Age | Commit message (Collapse) | Author | Files | Lines |
|
Thanks to commit 4b3ef9daa4fc ("mm/swap: split swap cache into 64MB
trunks"), after swapoff the address_space associated with the swap
device will be freed. So page_mapping() users which may touch the
address_space need some kind of mechanism to prevent the address_space
from being freed during accessing.
The dcache flushing functions (flush_dcache_page(), etc) in architecture
specific code may access the address_space of swap device for anonymous
pages in swap cache via page_mapping() function. But in some cases
there are no mechanisms to prevent the swap device from being swapoff,
for example,
CPU1 CPU2
__get_user_pages() swapoff()
flush_dcache_page()
mapping = page_mapping()
... exit_swap_address_space()
... kvfree(spaces)
mapping_mapped(mapping)
The address space may be accessed after being freed.
But from cachetlb.txt and Russell King, flush_dcache_page() only care
about file cache pages, for anonymous pages, flush_anon_page() should be
used. The implementation of flush_dcache_page() in all architectures
follows this too. They will check whether page_mapping() is NULL and
whether mapping_mapped() is true to determine whether to flush the
dcache immediately. And they will use interval tree (mapping->i_mmap)
to find all user space mappings. While mapping_mapped() and
mapping->i_mmap isn't used by anonymous pages in swap cache at all.
So, to fix the race between swapoff and flush dcache, __page_mapping()
is add to return the address_space for file cache pages and NULL
otherwise. All page_mapping() invoking in flush dcache functions are
replaced with page_mapping_file().
[akpm@linux-foundation.org: simplify page_mapping_file(), per Mike]
Link: http://lkml.kernel.org/r/20180305083634.15174-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Zankel <chris@zankel.net>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use CPU_POKE hypervisor call to resume idle cpu if supported.
Signed-off-by: Vijay Kumar <vijay.ac.kumar@oracle.com>
Reviewed-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
A large sun4v SPARC system may have moments of intensive xcall activities,
usually caused by unmapping many pages on many CPUs concurrently. This can
flood receivers with CPU mondo interrupts for an extended period, causing
some unlucky senders to hit send-mondo timeout. This problem gets worse
as cpu count increases because sometimes mappings must be invalidated on
all CPUs, and sometimes all CPUs may gang up on a single CPU.
But a busy system is not a broken system. In the above scenario, as long
as the receiver is making forward progress processing mondo interrupts,
the sender should continue to retry.
This patch implements the receiver's forward progress meter by introducing
a per cpu counter 'cpu_mondo_counter[cpu]' where 'cpu' is in the range
of 0..NR_CPUS. The receiver increments its counter as soon as it receives
a mondo and the sender tracks the receiver's counter. If the receiver has
stopped making forward progress when the retry limit is reached, the sender
declares send-mondo-timeout and panic; otherwise, the receiver is allowed
to keep making forward progress.
In addition, it's been observed that PCIe hotplug events generate Correctable
Errors that are handled by hypervisor and then OS. Hypervisor 'borrows'
a guest cpu strand briefly to provide the service. If the cpu strand is
simultaneously the only cpu targeted by a mondo, it may not be available
for the mondo in 20msec, causing SUN4V mondo timeout. It appears that 1 second
is the agreed wait time between hypervisor and guest OS, this patch makes
the adjustment.
Orabug: 25476541
Orabug: 26417466
Signed-off-by: Jane Chu <jane.chu@oracle.com>
Reviewed-by: Steve Sistare <steven.sistare@oracle.com>
Reviewed-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Reviewed-by: Rob Gardner <rob.gardner@oracle.com>
Reviewed-by: Thomas Tai <thomas.tai@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The old method that is using xcall and softint to get new context id is
deleted, as it is replaced by a method of using per_cpu_secondary_mm
without xcall to perform the context wrap.
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Steven Sistare <steven.sistare@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Move the following task->mm helper APIs into a new header file,
<linux/sched/mm.h>, to further reduce the size and complexity
of <linux/sched.h>.
Here are how the APIs are used in various kernel files:
# mm_alloc():
arch/arm/mach-rpc/ecard.c
fs/exec.c
include/linux/sched/mm.h
kernel/fork.c
# __mmdrop():
arch/arc/include/asm/mmu_context.h
include/linux/sched/mm.h
kernel/fork.c
# mmdrop():
arch/arm/mach-rpc/ecard.c
arch/m68k/sun3/mmu_emu.c
arch/x86/mm/tlb.c
drivers/gpu/drm/amd/amdkfd/kfd_process.c
drivers/gpu/drm/i915/i915_gem_userptr.c
drivers/infiniband/hw/hfi1/file_ops.c
drivers/vfio/vfio_iommu_spapr_tce.c
fs/exec.c
fs/proc/base.c
fs/proc/task_mmu.c
fs/proc/task_nommu.c
fs/userfaultfd.c
include/linux/mmu_notifier.h
include/linux/sched/mm.h
kernel/fork.c
kernel/futex.c
kernel/sched/core.c
mm/khugepaged.c
mm/ksm.c
mm/mmu_context.c
mm/mmu_notifier.c
mm/oom_kill.c
virt/kvm/kvm_main.c
# mmdrop_async_fn():
include/linux/sched/mm.h
# mmdrop_async():
include/linux/sched/mm.h
kernel/fork.c
# mmget_not_zero():
fs/userfaultfd.c
include/linux/sched/mm.h
mm/oom_kill.c
# mmput():
arch/arc/include/asm/mmu_context.h
arch/arc/kernel/troubleshoot.c
arch/frv/mm/mmu-context.c
arch/powerpc/platforms/cell/spufs/context.c
arch/sparc/include/asm/mmu_context_32.h
drivers/android/binder.c
drivers/gpu/drm/etnaviv/etnaviv_gem.c
drivers/gpu/drm/i915/i915_gem_userptr.c
drivers/infiniband/core/umem.c
drivers/infiniband/core/umem_odp.c
drivers/infiniband/core/uverbs_main.c
drivers/infiniband/hw/mlx4/main.c
drivers/infiniband/hw/mlx5/main.c
drivers/infiniband/hw/usnic/usnic_uiom.c
drivers/iommu/amd_iommu_v2.c
drivers/iommu/intel-svm.c
drivers/lguest/lguest_user.c
drivers/misc/cxl/fault.c
drivers/misc/mic/scif/scif_rma.c
drivers/oprofile/buffer_sync.c
drivers/vfio/vfio_iommu_type1.c
drivers/vhost/vhost.c
drivers/xen/gntdev.c
fs/exec.c
fs/proc/array.c
fs/proc/base.c
fs/proc/task_mmu.c
fs/proc/task_nommu.c
fs/userfaultfd.c
include/linux/sched/mm.h
kernel/cpuset.c
kernel/events/core.c
kernel/events/uprobes.c
kernel/exit.c
kernel/fork.c
kernel/ptrace.c
kernel/sys.c
kernel/trace/trace_output.c
kernel/tsacct.c
mm/memcontrol.c
mm/memory.c
mm/mempolicy.c
mm/migrate.c
mm/mmu_notifier.c
mm/nommu.c
mm/oom_kill.c
mm/process_vm_access.c
mm/rmap.c
mm/swapfile.c
mm/util.c
virt/kvm/async_pf.c
# mmput_async():
include/linux/sched/mm.h
kernel/fork.c
mm/oom_kill.c
# get_task_mm():
arch/arc/kernel/troubleshoot.c
arch/powerpc/platforms/cell/spufs/context.c
drivers/android/binder.c
drivers/gpu/drm/etnaviv/etnaviv_gem.c
drivers/infiniband/core/umem.c
drivers/infiniband/core/umem_odp.c
drivers/infiniband/hw/mlx4/main.c
drivers/infiniband/hw/mlx5/main.c
drivers/infiniband/hw/usnic/usnic_uiom.c
drivers/iommu/amd_iommu_v2.c
drivers/iommu/intel-svm.c
drivers/lguest/lguest_user.c
drivers/misc/cxl/fault.c
drivers/misc/mic/scif/scif_rma.c
drivers/oprofile/buffer_sync.c
drivers/vfio/vfio_iommu_type1.c
drivers/vhost/vhost.c
drivers/xen/gntdev.c
fs/proc/array.c
fs/proc/base.c
fs/proc/task_mmu.c
include/linux/sched/mm.h
kernel/cpuset.c
kernel/events/core.c
kernel/exit.c
kernel/fork.c
kernel/ptrace.c
kernel/sys.c
kernel/trace/trace_output.c
kernel/tsacct.c
mm/memcontrol.c
mm/memory.c
mm/mempolicy.c
mm/migrate.c
mm/mmu_notifier.c
mm/nommu.c
mm/util.c
# mm_access():
fs/proc/base.c
include/linux/sched/mm.h
kernel/fork.c
mm/process_vm_access.c
# mm_release():
arch/arc/include/asm/mmu_context.h
fs/exec.c
include/linux/sched/mm.h
include/uapi/linux/sched.h
kernel/exit.c
kernel/fork.c
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
<linux/sched/hotplug.h>
We are going to split <linux/sched/hotplug.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/hotplug.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Apart from adding the helper function itself, the rest of the kernel is
converted mechanically using:
git grep -l 'atomic_inc.*mm_count' | xargs sed -i 's/atomic_inc(&\(.*\)->mm_count);/mmgrab\(\1\);/'
git grep -l 'atomic_inc.*mm_count' | xargs sed -i 's/atomic_inc(&\(.*\)\.mm_count);/mmgrab\(\&\1\);/'
This is needed for a later patch that hooks into the helper, but might
be a worthwhile cleanup on its own.
(Michal Hocko provided most of the kerneldoc comment.)
Link: http://lkml.kernel.org/r/20161218123229.22952-1-vegard.nossum@oracle.com
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
On panic, all other CPUs are stopped except the one which had
hit panic. To keep console alive, we need to migrate hvcons irq
to panicked CPU.
Signed-off-by: Vijay Kumar <vijay.ac.kumar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
CPU needs to be marked offline before stopping it. When not marked
offline, the xcall receives HV_EWOULDBLOCK and so assumes that not all
CPUs received the message, and retries. After 10000 retries, it finally
fails with fatal mondo timeout.
Signed-off-by: Vijay Kumar <vijay.ac.kumar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Individual scheduler domain should consist different hierarchy
consisting of cores sharing similar property. Currently, no
scheduler domain is defined separately for the cores that shares
the last level cache. As a result, the scheduler fails to take
advantage of cache locality while migrating tasks during load
balancing.
Here are the cpu masks currently present for sparc that are/can
be used in scheduler domain construction.
cpu_core_map : set based on the cores that shares l1 cache.
core_core_sib_map : is set based on the socket id.
The prior SPARC notion of socket was defined as highest level of
shared cache. However, the MD record on T7 platforms now describes
the CPUs that share the physical socket and this is no longer tied
to shared cache.
That's why a separate cpu mask needs to be created that truly
represent highest level of shared cache for all platforms.
Signed-off-by: Atish Patra <atish.patra@oracle.com>
Reviewed-by: Chris Hyser <chris.hyser@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
If kernel boot parameter nr_cpus is set, it should define the number
of CPUs that can ever be available in the system i.e.
cpu_possible_mask. setup_nr_cpu_ids() overrides the nr_cpu_ids based
on the cpu_possible_mask during kernel initialization. If
cpu_possible_mask is not set based on the nr_cpus value, earlier part
of the kernel would be initialized using nr_cpus value leading to a
kernel crash.
Set cpu_possible_mask based on nr_cpus value. Thus setup_nr_cpu_ids()
becomes redundant and does not corrupt nr_cpu_ids value.
Signed-off-by: Atish Patra <atish.patra@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Vijay Kumar <vijay.ac.kumar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Let the non boot cpus call into idle with the corresponding hotplug state, so
the hotplug core can handle the further bringup. That's a first step to
convert the boot side of the hotplugged cpus to do all the synchronization
with the other side through the state machine. For now it'll only start the
hotplug thread and kick the full bringup of the cpu.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182341.614102639@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
commit 5f4826a362405748bbf73957027b77993e61e1af
Author: chris hyser <chris.hyser@oracle.com>
Date: Tue Apr 21 10:31:38 2015 -0400
sparc64: Setup sysfs to mark LDOM sockets, cores and threads correctly
The current sparc kernel has no representation for sockets though tools
like lscpu can pull this from sysfs. This patch walks the machine
description cache and socket hierarchy and marks sockets as well as cores
and threads such that a representative sysfs is created by
drivers/base/topology.c.
Before this patch:
$ lscpu
Architecture: sparc64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Big Endian
CPU(s): 1024
On-line CPU(s) list: 0-1023
Thread(s) per core: 8
Core(s) per socket: 1 <--- wrong
Socket(s): 128 <--- wrong
NUMA node(s): 4
NUMA node0 CPU(s): 0-255
NUMA node1 CPU(s): 256-511
NUMA node2 CPU(s): 512-767
NUMA node3 CPU(s): 768-1023
After this patch:
$ lscpu
Architecture: sparc64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Big Endian
CPU(s): 1024
On-line CPU(s) list: 0-1023
Thread(s) per core: 8
Core(s) per socket: 32
Socket(s): 4
NUMA node(s): 4
NUMA node0 CPU(s): 0-255
NUMA node1 CPU(s): 256-511
NUMA node2 CPU(s): 512-767
NUMA node3 CPU(s): 768-1023
Most of this patch was done by Chris with updates by David.
Signed-off-by: Chris Hyser <chris.hyser@oracle.com>
Signed-off-by: David Ahern <david.ahern@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
"echo c > /proc/sysrq-trigger" does not result in a system crash. There
are two problems. One is that the trap handler ignores the global
variable, panic_on_oops. The other is that smp_send_stop() is a no-op
which leaves the other cpus running normally when one cpu panics.
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Otherwise rcu_irq_{enter,exit}() do not happen and we get dumps like:
====================
[ 188.275021] ===============================
[ 188.309351] [ INFO: suspicious RCU usage. ]
[ 188.343737] 3.18.0-rc3-00068-g20f3963-dirty #54 Not tainted
[ 188.394786] -------------------------------
[ 188.429170] include/linux/rcupdate.h:883 rcu_read_lock() used
illegally while idle!
[ 188.505235]
other info that might help us debug this:
[ 188.554230]
RCU used illegally from idle CPU!
rcu_scheduler_active = 1, debug_locks = 0
[ 188.637587] RCU used illegally from extended quiescent state!
[ 188.690684] 3 locks held by swapper/7/0:
[ 188.721932] #0: (&x->wait#11){......}, at: [<0000000000495de8>] complete+0x8/0x60
[ 188.797994] #1: (&p->pi_lock){-.-.-.}, at: [<000000000048510c>] try_to_wake_up+0xc/0x400
[ 188.881343] #2: (rcu_read_lock){......}, at: [<000000000048a910>] select_task_rq_fair+0x90/0xb40
[ 188.973043]stack backtrace:
[ 188.993879] CPU: 7 PID: 0 Comm: swapper/7 Not tainted 3.18.0-rc3-00068-g20f3963-dirty #54
[ 189.076187] Call Trace:
[ 189.089719] [0000000000499360] lockdep_rcu_suspicious+0xe0/0x100
[ 189.147035] [000000000048a99c] select_task_rq_fair+0x11c/0xb40
[ 189.202253] [00000000004852d8] try_to_wake_up+0x1d8/0x400
[ 189.252258] [000000000048554c] default_wake_function+0xc/0x20
[ 189.306435] [0000000000495554] __wake_up_common+0x34/0x80
[ 189.356448] [00000000004955b4] __wake_up_locked+0x14/0x40
[ 189.406456] [0000000000495e08] complete+0x28/0x60
[ 189.448142] [0000000000636e28] blk_end_sync_rq+0x8/0x20
[ 189.496057] [0000000000639898] __blk_mq_end_request+0x18/0x60
[ 189.550249] [00000000006ee014] scsi_end_request+0x94/0x180
[ 189.601286] [00000000006ee334] scsi_io_completion+0x1d4/0x600
[ 189.655463] [00000000006e51c4] scsi_finish_command+0xc4/0xe0
[ 189.708598] [00000000006ed958] scsi_softirq_done+0x118/0x140
[ 189.761735] [00000000006398ec] __blk_mq_complete_request_remote+0xc/0x20
[ 189.827383] [00000000004c75d0] generic_smp_call_function_single_interrupt+0x150/0x1c0
[ 189.906581] [000000000043e514] smp_call_function_single_client+0x14/0x40
====================
Based almost entirely upon a patch by Paul E. McKenney.
Reported-by: Meelis Roos <mroos@linux.ee>
Tested-by: Meelis Roos <mroos@linux.ee>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull arch atomic cleanups from Ingo Molnar:
"This is a series kept separate from the main locking tree, which
cleans up and improves various details in the atomics type handling:
- Remove the unused atomic_or_long() method
- Consolidate and compress atomic ops implementations between
architectures, to reduce linecount and to make it easier to add new
ops.
- Rewrite generic atomic support to only require cmpxchg() from an
architecture - generate all other methods from that"
* 'locking-arch-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
locking,arch: Use ACCESS_ONCE() instead of cast to volatile in atomic_read()
locking, mips: Fix atomics
locking, sparc64: Fix atomics
locking,arch: Rewrite generic atomic support
locking,arch,xtensa: Fold atomic_ops
locking,arch,sparc: Fold atomic_ops
locking,arch,sh: Fold atomic_ops
locking,arch,powerpc: Fold atomic_ops
locking,arch,parisc: Fold atomic_ops
locking,arch,mn10300: Fold atomic_ops
locking,arch,mips: Fold atomic_ops
locking,arch,metag: Fold atomic_ops
locking,arch,m68k: Fold atomic_ops
locking,arch,m32r: Fold atomic_ops
locking,arch,ia64: Fold atomic_ops
locking,arch,hexagon: Fold atomic_ops
locking,arch,cris: Fold atomic_ops
locking,arch,avr32: Fold atomic_ops
locking,arch,arm64: Fold atomic_ops
locking,arch,arm: Fold atomic_ops
...
|
|
This has become necessary with chips that support more than 43-bits
of physical addressing.
Based almost entirely upon a patch by Bob Picco.
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
|
|
Many of the atomic op implementations are the same except for one
instruction; fold the lot into a few CPP macros and reduce LoC.
This also prepares for easy addition of new ops.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: David S. Miller <davem@davemloft.net>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: sparclinux@vger.kernel.org
Link: http://lkml.kernel.org/r/20140508135852.825281379@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Christopher reports that perf_event_print_debug() can crash in uniprocessor
builds. The crash is due to pcr_ops being NULL.
This happens because pcr_arch_init() is only invoked by smp_cpus_done() which
only executes in SMP builds.
init_hw_perf_events() is closely intertwined with pcr_ops being setup properly,
therefore:
1) Call pcr_arch_init() early on from init_hw_perf_events(), instead of
from smp_cpus_done().
2) Do not hook up a PMU type if pcr_ops is NULL after pcr_arch_init().
3) Move init_hw_perf_events to a later initcall so that it we will be
sure to invoke pcr_arch_init() after all cpus are brought up.
Finally, guard the one naked sequence of pcr_ops dereferences in
__global_pmu_self() with an appropriate NULL check.
Reported-by: Christopher Alexander Tobias Schulze <cat.schulze@alice-dsl.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Pull sparc fixes from David Miller:
"Sparc sparse fixes from Sam Ravnborg"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-next: (67 commits)
sparc64: fix sparse warnings in int_64.c
sparc64: fix sparse warning in ftrace.c
sparc64: fix sparse warning in kprobes.c
sparc64: fix sparse warning in kgdb_64.c
sparc64: fix sparse warnings in compat_audit.c
sparc64: fix sparse warnings in init_64.c
sparc64: fix sparse warnings in aes_glue.c
sparc: fix sparse warnings in smp_32.c + smp_64.c
sparc64: fix sparse warnings in perf_event.c
sparc64: fix sparse warnings in kprobes.c
sparc64: fix sparse warning in tsb.c
sparc64: clean up compat_sigset_t.seta handling
sparc64: fix sparse "Should it be static?" warnings in signal32.c
sparc64: fix sparse warnings in sys_sparc32.c
sparc64: fix sparse warning in pci.c
sparc64: fix sparse warnings in smp_64.c
sparc64: fix sparse warning in prom_64.c
sparc64: fix sparse warning in btext.c
sparc64: fix sparse warnings in sys_sparc_64.c + unaligned_64.c
sparc64: fix sparse warning in process_64.c
...
Conflicts:
arch/sparc/include/asm/pgtable_64.h
|
|
Fix following warnings:
init_64.c:191:10: warning: symbol 'dcpage_flushes' was not declared. Should it be static?
init_64.c:193:10: warning: symbol 'dcpage_flushes_xcall' was not declared. Should it be static?
Add extern declaration to asm/setup.h and drop local declaration in smp_64.h
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Fix following warnings:
smp_32.c:177:5: warning: symbol 'setup_profiling_timer' was not declared. Should it be static?
smp_64.c:1202:5: warning: symbol 'setup_profiling_timer' was not declared. Should it be static?
smp_64.c:989:6: warning: symbol 'kgdb_roundup_cpus' was not declared. Should it be static?
Add prototype to include/linux/profile.h of setup_profiling_timer
Add missing include to smp_64.c
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Fix following warnings:
smp_64.c:88:6: warning: symbol 'smp_callin' was not declared. Should it be static?
smp_64.c:133:6: warning: symbol 'cpu_panic' was not declared. Should it be static?
smp_64.c:187:6: warning: symbol 'smp_synchronize_tick_client' was not declared. Should it be static?
smp_64.c:821:18: warning: symbol 'smp_call_function_client' was not declared. Should it be static?
smp_64.c:827:18: warning: symbol 'smp_call_function_single_client' was not declared. Should it be static?
smp_64.c:964:18: warning: symbol 'smp_new_mmu_context_version_client' was not declared. Should it be static?
smp_64.c:1149:6: warning: symbol 'smp_capture' was not declared. Should it be static?
smp_64.c:1171:6: warning: symbol 'smp_release' was not declared. Should it be static?
smp_64.c:1190:18: warning: symbol 'smp_penguin_jailcell' was not declared. Should it be static?
smp_64.c:1410:18: warning: symbol 'smp_receive_signal_client' was not declared. Should it be static?
Add prototypes in kernel.h or asm/smp_64.h as appropriate.
Delete duplicate function kimage_addr_to_ra(), and
adapt parameter to const void * to match the broader use.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
One more place where we must not be able
to be preempted or to be interrupted in RT.
Always actually disable interrupts during
synchronization cycle.
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Remove sparc64_multi_core because it's not used any more.
It was added by a2f9f6bbb30e ("Fix {mc,smt}_capable()"), and the last uses
were removed by e637d96bf462 ("sched: Remove unused mc_capable() and
smt_capable()").
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: David S. Miller <davem@davemloft.net>
Link: http://lkml.kernel.org/r/20140304210744.16893.75929.stgit@bhelgaas-glaptop.roam.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Most of other architectures have below suggested order.
So lets do the same to fit generic idle loop scheme better.
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
CONFIG_NO_HZ_FULL requires possibility of smp_send_reschedule()
for the calling CPU. Currently, it is used in inc_nr_running()
scheduler primitive only.
Nobody calls smp_send_reschedule() from preemptible context
(furthermore, it looks like it will be save if anybody use it
another way in the future). But anyway I add WARN_ON() here
just to return here if anything changes.
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
CC: David Miller <davem@davemloft.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
Note that some harmless section mismatch warnings may result, since
notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c)
are flagged as __cpuinit -- so if we remove the __cpuinit from
arch specific callers, we will also get section mismatch warnings.
As an intermediate step, we intend to turn the linux/init.h cpuinit
content into no-ops as early as possible, since that will get rid
of these warnings. In any case, they are temporary and harmless.
This removes all the arch/sparc uses of the __cpuinit macros from
C files and removes __CPUINIT from assembly files. Note that even
though arch/sparc/kernel/trampoline_64.S has instances of ".previous"
in it, they are all paired off against explicit ".section" directives,
and not implicitly paired with __CPUINIT (unlike mips and arm were).
[1] https://lkml.org/lkml/2013/5/20/589
Cc: "David S. Miller" <davem@davemloft.net>
Cc: sparclinux@vger.kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull SMP/hotplug changes from Ingo Molnar:
"This is a pretty large, multi-arch series unifying and generalizing
the various disjunct pieces of idle routines that architectures have
historically copied from each other and have grown in random, wildly
inconsistent and sometimes buggy directions:
101 files changed, 455 insertions(+), 1328 deletions(-)
this went through a number of review and test iterations before it was
committed, it was tested on various architectures, was exposed to
linux-next for quite some time - nevertheless it might cause problems
on architectures that don't read the mailing lists and don't regularly
test linux-next.
This cat herding excercise was motivated by the -rt kernel, and was
brought to you by Thomas "the Whip" Gleixner."
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits)
idle: Remove GENERIC_IDLE_LOOP config switch
um: Use generic idle loop
ia64: Make sure interrupts enabled when we "safe_halt()"
sparc: Use generic idle loop
idle: Remove unused ARCH_HAS_DEFAULT_IDLE
bfin: Fix typo in arch_cpu_idle()
xtensa: Use generic idle loop
x86: Use generic idle loop
unicore: Use generic idle loop
tile: Use generic idle loop
tile: Enter idle with preemption disabled
sh: Use generic idle loop
score: Use generic idle loop
s390: Use generic idle loop
powerpc: Use generic idle loop
parisc: Use generic idle loop
openrisc: Use generic idle loop
mn10300: Use generic idle loop
mips: Use generic idle loop
microblaze: Use generic idle loop
...
|
|
As reported by Dave Kleikamp, when we emit cross calls to do batched
TLB flush processing we have a race because we do not synchronize on
the sibling cpus completing the cross call.
So meanwhile the TLB batch can be reset (tb->tlb_nr set to zero, etc.)
and either flushes are missed or flushes will flush the wrong
addresses.
Fix this by using generic infrastructure to synchonize on the
completion of the cross call.
This first required getting the flush_tlb_pending() call out from
switch_to() which operates with locks held and interrupts disabled.
The problem is that smp_call_function_many() cannot be invoked with
IRQs disabled and this is explicitly checked for with WARN_ON_ONCE().
We get the batch processing outside of locked IRQ disabled sections by
using some ideas from the powerpc port. Namely, we only batch inside
of arch_{enter,leave}_lazy_mmu_mode() calls. If we're not in such a
region, we flush TLBs synchronously.
1) Get rid of xcall_flush_tlb_pending and per-cpu type
implementations.
2) Do TLB batch cross calls instead via:
smp_call_function_many()
tlb_pending_func()
__flush_tlb_pending()
3) Batch only in lazy mmu sequences:
a) Add 'active' member to struct tlb_batch
b) Define __HAVE_ARCH_ENTER_LAZY_MMU_MODE
c) Set 'active' in arch_enter_lazy_mmu_mode()
d) Run batch and clear 'active' in arch_leave_lazy_mmu_mode()
e) Check 'active' in tlb_batch_add_one() and do a synchronous
flush if it's clear.
4) Add infrastructure for synchronous TLB page flushes.
a) Implement __flush_tlb_page and per-cpu variants, patch
as needed.
b) Likewise for xcall_flush_tlb_page.
c) Implement smp_flush_tlb_page() to invoke the cross-call.
d) Wire up global_flush_tlb_page() to the right routine based
upon CONFIG_SMP
5) It turns out that singleton batches are very common, 2 out of every
3 batch flushes have only a single entry in them.
The batch flush waiting is very expensive, both because of the poll
on sibling cpu completeion, as well as because passing the tlb batch
pointer to the sibling cpus invokes a shared memory dereference.
Therefore, in flush_tlb_pending(), if there is only one entry in
the batch perform a completely asynchronous global_flush_tlb_page()
instead.
Reported-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Dave Kleikamp <dave.kleikamp@oracle.com>
|
|
Add generic cpu_idle support
sparc32:
- replace call to cpu_idle() with cpu_startup_entry()
- add arch_cpu_idle()
sparc64:
- smp_callin() now include cpu_startup_entry() call so we can
skip calling cpu_idle from assembler
- add arch_cpu_idle() and arch_cpu_idle_dead()
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Reviewed-by: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com>
Cc: torvalds@linux-foundation.org
Cc: rusty@rustcorp.com.au
Cc: paulmck@linux.vnet.ibm.com
Cc: peterz@infradead.org
Cc: magnus.damm@gmail.com
Acked-by: David Miller <davem@davemloft.net>
Link: http://lkml.kernel.org/r/20130411193850.GA2330@merkur.ravnborg.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
CONFIG_HOTPLUG is going away as an option. As a result, the __dev*
markings need to be removed.
This change removes the use of __devinit, __devexit_p, __devinitdata,
and __devexit from these drivers.
Based on patches originally written by Bill Pemberton, but redone by me
in order to handle some of the coding style issues better, by hand.
Cc: Bill Pemberton <wfp5p@virginia.edu>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
ipi_call_lock/unlock() lock resp. unlock call_function.lock. This lock
protects only the call_function data structure itself, but it's
completely unrelated to cpu_online_mask. The mask to which the IPIs
are sent is calculated before call_function.lock is taken in
smp_call_function_many(), so the locking around set_cpu_online() is
pointless and can be removed.
Delay irq enable to after set_cpu_online().
[ tglx: Massaged changelog ]
Signed-off-by: Yong Zhang <yong.zhang0@gmail.com>
Cc: ralf@linux-mips.org
Cc: sshtylyov@mvista.com
Cc: david.daney@cavium.com
Cc: nikunj@linux.vnet.ibm.com
Cc: paulmck@linux.vnet.ibm.com
Cc: axboe@kernel.dk
Cc: peterz@infradead.org
Cc: sparclinux@vger.kernel.org
Link: http://lkml.kernel.org/r/20120529082732.GA4250@zhy
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Tested-by: David S. Miller <davem@davemloft.net>
Link: http://lkml.kernel.org/r/20120420124558.055198736@linutronix.de
|
|
Preparatory patch to make the idle thread allocation for secondary
cpus generic.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Howells <dhowells@redhat.com>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/20120420124556.964170564@linutronix.de
|
|
The below patch fixes some typos in various parts of the kernel, as well as fixes some comments.
Please let me know if I missed anything, and I will try to get it changed and resent.
Signed-off-by: Justin P. Mattock <justinmattock@gmail.com>
Acked-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
Many of the core sparc kernel files are not modules, but just
including module.h for exporting symbols. Now these files can
use the lighter footprint export.h for this role.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
|
|
This allows us to move duplicated code in <asm/atomic.h>
(atomic_inc_not_zero() for now) to <linux/atomic.h>
Signed-off-by: Arun Sharma <asharma@fb.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Conflicts:
arch/sparc/kernel/smp_32.c
With merge conflict help from Daniel Hellstrom.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Adapt new API. Almost change is trivial, most important change are to
remove following like =operator.
cpumask_t cpu_mask = *mm_cpumask(mm);
cpus_allowed = current->cpus_allowed;
Because cpumask_var_t is =operator unsafe. These usage might prevent
kernel core improvement.
No functional change.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
For future rework of try_to_wake_up() we'd like to push part of that
function onto the CPU the task is actually going to run on.
In order to do so we need a generic callback from the existing scheduler IPI.
This patch introduces such a generic callback: scheduler_ipi() and
implements it as a NOP.
BenH notes: PowerPC might use this IPI on offline CPUs under rare conditions!
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Acked-by: Jesper Nilsson <jesper.nilsson@axis.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110405152728.744338123@chello.nl
|
|
Most of the warnings emitted (we fail arch/sparc file
builds with -Werror) were legitimate but harmless, however
one case (n2_pcr_write) was a genuine bug.
Based almost entirely upon a patch by Sam Ravnborg.
Reported-by: Dennis Gilmore <dennis@ausil.us>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Doing NMI startup as an early initcall doesn't work because we need
to have SMP started up by then.
So we'd only NMI startup one cpu, which causes perf PMU grab to
BUG because the nmi_active count isn't what it's supposed to be.
This also points out that we don't have proper CPU up/down notifiers
for the NMI code which will need to be fixed at some point.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Conflicts:
lib/Kconfig.debug
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
|
|
In struct device_node, the phandle is named 'linux_phandle' for PowerPC
and MicroBlaze, and 'node' for SPARC. There is no good reason for the
difference, it is just an artifact of the code diverging over a couple
of years. This patch renames both to simply .phandle.
Note: the .node also existed in PowerPC/MicroBlaze, but the only user
seems to be arch/powerpc/platforms/powermac/pfunc_core.c. It doesn't
look like the assignment between .linux_phandle and .node is
significantly different enough to warrant the separate code paths
unless ibm,phandle properties actually appear in Apple device trees.
I think it is safe to eliminate the old .node property and use
phandle everywhere.
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
Acked-by: David S. Miller <davem@davemloft.net>
Tested-by: Wolfram Sang <w.sang@pengutronix.de>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|