paging crash fixes - two speculation fixes - a perf/stacktrace fix" * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/unwind/orc: Fall back to using frame pointers for generated code perf/x86: Always store regs->ip in perf_callchain_kernel() x86/speculation: Allow guests to use SSBD even if host does not x86/mm: Handle physical-virtual alignment mismatch in phys_p4d_init() x86/boot/64: Add missing fixup_pointer() for next_early_pgt access x86/boot/64: Fix crash if kernel image crosses page table boundary x86/apic: Fix integer overflow on 10 bit left shift of cpu_khz x86/resctrl: Prevent possible overrun during bitmap operations x86/microcode: Fix the microcode load on CPU hotplug for real
2019-06-25x86/resctrl: Cleanup cbm_ensure_valid()Reinette Chatre1-6/+6
A recent fix to the cbm_ensure_valid() function left some coding style issues that are now addressed: - Return a value instead of using a function parameter as input and output - Use if (!val) instead of if (val == 0) - Follow reverse fir tree ordering of variable declarations Suggested-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: fenghua.yu@intel.com Cc: tony.luck@intel.com Cc: hpa@zytor.com Link: https://lkml.kernel.org/r/15ba03856f1d944468ee6f44e3fd7aa548293ede.1561408280.git.reinette.chatre@intel.com
2019-06-25Merge branch 'x86/urgent' into x86/cacheThomas Gleixner2-20/+25
Pick up pending upstream fixes to meet dependencies
2019-06-20x86/resctrl: Prevent possible overrun during bitmap operationsReinette Chatre1-19/+16
While the DOC at the beginning of lib/bitmap.c explicitly states that "The number of valid bits in a given bitmap does _not_ need to be an exact multiple of BITS_PER_LONG.", some of the bitmap operations do indeed access BITS_PER_LONG portions of the provided bitmap no matter the size of the provided bitmap. For example, if find_first_bit() is provided with an 8 bit bitmap the operation will access BITS_PER_LONG bits from the provided bitmap. While the operation ensures that these extra bits do not affect the result, the memory is still accessed. The capacity bitmasks (CBMs) are typically stored in u32 since they can never exceed 32 bits. A few instances exist where a bitmap_* operation is performed on a CBM by simply pointing the bitmap operation to the stored u32 value. The consequence of this pattern is that some bitmap_* operations will access out-of-bounds memory when interacting with the provided CBM. This same issue has previously been addressed with commit 49e00eee0061 ("x86/intel_rdt: Fix out-of-bounds memory access in CBM tests") but at that time not all instances of the issue were fixed. Fix this by using an unsigned long to store the capacity bitmask data that is passed to bitmap functions. Fixes: e651901187ab ("x86/intel_rdt: Introduce "bit_usage" to display cache allocations details") Fixes: f4e80d67a527 ("x86/intel_rdt: Resctrl files reflect pseudo-locked information") Fixes: 95f0b77efa57 ("x86/intel_rdt: Initialize new resource group with sane defaults") Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: stable <stable@vger.kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/58c9b6081fd9bf599af0dfc01a6fdd335768efef.1560975645.git.reinette.chatre@intel.com
2019-06-17Merge tag 'v5.2-rc5' into sched/core, to pick up fixesIngo Molnar4-37/+13
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-16Merge branch 'x86-urgent-for-linus' of ↵Linus Torvalds2-1/+9
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Thomas Gleixner: "The accumulated fixes from this and last week: - Fix vmalloc TLB flush and map range calculations which lead to stale TLBs, spurious faults and other hard to diagnose issues. - Use fault_in_pages_writable() for prefaulting the user stack in the FPU code as it's less fragile than the current solution - Use the PF_KTHREAD flag when checking for a kernel thread instead of current->mm as the latter can give the wrong answer due to use_mm() - Compute the vmemmap size correctly for KASLR and 5-Level paging. Otherwise this can end up with a way too small vmemmap area. - Make KASAN and 5-level paging work again by making sure that all invalid bits are masked out when computing the P4D offset. This worked before but got broken recently when the LDT remap area was moved. - Prevent a NULL pointer dereference in the resource control code which can be triggered with certain mount options when the requested resource is not available. - Enforce ordering of microcode loading vs. perf initialization on secondary CPUs. Otherwise perf tries to access a non-existing MSR as the boot CPU marked it as available. - Don't stop the resource control group walk early otherwise the control bitmaps are not updated correctly and become inconsistent. - Unbreak kgdb by returning 0 on success from kgdb_arch_set_breakpoint() instead of an error code. - Add more Icelake CPU model defines so depending changes can be queued in other trees" * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/microcode, cpuhotplug: Add a microcode loader CPU hotplug callback x86/kasan: Fix boot with 5-level paging and KASAN x86/fpu: Don't use current->mm to check for a kthread x86/kgdb: Return 0 from kgdb_arch_set_breakpoint() x86/resctrl: Prevent NULL pointer dereference when local MBM is disabled x86/resctrl: Don't stop walking closids when a locksetup group is found x86/fpu: Update kernel's FPU state before using for the fsave header x86/mm/KASLR: Compute the size of the vmemmap section properly x86/fpu: Use fault_in_pages_writeable() for pre-faulting x86/CPU: Add more Icelake model numbers mm/vmalloc: Avoid rare case of flushing TLB with weird arguments mm/vmalloc: Fix calculation of direct map addr range
2019-06-12x86/resctrl: Prevent NULL pointer dereference when local MBM is disabledPrarit Bhargava1-0/+3
Booting with kernel parameter "rdt=cmt,mbmtotal,memlocal,l3cat,mba" and executing "mount -t resctrl resctrl -o mba_MBps /sys/fs/resctrl" results in a NULL pointer dereference on systems which do not have local MBM support enabled.. BUG: kernel NULL pointer dereference, address: 0000000000000020 PGD 0 P4D 0 Oops: 0000 [#1] SMP PTI CPU: 0 PID: 722 Comm: kworker/0:3 Not tainted 5.2.0-0.rc3.git0.1.el7_UNSUPPORTED.x86_64 #2 Workqueue: events mbm_handle_overflow RIP: 0010:mbm_handle_overflow+0x150/0x2b0 Only enter the bandwith update loop if the system has local MBM enabled. Fixes: de73f38f7680 ("x86/intel_rdt/mba_sc: Feedback loop to dynamically update mem bandwidth") Signed-off-by: Prarit Bhargava <prarit@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Reinette Chatre <reinette.chatre@intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190610171544.13474-1-prarit@redhat.com
2019-06-12x86/resctrl: Don't stop walking closids when a locksetup group is foundJames Morse1-1/+6
When a new control group is created __init_one_rdt_domain() walks all the other closids to calculate the sets of used and unused bits. If it discovers a pseudo_locksetup group, it breaks out of the loop. This means any later closid doesn't get its used bits added to used_b. These bits will then get set in unused_b, and added to the new control group's configuration, even if they were marked as exclusive for a later closid. When encountering a pseudo_locksetup group, we should continue. This is because "a resource group enters 'pseudo-locked' mode after the schemata is written while the resource group is in 'pseudo-locksetup' mode." When we find a pseudo_locksetup group, its configuration is expected to be overwritten, we can skip it. Fixes: dfe9674b04ff6 ("x86/intel_rdt: Enable entering of pseudo-locksetup mode") Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Reinette Chatre <reinette.chatre@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: H Peter Avin <hpa@zytor.com> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20190603172531.178830-1-james.morse@arm.com
2019-06-10x86/resctrl: Use _ASM_BX to avoid ifdefferyUros Bizjak1-5/+1
Use the _ASM_BX macro which expands to either %rbx or %ebx, depending on the 32-bit or 64-bit config selected. Signed-off-by: Uros Bizjak <ubizjak@gmail.com> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Reinette Chatre <reinette.chatre@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190606200044.5730-1-ubizjak@gmail.com
2019-06-05treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 288Thomas Gleixner4-36/+4
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms and conditions of the gnu general public license version 2 as published by the free software foundation this program is distributed in the hope it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 263 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Alexios Zavras <alexios.zavras@intel.com> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190529141901.208660670@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-03sched/core: Provide a pointer to the valid CPU maskSebastian Andrzej Siewior1-1/+1
In commit: 4b53a3412d66 ("sched/core: Remove the tsk_nr_cpus_allowed() wrapper") the tsk_nr_cpus_allowed() wrapper was removed. There was not much difference in !RT but in RT we used this to implement migrate_disable(). Within a migrate_disable() section the CPU mask is restricted to single CPU while the "normal" CPU mask remains untouched. As an alternative implementation Ingo suggested to use: struct task_struct { const cpumask_t *cpus_ptr; cpumask_t cpus_mask; }; with t->cpus_ptr = &t->cpus_mask; In -RT we then can switch the cpus_ptr to: t->cpus_ptr = &cpumask_of(task_cpu(p)); in a migration disabled region. The rules are simple: - Code that 'uses' ->cpus_allowed would use the pointer. - Code that 'modifies' ->cpus_allowed would use the direct mask. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20190423142636.14347-1-bigeasy@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-25no need to protect against put_user_ns(NULL)Al Viro1-2/+1
it's a no-op Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-04-18x86/resctrl: Initialize a new resource group with default MBA valuesXiaochen Shen2-21/+35
Currently, when a new resource group is created, the allocation values of the MBA resource are not initialized and remain meaningless data. For example: mkdir /sys/fs/resctrl/p1 cat /sys/fs/resctrl/p1/schemata MB:0=100;1=100 echo "MB:0=10;1=20" > /sys/fs/resctrl/p1/schemata cat /sys/fs/resctrl/p1/schemata MB:0= 10;1= 20 rmdir /sys/fs/resctrl/p1 mkdir /sys/fs/resctrl/p2 cat /sys/fs/resctrl/p2/schemata MB:0= 10;1= 20 Therefore, when the new group is created, it is reasonable to initialize MBA resource with default values. Initialize the MBA resource and cache resources in separate functions. [ bp: Add newlines between code blocks for better readability. ] Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Fenghua Yu <fenghua.yu@intel.com> Reviewed-by: Reinette Chatre <reinette.chatre@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: pei.p.jia@intel.com Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/1555499329-1170-3-git-send-email-xiaochen.shen@intel.com
2019-04-17x86/resctrl: Move per RDT domain initialization to a separate functionXiaochen Shen1-59/+72
Carve out per rdt_domain initialization code from rdtgroup_init_alloc() into a separate function. No functional change, make the code more readable and save us at least two indentation levels. Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: pei.p.jia@intel.com Cc: Reinette Chatre <reinette.chatre@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/1555499329-1170-2-git-send-email-xiaochen.shen@intel.com
2019-04-14x86/resctrl: Do not repeat rdtgroup mode initializationXiaochen Shen1-1/+2
When cache allocation is supported and the user creates a new resctrl resource group, the allocations of the new resource group are initialized to all regions that it can possibly use. At this time these regions are all that are shareable by other resource groups as well as regions that are not currently used. The new resource group's mode is also initialized to reflect this initialization and set to "shareable". The new resource group's mode is currently repeatedly initialized within the loop that configures the hardware with the resource group's default allocations. Move the initialization of the resource group's mode outside the hardware configuration loop. The resource group's mode is now initialized only once as the final step to reflect that its configured allocations are "shareable". Fixes: 95f0b77efa57 ("x86/intel_rdt: Initialize new resource group with sane defaults") Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Fenghua Yu <fenghua.yu@intel.com> Acked-by: Reinette Chatre <reinette.chatre@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: pei.p.jia@intel.com Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/1554839629-5448-1-git-send-email-xiaochen.shen@intel.com
2019-04-01x86/resctrl: Fix typos in the mba_sc mount optionXiaochen Shen1-3/+3
The user can control the MBA memory bandwidth in MBps (Mega Bytes per second) units of the MBA Software Controller (mba_sc) by using the "mba_MBps" mount option. For details, see Documentation/x86/resctrl_ui.txt. However, commit 23bf1b6be9c2 ("kernfs, sysfs, cgroup, intel_rdt: Support fs_context") changed the mount option name from "mba_MBps" to "mba_mpbs" by mistake. Change it back from to "mba_MBps" because it is user-visible, and correct "Opt_mba_mpbs" spelling to "Opt_mba_mbps". [ bp: massage commit message. ] Fixes: 23bf1b6be9c2 ("kernfs, sysfs, cgroup, intel_rdt: Support fs_context") Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: dhowells@redhat.com Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: pei.p.jia@intel.com Cc: Reinette Chatre <reinette.chatre@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/1553896238-22130-1-git-send-email-xiaochen.shen@intel.com
2019-03-24x86/resctrl: Remove unused variablePeng Hao1-3/+0
Variable "struct rdt_resource *r" is set but not used. So remove it. Signed-off-by: Peng Hao <peng.hao2@zte.com.cn> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/1552152584-26087-1-git-send-email-peng.hao2@zte.com.cn
2019-03-12Merge branch 'work.mount' of ↵Linus Torvalds2-69/+132
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull vfs mount infrastructure updates from Al Viro: "The rest of core infrastructure; no new syscalls in that pile, but the old parts are switched to new infrastructure. At that point conversions of individual filesystems can happen independently; some are done here (afs, cgroup, procfs, etc.), there's also a large series outside of that pile dealing with NFS (quite a bit of option-parsing stuff is getting used there - it's one of the most convoluted filesystems in terms of mount-related logics), but NFS bits are the next cycle fodder. It got seriously simplified since the last cycle; documentation is probably the weakest bit at the moment - I considered dropping the commit introducing Documentation/filesystems/mount_api.txt (cutting the size increase by quarter ;-), but decided that it would be better to fix it up after -rc1 instead. That pile allows to do followup work in independent branches, which should make life much easier for the next cycle. fs/super.c size increase is unpleasant; there's a followup series that allows to shrink it considerably, but I decided to leave that until the next cycle" * 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (41 commits) afs: Use fs_context to pass parameters over automount afs: Add fs_context support vfs: Add some logging to the core users of the fs_context log vfs: Implement logging through fs_context vfs: Provide documentation for new mount API vfs: Remove kern_mount_data() hugetlbfs: Convert to fs_context cpuset: Use fs_context kernfs, sysfs, cgroup, intel_rdt: Support fs_context cgroup: store a reference to cgroup_ns into cgroup_fs_context cgroup1_get_tree(): separate "get cgroup_root to use" into a separate helper cgroup_do_mount(): massage calling conventions cgroup: stash cgroup_root reference into cgroup_fs_context cgroup2: switch to option-by-option parsing cgroup1: switch to option-by-option parsing cgroup: take options parsing into ->parse_monolithic() cgroup: fold cgroup1_mount() into cgroup1_get_tree() cgroup: start switching to fs_context ipc: Convert mqueue fs to fs_context proc: Add fs_context support to procfs ...
2019-03-07Merge branch 'x86-cleanups-for-linus' of ↵Linus Torvalds1-7/+0
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 cleanups from Ingo Molnar: "Various cleanups and simplifications, none of them really stands out, they are all over the place" * 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/uaccess: Remove unused __addr_ok() macro x86/smpboot: Remove unused phys_id variable x86/mm/dump_pagetables: Remove the unused prev_pud variable x86/fpu: Move init_xstate_size() to __init section x86/cpu_entry_area: Move percpu_setup_debug_store() to __init section x86/mtrr: Remove unused variable x86/boot/compressed/64: Explain paging_prepare()'s return value x86/resctrl: Remove duplicate MSR_MISC_FEATURE_CONTROL definition x86/asm/suspend: Drop ENTRY from local data x86/hw_breakpoints, kprobes: Remove kprobes ifdeffery x86/boot: Save several bytes in decompressor x86/trap: Remove useless declaration x86/mm/tlb: Remove unused cpu variable x86/events: Mark expected switch-case fall-throughs x86/asm-prototypes: Remove duplicate include <asm/page.h> x86/kernel: Mark expected switch-case fall-throughs x86/insn-eval: Mark expected switch-case fall-through x86/platform/UV: Replace kmalloc() and memset() with k[cz]alloc() calls x86/e820: Replace kmalloc() + memcpy() with kmemdup()
2019-02-28kernfs, sysfs, cgroup, intel_rdt: Support fs_contextDavid Howells2-69/+132
Make kernfs support superblock creation/mount/remount with fs_context. This requires that sysfs, cgroup and intel_rdt, which are built on kernfs, be made to support fs_context also. Notes: (1) A kernfs_fs_context struct is created to wrap fs_context and the kernfs mount parameters are moved in here (or are in fs_context). (2) kernfs_mount{,_ns}() are made into kernfs_get_tree(). The extra namespace tag parameter is passed in the context if desired (3) kernfs_free_fs_context() is provided as a destructor for the kernfs_fs_context struct, but for the moment it does nothing except get called in the right places. (4) sysfs doesn't wrap kernfs_fs_context since it has no parameters to pass, but possibly this should be done anyway in case someone wants to add a parameter in future. (5) A cgroup_fs_context struct is created to wrap kernfs_fs_context and the cgroup v1 and v2 mount parameters are all moved there. (6) cgroup1 parameter parsing error messages are now handled by invalf(), which allows userspace to collect them directly. (7) cgroup1 parameter cleanup is now done in the context destructor rather than in the mount/get_tree and remount functions. Weirdies: (*) cgroup_do_get_tree() calls cset_cgroup_from_root() with locks held, but then uses the resulting pointer after dropping the locks. I'm told this is okay and needs commenting. (*) The cgroup refcount web. This really needs documenting. (*) cgroup2 only has one root? Add a suggestion from Thomas Gleixner in which the RDT enablement code is placed into its own function. [folded a leak fix from Andrey Vagin] Signed-off-by: David Howells <dhowells@redhat.com> cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> cc: Tejun Heo <tj@kernel.org> cc: Li Zefan <lizefan@huawei.com> cc: Johannes Weiner <hannes@cmpxchg.org> cc: cgroups@vger.kernel.org cc: fenghua.yu@intel.com Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-02-05x86/resctrl: Remove duplicate MSR_MISC_FEATURE_CONTROL definitionReinette Chatre1-7/+0
The definition of MSR_MISC_FEATURE_CONTROL was first introduced in 98af74599ea0 ("x86 msr_index.h: Define MSR_MISC_FEATURE_CONTROL") and present in Linux since v4.11. The Cache Pseudo-Locking code added this duplicate definition in more recent f2a177292bd0 ("x86/intel_rdt: Discover supported platforms via prefetch disable bits"), available since v4.19. Remove the duplicate definition from the resctrl subsystem and let that code obtain the needed definition from the core architecture msr-index.h instead. Fixes: f2a177292bd0 ("x86/intel_rdt: Discover supported platforms via prefetch disable bits") Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: gavin.hindman@intel.com Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: jithu.joseph@intel.com Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/ff6b95d9b6ef6f4ac96267f130719ba1af09614b.1549312475.git.reinette.chatre@intel.com
2019-02-02x86/resctrl: Avoid confusion over the new X86_RESCTRL configJohannes Weiner1-2/+2
"Resource Control" is a very broad term for this CPU feature, and a term that is also associated with containers, cgroups etc. This can easily cause confusion. Make the user prompt more specific. Match the config symbol name. [ bp: In the future, the corresponding ARM arch-specific code will be under ARM_CPU_RESCTRL and the arch-agnostic bits will be carved out under the CPU_RESCTRL umbrella symbol. ] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Babu Moger <Babu.Moger@amd.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: linux-doc@vger.kernel.org Cc: Peter Zijlstra <peterz@infradead.org> Cc: Pu Wen <puwen@hygon.cn> Cc: Reinette Chatre <reinette.chatre@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190130195621.GA30653@cmpxchg.org