summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/mm/slb_low.S
AgeCommit message (Collapse)AuthorFilesLines
2018-10-14powerpc/64s/hash: Convert SLB miss handlers to CNicholas Piggin1-335/+0
This patch moves SLB miss handlers completely to C, using the standard exception handler macros to set up the stack and branch to C. This can be done because the segment containing the kernel stack is always bolted, so accessing it with relocation on will not cause an SLB exception. Arbitrary kernel memory must not be accessed when handling kernel space SLB misses, so care should be taken there. However user SLB misses can access any kernel memory, which can be used to move some fields out of the paca (in later patches). User SLB misses could quite easily reconcile IRQs and set up a first class kernel environment and exit via ret_from_except, however that doesn't seem to be necessary at the moment, so we only do that if a bad fault is encountered. [ Credit to Aneesh for bug fixes, error checks, and improvements to bad address handling, etc ] Signed-off-by: Nicholas Piggin <npiggin@gmail.com> [mpe: Disallow tracing for all of slb.c for now.] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-10-03Revert "convert SLB miss handlers to C" and subsequent commitsMichael Ellerman1-0/+335
This reverts commits: 5e46e29e6a97 ("powerpc/64s/hash: convert SLB miss handlers to C") 8fed04d0f6ae ("powerpc/64s/hash: remove user SLB data from the paca") 655deecf67b2 ("powerpc/64s/hash: SLB allocation status bitmaps") 2e1626744e8d ("powerpc/64s/hash: provide arch_setup_exec hooks for hash slice setup") 89ca4e126a3f ("powerpc/64s/hash: Add a SLB preload cache") This series had a few bugs, and the fixes are not all trivial. So revert most of it for now. Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-09-19powerpc/64s/hash: convert SLB miss handlers to CNicholas Piggin1-335/+0
This patch moves SLB miss handlers completely to C, using the standard exception handler macros to set up the stack and branch to C. This can be done because the segment containing the kernel stack is always bolted, so accessing it with relocation on will not cause an SLB exception. Arbitrary kernel memory may not be accessed when handling kernel space SLB misses, so care should be taken there. However user SLB misses can access any kernel memory, which can be used to move some fields out of the paca (in later patches). User SLB misses could quite easily reconcile IRQs and set up a first class kernel environment and exit via ret_from_except, however that doesn't seem to be necessary at the moment, so we only do that if a bad fault is encountered. [ Credit to Aneesh for bug fixes, error checks, and improvements to bad address handling, etc ] Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Since RFC: - Added MSR[RI] handling - Fixed up a register loss bug exposed by irq tracing (Aneesh) - Reject misses outside the defined kernel regions (Aneesh) - Added several more sanity checks and error handling (Aneesh), we may look at consolidating these tests and tightenig up the code but for a first pass we decided it's better to check carefully. Since v1: - Fixed SLB cache corruption (Aneesh) - Fixed untidy SLBE allocation "leak" in get_vsid error case - Now survives some stress testing on real hardware Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-07-30powerpc: clean inclusions of asm/feature-fixups.hChristophe Leroy1-0/+1
files not using feature fixup don't need asm/feature-fixups.h files using feature fixup need asm/feature-fixups.h Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-03-31powerpc/mm: Add support for handling > 512TB address in SLB missAneesh Kumar K.V1-3/+8
For addresses above 512TB we allocate additional mmu contexts. To make it all easy, addresses above 512TB are handled with IR/DR=1 and with stack frame setup. The mmu_context_t is also updated to track the new extended_ids. To support upto 4PB we need a total 8 contexts. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> [mpe: Minor formatting tweaks and comment wording, switch BUG to WARN in get_ea_context().] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-03-06powerpc/mm/slice: Allow up to 64 low slicesChristophe Leroy1-3/+5
While the implementation of the "slices" address space allows a significant amount of high slices, it limits the number of low slices to 16 due to the use of a single u64 low_slices_psize element in struct mm_context_t On the 8xx, the minimum slice size is the size of the area covered by a single PMD entry, ie 4M in 4K pages mode and 64M in 16K pages mode. This means we could have at least 64 slices. In order to override this limitation, this patch switches the handling of low_slices_psize to char array as done already for high_slices_psize. Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-11-13powerpc/64s: mm_context.addr_limit is only used on hashNicholas Piggin1-1/+1
Radix keeps no meaningful state in addr_limit, so remove it from radix code and rename to slb_addr_limit to make it clear it applies to hash only. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-11-07powerpc/mm/hash: Remove stale comment.Michal Suchanek1-4/+0
In commit e6f81a92015b ("powerpc/mm/hash: Support 68 bit VA") the masking is folded into ASM_VSID_SCRAMBLE but the comment about masking is removed only from the firt use of ASM_VSID_SCRAMBLE. Signed-off-by: Michal Suchanek <msuchanek@suse.de> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-08-08powerpc/mm/hash64: Make vmalloc 56T on hashMichael Ellerman1-3/+15
On 64-bit book3s, with the hash MMU, we currently define the kernel virtual space (vmalloc, ioremap etc.), to be 16T in size. This is a leftover from pre v3.7 when our user VM was also 16T. Of that 16T we split it 50/50, with half used for PCI IO and ioremap and the other 8T for vmalloc. We never bothered to make it any bigger because 8T of vmalloc ought to be enough for anybody. But it turns out that's not true, the per cpu allocator wants large amounts of vmalloc space, not to make large allocations, but to allow a large stride between allocations, because we use pcpu_embed_first_chunk(). With a bit of juggling we can increase the entire kernel virtual space to 64T. The only real complication is the check of the address in the SLB miss handler, see the comment in the code. Although we could continue to split virtual space 50/50 as we do now, no one seems to be running out of PCI IO or ioremap space. So instead keep that as 8T, and use the remaining 56T for vmalloc. In future we should be able to increase the kernel virtual space to 512T, the code already supports that, it just needs testing on older hardware. Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
2017-08-08powerpc/mm/slb: Move comment next to the code it's referring toMichael Ellerman1-3/+4
There is a comment in slb_allocate() referring to the load of paca->vmalloc_sllp, but it's several lines prior in the assembly. We're about to change this code, and we want to add another comment, so move the comment immediately prior to the instruction it's talking about. Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-06-21powerpc/64s: Rename slb_allocate_realmode() to slb_allocate()Michael Ellerman1-3/+3
As for slb_miss_realmode(), rename slb_allocate_realmode() to avoid confusion over whether it runs in real or virtual mode - it runs in both. Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
2017-06-20powerpc/64s: Preserve r3 in slb_allocate_realmode()Nicholas Piggin1-10/+14
One fewer registers clobbered by this function means the SLB miss handler can save one fewer. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-01powerpc/mm/hash: Store addr_limit in PACAAneesh Kumar K.V1-1/+7
We optmize the slice page size array copy to paca by copying only the range based on addr_limit. This will require us to not look at page size array beyond addr_limit in PACA on slb fault. To enable that copy task size to paca which will be used during slb fault. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> [mpe: Rename from task_size to addr_limit, consolidate #ifdefs] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-03-31powerpc/mm/hash: Support 68 bit VAAneesh Kumar K.V1-9/+45
Inorder to support large effective address range (512TB), we want to increase the virtual address bits to 68. But we do have platforms like p4 and p5 that can only do 65 bit VA. We support those platforms by limiting context bits on them to 16. The protovsid -> vsid conversion is verified to work with both 65 and 68 bit va values. I also documented the restrictions in a table format as part of code comments. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-03-31powerpc/mm/hash: Use context ids 1-4 for the kernelAneesh Kumar K.V1-15/+5
Currently we use the top 4 context ids (0x7fffc-0x7ffff) for the kernel. Kernel VSIDs are built using these top context values and effective the segement ID. In subsequent patches we want to increase the max effective address to 512TB. We will achieve that by increasing the effective segment IDs there by increasing virtual address range. We will be switching to a 68bit virtual address in the following patch. But platforms like Power4 and Power5 only support a 65 bit virtual address. We will handle that by limiting the context bits to 16 instead of 19 on those platforms. That means the max context id will have a different value on different platforms. So that we don't have to deal with the kernel context ids changing between different platforms, move the kernel context ids down to use context ids 1-4. We can't use segment 0 of context-id 0, because that maps to VSID 0, which we want to keep as invalid, so we avoid context-id 0 entirely. Similarly we can't use the last segment of the maximum context, so we avoid it too. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> [mpe: Switch from 0-3 to 1-4 so VSID=0 remains invalid] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-02-17powerpc/mm: Blacklist SLB symbols from kprobeMichael Ellerman1-0/+8
We can't sensibly take a trap at this point. So, blacklist these symbols. Reported-by: Anton Blanchard <anton@samba.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-02-17powerpc/mm: Convert slb_finish_load[_1T] to local symbolsMichael Ellerman1-8/+8
slb_finish_load and slb_finish_load_1T are both only used within slb_low.S, so make them local symbols. This makes the code a little clearer, as it's more obvious neither is intended to be an entry point from arbitrary other code, only the uses in this file. It also prevents them being used with kprobes and other tracing tools, which is good because we're not able to safely take traps at these locations, so making them local symbols avoids us needing to blacklist them. Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-10-07Merge tag 'powerpc-4.9-1' of ↵Linus Torvalds1-5/+3
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux Pull powerpc updates from Michael Ellerman: "Highlights: - Major rework of Book3S 64-bit exception vectors (Nicholas Piggin) - Use gas sections for arranging exception vectors et. al. - Large set of TM cleanups and selftests (Cyril Bur) - Enable transactional memory (TM) lazily for userspace (Cyril Bur) - Support for XZ compression in the zImage wrapper (Oliver O'Halloran) - Add support for bpf constant blinding (Naveen N. Rao) - Beginnings of upstream support for PA Semi Nemo motherboards (Darren Stevens) Fixes: - Ensure .mem(init|exit).text are within _stext/_etext (Michael Ellerman) - xmon: Don't use ld on 32-bit (Michael Ellerman) - vdso64: Use double word compare on pointers (Anton Blanchard) - powerpc/nvram: Fix an incorrect partition merge (Pan Xinhui) - powerpc: Fix usage of _PAGE_RO in hugepage (Christophe Leroy) - powerpc/mm: Update FORCE_MAX_ZONEORDER range to allow hugetlb w/4K (Aneesh Kumar K.V) - Fix memory leak in queue_hotplug_event() error path (Andrew Donnellan) - Replay hypervisor maintenance interrupt first (Nicholas Piggin) Various performance optimisations (Anton Blanchard): - Align hot loops of memset() and backwards_memcpy() - During context switch, check before setting mm_cpumask - Remove static branch prediction in atomic{, 64}_add_unless - Only disable HAVE_EFFICIENT_UNALIGNED_ACCESS on POWER7 little endian - Set default CPU type to POWER8 for little endian builds Cleanups & features: - Sparse fixes/cleanups (Daniel Axtens) - Preserve CFAR value on SLB miss caused by access to bogus address (Paul Mackerras) - Radix MMU fixups for POWER9 (Aneesh Kumar K.V) - Support for setting used_(vsr|vr|spe) in sigreturn path (for CRIU) (Simon Guo) - Optimise syscall entry for virtual, relocatable case (Nicholas Piggin) - Optimise MSR handling in exception handling (Nicholas Piggin) - Support for kexec with Radix MMU (Benjamin Herrenschmidt) - powernv EEH fixes (Russell Currey) - Suprise PCI hotplug support for powernv (Gavin Shan) - Endian/sparse fixes for powernv PCI (Gavin Shan) - Defconfig updates (Anton Blanchard) - KVM: PPC: Book3S HV: Migrate pinned pages out of CMA (Balbir Singh) - cxl: Flush PSL cache before resetting the adapter (Frederic Barrat) - cxl: replace loop with for_each_child_of_node(), remove unneeded of_node_put() (Andrew Donnellan) - Fix HV facility unavailable to use correct handler (Nicholas Piggin) - Remove unnecessary syscall trampoline (Nicholas Piggin) - fadump: Fix build break when CONFIG_PROC_VMCORE=n (Michael Ellerman) - Quieten EEH message when no adapters are found (Anton Blanchard) - powernv: Add PHB register dump debugfs handle (Russell Currey) - Use kprobe blacklist for exception handlers & asm functions (Nicholas Piggin) - Document the syscall ABI (Nicholas Piggin) - MAINTAINERS: Update cxl maintainers (Michael Neuling) - powerpc: Remove all usages of NO_IRQ (Michael Ellerman) Minor cleanups: - Andrew Donnellan, Christophe Leroy, Colin Ian King, Cyril Bur, Frederic Barrat, Pan Xinhui, PrasannaKumar Muralidharan, Rui Teng, Simon Guo" * tag 'powerpc-4.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (156 commits) powerpc/bpf: Add support for bpf constant blinding powerpc/bpf: Implement support for tail calls powerpc/bpf: Introduce accessors for using the tmp local stack space powerpc/fadump: Fix build break when CONFIG_PROC_VMCORE=n powerpc: tm: Enable transactional memory (TM) lazily for userspace powerpc/tm: Add TM Unavailable Exception powerpc: Remove do_load_up_transact_{fpu,altivec} powerpc: tm: Rename transct_(*) to ck(\1)_state powerpc: tm: Always use fp_state and vr_state to store live registers selftests/powerpc: Add checks for transactional VSXs in signal contexts selftests/powerpc: Add checks for transactional VMXs in signal contexts selftests/powerpc: Add checks for transactional FPUs in signal contexts selftests/powerpc: Add checks for transactional GPRs in signal contexts selftests/powerpc: Check that signals always get delivered selftests/powerpc: Add TM tcheck helpers in C selftests/powerpc: Allow tests to extend their kill timeout selftests/powerpc: Introduce GPR asm helper header file selftests/powerpc: Move VMX stack frame macros to header file selftests/powerpc: Rework FPU stack placement macros and move to header file selftests/powerpc: Check for VSX preservation across userspace preemption ...
2016-09-13powerpc/mm: Preserve CFAR value on SLB miss caused by access to bogus addressPaul Mackerras1-5/+3
Currently, if userspace or the kernel accesses a completely bogus address, for example with any of bits 46-59 set, we first take an SLB miss interrupt, install a corresponding SLB entry with VSID 0, retry the instruction, then take a DSI/ISI interrupt because there is no HPT entry mapping the address. However, by the time of the second interrupt, the Come-From Address Register (CFAR) has been overwritten by the rfid instruction at the end of the SLB miss interrupt handler. Since bogus accesses can often be caused by a function return after the stack has been overwritten, the CFAR value would be very useful as it could indicate which function it was whose return had led to the bogus address. This patch adds code to create a full exception frame in the SLB miss handler in the case of a bogus address, rather than inserting an SLB entry with a zero VSID field. Then we call a new slb_miss_bad_addr() function in C code, which delivers a signal for a user access or creates an oops for a kernel access. In the latter case the oops message will show the CFAR value at the time of the access. In the case of the radix MMU, a segment miss interrupt indicates an access outside the ranges mapped by the page tables. Previously this was handled by the code for an unrecoverable SLB miss (one with MSR[RI] = 0), which is not really correct. With this patch, we now handle these interrupts with slb_miss_bad_addr(), which is much more consistent. Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-09-08powerpc/mm: Don't alias user region to other regions below PAGE_OFFSETPaul Mackerras1-1/+6
In commit c60ac5693c47 ("powerpc: Update kernel VSID range", 2013-03-13) we lost a check on the region number (the top four bits of the effective address) for addresses below PAGE_OFFSET. That commit replaced a check that the top 18 bits were all zero with a check that bits 46 - 59 were zero (performed for all addresses, not just user addresses). This means that userspace can access an address like 0x1000_0xxx_xxxx_xxxx and we will insert a valid SLB entry for it. The VSID used will be the same as if the top 4 bits were 0, but the page size will be some random value obtained by indexing beyond the end of the mm_ctx_high_slices_psize array in the paca. If that page size is the same as would be used for region 0, then userspace just has an alias of the region 0 space. If the page size is different, then no HPTE will be found for the access, and the process will get a SIGSEGV (since hash_page_mm() will refuse to create a HPTE for the bogus address). The access beyond the end of the mm_ctx_high_slices_psize can be at most 5.5MB past the array, and so will be in RAM somewhere. Since the access is a load performed in real mode, it won't fault or crash the kernel. At most this bug could perhaps leak a little bit of information about blocks of 32 bytes of memory located at offsets of i * 512kB past the paca->mm_ctx_high_slices_psize array, for 1 <= i <= 11. Fixes: c60ac5693c47 ("powerpc: Update kernel VSID range") Cc: stable@vger.kernel.org # v3.9+ Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-05-11powerpc/mm: vmalloc abstraction in preparation for radixAneesh Kumar K.V1-1/+1
The vmalloc range differs between hash and radix config. Hence make VMALLOC_START and related constants a variable which will be runtime initialized depending on whether hash or radix mode is active. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> [mpe: Fix missing init of ioremap_bot in pgtable_64.c for ppc64e] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-05-01powerpc/mm: Make page table size a variableAneesh Kumar K.V1-1/+1
Radix and hash MMU models support different page table sizes. Make the #defines a variable so that existing code can work with variable sizes. Slice related code is only used by hash, so use hash constants there. We will replicate some of the boundary conditions with resepct to TASK_SIZE using radix values too. Right now we do boundary condition check using hash constants. Swapper pgdir size is initialized in asm code. We select the max pgd size to keep it simple. For now we select hash pgdir. When adding radix we will switch that to radix pgdir which is 64K. BUILD_BUG_ON check which is removed is already done in hugepage_init() using MAYBE_BUILD_BUG_ON(). Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-11powerpc/mm: Remove long disabled SLB codeMichael Ellerman1-50/+0
We have a bunch of SLB related code in the tree which is there to handle dynamic VSIDs - but currently it's all disabled at compile time. The comments say "Keep that around for when we re-implement dynamic VSIDs". But that was over 10 years ago (commit 3c726f8dee6f ("[PATCH] ppc64: support 64k pages")). The chance that it would still work unchanged is minimal, and in the meantime it's confusing to folks browsing/grepping the code. If we ever want to re-instate it, it's in the git history. Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Acked-by: Balbir Singh <bsingharora@gmail.com>
2014-05-05Merge remote-tracking branch 'anton/abiv2' into nextBenjamin Herrenschmidt1-4/+8
This series adds support for building the powerpc 64-bit LE kernel using the new ABI v2. We already supported running ABI v2 userspace programs but this adds support for building the kernel itself using the new ABI.
2014-05-01powerpc/mm: use macro PGTABLE_EADDR_SIZE instead of digitalLiu Ping Fan1-1/+1
In case of extending the eaddr in future, use this macro PGTABLE_EADDR_SIZE to ease the maintenance of the code. Signed-off-by: Liu Ping Fan <pingfank@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-04-23powerpc: Fix branch patching code for ABIv2Anton Blanchard1-4/+8
The MMU hashtable and SLB branch patching code uses function pointers for the update sites. This creates a difference between ABIv1 and ABIv2 because we don't have function descriptors on ABIv2. Get rid of the function pointer and just point at the update sites directly. This works on both ABIs. Signed-off-by: Anton Blanchard <anton@samba.org>
2013-03-17powerpc: Rename USER_ESID_BITS* to ESID_BITS*Aneesh Kumar K.V1-2/+2
Now we use ESID_BITS of kernel address to build proto vsid. So rename USER_ESIT_BITS to ESID_BITS Acked-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: <stable@vger.kernel.org> [v3.8]
2013-03-17powerpc: Update kernel VSID rangeAneesh Kumar K.V1-25/+25
This patch change the kernel VSID range so that we limit VSID_BITS to 37. This enables us to support 64TB with 65 bit VA (37+28). Without this patch we have boot hangs on platforms that only support 65 bit VA. With this patch we now have proto vsid generated as below: We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated from mmu context id and effective segment id of the address. For user processes max context id is limited to ((1ul << 19) - 5) for kernel space, we use the top 4 context ids to map address as below 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ] 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ] 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ] 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ] Acked-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Tested-by: Geoff Levand <geoff@infradead.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: <stable@vger.kernel.org> [v3.8]
2012-09-17powerpc/mm: Add 64TB supportAneesh Kumar K.V1-0/+12
Increase max addressable range to 64TB. This is not tested on real hardware yet. Reviewed-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-09-17powerpc/mm: Use 32bit array for slb cacheAneesh Kumar K.V1-4/+4
With larger vsid we need to track more bits of ESID in slb cache for slb invalidate. Reviewed-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-09-17powerpc/mm: Use the required number of VSID bits in slbmteAneesh Kumar K.V1-2/+10
ASM_VSID_SCRAMBLE can leave non-zero bits in the high 28 bits of the result for 256MB segment (40 bits for 1T segment). Properly mask them before using the values in slbmte Reviewed-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-09-17powerpc/mm: Increase the slice range to 64TBAneesh Kumar K.V1-8/+22
This patch makes the high psizes mask as an unsigned char array so that we can have more than 16TB. Currently we support upto 64TB Reviewed-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-03-09powerpc: Remove legacy iSeries bits from assembly filesBenjamin Herrenschmidt1-16/+0
This removes the various bits of assembly in the kernel entry, exception handling and SLB management code that were specific to running under the legacy iSeries hypervisor which is no longer supported. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-04-27powerpc: Free up some CPU feature bits by moving out MMU-related featuresMatt Evans1-4/+4
Some of the 64bit PPC CPU features are MMU-related, so this patch moves them to MMU_FTR_ bits. All cpu_has_feature()-style tests are moved to mmu_has_feature(), and seven feature bits are freed as a result. Signed-off-by: Matt Evans <matt@ozlabs.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-14powerpc/mm: Fix hang accessing top of vmalloc spaceBenjamin Herrenschmidt1-6/+4
On pSeries, we always force the IO space to be mapped using 4K pages even with a 64K base page size to cope with some limitations in the HV interface to some devices. However, the SLB miss handler code to discriminate between vmalloc and ioremap space uses a CPU feature section such that the code is nop'ed out when the processor support large pages non-cachable mappings. Thus, we end up always using the ioremap page size for vmalloc segments on such processors, causing a discrepency between the segment and the hash table, and thus a hang continously hashing the page. It works for the first segment of the vmalloc space since that segment is "bolted" in by C code correctly, and thankfully we almost never use the vmalloc space beyond the first segment, but the new percpu code made the bug happen. This fixes it by removing the feature section from the assembly, we now always do the comparison between vmalloc and ioremap. Signed-off-by; Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2008-05-15[POWERPC] vmemmap fixes to use smaller pagesBenjamin Herrenschmidt1-3/+13
This changes vmemmap to use a different region (region 0xf) of the address space, and to configure the page size of that region dynamically at boot. The problem with the current approach of always using 16M pages is that it's not well suited to machines that have small amounts of memory such as small partitions on pseries, or PS3's. In fact, on the PS3, failure to allocate the 16M page backing vmmemmap tends to prevent hotplugging the HV's "additional" memory, thus limiting the available memory even more, from my experience down to something like 80M total, which makes it really not very useable. The logic used by my match to choose the vmemmap page size is: - If 16M pages are available and there's 1G or more RAM at boot, use that size. - Else if 64K pages are available, use that - Else use 4K pages I've tested on a POWER6 (16M pages) and on an iSeries POWER3 (4K pages) and it seems to work fine. Note that I intend to change the way we organize the kernel regions & SLBs so the actual region will change from 0xf back to something else at one point, as I simplify the SLB miss handler, but that will be for a later patch. Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-12-11[POWERPC] Use SLB size from the device treeMichael Neuling1-2/+3
Currently we hardwire the number of SLBs to 64, but PAPR says we should use the ibm,slb-size property to obtain the number of SLB entries. This uses this property instead of assuming 64. If no property is found, we assume 64 entries as before. This soft patches the SLB handler, so it shouldn't change performance at all. Signed-off-by: Michael Neuling <mikey@neuling.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-10-12[POWERPC] Use 1TB segmentsPaul Mackerras1-4/+33
This makes the kernel use 1TB segments for all kernel mappings and for user addresses of 1TB and above, on machines which support them (currently POWER5+, POWER6 and PA6T). We detect that the machine supports 1TB segments by looking at the ibm,processor-segment-sizes property in the device tree. We don't currently use 1TB segments for user addresses < 1T, since that would effectively prevent 32-bit processes from using huge pages unless we also had a way to revert to using 256MB segments. That would be possible but would involve extra complications (such as keeping track of which segment size was used when HPTEs were inserted) and is not addressed here. Parts of this patch were originally written by Ben Herrenschmidt. Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-05-09[POWERPC] Introduce address space "slices"Benjamin Herrenschmidt1-19/+33
The basic issue is to be able to do what hugetlbfs does but with different page sizes for some other special filesystems; more specifically, my need is: - Huge pages - SPE local store mappings using 64K pages on a 4K base page size kernel on Cell - Some special 4K segments in 64K-page kernels for mapping a dodgy type of powerpc-specific infiniband hardware that requires 4K MMU mappings for various reasons I won't explain here. The main issues are: - To maintain/keep track of the page size per "segment" (as we can only have one page size per segment on powerpc, which are 256MB divisions of the address space). - To make sure special mappings stay within their allotted "segments" (including MAP_FIXED crap) - To make sure everybody else doesn't mmap/brk/grow_stack into a "segment" that is used for a special mapping Some of the necessary mechanisms to handle that were present in the hugetlbfs code, but mostly in ways not suitable for anything else. The patch relies on some changes to the generic get_unmapped_area() that just got merged. It still hijacks hugetlb callbacks here or there as the generic code hasn't been entirely cleaned up yet but that shouldn't be a problem. So what is a slice ? Well, I re-used the mechanism used formerly by our hugetlbfs implementation which divides the address space in "meta-segments" which I called "slices". The division is done using 256MB slices below 4G, and 1T slices above. Thus the address space is divided currently into 16 "low" slices and 16 "high" slices. (Special case: high slice 0 is the area between 4G and 1T). Doing so simplifies significantly the tracking of segments and avoids having to keep track of all the 256MB segments in the address space. While I used the "concepts" of hugetlbfs, I mostly re-implemented everything in a more generic way and "ported" hugetlbfs to it. Slices can have an associated page size, which is encoded in the mmu context and used by the SLB miss handler to set the segment sizes. The hash code currently doesn't care, it has a specific check for hugepages, though I might add a mechanism to provide per-slice hash mapping functions in the future. The slice code provide a pair of "generic" get_unmapped_area() (bottomup and topdown) functions that should work with any slice size. There is some trickiness here so I would appreciate people to have a look at the implementation of these and let me know if I got something wrong. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-10-03[POWERPC] implement BEGIN/END_FW_FTR_SECTIONStephen Rothwell1-0/+3
and use it an all the obvious places in assembler code. Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
2006-06-30Remove obsolete #include <linux/config.h>Jörn Engel1-1/+0
Signed-off-by: Jörn Engel <joern@wohnheim.fh-wedel.de> Signed-off-by: Adrian Bunk <bunk@stusta.de>
2006-06-15powerpc: Use 64k pages without needing cache-inhibited large pagesPaul Mackerras1-5/+12
Some POWER5+ machines can do 64k hardware pages for normal memory but not for cache-inhibited pages. This patch lets us use 64k hardware pages for most user processes on such machines (assuming the kernel has been configured with CONFIG_PPC_64K_PAGES=y). User processes start out using 64k pages and get switched to 4k pages if they use any non-cacheable mappings. With this, we use 64k pages for the vmalloc region and 4k pages for the imalloc region. If anything creates a non-cacheable mapping in the vmalloc region, the vmalloc region will get switched to 4k pages. I don't know of any driver other than the DRM that would do this, though, and these machines don't have AGP. When a region gets switched from 64k pages to 4k pages, we do not have to clear out all the 64k HPTEs from the hash table immediately. We use the _PAGE_COMBO bit in the Linux PTE to indicate whether the page was hashed in as a 64k page or a set of 4k pages. If hash_page is trying to insert a 4k page for a Linux PTE and it sees that it has already been inserted as a 64k page, it first invalidates the 64k HPTE before inserting the 4k HPTE. The hash invalidation routines also use the _PAGE_COMBO bit, to determine whether to look for a 64k HPTE or a set of 4k HPTEs to remove. With those two changes, we can tolerate a mix of 4k and 64k HPTEs in the hash table, and they will all get removed when the address space is torn down. Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-02-10[PATCH] powerpc: trivial: modify comments to refer to new location of filesJon Mason1-2/+0
This patch removes all self references and fixes references to files in the now defunct arch/ppc64 tree. I think this accomplises everything wanted, though there might be a few references I missed. Signed-off-by: Jon Mason <jdmason@us.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-01-09[PATCH] powerpc: Separate usage of KERNELBASE and PAGE_OFFSETMichael Ellerman1-3/+3
This patch separates usage of KERNELBASE and PAGE_OFFSET. I haven't looked at any of the PPC32 code, if we ever want to support Kdump on PPC we'll have to do another audit, ditto for iSeries. This patch makes PAGE_OFFSET the constant, it'll always be 0xC * 1 gazillion for 64-bit. To get a physical address from a virtual one you subtract PAGE_OFFSET, _not_ KERNELBASE. KERNELBASE is the virtual address of the start of the kernel, it's often the same as PAGE_OFFSET, but _might not be_. If you want to know something's offset from the start of the kernel you should subtract KERNELBASE. Signed-off-by: Michael Ellerman <michael@ellerman.id.au> Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-11-07[PATCH] ppc64: Fix bug in SLB miss handler for hugepagesDavid Gibson1-4/+9
This patch, however, should be applied on top of the 64k-page-size patch to fix some problems with hugepage (some pre-existing, another introduced by this patch). The patch fixes a bug in the SLB miss handler for hugepages on ppc64 introduced by the dynamic hugepage patch (commit id c594adad5653491813959277fb87a2fef54c4e05) due to a misunderstanding of the srd instruction's behaviour (mea culpa). The problem arises when a 64-bit process maps some hugepages in the low 4GB of the address space (unusual). In this case, as well as the 256M segment in question being marked for hugepages, other segments at 32G intervals will be incorrectly marked for hugepages. In the process, this patch tweaks the semantics of the hugepage bitmaps to be more sensible. Previously, an address below 4G was marked for hugepages if the appropriate segment bit in the "low areas" bitmask was set *or* if the low bit in the "high areas" bitmap was set (which would mark all addresses below 1TB for hugepage). With this patch, any given address is governed by a single bitmap. Addresses below 4GB are marked for hugepage if and only if their bit is set in the "low areas" bitmap (256M granularity). Addresses between 4GB and 1TB are marked for hugepage iff the low bit in the "high areas" bitmap is set. Higher addresses are marked for hugepage iff their bit in the "high areas" bitmap is set (1TB granularity). To avoid conflicts, this patch must be applied on top of BenH's pending patch for 64k base page size [0]. As such, this patch also addresses a hugepage problem introduced by that patch. That patch allows hugepages of 1MB in size on hardware which supports it, however, that won't work when using 4k pages (4 level pagetable), because in that case hugepage PTEs are stored at the PMD level, and each PMD entry maps 2MB. This patch simply disallows hugepages in that case (we can do something cleverer to re-enable them some other day). Built, booted, and a handful of hugepage related tests passed on POWER5 LPAR (both ARCH=powerpc and ARCH=ppc64). [0] http://gate.crashing.org/~benh/ppc64-64k-pages.diff Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-06[PATCH] ppc64: support 64k pagesBenjamin Herrenschmidt1-68/+152
Adds a new CONFIG_PPC_64K_PAGES which, when enabled, changes the kernel base page size to 64K. The resulting kernel still boots on any hardware. On current machines with 4K pages support only, the kernel will maintain 16 "subpages" for each 64K page transparently. Note that while real 64K capable HW has been tested, the current patch will not enable it yet as such hardware is not released yet, and I'm still verifying with the firmware architects the proper to get the information from the newer hypervisors. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-10powerpc: Merge arch/ppc64/mm to arch/powerpc/mmPaul Mackerras1-0/+151
This moves the remaining files in arch/ppc64/mm to arch/powerpc/mm, and arranges that we use them when compiling with ARCH=ppc64. Signed-off-by: Paul Mackerras <paulus@samba.org>