diff options
Diffstat (limited to 'net')
-rw-r--r-- | net/rds/ib_recv.c | 869 |
1 files changed, 869 insertions, 0 deletions
diff --git a/net/rds/ib_recv.c b/net/rds/ib_recv.c new file mode 100644 index 000000000000..5061b5502162 --- /dev/null +++ b/net/rds/ib_recv.c @@ -0,0 +1,869 @@ +/* + * Copyright (c) 2006 Oracle. All rights reserved. + * + * This software is available to you under a choice of one of two + * licenses. You may choose to be licensed under the terms of the GNU + * General Public License (GPL) Version 2, available from the file + * COPYING in the main directory of this source tree, or the + * OpenIB.org BSD license below: + * + * Redistribution and use in source and binary forms, with or + * without modification, are permitted provided that the following + * conditions are met: + * + * - Redistributions of source code must retain the above + * copyright notice, this list of conditions and the following + * disclaimer. + * + * - Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials + * provided with the distribution. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + * + */ +#include <linux/kernel.h> +#include <linux/pci.h> +#include <linux/dma-mapping.h> +#include <rdma/rdma_cm.h> + +#include "rds.h" +#include "ib.h" + +static struct kmem_cache *rds_ib_incoming_slab; +static struct kmem_cache *rds_ib_frag_slab; +static atomic_t rds_ib_allocation = ATOMIC_INIT(0); + +static void rds_ib_frag_drop_page(struct rds_page_frag *frag) +{ + rdsdebug("frag %p page %p\n", frag, frag->f_page); + __free_page(frag->f_page); + frag->f_page = NULL; +} + +static void rds_ib_frag_free(struct rds_page_frag *frag) +{ + rdsdebug("frag %p page %p\n", frag, frag->f_page); + BUG_ON(frag->f_page != NULL); + kmem_cache_free(rds_ib_frag_slab, frag); +} + +/* + * We map a page at a time. Its fragments are posted in order. This + * is called in fragment order as the fragments get send completion events. + * Only the last frag in the page performs the unmapping. + * + * It's OK for ring cleanup to call this in whatever order it likes because + * DMA is not in flight and so we can unmap while other ring entries still + * hold page references in their frags. + */ +static void rds_ib_recv_unmap_page(struct rds_ib_connection *ic, + struct rds_ib_recv_work *recv) +{ + struct rds_page_frag *frag = recv->r_frag; + + rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page); + if (frag->f_mapped) + ib_dma_unmap_page(ic->i_cm_id->device, + frag->f_mapped, + RDS_FRAG_SIZE, DMA_FROM_DEVICE); + frag->f_mapped = 0; +} + +void rds_ib_recv_init_ring(struct rds_ib_connection *ic) +{ + struct rds_ib_recv_work *recv; + u32 i; + + for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) { + struct ib_sge *sge; + + recv->r_ibinc = NULL; + recv->r_frag = NULL; + + recv->r_wr.next = NULL; + recv->r_wr.wr_id = i; + recv->r_wr.sg_list = recv->r_sge; + recv->r_wr.num_sge = RDS_IB_RECV_SGE; + + sge = rds_ib_data_sge(ic, recv->r_sge); + sge->addr = 0; + sge->length = RDS_FRAG_SIZE; + sge->lkey = ic->i_mr->lkey; + + sge = rds_ib_header_sge(ic, recv->r_sge); + sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header)); + sge->length = sizeof(struct rds_header); + sge->lkey = ic->i_mr->lkey; + } +} + +static void rds_ib_recv_clear_one(struct rds_ib_connection *ic, + struct rds_ib_recv_work *recv) +{ + if (recv->r_ibinc) { + rds_inc_put(&recv->r_ibinc->ii_inc); + recv->r_ibinc = NULL; + } + if (recv->r_frag) { + rds_ib_recv_unmap_page(ic, recv); + if (recv->r_frag->f_page) + rds_ib_frag_drop_page(recv->r_frag); + rds_ib_frag_free(recv->r_frag); + recv->r_frag = NULL; + } +} + +void rds_ib_recv_clear_ring(struct rds_ib_connection *ic) +{ + u32 i; + + for (i = 0; i < ic->i_recv_ring.w_nr; i++) + rds_ib_recv_clear_one(ic, &ic->i_recvs[i]); + + if (ic->i_frag.f_page) + rds_ib_frag_drop_page(&ic->i_frag); +} + +static int rds_ib_recv_refill_one(struct rds_connection *conn, + struct rds_ib_recv_work *recv, + gfp_t kptr_gfp, gfp_t page_gfp) +{ + struct rds_ib_connection *ic = conn->c_transport_data; + dma_addr_t dma_addr; + struct ib_sge *sge; + int ret = -ENOMEM; + + if (recv->r_ibinc == NULL) { + if (atomic_read(&rds_ib_allocation) >= rds_ib_sysctl_max_recv_allocation) { + rds_ib_stats_inc(s_ib_rx_alloc_limit); + goto out; + } + recv->r_ibinc = kmem_cache_alloc(rds_ib_incoming_slab, + kptr_gfp); + if (recv->r_ibinc == NULL) + goto out; + atomic_inc(&rds_ib_allocation); + INIT_LIST_HEAD(&recv->r_ibinc->ii_frags); + rds_inc_init(&recv->r_ibinc->ii_inc, conn, conn->c_faddr); + } + + if (recv->r_frag == NULL) { + recv->r_frag = kmem_cache_alloc(rds_ib_frag_slab, kptr_gfp); + if (recv->r_frag == NULL) + goto out; + INIT_LIST_HEAD(&recv->r_frag->f_item); + recv->r_frag->f_page = NULL; + } + + if (ic->i_frag.f_page == NULL) { + ic->i_frag.f_page = alloc_page(page_gfp); + if (ic->i_frag.f_page == NULL) + goto out; + ic->i_frag.f_offset = 0; + } + + dma_addr = ib_dma_map_page(ic->i_cm_id->device, + ic->i_frag.f_page, + ic->i_frag.f_offset, + RDS_FRAG_SIZE, + DMA_FROM_DEVICE); + if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr)) + goto out; + + /* + * Once we get the RDS_PAGE_LAST_OFF frag then rds_ib_frag_unmap() + * must be called on this recv. This happens as completions hit + * in order or on connection shutdown. + */ + recv->r_frag->f_page = ic->i_frag.f_page; + recv->r_frag->f_offset = ic->i_frag.f_offset; + recv->r_frag->f_mapped = dma_addr; + + sge = rds_ib_data_sge(ic, recv->r_sge); + sge->addr = dma_addr; + sge->length = RDS_FRAG_SIZE; + + sge = rds_ib_header_sge(ic, recv->r_sge); + sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header); + sge->length = sizeof(struct rds_header); + + get_page(recv->r_frag->f_page); + + if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) { + ic->i_frag.f_offset += RDS_FRAG_SIZE; + } else { + put_page(ic->i_frag.f_page); + ic->i_frag.f_page = NULL; + ic->i_frag.f_offset = 0; + } + + ret = 0; +out: + return ret; +} + +/* + * This tries to allocate and post unused work requests after making sure that + * they have all the allocations they need to queue received fragments into + * sockets. The i_recv_mutex is held here so that ring_alloc and _unalloc + * pairs don't go unmatched. + * + * -1 is returned if posting fails due to temporary resource exhaustion. + */ +int rds_ib_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp, + gfp_t page_gfp, int prefill) +{ + struct rds_ib_connection *ic = conn->c_transport_data; + struct rds_ib_recv_work *recv; + struct ib_recv_wr *failed_wr; + unsigned int posted = 0; + int ret = 0; + u32 pos; + + while ((prefill || rds_conn_up(conn)) + && rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) { + if (pos >= ic->i_recv_ring.w_nr) { + printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n", + pos); + ret = -EINVAL; + break; + } + + recv = &ic->i_recvs[pos]; + ret = rds_ib_recv_refill_one(conn, recv, kptr_gfp, page_gfp); + if (ret) { + ret = -1; + break; + } + + /* XXX when can this fail? */ + ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr); + rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv, + recv->r_ibinc, recv->r_frag->f_page, + (long) recv->r_frag->f_mapped, ret); + if (ret) { + rds_ib_conn_error(conn, "recv post on " + "%pI4 returned %d, disconnecting and " + "reconnecting\n", &conn->c_faddr, + ret); + ret = -1; + break; + } + + posted++; + } + + /* We're doing flow control - update the window. */ + if (ic->i_flowctl && posted) + rds_ib_advertise_credits(conn, posted); + + if (ret) + rds_ib_ring_unalloc(&ic->i_recv_ring, 1); + return ret; +} + +void rds_ib_inc_purge(struct rds_incoming *inc) +{ + struct rds_ib_incoming *ibinc; + struct rds_page_frag *frag; + struct rds_page_frag *pos; + + ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); + rdsdebug("purging ibinc %p inc %p\n", ibinc, inc); + + list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) { + list_del_init(&frag->f_item); + rds_ib_frag_drop_page(frag); + rds_ib_frag_free(frag); + } +} + +void rds_ib_inc_free(struct rds_incoming *inc) +{ + struct rds_ib_incoming *ibinc; + + ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); + + rds_ib_inc_purge(inc); + rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc); + BUG_ON(!list_empty(&ibinc->ii_frags)); + kmem_cache_free(rds_ib_incoming_slab, ibinc); + atomic_dec(&rds_ib_allocation); + BUG_ON(atomic_read(&rds_ib_allocation) < 0); +} + +int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov, + size_t size) +{ + struct rds_ib_incoming *ibinc; + struct rds_page_frag *frag; + struct iovec *iov = first_iov; + unsigned long to_copy; + unsigned long frag_off = 0; + unsigned long iov_off = 0; + int copied = 0; + int ret; + u32 len; + + ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); + frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); + len = be32_to_cpu(inc->i_hdr.h_len); + + while (copied < size && copied < len) { + if (frag_off == RDS_FRAG_SIZE) { + frag = list_entry(frag->f_item.next, + struct rds_page_frag, f_item); + frag_off = 0; + } + while (iov_off == iov->iov_len) { + iov_off = 0; + iov++; + } + + to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off); + to_copy = min_t(size_t, to_copy, size - copied); + to_copy = min_t(unsigned long, to_copy, len - copied); + + rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag " + "[%p, %lu] + %lu\n", + to_copy, iov->iov_base, iov->iov_len, iov_off, + frag->f_page, frag->f_offset, frag_off); + + /* XXX needs + offset for multiple recvs per page */ + ret = rds_page_copy_to_user(frag->f_page, + frag->f_offset + frag_off, + iov->iov_base + iov_off, + to_copy); + if (ret) { + copied = ret; + break; + } + + iov_off += to_copy; + frag_off += to_copy; + copied += to_copy; + } + + return copied; +} + +/* ic starts out kzalloc()ed */ +void rds_ib_recv_init_ack(struct rds_ib_connection *ic) +{ + struct ib_send_wr *wr = &ic->i_ack_wr; + struct ib_sge *sge = &ic->i_ack_sge; + + sge->addr = ic->i_ack_dma; + sge->length = sizeof(struct rds_header); + sge->lkey = ic->i_mr->lkey; + + wr->sg_list = sge; + wr->num_sge = 1; + wr->opcode = IB_WR_SEND; + wr->wr_id = RDS_IB_ACK_WR_ID; + wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED; +} + +/* + * You'd think that with reliable IB connections you wouldn't need to ack + * messages that have been received. The problem is that IB hardware generates + * an ack message before it has DMAed the message into memory. This creates a + * potential message loss if the HCA is disabled for any reason between when it + * sends the ack and before the message is DMAed and processed. This is only a + * potential issue if another HCA is available for fail-over. + * + * When the remote host receives our ack they'll free the sent message from + * their send queue. To decrease the latency of this we always send an ack + * immediately after we've received messages. + * + * For simplicity, we only have one ack in flight at a time. This puts + * pressure on senders to have deep enough send queues to absorb the latency of + * a single ack frame being in flight. This might not be good enough. + * + * This is implemented by have a long-lived send_wr and sge which point to a + * statically allocated ack frame. This ack wr does not fall under the ring + * accounting that the tx and rx wrs do. The QP attribute specifically makes + * room for it beyond the ring size. Send completion notices its special + * wr_id and avoids working with the ring in that case. + */ +static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, + int ack_required) +{ + rds_ib_set_64bit(&ic->i_ack_next, seq); + if (ack_required) { + smp_mb__before_clear_bit(); + set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); + } +} + +static u64 rds_ib_get_ack(struct rds_ib_connection *ic) +{ + clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); + smp_mb__after_clear_bit(); + + return ic->i_ack_next; +} + +static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits) +{ + struct rds_header *hdr = ic->i_ack; + struct ib_send_wr *failed_wr; + u64 seq; + int ret; + + seq = rds_ib_get_ack(ic); + + rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq); + rds_message_populate_header(hdr, 0, 0, 0); + hdr->h_ack = cpu_to_be64(seq); + hdr->h_credit = adv_credits; + rds_message_make_checksum(hdr); + ic->i_ack_queued = jiffies; + + ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr); + if (unlikely(ret)) { + /* Failed to send. Release the WR, and + * force another ACK. + */ + clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); + set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); + + rds_ib_stats_inc(s_ib_ack_send_failure); + /* Need to finesse this later. */ + BUG(); + } else + rds_ib_stats_inc(s_ib_ack_sent); +} + +/* + * There are 3 ways of getting acknowledgements to the peer: + * 1. We call rds_ib_attempt_ack from the recv completion handler + * to send an ACK-only frame. + * However, there can be only one such frame in the send queue + * at any time, so we may have to postpone it. + * 2. When another (data) packet is transmitted while there's + * an ACK in the queue, we piggyback the ACK sequence number + * on the data packet. + * 3. If the ACK WR is done sending, we get called from the + * send queue completion handler, and check whether there's + * another ACK pending (postponed because the WR was on the + * queue). If so, we transmit it. + * + * We maintain 2 variables: + * - i_ack_flags, which keeps track of whether the ACK WR + * is currently in the send queue or not (IB_ACK_IN_FLIGHT) + * - i_ack_next, which is the last sequence number we received + * + * Potentially, send queue and receive queue handlers can run concurrently. + * + * Reconnecting complicates this picture just slightly. When we + * reconnect, we may be seeing duplicate packets. The peer + * is retransmitting them, because it hasn't seen an ACK for + * them. It is important that we ACK these. + * + * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with + * this flag set *MUST* be acknowledged immediately. + */ + +/* + * When we get here, we're called from the recv queue handler. + * Check whether we ought to transmit an ACK. + */ +void rds_ib_attempt_ack(struct rds_ib_connection *ic) +{ + unsigned int adv_credits; + + if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) + return; + + if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) { + rds_ib_stats_inc(s_ib_ack_send_delayed); + return; + } + + /* Can we get a send credit? */ + if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0)) { + rds_ib_stats_inc(s_ib_tx_throttle); + clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); + return; + } + + clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); + rds_ib_send_ack(ic, adv_credits); +} + +/* + * We get here from the send completion handler, when the + * adapter tells us the ACK frame was sent. + */ +void rds_ib_ack_send_complete(struct rds_ib_connection *ic) +{ + clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); + rds_ib_attempt_ack(ic); +} + +/* + * This is called by the regular xmit code when it wants to piggyback + * an ACK on an outgoing frame. + */ +u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic) +{ + if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) + rds_ib_stats_inc(s_ib_ack_send_piggybacked); + return rds_ib_get_ack(ic); +} + +/* + * It's kind of lame that we're copying from the posted receive pages into + * long-lived bitmaps. We could have posted the bitmaps and rdma written into + * them. But receiving new congestion bitmaps should be a *rare* event, so + * hopefully we won't need to invest that complexity in making it more + * efficient. By copying we can share a simpler core with TCP which has to + * copy. + */ +static void rds_ib_cong_recv(struct rds_connection *conn, + struct rds_ib_incoming *ibinc) +{ + struct rds_cong_map *map; + unsigned int map_off; + unsigned int map_page; + struct rds_page_frag *frag; + unsigned long frag_off; + unsigned long to_copy; + unsigned long copied; + uint64_t uncongested = 0; + void *addr; + + /* catch completely corrupt packets */ + if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES) + return; + + map = conn->c_fcong; + map_page = 0; + map_off = 0; + + frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); + frag_off = 0; + + copied = 0; + + while (copied < RDS_CONG_MAP_BYTES) { + uint64_t *src, *dst; + unsigned int k; + + to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off); + BUG_ON(to_copy & 7); /* Must be 64bit aligned. */ + + addr = kmap_atomic(frag->f_page, KM_SOFTIRQ0); + + src = addr + frag_off; + dst = (void *)map->m_page_addrs[map_page] + map_off; + for (k = 0; k < to_copy; k += 8) { + /* Record ports that became uncongested, ie + * bits that changed from 0 to 1. */ + uncongested |= ~(*src) & *dst; + *dst++ = *src++; + } + kunmap_atomic(addr, KM_SOFTIRQ0); + + copied += to_copy; + + map_off += to_copy; + if (map_off == PAGE_SIZE) { + map_off = 0; + map_page++; + } + + frag_off += to_copy; + if (frag_off == RDS_FRAG_SIZE) { + frag = list_entry(frag->f_item.next, + struct rds_page_frag, f_item); + frag_off = 0; + } + } + + /* the congestion map is in little endian order */ + uncongested = le64_to_cpu(uncongested); + + rds_cong_map_updated(map, uncongested); +} + +/* + * Rings are posted with all the allocations they'll need to queue the + * incoming message to the receiving socket so this can't fail. + * All fragments start with a header, so we can make sure we're not receiving + * garbage, and we can tell a small 8 byte fragment from an ACK frame. + */ +struct rds_ib_ack_state { + u64 ack_next; + u64 ack_recv; + unsigned int ack_required:1; + unsigned int ack_next_valid:1; + unsigned int ack_recv_valid:1; +}; + +static void rds_ib_process_recv(struct rds_connection *conn, + struct rds_ib_recv_work *recv, u32 byte_len, + struct rds_ib_ack_state *state) +{ + struct rds_ib_connection *ic = conn->c_transport_data; + struct rds_ib_incoming *ibinc = ic->i_ibinc; + struct rds_header *ihdr, *hdr; + + /* XXX shut down the connection if port 0,0 are seen? */ + + rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv, + byte_len); + + if (byte_len < sizeof(struct rds_header)) { + rds_ib_conn_error(conn, "incoming message " + "from %pI4 didn't inclue a " + "header, disconnecting and " + "reconnecting\n", + &conn->c_faddr); + return; + } + byte_len -= sizeof(struct rds_header); + + ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs]; + + /* Validate the checksum. */ + if (!rds_message_verify_checksum(ihdr)) { + rds_ib_conn_error(conn, "incoming message " + "from %pI4 has corrupted header - " + "forcing a reconnect\n", + &conn->c_faddr); + rds_stats_inc(s_recv_drop_bad_checksum); + return; + } + + /* Process the ACK sequence which comes with every packet */ + state->ack_recv = be64_to_cpu(ihdr->h_ack); + state->ack_recv_valid = 1; + + /* Process the credits update if there was one */ + if (ihdr->h_credit) + rds_ib_send_add_credits(conn, ihdr->h_credit); + + if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && byte_len == 0) { + /* This is an ACK-only packet. The fact that it gets + * special treatment here is that historically, ACKs + * were rather special beasts. + */ + rds_ib_stats_inc(s_ib_ack_received); + + /* + * Usually the frags make their way on to incs and are then freed as + * the inc is freed. We don't go that route, so we have to drop the + * page ref ourselves. We can't just leave the page on the recv + * because that confuses the dma mapping of pages and each recv's use + * of a partial page. We can leave the frag, though, it will be + * reused. + * + * FIXME: Fold this into the code path below. + */ + rds_ib_frag_drop_page(recv->r_frag); + return; + } + + /* + * If we don't already have an inc on the connection then this + * fragment has a header and starts a message.. copy its header + * into the inc and save the inc so we can hang upcoming fragments + * off its list. + */ + if (ibinc == NULL) { + ibinc = recv->r_ibinc; + recv->r_ibinc = NULL; + ic->i_ibinc = ibinc; + + hdr = &ibinc->ii_inc.i_hdr; + memcpy(hdr, ihdr, sizeof(*hdr)); + ic->i_recv_data_rem = be32_to_cpu(hdr->h_len); + + rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc, + ic->i_recv_data_rem, hdr->h_flags); + } else { + hdr = &ibinc->ii_inc.i_hdr; + /* We can't just use memcmp here; fragments of a + * single message may carry different ACKs */ + if (hdr->h_sequence != ihdr->h_sequence + || hdr->h_len != ihdr->h_len + || hdr->h_sport != ihdr->h_sport + || hdr->h_dport != ihdr->h_dport) { + rds_ib_conn_error(conn, + "fragment header mismatch; forcing reconnect\n"); + return; + } + } + + list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags); + recv->r_frag = NULL; + + if (ic->i_recv_data_rem > RDS_FRAG_SIZE) + ic->i_recv_data_rem -= RDS_FRAG_SIZE; + else { + ic->i_recv_data_rem = 0; + ic->i_ibinc = NULL; + + if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) + rds_ib_cong_recv(conn, ibinc); + else { + rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr, + &ibinc->ii_inc, GFP_ATOMIC, + KM_SOFTIRQ0); + state->ack_next = be64_to_cpu(hdr->h_sequence); + state->ack_next_valid = 1; + } + + /* Evaluate the ACK_REQUIRED flag *after* we received + * the complete frame, and after bumping the next_rx + * sequence. */ + if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) { + rds_stats_inc(s_recv_ack_required); + state->ack_required = 1; + } + + rds_inc_put(&ibinc->ii_inc); + } +} + +/* + * Plucking the oldest entry from the ring can be done concurrently with + * the thread refilling the ring. Each ring operation is protected by + * spinlocks and the transient state of refilling doesn't change the + * recording of which entry is oldest. + * + * This relies on IB only calling one cq comp_handler for each cq so that + * there will only be one caller of rds_recv_incoming() per RDS connection. + */ +void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context) +{ + struct rds_connection *conn = context; + struct rds_ib_connection *ic = conn->c_transport_data; + struct ib_wc wc; + struct rds_ib_ack_state state = { 0, }; + struct rds_ib_recv_work *recv; + + rdsdebug("conn %p cq %p\n", conn, cq); + + rds_ib_stats_inc(s_ib_rx_cq_call); + + ib_req_notify_cq(cq, IB_CQ_SOLICITED); + + while (ib_poll_cq(cq, 1, &wc) > 0) { + rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", + (unsigned long long)wc.wr_id, wc.status, wc.byte_len, + be32_to_cpu(wc.ex.imm_data)); + rds_ib_stats_inc(s_ib_rx_cq_event); + + recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)]; + + rds_ib_recv_unmap_page(ic, recv); + + /* + * Also process recvs in connecting state because it is possible + * to get a recv completion _before_ the rdmacm ESTABLISHED + * event is processed. + */ + if (rds_conn_up(conn) || rds_conn_connecting(conn)) { + /* We expect errors as the qp is drained during shutdown */ + if (wc.status == IB_WC_SUCCESS) { + rds_ib_process_recv(conn, recv, wc.byte_len, &state); + } else { + rds_ib_conn_error(conn, "recv completion on " + "%pI4 had status %u, disconnecting and " + "reconnecting\n", &conn->c_faddr, + wc.status); + } + } + + rds_ib_ring_free(&ic->i_recv_ring, 1); + } + + if (state.ack_next_valid) + rds_ib_set_ack(ic, state.ack_next, state.ack_required); + if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) { + rds_send_drop_acked(conn, state.ack_recv, NULL); + ic->i_ack_recv = state.ack_recv; + } + if (rds_conn_up(conn)) + rds_ib_attempt_ack(ic); + + /* If we ever end up with a really empty receive ring, we're + * in deep trouble, as the sender will definitely see RNR + * timeouts. */ + if (rds_ib_ring_empty(&ic->i_recv_ring)) + rds_ib_stats_inc(s_ib_rx_ring_empty); + + /* + * If the ring is running low, then schedule the thread to refill. + */ + if (rds_ib_ring_low(&ic->i_recv_ring)) + queue_delayed_work(rds_wq, &conn->c_recv_w, 0); +} + +int rds_ib_recv(struct rds_connection *conn) +{ + struct rds_ib_connection *ic = conn->c_transport_data; + int ret = 0; + + rdsdebug("conn %p\n", conn); + + /* + * If we get a temporary posting failure in this context then + * we're really low and we want the caller to back off for a bit. + */ + mutex_lock(&ic->i_recv_mutex); + if (rds_ib_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0)) + ret = -ENOMEM; + else + rds_ib_stats_inc(s_ib_rx_refill_from_thread); + mutex_unlock(&ic->i_recv_mutex); + + if (rds_conn_up(conn)) + rds_ib_attempt_ack(ic); + + return ret; +} + +int __init rds_ib_recv_init(void) +{ + struct sysinfo si; + int ret = -ENOMEM; + + /* Default to 30% of all available RAM for recv memory */ + si_meminfo(&si); + rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE; + + rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming", + sizeof(struct rds_ib_incoming), + 0, 0, NULL); + if (rds_ib_incoming_slab == NULL) + goto out; + + rds_ib_frag_slab = kmem_cache_create("rds_ib_frag", + sizeof(struct rds_page_frag), + 0, 0, NULL); + if (rds_ib_frag_slab == NULL) + kmem_cache_destroy(rds_ib_incoming_slab); + else + ret = 0; +out: + return ret; +} + +void rds_ib_recv_exit(void) +{ + kmem_cache_destroy(rds_ib_incoming_slab); + kmem_cache_destroy(rds_ib_frag_slab); +} |