Age | Commit message (Collapse) | Author | Files | Lines |
|
Recent kernels, since commit e15a4fea4dee ("powerpc/64s/hash: Add
some SLB debugging tests", 2018-10-03) use the slbfee. instruction,
which PR KVM currently does not have code to emulate. Consequently
recent kernels fail to boot under PR KVM. This adds emulation of
slbfee., enabling these kernels to boot successfully.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
asm/tlbflush.h is only needed for:
- using functions xxx_flush_tlb_xxx()
- using MMU_NO_CONTEXT
- including asm-generic/pgtable.h
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This patch moves nip/ctr/lr/xer registers from scattered places in
kvm_vcpu_arch to pt_regs structure.
cr register is "unsigned long" in pt_regs and u32 in vcpu->arch.
It will need more consideration and may move in later patches.
Signed-off-by: Simon Guo <wei.guo.simon@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
kvm_ppc_mmu_book3s_32/64 xlat() logs "KVM can't copy data" error
upon failing to copy user data to kernel space. This floods kernel
log once such fails occur in short time period. Ratelimit this
error to avoid flooding kernel logs upon copy data failures.
Signed-off-by: Vipin K Parashar <vipin@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
Remove the function sr_nx() that is not used anywhere.
This was partially found by using a static code analysis program called cppcheck.
Signed-off-by: Rickard Strandqvist <rickard_strandqvist@spectrumdigital.se>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
When a page lookup failed because we're not allowed to write to the page, we
should not overwrite that value with another lookup on the second PTEG which
will return "page not found". Instead, we should just tell the caller that we
had a permission problem.
This fixes Mac OS X guests looping endlessly in page lookup code for me.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
When the host CPU we're running on doesn't support dcbz32 itself, but the
guest wants to have dcbz only clear 32 bytes of data, we loop through every
executable mapped page to search for dcbz instructions and patch them with
a special privileged instruction that we emulate as dcbz32.
The only guests that want to see dcbz act as 32byte are book3s_32 guests, so
we don't have to worry about little endian instruction ordering. So let's
just always search for big endian dcbz instructions, also when we're on a
little endian host.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
The shared (magic) page is a data structure that contains often used
supervisor privileged SPRs accessible via memory to the user to reduce
the number of exits we have to take to read/write them.
When we actually share this structure with the guest we have to maintain
it in guest endianness, because some of the patch tricks only work with
native endian load/store operations.
Since we only share the structure with either host or guest in little
endian on book3s_64 pr mode, we don't have to worry about booke or book3s hv.
For booke, the shared struct stays big endian. For book3s_64 hv we maintain
the struct in host native endian, since it never gets shared with the guest.
For book3s_64 pr we introduce a variable that tells us which endianness the
shared struct is in and route every access to it through helper inline
functions that evaluate this variable.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
The HTAB is always big endian. We access the guest's HTAB using
copy_from/to_user, but don't yet take care of the fact that we might
be running on an LE host.
Wrap all accesses to the guest HTAB with big endian accessors.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Commit 9308ab8e2d made C/R HTAB updates go byte-wise into the target HTAB.
However, it didn't update the guest's copy of the HTAB, but instead the
host local copy of it.
Write to the guest's HTAB instead.
Signed-off-by: Alexander Graf <agraf@suse.de>
CC: Paul Mackerras <paulus@samba.org>
Acked-by: Paul Mackerras <paulus@samba.org>
|
|
Currently we request write access to all pages that get mapped into the
guest, even if the guest is only loading from the page. This reduces
the effectiveness of KSM because it means that we unshare every page we
access. Also, we always set the changed (C) bit in the guest HPTE if
it allows writing, even for a guest load.
This fixes both these problems. We pass an 'iswrite' flag to the
mmu.xlate() functions and to kvmppc_mmu_map_page() to indicate whether
the access is a load or a store. The mmu.xlate() functions now only
set C for stores. kvmppc_gfn_to_pfn() now calls gfn_to_pfn_prot()
instead of gfn_to_pfn() so that it can indicate whether we need write
access to the page, and get back a 'writable' flag to indicate whether
the page is writable or not. If that 'writable' flag is clear, we then
make the host HPTE read-only even if the guest HPTE allowed writing.
This means that we can get a protection fault when the guest writes to a
page that it has mapped read-write but which is read-only on the host
side (perhaps due to KSM having merged the page). Thus we now call
kvmppc_handle_pagefault() for protection faults as well as HPTE not found
faults. In kvmppc_handle_pagefault(), if the access was allowed by the
guest HPTE and we thus need to install a new host HPTE, we then need to
remove the old host HPTE if there is one. This is done with a new
function, kvmppc_mmu_unmap_page(), which uses kvmppc_mmu_pte_vflush() to
find and remove the old host HPTE.
Since the memslot-related functions require the KVM SRCU read lock to
be held, this adds srcu_read_lock/unlock pairs around the calls to
kvmppc_handle_pagefault().
Finally, this changes kvmppc_mmu_book3s_32_xlate_pte() to not ignore
guest HPTEs that don't permit access, and to return -EPERM for accesses
that are not permitted by the page protections.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This makes PR KVM allocate its kvm_vcpu structs from the kvm_vcpu_cache
rather than having them embedded in the kvmppc_vcpu_book3s struct,
which is allocated with vzalloc. The reason is to reduce the
differences between PR and HV KVM in order to make is easier to have
them coexist in one kernel binary.
With this, the kvm_vcpu struct has a pointer to the kvmppc_vcpu_book3s
struct. The pointer to the kvmppc_book3s_shadow_vcpu struct has moved
from the kvmppc_vcpu_book3s struct to the kvm_vcpu struct, and is only
present for 32-bit, since it is only used for 32-bit.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: squash in compile fix from Aneesh]
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This adds a per-VM mutex to provide mutual exclusion between vcpus
for accesses to and updates of the guest hashed page table (HPT).
This also makes the code use single-byte writes to the HPT entry
when updating of the reference (R) and change (C) bits. The reason
for doing this, rather than writing back the whole HPTE, is that on
non-PAPR virtual machines, the guest OS might be writing to the HPTE
concurrently, and writing back the whole HPTE might conflict with
that. Also, real hardware does single-byte writes to update R and C.
The new mutex is taken in kvmppc_mmu_book3s_64_xlate() when reading
the HPT and updating R and/or C, and in the PAPR HPT update hcalls
(H_ENTER, H_REMOVE, etc.). Having the mutex means that we don't need
to use a hypervisor lock bit in the HPT update hcalls, and we don't
need to be careful about the order in which the bytes of the HPTE are
updated by those hcalls.
The other change here is to make emulated TLB invalidations (tlbie)
effective across all vcpus. To do this we call kvmppc_mmu_pte_vflush
for all vcpus in kvmppc_ppc_book3s_64_tlbie().
For 32-bit, this makes the setting of the accessed and dirty bits use
single-byte writes, and makes tlbie invalidate shadow HPTEs for all
vcpus.
With this, PR KVM can successfully run SMP guests.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Currently, PR KVM uses 4k pages for the host-side mappings of guest
memory, regardless of the host page size. When the host page size is
64kB, we might as well use 64k host page mappings for guest mappings
of 64kB and larger pages and for guest real-mode mappings. However,
the magic page has to remain a 4k page.
To implement this, we first add another flag bit to the guest VSID
values we use, to indicate that this segment is one where host pages
should be mapped using 64k pages. For segments with this bit set
we set the bits in the shadow SLB entry to indicate a 64k base page
size. When faulting in host HPTEs for this segment, we make them
64k HPTEs instead of 4k. We record the pagesize in struct hpte_cache
for use when invalidating the HPTE.
For now we restrict the segment containing the magic page (if any) to
4k pages. It should be possible to lift this restriction in future
by ensuring that the magic 4k page is appropriately positioned within
a host 64k page.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Now that the actual mtsr doesn't do anything anymore, we can move the sr
contents over to the shared page, so a guest can directly read and write
its sr contents from guest context.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Right now we're examining the contents of Book3s_32's segment registers when
the register is written and put the interpreted contents into a struct.
There are two reasons this is bad. For starters, the struct has worse real-time
performance, as it occupies more ram. But the more important part is that with
segment registers being interpreted from their raw values, we can put them in
the shared page, allowing guests to mess with them directly.
This patch makes the internal representation of SRs be u32s.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Due to previous changes, the Book3S_32 guest MMU code didn't compile properly
when enabling debugging.
This patch repairs the broken code paths, making it possible to define DEBUG_MMU
and friends again.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
We need to override EA as well as PA lookups for the magic page. When the guest
tells us to project it, the magic page overrides any guest mappings.
In order to reflect that, we need to hook into all the MMU layers of KVM to
force map the magic page if necessary.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
One of the most obvious registers to share with the guest directly is the
MSR. The MSR contains the "interrupts enabled" flag which the guest has to
toggle in critical sections.
So in order to bring the overhead of interrupt en- and disabling down, let's
put msr into the shared page. Keep in mind that even though you can fully read
its contents, writing to it doesn't always update all state. There are a few
safe fields that don't require hypervisor interaction. See the documentation
for a list of MSR bits that are safe to be set from inside the guest.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
When a guest sets its SR entry to invalid, we may still find a
corresponding entry in a BAT. So we need to make sure we're not
faulting on invalid SR entries, but instead just claim them to be
BAT resolved.
This resolves breakage experienced when using libogc based guests.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
When in split mode, instruction relocation and data relocation are not equal.
So far we implemented this mode by reserving a special pseudo-VSID for the
two cases and flushing all PTEs when going into split mode, which is slow.
Unfortunately 32bit Linux and Mac OS X use split mode extensively. So to not
slow down things too much, I came up with a different idea: Mark the split
mode with a bit in the VSID and then treat it like any other segment.
This means we can just flush the shadow segment cache, but keep the PTEs
intact. I verified that this works with ppc32 Linux and Mac OS X 10.4
guests and does speed them up.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
There are some pieces in the code that I overlooked that still use
u64s instead of longs. This slows down 32 bit hosts unnecessarily, so
let's just move them to ulong.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
Some code we had so far required defines and had code that was completely
Book3S_64 specific. Since we now opened book3s.c to Book3S_32 too, we need
to take care of these pieces.
So let's add some minor code where it makes sense to not go the Book3S_64
code paths and add compat defines on others.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
This patch makes the VSID of mapped pages always reflecting all special cases
we have, like split mode.
It also changes the tlbie mask to 0x0ffff000 according to the spec. The mask
we used before was incorrect.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
There's a typo in the debug ifdef of the book3s_32 mmu emulation. While trying
to debug something I stumbled across that and wanted to save anyone after me
(or myself later) from having to debug that again.
So let's fix the ifdef.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
This patch adds an implementation for a G3/G4 MMU, so we can run G3 and
G4 guests in KVM on Book3s_64.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|