summaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
Diffstat (limited to 'mm')
-rw-r--r--mm/Kconfig18
-rw-r--r--mm/Makefile3
-rw-r--r--mm/backing-dev.c47
-rw-r--r--mm/bounce.c6
-rw-r--r--mm/filemap.c781
-rw-r--r--mm/filemap.h103
-rw-r--r--mm/filemap_xip.c17
-rw-r--r--mm/fremap.c26
-rw-r--r--mm/hugetlb.c398
-rw-r--r--mm/internal.h10
-rw-r--r--mm/memory.c161
-rw-r--r--mm/memory_hotplug.c312
-rw-r--r--mm/mempolicy.c60
-rw-r--r--mm/migrate.c6
-rw-r--r--mm/mmap.c3
-rw-r--r--mm/mprotect.c1
-rw-r--r--mm/nommu.c1
-rw-r--r--mm/oom_kill.c116
-rw-r--r--mm/page-writeback.c310
-rw-r--r--mm/page_alloc.c754
-rw-r--r--mm/page_isolation.c138
-rw-r--r--mm/readahead.c94
-rw-r--r--mm/rmap.c5
-rw-r--r--mm/shmem.c82
-rw-r--r--mm/slab.c35
-rw-r--r--mm/slob.c13
-rw-r--r--mm/slub.c520
-rw-r--r--mm/sparse-vmemmap.c148
-rw-r--r--mm/sparse.c105
-rw-r--r--mm/swap.c111
-rw-r--r--mm/swap_state.c5
-rw-r--r--mm/tiny-shmem.c19
-rw-r--r--mm/truncate.c3
-rw-r--r--mm/util.c6
-rw-r--r--mm/vmalloc.c5
-rw-r--r--mm/vmscan.c99
-rw-r--r--mm/vmstat.c305
37 files changed, 3561 insertions, 1265 deletions
diff --git a/mm/Kconfig b/mm/Kconfig
index e24d348083c3..b1f03b0eb7f1 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -112,6 +112,19 @@ config SPARSEMEM_EXTREME
def_bool y
depends on SPARSEMEM && !SPARSEMEM_STATIC
+#
+# SPARSEMEM_VMEMMAP uses a virtually mapped mem_map to optimise pfn_to_page
+# and page_to_pfn. The most efficient option where kernel virtual space is
+# not under pressure.
+#
+config SPARSEMEM_VMEMMAP_ENABLE
+ def_bool n
+
+config SPARSEMEM_VMEMMAP
+ bool
+ depends on SPARSEMEM
+ default y if (SPARSEMEM_VMEMMAP_ENABLE)
+
# eventually, we can have this option just 'select SPARSEMEM'
config MEMORY_HOTPLUG
bool "Allow for memory hot-add"
@@ -126,6 +139,11 @@ config MEMORY_HOTPLUG_SPARSE
def_bool y
depends on SPARSEMEM && MEMORY_HOTPLUG
+config MEMORY_HOTREMOVE
+ bool "Allow for memory hot remove"
+ depends on MEMORY_HOTPLUG && ARCH_ENABLE_MEMORY_HOTREMOVE
+ depends on MIGRATION
+
# Heavily threaded applications may benefit from splitting the mm-wide
# page_table_lock, so that faults on different parts of the user address
# space can be handled with less contention: split it at this NR_CPUS.
diff --git a/mm/Makefile b/mm/Makefile
index 245e33ab00c4..5c0b0ea7572d 100644
--- a/mm/Makefile
+++ b/mm/Makefile
@@ -11,13 +11,14 @@ obj-y := bootmem.o filemap.o mempool.o oom_kill.o fadvise.o \
page_alloc.o page-writeback.o pdflush.o \
readahead.o swap.o truncate.o vmscan.o \
prio_tree.o util.o mmzone.o vmstat.o backing-dev.o \
- $(mmu-y)
+ page_isolation.o $(mmu-y)
obj-$(CONFIG_BOUNCE) += bounce.o
obj-$(CONFIG_SWAP) += page_io.o swap_state.o swapfile.o thrash.o
obj-$(CONFIG_HUGETLBFS) += hugetlb.o
obj-$(CONFIG_NUMA) += mempolicy.o
obj-$(CONFIG_SPARSEMEM) += sparse.o
+obj-$(CONFIG_SPARSEMEM_VMEMMAP) += sparse-vmemmap.o
obj-$(CONFIG_SHMEM) += shmem.o
obj-$(CONFIG_TMPFS_POSIX_ACL) += shmem_acl.o
obj-$(CONFIG_TINY_SHMEM) += tiny-shmem.o
diff --git a/mm/backing-dev.c b/mm/backing-dev.c
index f50a2811f9dc..b0ceb29da4c7 100644
--- a/mm/backing-dev.c
+++ b/mm/backing-dev.c
@@ -5,6 +5,41 @@
#include <linux/sched.h>
#include <linux/module.h>
+int bdi_init(struct backing_dev_info *bdi)
+{
+ int i, j;
+ int err;
+
+ for (i = 0; i < NR_BDI_STAT_ITEMS; i++) {
+ err = percpu_counter_init_irq(&bdi->bdi_stat[i], 0);
+ if (err)
+ goto err;
+ }
+
+ bdi->dirty_exceeded = 0;
+ err = prop_local_init_percpu(&bdi->completions);
+
+ if (err) {
+err:
+ for (j = 0; j < i; j++)
+ percpu_counter_destroy(&bdi->bdi_stat[i]);
+ }
+
+ return err;
+}
+EXPORT_SYMBOL(bdi_init);
+
+void bdi_destroy(struct backing_dev_info *bdi)
+{
+ int i;
+
+ for (i = 0; i < NR_BDI_STAT_ITEMS; i++)
+ percpu_counter_destroy(&bdi->bdi_stat[i]);
+
+ prop_local_destroy_percpu(&bdi->completions);
+}
+EXPORT_SYMBOL(bdi_destroy);
+
static wait_queue_head_t congestion_wqh[2] = {
__WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
__WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
@@ -55,15 +90,3 @@ long congestion_wait(int rw, long timeout)
}
EXPORT_SYMBOL(congestion_wait);
-/**
- * congestion_end - wake up sleepers on a congested backing_dev_info
- * @rw: READ or WRITE
- */
-void congestion_end(int rw)
-{
- wait_queue_head_t *wqh = &congestion_wqh[rw];
-
- if (waitqueue_active(wqh))
- wake_up(wqh);
-}
-EXPORT_SYMBOL(congestion_end);
diff --git a/mm/bounce.c b/mm/bounce.c
index 3b549bf31f7d..b6d2d0f1019b 100644
--- a/mm/bounce.c
+++ b/mm/bounce.c
@@ -265,6 +265,12 @@ void blk_queue_bounce(struct request_queue *q, struct bio **bio_orig)
mempool_t *pool;
/*
+ * Data-less bio, nothing to bounce
+ */
+ if (bio_empty_barrier(*bio_orig))
+ return;
+
+ /*
* for non-isa bounce case, just check if the bounce pfn is equal
* to or bigger than the highest pfn in the system -- in that case,
* don't waste time iterating over bio segments
diff --git a/mm/filemap.c b/mm/filemap.c
index 15c8413ee929..79f24a969cb4 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -30,7 +30,7 @@
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/cpuset.h>
-#include "filemap.h"
+#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
#include "internal.h"
/*
@@ -63,6 +63,7 @@ generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
* ->private_lock (__free_pte->__set_page_dirty_buffers)
* ->swap_lock (exclusive_swap_page, others)
* ->mapping->tree_lock
+ * ->zone.lock
*
* ->i_mutex
* ->i_mmap_lock (truncate->unmap_mapping_range)
@@ -593,7 +594,7 @@ void fastcall __lock_page_nosync(struct page *page)
* Is there a pagecache struct page at the given (mapping, offset) tuple?
* If yes, increment its refcount and return it; if no, return NULL.
*/
-struct page * find_get_page(struct address_space *mapping, unsigned long offset)
+struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
{
struct page *page;
@@ -617,30 +618,31 @@ EXPORT_SYMBOL(find_get_page);
* Returns zero if the page was not present. find_lock_page() may sleep.
*/
struct page *find_lock_page(struct address_space *mapping,
- unsigned long offset)
+ pgoff_t offset)
{
struct page *page;
- read_lock_irq(&mapping->tree_lock);
repeat:
+ read_lock_irq(&mapping->tree_lock);
page = radix_tree_lookup(&mapping->page_tree, offset);
if (page) {
page_cache_get(page);
if (TestSetPageLocked(page)) {
read_unlock_irq(&mapping->tree_lock);
__lock_page(page);
- read_lock_irq(&mapping->tree_lock);
/* Has the page been truncated while we slept? */
- if (unlikely(page->mapping != mapping ||
- page->index != offset)) {
+ if (unlikely(page->mapping != mapping)) {
unlock_page(page);
page_cache_release(page);
goto repeat;
}
+ VM_BUG_ON(page->index != offset);
+ goto out;
}
}
read_unlock_irq(&mapping->tree_lock);
+out:
return page;
}
EXPORT_SYMBOL(find_lock_page);
@@ -663,29 +665,24 @@ EXPORT_SYMBOL(find_lock_page);
* memory exhaustion.
*/
struct page *find_or_create_page(struct address_space *mapping,
- unsigned long index, gfp_t gfp_mask)
+ pgoff_t index, gfp_t gfp_mask)
{
- struct page *page, *cached_page = NULL;
+ struct page *page;
int err;
repeat:
page = find_lock_page(mapping, index);
if (!page) {
- if (!cached_page) {
- cached_page =
- __page_cache_alloc(gfp_mask);
- if (!cached_page)
- return NULL;
+ page = __page_cache_alloc(gfp_mask);
+ if (!page)
+ return NULL;
+ err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
+ if (unlikely(err)) {
+ page_cache_release(page);
+ page = NULL;
+ if (err == -EEXIST)
+ goto repeat;
}
- err = add_to_page_cache_lru(cached_page, mapping,
- index, gfp_mask);
- if (!err) {
- page = cached_page;
- cached_page = NULL;
- } else if (err == -EEXIST)
- goto repeat;
}
- if (cached_page)
- page_cache_release(cached_page);
return page;
}
EXPORT_SYMBOL(find_or_create_page);
@@ -797,7 +794,7 @@ EXPORT_SYMBOL(find_get_pages_tag);
* and deadlock against the caller's locked page.
*/
struct page *
-grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
+grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
{
struct page *page = find_get_page(mapping, index);
@@ -859,34 +856,29 @@ static void shrink_readahead_size_eio(struct file *filp,
* It may be NULL.
*/
void do_generic_mapping_read(struct address_space *mapping,
- struct file_ra_state *_ra,
+ struct file_ra_state *ra,
struct file *filp,
loff_t *ppos,
read_descriptor_t *desc,
read_actor_t actor)
{
struct inode *inode = mapping->host;
- unsigned long index;
- unsigned long offset;
- unsigned long last_index;
- unsigned long next_index;
- unsigned long prev_index;
+ pgoff_t index;
+ pgoff_t last_index;
+ pgoff_t prev_index;
+ unsigned long offset; /* offset into pagecache page */
unsigned int prev_offset;
- struct page *cached_page;
int error;
- struct file_ra_state ra = *_ra;
- cached_page = NULL;
index = *ppos >> PAGE_CACHE_SHIFT;
- next_index = index;
- prev_index = ra.prev_index;
- prev_offset = ra.prev_offset;
+ prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
+ prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
offset = *ppos & ~PAGE_CACHE_MASK;
for (;;) {
struct page *page;
- unsigned long end_index;
+ pgoff_t end_index;
loff_t isize;
unsigned long nr, ret;
@@ -895,7 +887,7 @@ find_page:
page = find_get_page(mapping, index);
if (!page) {
page_cache_sync_readahead(mapping,
- &ra, filp,
+ ra, filp,
index, last_index - index);
page = find_get_page(mapping, index);
if (unlikely(page == NULL))
@@ -903,7 +895,7 @@ find_page:
}
if (PageReadahead(page)) {
page_cache_async_readahead(mapping,
- &ra, filp, page,
+ ra, filp, page,
index, last_index - index);
}
if (!PageUptodate(page))
@@ -966,7 +958,6 @@ page_ok:
index += offset >> PAGE_CACHE_SHIFT;
offset &= ~PAGE_CACHE_MASK;
prev_offset = offset;
- ra.prev_offset = offset;
page_cache_release(page);
if (ret == nr && desc->count)
@@ -1015,7 +1006,7 @@ readpage:
}
unlock_page(page);
error = -EIO;
- shrink_readahead_size_eio(filp, &ra);
+ shrink_readahead_size_eio(filp, ra);
goto readpage_error;
}
unlock_page(page);
@@ -1034,33 +1025,29 @@ no_cached_page:
* Ok, it wasn't cached, so we need to create a new
* page..
*/
- if (!cached_page) {
- cached_page = page_cache_alloc_cold(mapping);
- if (!cached_page) {
- desc->error = -ENOMEM;
- goto out;
- }
+ page = page_cache_alloc_cold(mapping);
+ if (!page) {
+ desc->error = -ENOMEM;
+ goto out;
}
- error = add_to_page_cache_lru(cached_page, mapping,
+ error = add_to_page_cache_lru(page, mapping,
index, GFP_KERNEL);
if (error) {
+ page_cache_release(page);
if (error == -EEXIST)
goto find_page;
desc->error = error;
goto out;
}
- page = cached_page;
- cached_page = NULL;
goto readpage;
}
out:
- *_ra = ra;
- _ra->prev_index = prev_index;
+ ra->prev_pos = prev_index;
+ ra->prev_pos <<= PAGE_CACHE_SHIFT;
+ ra->prev_pos |= prev_offset;
- *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
- if (cached_page)
- page_cache_release(cached_page);
+ *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
if (filp)
file_accessed(filp);
}
@@ -1220,7 +1207,7 @@ EXPORT_SYMBOL(generic_file_aio_read);
static ssize_t
do_readahead(struct address_space *mapping, struct file *filp,
- unsigned long index, unsigned long nr)
+ pgoff_t index, unsigned long nr)
{
if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
return -EINVAL;
@@ -1240,8 +1227,8 @@ asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
if (file) {
if (file->f_mode & FMODE_READ) {
struct address_space *mapping = file->f_mapping;
- unsigned long start = offset >> PAGE_CACHE_SHIFT;
- unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
+ pgoff_t start = offset >> PAGE_CACHE_SHIFT;
+ pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
unsigned long len = end - start + 1;
ret = do_readahead(mapping, file, start, len);
}
@@ -1251,7 +1238,6 @@ asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
}
#ifdef CONFIG_MMU
-static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
/**
* page_cache_read - adds requested page to the page cache if not already there
* @file: file to read
@@ -1260,7 +1246,7 @@ static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
* This adds the requested page to the page cache if it isn't already there,
* and schedules an I/O to read in its contents from disk.
*/
-static int fastcall page_cache_read(struct file * file, unsigned long offset)
+static int fastcall page_cache_read(struct file * file, pgoff_t offset)
{
struct address_space *mapping = file->f_mapping;
struct page *page;
@@ -1349,7 +1335,7 @@ retry_find:
* Do we miss much more than hit in this file? If so,
* stop bothering with read-ahead. It will only hurt.
*/
- if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
+ if (ra->mmap_miss > MMAP_LOTSAMISS)
goto no_cached_page;
/*
@@ -1375,7 +1361,7 @@ retry_find:
}
if (!did_readaround)
- ra->mmap_hit++;
+ ra->mmap_miss--;
/*
* We have a locked page in the page cache, now we need to check
@@ -1396,7 +1382,7 @@ retry_find:
* Found the page and have a reference on it.
*/
mark_page_accessed(page);
- ra->prev_index = page->index;
+ ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
vmf->page = page;
return ret | VM_FAULT_LOCKED;
@@ -1501,39 +1487,32 @@ EXPORT_SYMBOL(generic_file_mmap);
EXPORT_SYMBOL(generic_file_readonly_mmap);
static struct page *__read_cache_page(struct address_space *mapping,
- unsigned long index,
+ pgoff_t index,
int (*filler)(void *,struct page*),
void *data)
{
- struct page *page, *cached_page = NULL;
+ struct page *page;
int err;
repeat:
page = find_get_page(mapping, index);
if (!page) {
- if (!cached_page) {
- cached_page = page_cache_alloc_cold(mapping);
- if (!cached_page)
- return ERR_PTR(-ENOMEM);
- }
- err = add_to_page_cache_lru(cached_page, mapping,
- index, GFP_KERNEL);
- if (err == -EEXIST)
- goto repeat;
- if (err < 0) {
+ page = page_cache_alloc_cold(mapping);
+ if (!page)
+ return ERR_PTR(-ENOMEM);
+ err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
+ if (unlikely(err)) {
+ page_cache_release(page);
+ if (err == -EEXIST)
+ goto repeat;
/* Presumably ENOMEM for radix tree node */
- page_cache_release(cached_page);
return ERR_PTR(err);
}
- page = cached_page;
- cached_page = NULL;
err = filler(data, page);
if (err < 0) {
page_cache_release(page);
page = ERR_PTR(err);
}
}
- if (cached_page)
- page_cache_release(cached_page);
return page;
}
@@ -1542,7 +1521,7 @@ repeat:
* after submitting it to the filler.
*/
struct page *read_cache_page_async(struct address_space *mapping,
- unsigned long index,
+ pgoff_t index,
int (*filler)(void *,struct page*),
void *data)
{
@@ -1590,7 +1569,7 @@ EXPORT_SYMBOL(read_cache_page_async);
* If the page does not get brought uptodate, return -EIO.
*/
struct page *read_cache_page(struct address_space *mapping,
- unsigned long index,
+ pgoff_t index,
int (*filler)(void *,struct page*),
void *data)
{
@@ -1610,40 +1589,6 @@ struct page *read_cache_page(struct address_space *mapping,
EXPORT_SYMBOL(read_cache_page);
/*
- * If the page was newly created, increment its refcount and add it to the
- * caller's lru-buffering pagevec. This function is specifically for
- * generic_file_write().
- */
-static inline struct page *
-__grab_cache_page(struct address_space *mapping, unsigned long index,
- struct page **cached_page, struct pagevec *lru_pvec)
-{
- int err;
- struct page *page;
-repeat:
- page = find_lock_page(mapping, index);
- if (!page) {
- if (!*cached_page) {
- *cached_page = page_cache_alloc(mapping);
- if (!*cached_page)
- return NULL;
- }
- err = add_to_page_cache(*cached_page, mapping,
- index, GFP_KERNEL);
- if (err == -EEXIST)
- goto repeat;
- if (err == 0) {
- page = *cached_page;
- page_cache_get(page);
- if (!pagevec_add(lru_pvec, page))
- __pagevec_lru_add(lru_pvec);
- *cached_page = NULL;
- }
- }
- return page;
-}
-
-/*
* The logic we want is
*
* if suid or (sgid and xgrp)
@@ -1682,17 +1627,22 @@ int __remove_suid(struct dentry *dentry, int kill)
int remove_suid(struct dentry *dentry)
{
- int kill = should_remove_suid(dentry);
+ int killsuid = should_remove_suid(dentry);
+ int killpriv = security_inode_need_killpriv(dentry);
+ int error = 0;
- if (unlikely(kill))
- return __remove_suid(dentry, kill);
+ if (killpriv < 0)
+ return killpriv;
+ if (killpriv)
+ error = security_inode_killpriv(dentry);
+ if (!error && killsuid)
+ error = __remove_suid(dentry, killsuid);
- return 0;
+ return error;
}
EXPORT_SYMBOL(remove_suid);
-size_t
-__filemap_copy_from_user_iovec_inatomic(char *vaddr,
+static size_t __iovec_copy_from_user_inatomic(char *vaddr,
const struct iovec *iov, size_t base, size_t bytes)
{
size_t copied = 0, left = 0;
@@ -1715,6 +1665,124 @@ __filemap_copy_from_user_iovec_inatomic(char *vaddr,
}
/*
+ * Copy as much as we can into the page and return the number of bytes which
+ * were sucessfully copied. If a fault is encountered then return the number of
+ * bytes which were copied.
+ */
+size_t iov_iter_copy_from_user_atomic(struct page *page,
+ struct iov_iter *i, unsigned long offset, size_t bytes)
+{
+ char *kaddr;
+ size_t copied;
+
+ BUG_ON(!in_atomic());
+ kaddr = kmap_atomic(page, KM_USER0);
+ if (likely(i->nr_segs == 1)) {
+ int left;
+ char __user *buf = i->iov->iov_base + i->iov_offset;
+ left = __copy_from_user_inatomic_nocache(kaddr + offset,
+ buf, bytes);
+ copied = bytes - left;
+ } else {
+ copied = __iovec_copy_from_user_inatomic(kaddr + offset,
+ i->iov, i->iov_offset, bytes);
+ }
+ kunmap_atomic(kaddr, KM_USER0);
+
+ return copied;
+}
+EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
+
+/*
+ * This has the same sideeffects and return value as
+ * iov_iter_copy_from_user_atomic().
+ * The difference is that it attempts to resolve faults.
+ * Page must not be locked.
+ */
+size_t iov_iter_copy_from_user(struct page *page,
+ struct iov_iter *i, unsigned long offset, size_t bytes)
+{
+ char *kaddr;
+ size_t copied;
+
+ kaddr = kmap(page);
+ if (likely(i->nr_segs == 1)) {
+ int left;
+ char __user *buf = i->iov->iov_base + i->iov_offset;
+ left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
+ copied = bytes - left;
+ } else {
+ copied = __iovec_copy_from_user_inatomic(kaddr + offset,
+ i->iov, i->iov_offset, bytes);
+ }
+ kunmap(page);
+ return copied;
+}
+EXPORT_SYMBOL(iov_iter_copy_from_user);
+
+static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
+{
+ if (likely(i->nr_segs == 1)) {
+ i->iov_offset += bytes;
+ } else {
+ const struct iovec *iov = i->iov;
+ size_t base = i->iov_offset;
+
+ while (bytes) {
+ int copy = min(bytes, iov->iov_len - base);
+
+ bytes -= copy;
+ base += copy;
+ if (iov->iov_len == base) {
+ iov++;
+ base = 0;
+ }
+ }
+ i->iov = iov;
+ i->iov_offset = base;
+ }
+}
+
+void iov_iter_advance(struct iov_iter *i, size_t bytes)
+{
+ BUG_ON(i->count < bytes);
+
+ __iov_iter_advance_iov(i, bytes);
+ i->count -= bytes;
+}
+EXPORT_SYMBOL(iov_iter_advance);
+
+/*
+ * Fault in the first iovec of the given iov_iter, to a maximum length
+ * of bytes. Returns 0 on success, or non-zero if the memory could not be
+ * accessed (ie. because it is an invalid address).
+ *
+ * writev-intensive code may want this to prefault several iovecs -- that
+ * would be possible (callers must not rely on the fact that _only_ the
+ * first iovec will be faulted with the current implementation).
+ */
+int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
+{
+ char __user *buf = i->iov->iov_base + i->iov_offset;
+ bytes = min(bytes, i->iov->iov_len - i->iov_offset);
+ return fault_in_pages_readable(buf, bytes);
+}
+EXPORT_SYMBOL(iov_iter_fault_in_readable);
+
+/*
+ * Return the count of just the current iov_iter segment.
+ */
+size_t iov_iter_single_seg_count(struct iov_iter *i)
+{
+ const struct iovec *iov = i->iov;
+ if (i->nr_segs == 1)
+ return i->count;
+ else
+ return min(i->count, iov->iov_len - i->iov_offset);
+}
+EXPORT_SYMBOL(iov_iter_single_seg_count);
+
+/*
* Performs necessary checks before doing a write
*
* Can adjust writing position or amount of bytes to write.
@@ -1796,6 +1864,91 @@ inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, i
}
EXPORT_SYMBOL(generic_write_checks);
+int pagecache_write_begin(struct file *file, struct address_space *mapping,
+ loff_t pos, unsigned len, unsigned flags,
+ struct page **pagep, void **fsdata)
+{
+ const struct address_space_operations *aops = mapping->a_ops;
+
+ if (aops->write_begin) {
+ return aops->write_begin(file, mapping, pos, len, flags,
+ pagep, fsdata);
+ } else {
+ int ret;
+ pgoff_t index = pos >> PAGE_CACHE_SHIFT;
+ unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
+ struct inode *inode = mapping->host;
+ struct page *page;
+again:
+ page = __grab_cache_page(mapping, index);
+ *pagep = page;
+ if (!page)
+ return -ENOMEM;
+
+ if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
+ /*
+ * There is no way to resolve a short write situation
+ * for a !Uptodate page (except by double copying in
+ * the caller done by generic_perform_write_2copy).
+ *
+ * Instead, we have to bring it uptodate here.
+ */
+ ret = aops->readpage(file, page);
+ page_cache_release(page);
+ if (ret) {
+ if (ret == AOP_TRUNCATED_PAGE)
+ goto again;
+ return ret;
+ }
+ goto again;
+ }
+
+ ret = aops->prepare_write(file, page, offset, offset+len);
+ if (ret) {
+ unlock_page(page);
+ page_cache_release(page);
+ if (pos + len > inode->i_size)
+ vmtruncate(inode, inode->i_size);
+ }
+ return ret;
+ }
+}
+EXPORT_SYMBOL(pagecache_write_begin);
+
+int pagecache_write_end(struct file *file, struct address_space *mapping,
+ loff_t pos, unsigned len, unsigned copied,
+ struct page *page, void *fsdata)
+{
+ const struct address_space_operations *aops = mapping->a_ops;
+ int ret;
+
+ if (aops->write_end) {
+ mark_page_accessed(page);
+ ret = aops->write_end(file, mapping, pos, len, copied,
+ page, fsdata);
+ } else {
+ unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
+ struct inode *inode = mapping->host;
+
+ flush_dcache_page(page);
+ ret = aops->commit_write(file, page, offset, offset+len);
+ unlock_page(page);
+ mark_page_accessed(page);
+ page_cache_release(page);
+
+ if (ret < 0) {
+ if (pos + len > inode->i_size)
+ vmtruncate(inode, inode->i_size);
+ } else if (ret > 0)
+ ret = min_t(size_t, copied, ret);
+ else
+ ret = copied;
+ }
+
+ return ret;
+}
+EXPORT_SYMBOL(pagecache_write_end);
+
ssize_t
generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
unsigned long *nr_segs, loff_t pos, loff_t *ppos,
@@ -1835,151 +1988,314 @@ generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
}
EXPORT_SYMBOL(generic_file_direct_write);
-ssize_t
-generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
- unsigned long nr_segs, loff_t pos, loff_t *ppos,
- size_t count, ssize_t written)
+/*
+ * Find or create a page at the given pagecache position. Return the locked
+ * page. This function is specifically for buffered writes.
+ */
+struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
{
- struct file *file = iocb->ki_filp;
- struct address_space * mapping = file->f_mapping;
- const struct address_space_operations *a_ops = mapping->a_ops;
- struct inode *inode = mapping->host;
- long status = 0;
- struct page *page;
- struct page *cached_page = NULL;
- size_t bytes;
- struct pagevec lru_pvec;
- const struct iovec *cur_iov = iov; /* current iovec */
- size_t iov_base = 0; /* offset in the current iovec */
- char __user *buf;
-
- pagevec_init(&lru_pvec, 0);
+ int status;
+ struct page *page;
+repeat:
+ page = find_lock_page(mapping, index);
+ if (likely(page))
+ return page;
- /*
- * handle partial DIO write. Adjust cur_iov if needed.
- */
- if (likely(nr_segs == 1))
- buf = iov->iov_base + written;
- else {
- filemap_set_next_iovec(&cur_iov, &iov_base, written);
- buf = cur_iov->iov_base + iov_base;
+ page = page_cache_alloc(mapping);
+ if (!page)
+ return NULL;
+ status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
+ if (unlikely(status)) {
+ page_cache_release(page);
+ if (status == -EEXIST)
+ goto repeat;
+ return NULL;
}
+ return page;
+}
+EXPORT_SYMBOL(__grab_cache_page);
+
+static ssize_t generic_perform_write_2copy(struct file *file,
+ struct iov_iter *i, loff_t pos)
+{
+ struct address_space *mapping = file->f_mapping;
+ const struct address_space_operations *a_ops = mapping->a_ops;
+ struct inode *inode = mapping->host;
+ long status = 0;
+ ssize_t written = 0;
do {
- unsigned long index;
- unsigned long offset;
- size_t copied;
+ struct page *src_page;
+ struct page *page;
+ pgoff_t index; /* Pagecache index for current page */
+ unsigned long offset; /* Offset into pagecache page */
+ unsigned long bytes; /* Bytes to write to page */
+ size_t copied; /* Bytes copied from user */
- offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
+ offset = (pos & (PAGE_CACHE_SIZE - 1));
index = pos >> PAGE_CACHE_SHIFT;
- bytes = PAGE_CACHE_SIZE - offset;
+ bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
+ iov_iter_count(i));
- /* Limit the size of the copy to the caller's write size */
- bytes = min(bytes, count);
-
- /* We only need to worry about prefaulting when writes are from
- * user-space. NFSd uses vfs_writev with several non-aligned
- * segments in the vector, and limiting to one segment a time is
- * a noticeable performance for re-write
+ /*
+ * a non-NULL src_page indicates that we're doing the
+ * copy via get_user_pages and kmap.
*/
- if (!segment_eq(get_fs(), KERNEL_DS)) {
- /*
- * Limit the size of the copy to that of the current
- * segment, because fault_in_pages_readable() doesn't
- * know how to walk segments.
- */
- bytes = min(bytes, cur_iov->iov_len - iov_base);
+ src_page = NULL;
- /*
- * Bring in the user page that we will copy from
- * _first_. Otherwise there's a nasty deadlock on
- * copying from the same page as we're writing to,
- * without it being marked up-to-date.
- */
- fault_in_pages_readable(buf, bytes);
+ /*
+ * Bring in the user page that we will copy from _first_.
+ * Otherwise there's a nasty deadlock on copying from the
+ * same page as we're writing to, without it being marked
+ * up-to-date.
+ *
+ * Not only is this an optimisation, but it is also required
+ * to check that the address is actually valid, when atomic
+ * usercopies are used, below.
+ */
+ if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
+ status = -EFAULT;
+ break;
}
- page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
+
+ page = __grab_cache_page(mapping, index);
if (!page) {
status = -ENOMEM;
break;
}
- if (unlikely(bytes == 0)) {
- status = 0;
- copied = 0;
- goto zero_length_segment;
- }
+ /*
+ * non-uptodate pages cannot cope with short copies, and we
+ * cannot take a pagefault with the destination page locked.
+ * So pin the source page to copy it.
+ */
+ if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
+ unlock_page(page);
- status = a_ops->prepare_write(file, page, offset, offset+bytes);
- if (unlikely(status)) {
- loff_t isize = i_size_read(inode);
+ src_page = alloc_page(GFP_KERNEL);
+ if (!src_page) {
+ page_cache_release(page);
+ status = -ENOMEM;
+ break;
+ }
- if (status != AOP_TRUNCATED_PAGE)
+ /*
+ * Cannot get_user_pages with a page locked for the
+ * same reason as we can't take a page fault with a
+ * page locked (as explained below).
+ */
+ copied = iov_iter_copy_from_user(src_page, i,
+ offset, bytes);
+ if (unlikely(copied == 0)) {
+ status = -EFAULT;
+ page_cache_release(page);
+ page_cache_release(src_page);
+ break;
+ }
+ bytes = copied;
+
+ lock_page(page);
+ /*
+ * Can't handle the page going uptodate here, because
+ * that means we would use non-atomic usercopies, which
+ * zero out the tail of the page, which can cause
+ * zeroes to become transiently visible. We could just
+ * use a non-zeroing copy, but the APIs aren't too
+ * consistent.
+ */
+ if (unlikely(!page->mapping || PageUptodate(page))) {
unlock_page(page);
- page_cache_release(page);
- if (status == AOP_TRUNCATED_PAGE)
+ page_cache_release(page);
+ page_cache_release(src_page);
continue;
+ }
+ }
+
+ status = a_ops->prepare_write(file, page, offset, offset+bytes);
+ if (unlikely(status))
+ goto fs_write_aop_error;
+
+ if (!src_page) {
/*
- * prepare_write() may have instantiated a few blocks
- * outside i_size. Trim these off again.
+ * Must not enter the pagefault handler here, because
+ * we hold the page lock, so we might recursively
+ * deadlock on the same lock, or get an ABBA deadlock
+ * against a different lock, or against the mmap_sem
+ * (which nests outside the page lock). So increment
+ * preempt count, and use _atomic usercopies.
+ *
+ * The page is uptodate so we are OK to encounter a
+ * short copy: if unmodified parts of the page are
+ * marked dirty and written out to disk, it doesn't
+ * really matter.
*/
- if (pos + bytes > isize)
- vmtruncate(inode, isize);
- break;
+ pagefault_disable();
+ copied = iov_iter_copy_from_user_atomic(page, i,
+ offset, bytes);
+ pagefault_enable();
+ } else {
+ void *src, *dst;
+ src = kmap_atomic(src_page, KM_USER0);
+ dst = kmap_atomic(page, KM_USER1);
+ memcpy(dst + offset, src + offset, bytes);
+ kunmap_atomic(dst, KM_USER1);
+ kunmap_atomic(src, KM_USER0);
+ copied = bytes;
}
- if (likely(nr_segs == 1))
- copied = filemap_copy_from_user(page, offset,
- buf, bytes);
- else
- copied = filemap_copy_from_user_iovec(page, offset,
- cur_iov, iov_base, bytes);
flush_dcache_page(page);
+
status = a_ops->commit_write(file, page, offset, offset+bytes);
- if (status == AOP_TRUNCATED_PAGE) {
- page_cache_release(page);
- continue;
- }
-zero_length_segment:
- if (likely(copied >= 0)) {
- if (!status)
- status = copied;
-
- if (status >= 0) {
- written += status;
- count -= status;
- pos += status;
- buf += status;
- if (unlikely(nr_segs > 1)) {
- filemap_set_next_iovec(&cur_iov,
- &iov_base, status);
- if (count)
- buf = cur_iov->iov_base +
- iov_base;
- } else {
- iov_base += status;
- }
- }
- }
- if (unlikely(copied != bytes))
- if (status >= 0)
- status = -EFAULT;
+ if (unlikely(status < 0))
+ goto fs_write_aop_error;
+ if (unlikely(status > 0)) /* filesystem did partial write */
+ copied = min_t(size_t, copied, status);
+
unlock_page(page);
mark_page_accessed(page);
page_cache_release(page);
- if (status < 0)
- break;
+ if (src_page)
+ page_cache_release(src_page);
+
+ iov_iter_advance(i, copied);
+ pos += copied;
+ written += copied;
+
balance_dirty_pages_ratelimited(mapping);
cond_resched();
- } while (count);
- *ppos = pos;
+ continue;
- if (cached_page)
- page_cache_release(cached_page);
+fs_write_aop_error:
+ unlock_page(page);
+ page_cache_release(page);
+ if (src_page)
+ page_cache_release(src_page);
+
+ /*
+ * prepare_write() may have instantiated a few blocks
+ * outside i_size. Trim these off again. Don't need
+ * i_size_read because we hold i_mutex.
+ */
+ if (pos + bytes > inode->i_size)
+ vmtruncate(inode, inode->i_size);
+ break;
+ } while (iov_iter_count(i));
+
+ return written ? written : status;
+}
+
+static ssize_t generic_perform_write(struct file *file,
+ struct iov_iter *i, loff_t pos)
+{
+ struct address_space *mapping = file->f_mapping;
+ const struct address_space_operations *a_ops = mapping->a_ops;
+ long status = 0;
+ ssize_t written = 0;
+ unsigned int flags = 0;
/*
- * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
+ * Copies from kernel address space cannot fail (NFSD is a big user).
*/
+ if (segment_eq(get_fs(), KERNEL_DS))
+ flags |= AOP_FLAG_UNINTERRUPTIBLE;
+
+ do {
+ struct page *page;
+ pgoff_t index; /* Pagecache index for current page */
+ unsigned long offset; /* Offset into pagecache page */
+ unsigned long bytes; /* Bytes to write to page */
+ size_t copied; /* Bytes copied from user */
+ void *fsdata;
+
+ offset = (pos & (PAGE_CACHE_SIZE - 1));
+ index = pos >> PAGE_CACHE_SHIFT;
+ bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
+ iov_iter_count(i));
+
+again:
+
+ /*
+ * Bring in the user page that we will copy from _first_.
+ * Otherwise there's a nasty deadlock on copying from the
+ * same page as we're writing to, without it being marked
+ * up-to-date.
+ *
+ * Not only is this an optimisation, but it is also required
+ * to check that the address is actually valid, when atomic
+ * usercopies are used, below.
+ */
+ if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
+ status = -EFAULT;
+ break;
+ }
+
+ status = a_ops->write_begin(file, mapping, pos, bytes, flags,
+ &page, &fsdata);
+ if (unlikely(status))
+ break;
+
+ pagefault_disable();
+ copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
+ pagefault_enable();
+ flush_dcache_page(page);
+
+ status = a_ops->write_end(file, mapping, pos, bytes, copied,
+ page, fsdata);
+ if (unlikely(status < 0))
+ break;
+ copied = status;
+
+ cond_resched();
+
+ if (unlikely(copied == 0)) {
+ /*
+ * If we were unable to copy any data at all, we must
+ * fall back to a single segment length write.
+ *
+ * If we didn't fallback here, we could livelock
+ * because not all segments in the iov can be copied at
+ * once without a pagefault.
+ */
+ bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
+ iov_iter_single_seg_count(i));
+ goto again;
+ }
+ iov_iter_advance(i, copied);
+ pos += copied;
+ written += copied;
+
+ balance_dirty_pages_ratelimited(mapping);
+
+ } while (iov_iter_count(i));
+
+ return written ? written : status;
+}
+
+ssize_t
+generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
+ unsigned long nr_segs, loff_t pos, loff_t *ppos,
+ size_t count, ssize_t written)
+{
+ struct file *file = iocb->ki_filp;
+ struct address_space *mapping = file->f_mapping;
+ const struct address_space_operations *a_ops = mapping->a_ops;
+ struct inode *inode = mapping->host;
+ ssize_t status;
+ struct iov_iter i;
+
+ iov_iter_init(&i, iov, nr_segs, count, written);
+ if (a_ops->write_begin)
+ status = generic_perform_write(file, &i, pos);
+ else
+ status = generic_perform_write_2copy(file, &i, pos);
+
if (likely(status >= 0)) {
+ written += status;
+ *ppos = pos + status;
+
+ /*
+ * For now, when the user asks for O_SYNC, we'll actually give
+ * O_DSYNC
+ */
if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
if (!a_ops->writepage || !is_sync_kiocb(iocb))
status = generic_osync_inode(inode, mapping,
@@ -1995,7 +2311,6 @@ zero_length_segment:
if (unlikely(file->f_flags & O_DIRECT) && written)
status = filemap_write_and_wait(mapping);
- pagevec_lru_add(&lru_pvec);
return written ? written : status;
}
EXPORT_SYMBOL(generic_file_buffered_write);
diff --git a/mm/filemap.h b/mm/filemap.h
deleted file mode 100644
index c2bff04c84ed..000000000000
--- a/mm/filemap.h
+++ /dev/null
@@ -1,103 +0,0 @@
-/*
- * linux/mm/filemap.h
- *
- * Copyright (C) 1994-1999 Linus Torvalds
- */
-
-#ifndef __FILEMAP_H
-#define __FILEMAP_H
-
-#include <linux/types.h>
-#include <linux/fs.h>
-#include <linux/mm.h>
-#include <linux/highmem.h>
-#include <linux/uio.h>
-#include <linux/uaccess.h>
-
-size_t
-__filemap_copy_from_user_iovec_inatomic(char *vaddr,
- const struct iovec *iov,
- size_t base,
- size_t bytes);
-
-/*
- * Copy as much as we can into the page and return the number of bytes which
- * were sucessfully copied. If a fault is encountered then clear the page
- * out to (offset+bytes) and return the number of bytes which were copied.
- *
- * NOTE: For this to work reliably we really want copy_from_user_inatomic_nocache
- * to *NOT* zero any tail of the buffer that it failed to copy. If it does,
- * and if the following non-atomic copy succeeds, then there is a small window
- * where the target page contains neither the data before the write, nor the
- * data after the write (it contains zero). A read at this time will see
- * data that is inconsistent with any ordering of the read and the write.
- * (This has been detected in practice).
- */
-static inline size_t
-filemap_copy_from_user(struct page *page, unsigned long offset,
- const char __user *buf, unsigned bytes)
-{
- char *kaddr;
- int left;
-
- kaddr = kmap_atomic(page, KM_USER0);
- left = __copy_from_user_inatomic_nocache(kaddr + offset, buf, bytes);
- kunmap_atomic(kaddr, KM_USER0);
-
- if (left != 0) {
- /* Do it the slow way */
- kaddr = kmap(page);
- left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
- kunmap(page);
- }
- return bytes - left;
-}
-
-/*
- * This has the same sideeffects and return value as filemap_copy_from_user().
- * The difference is that on a fault we need to memset the remainder of the
- * page (out to offset+bytes), to emulate filemap_copy_from_user()'s
- * single-segment behaviour.
- */
-static inline size_t
-filemap_copy_from_user_iovec(struct page *page, unsigned long offset,
- const struct iovec *iov, size_t base, size_t bytes)
-{
- char *kaddr;
- size_t copied;
-
- kaddr = kmap_atomic(page, KM_USER0);
- copied = __filemap_copy_from_user_iovec_inatomic(kaddr + offset, iov,
- base, bytes);
- kunmap_atomic(kaddr, KM_USER0);
- if (copied != bytes) {
- kaddr = kmap(page);
- copied = __filemap_copy_from_user_iovec_inatomic(kaddr + offset, iov,
- base, bytes);
- if (bytes - copied)
- memset(kaddr + offset + copied, 0, bytes - copied);
- kunmap(page);
- }
- return copied;
-}
-
-static inline void
-filemap_set_next_iovec(const struct iovec **iovp, size_t *basep, size_t bytes)
-{
- const struct iovec *iov = *iovp;
- size_t base = *basep;
-
- do {
- int copy = min(bytes, iov->iov_len - base);
-
- bytes -= copy;
- base += copy;
- if (iov->iov_len == base) {
- iov++;
- base = 0;
- }
- } while (bytes);
- *iovp = iov;
- *basep = base;
-}
-#endif
diff --git a/mm/filemap_xip.c b/mm/filemap_xip.c
index 53ee6a299635..32132f3cd641 100644
--- a/mm/filemap_xip.c
+++ b/mm/filemap_xip.c
@@ -15,7 +15,6 @@
#include <linux/rmap.h>
#include <linux/sched.h>
#include <asm/tlbflush.h>
-#include "filemap.h"
/*
* We do use our own empty page to avoid interference with other users
@@ -288,6 +287,7 @@ __xip_file_write(struct file *filp, const char __user *buf,
unsigned long index;
unsigned long offset;
size_t copied;
+ char *kaddr;
offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
index = pos >> PAGE_CACHE_SHIFT;
@@ -295,14 +295,6 @@ __xip_file_write(struct file *filp, const char __user *buf,
if (bytes > count)
bytes = count;
- /*
- * Bring in the user page that we will copy from _first_.
- * Otherwise there's a nasty deadlock on copying from the
- * same page as we're writing to, without it being marked
- * up-to-date.
- */
- fault_in_pages_readable(buf, bytes);
-
page = a_ops->get_xip_page(mapping,
index*(PAGE_SIZE/512), 0);
if (IS_ERR(page) && (PTR_ERR(page) == -ENODATA)) {
@@ -319,8 +311,13 @@ __xip_file_write(struct file *filp, const char __user *buf,
break;
}
- copied = filemap_copy_from_user(page, offset, buf, bytes);
+ fault_in_pages_readable(buf, bytes);
+ kaddr = kmap_atomic(page, KM_USER0);
+ copied = bytes -
+ __copy_from_user_inatomic_nocache(kaddr, buf, bytes);
+ kunmap_atomic(kaddr, KM_USER0);
flush_dcache_page(page);
+
if (likely(copied > 0)) {
status = copied;
diff --git a/mm/fremap.c b/mm/fremap.c
index 95bcb5641c72..14bd3bf7826e 100644
--- a/mm/fremap.c
+++ b/mm/fremap.c
@@ -5,7 +5,7 @@
*
* started by Ingo Molnar, Copyright (C) 2002, 2003
*/
-
+#include <linux/backing-dev.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/file.h>
@@ -97,26 +97,28 @@ static int populate_range(struct mm_struct *mm, struct vm_area_struct *vma,
}
-/***
- * sys_remap_file_pages - remap arbitrary pages of a shared backing store
- * file within an existing vma.
+/**
+ * sys_remap_file_pages - remap arbitrary pages of an existing VM_SHARED vma
* @start: start of the remapped virtual memory range
* @size: size of the remapped virtual memory range
- * @prot: new protection bits of the range
- * @pgoff: to be mapped page of the backing store file
+ * @prot: new protection bits of the range (see NOTE)
+ * @pgoff: to-be-mapped page of the backing store file
* @flags: 0 or MAP_NONBLOCKED - the later will cause no IO.
*
- * this syscall works purely via pagetables, so it's the most efficient
+ * sys_remap_file_pages remaps arbitrary pages of an existing VM_SHARED vma
+ * (shared backing store file).
+ *
+ * This syscall works purely via pagetables, so it's the most efficient
* way to map the same (large) file into a given virtual window. Unlike
* mmap()/mremap() it does not create any new vmas. The new mappings are
* also safe across swapout.
*
- * NOTE: the 'prot' parameter right now is ignored, and the vma's default
- * protection is used. Arbitrary protections might be implemented in the
- * future.
+ * NOTE: the 'prot' parameter right now is ignored (but must be zero),
+ * and the vma's default protection is used. Arbitrary protections
+ * might be implemented in the future.
*/
asmlinkage long sys_remap_file_pages(unsigned long start, unsigned long size,
- unsigned long __prot, unsigned long pgoff, unsigned long flags)
+ unsigned long prot, unsigned long pgoff, unsigned long flags)
{
struct mm_struct *mm = current->mm;
struct address_space *mapping;
@@ -125,7 +127,7 @@ asmlinkage long sys_remap_file_pages(unsigned long start, unsigned long size,
int err = -EINVAL;
int has_write_lock = 0;
- if (__prot)
+ if (prot)
return err;
/*
* Sanitize the syscall parameters:
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index eab8c428cc93..ae2959bb59cb 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -23,12 +23,16 @@
const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
+static unsigned long surplus_huge_pages;
unsigned long max_huge_pages;
static struct list_head hugepage_freelists[MAX_NUMNODES];
static unsigned int nr_huge_pages_node[MAX_NUMNODES];
static unsigned int free_huge_pages_node[MAX_NUMNODES];
+static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
+int hugetlb_dynamic_pool;
+static int hugetlb_next_nid;
/*
* Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
@@ -85,6 +89,8 @@ static struct page *dequeue_huge_page(struct vm_area_struct *vma,
list_del(&page->lru);
free_huge_pages--;
free_huge_pages_node[nid]--;
+ if (vma && vma->vm_flags & VM_MAYSHARE)
+ resv_huge_pages--;
break;
}
}
@@ -92,58 +98,269 @@ static struct page *dequeue_huge_page(struct vm_area_struct *vma,
return page;
}
+static void update_and_free_page(struct page *page)
+{
+ int i;
+ nr_huge_pages--;
+ nr_huge_pages_node[page_to_nid(page)]--;
+ for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
+ page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
+ 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
+ 1 << PG_private | 1<< PG_writeback);
+ }
+ set_compound_page_dtor(page, NULL);
+ set_page_refcounted(page);
+ __free_pages(page, HUGETLB_PAGE_ORDER);
+}
+
static void free_huge_page(struct page *page)
{
- BUG_ON(page_count(page));
+ int nid = page_to_nid(page);
+ BUG_ON(page_count(page));
INIT_LIST_HEAD(&page->lru);
spin_lock(&hugetlb_lock);
- enqueue_huge_page(page);
+ if (surplus_huge_pages_node[nid]) {
+ update_and_free_page(page);
+ surplus_huge_pages--;
+ surplus_huge_pages_node[nid]--;
+ } else {
+ enqueue_huge_page(page);
+ }
spin_unlock(&hugetlb_lock);
}
-static int alloc_fresh_huge_page(void)
+/*
+ * Increment or decrement surplus_huge_pages. Keep node-specific counters
+ * balanced by operating on them in a round-robin fashion.
+ * Returns 1 if an adjustment was made.
+ */
+static int adjust_pool_surplus(int delta)
{
static int prev_nid;
- struct page *page;
- int nid;
+ int nid = prev_nid;
+ int ret = 0;
+
+ VM_BUG_ON(delta != -1 && delta != 1);
+ do {
+ nid = next_node(nid, node_online_map);
+ if (nid == MAX_NUMNODES)
+ nid = first_node(node_online_map);
+
+ /* To shrink on this node, there must be a surplus page */
+ if (delta < 0 && !surplus_huge_pages_node[nid])
+ continue;
+ /* Surplus cannot exceed the total number of pages */
+ if (delta > 0 && surplus_huge_pages_node[nid] >=
+ nr_huge_pages_node[nid])
+ continue;
+
+ surplus_huge_pages += delta;
+ surplus_huge_pages_node[nid] += delta;
+ ret = 1;
+ break;
+ } while (nid != prev_nid);
- /*
- * Copy static prev_nid to local nid, work on that, then copy it
- * back to prev_nid afterwards: otherwise there's a window in which
- * a racer might pass invalid nid MAX_NUMNODES to alloc_pages_node.
- * But we don't need to use a spin_lock here: it really doesn't
- * matter if occasionally a racer chooses the same nid as we do.
- */
- nid = next_node(prev_nid, node_online_map);
- if (nid == MAX_NUMNODES)
- nid = first_node(node_online_map);
prev_nid = nid;
+ return ret;
+}
+
+static struct page *alloc_fresh_huge_page_node(int nid)
+{
+ struct page *page;
- page = alloc_pages_node(nid, htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
+ page = alloc_pages_node(nid,
+ htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
+ HUGETLB_PAGE_ORDER);
+ if (page) {
+ set_compound_page_dtor(page, free_huge_page);
+ spin_lock(&hugetlb_lock);
+ nr_huge_pages++;
+ nr_huge_pages_node[nid]++;
+ spin_unlock(&hugetlb_lock);
+ put_page(page); /* free it into the hugepage allocator */
+ }
+
+ return page;
+}
+
+static int alloc_fresh_huge_page(void)
+{
+ struct page *page;
+ int start_nid;
+ int next_nid;
+ int ret = 0;
+
+ start_nid = hugetlb_next_nid;
+
+ do {
+ page = alloc_fresh_huge_page_node(hugetlb_next_nid);
+ if (page)
+ ret = 1;
+ /*
+ * Use a helper variable to find the next node and then
+ * copy it back to hugetlb_next_nid afterwards:
+ * otherwise there's a window in which a racer might
+ * pass invalid nid MAX_NUMNODES to alloc_pages_node.
+ * But we don't need to use a spin_lock here: it really
+ * doesn't matter if occasionally a racer chooses the
+ * same nid as we do. Move nid forward in the mask even
+ * if we just successfully allocated a hugepage so that
+ * the next caller gets hugepages on the next node.
+ */
+ next_nid = next_node(hugetlb_next_nid, node_online_map);
+ if (next_nid == MAX_NUMNODES)
+ next_nid = first_node(node_online_map);
+ hugetlb_next_nid = next_nid;
+ } while (!page && hugetlb_next_nid != start_nid);
+
+ return ret;
+}
+
+static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
+ unsigned long address)
+{
+ struct page *page;
+
+ /* Check if the dynamic pool is enabled */
+ if (!hugetlb_dynamic_pool)
+ return NULL;
+
+ page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
HUGETLB_PAGE_ORDER);
if (page) {
set_compound_page_dtor(page, free_huge_page);
spin_lock(&hugetlb_lock);
nr_huge_pages++;
nr_huge_pages_node[page_to_nid(page)]++;
+ surplus_huge_pages++;
+ surplus_huge_pages_node[page_to_nid(page)]++;
spin_unlock(&hugetlb_lock);
- put_page(page); /* free it into the hugepage allocator */
- return 1;
}
- return 0;
+
+ return page;
+}
+
+/*
+ * Increase the hugetlb pool such that it can accomodate a reservation
+ * of size 'delta'.
+ */
+static int gather_surplus_pages(int delta)
+{
+ struct list_head surplus_list;
+ struct page *page, *tmp;
+ int ret, i;
+ int needed, allocated;
+
+ needed = (resv_huge_pages + delta) - free_huge_pages;
+ if (needed <= 0)
+ return 0;
+
+ allocated = 0;
+ INIT_LIST_HEAD(&surplus_list);
+
+ ret = -ENOMEM;
+retry:
+ spin_unlock(&hugetlb_lock);
+ for (i = 0; i < needed; i++) {
+ page = alloc_buddy_huge_page(NULL, 0);
+ if (!page) {
+ /*
+ * We were not able to allocate enough pages to
+ * satisfy the entire reservation so we free what
+ * we've allocated so far.
+ */
+ spin_lock(&hugetlb_lock);
+ needed = 0;
+ goto free;
+ }
+
+ list_add(&page->lru, &surplus_list);
+ }
+ allocated += needed;
+
+ /*
+ * After retaking hugetlb_lock, we need to recalculate 'needed'
+ * because either resv_huge_pages or free_huge_pages may have changed.
+ */
+ spin_lock(&hugetlb_lock);
+ needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
+ if (needed > 0)
+ goto retry;
+
+ /*
+ * The surplus_list now contains _at_least_ the number of extra pages
+ * needed to accomodate the reservation. Add the appropriate number
+ * of pages to the hugetlb pool and free the extras back to the buddy
+ * allocator.
+ */
+ needed += allocated;
+ ret = 0;
+free:
+ list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
+ list_del(&page->lru);
+ if ((--needed) >= 0)
+ enqueue_huge_page(page);
+ else {
+ /*
+ * Decrement the refcount and free the page using its
+ * destructor. This must be done with hugetlb_lock
+ * unlocked which is safe because free_huge_page takes
+ * hugetlb_lock before deciding how to free the page.
+ */
+ spin_unlock(&hugetlb_lock);
+ put_page(page);
+ spin_lock(&hugetlb_lock);
+ }
+ }
+
+ return ret;
+}
+
+/*
+ * When releasing a hugetlb pool reservation, any surplus pages that were
+ * allocated to satisfy the reservation must be explicitly freed if they were
+ * never used.
+ */
+void return_unused_surplus_pages(unsigned long unused_resv_pages)
+{
+ static int nid = -1;
+ struct page *page;
+ unsigned long nr_pages;
+
+ nr_pages = min(unused_resv_pages, surplus_huge_pages);
+
+ while (nr_pages) {
+ nid = next_node(nid, node_online_map);
+ if (nid == MAX_NUMNODES)
+ nid = first_node(node_online_map);
+
+ if (!surplus_huge_pages_node[nid])
+ continue;
+
+ if (!list_empty(&hugepage_freelists[nid])) {
+ page = list_entry(hugepage_freelists[nid].next,
+ struct page, lru);
+ list_del(&page->lru);
+ update_and_free_page(page);
+ free_huge_pages--;
+ free_huge_pages_node[nid]--;
+ surplus_huge_pages--;
+ surplus_huge_pages_node[nid]--;
+ nr_pages--;
+ }
+ }
}
static struct page *alloc_huge_page(struct vm_area_struct *vma,
unsigned long addr)
{
- struct page *page;
+ struct page *page = NULL;
+ int use_reserved_page = vma->vm_flags & VM_MAYSHARE;
spin_lock(&hugetlb_lock);
- if (vma->vm_flags & VM_MAYSHARE)
- resv_huge_pages--;
- else if (free_huge_pages <= resv_huge_pages)
+ if (!use_reserved_page && (free_huge_pages <= resv_huge_pages))
goto fail;
page = dequeue_huge_page(vma, addr);
@@ -155,10 +372,17 @@ static struct page *alloc_huge_page(struct vm_area_struct *vma,
return page;
fail:
- if (vma->vm_flags & VM_MAYSHARE)
- resv_huge_pages++;
spin_unlock(&hugetlb_lock);
- return NULL;
+
+ /*
+ * Private mappings do not use reserved huge pages so the allocation
+ * may have failed due to an undersized hugetlb pool. Try to grab a
+ * surplus huge page from the buddy allocator.
+ */
+ if (!use_reserved_page)
+ page = alloc_buddy_huge_page(vma, addr);
+
+ return page;
}
static int __init hugetlb_init(void)
@@ -171,6 +395,8 @@ static int __init hugetlb_init(void)
for (i = 0; i < MAX_NUMNODES; ++i)
INIT_LIST_HEAD(&hugepage_freelists[i]);
+ hugetlb_next_nid = first_node(node_online_map);
+
for (i = 0; i < max_huge_pages; ++i) {
if (!alloc_fresh_huge_page())
break;
@@ -201,21 +427,6 @@ static unsigned int cpuset_mems_nr(unsigned int *array)
}
#ifdef CONFIG_SYSCTL
-static void update_and_free_page(struct page *page)
-{
- int i;
- nr_huge_pages--;
- nr_huge_pages_node[page_to_nid(page)]--;
- for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
- page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
- 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
- 1 << PG_private | 1<< PG_writeback);
- }
- set_compound_page_dtor(page, NULL);
- set_page_refcounted(page);
- __free_pages(page, HUGETLB_PAGE_ORDER);
-}
-
#ifdef CONFIG_HIGHMEM
static void try_to_free_low(unsigned long count)
{
@@ -224,14 +435,14 @@ static void try_to_free_low(unsigned long count)
for (i = 0; i < MAX_NUMNODES; ++i) {
struct page *page, *next;
list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
+ if (count >= nr_huge_pages)
+ return;
if (PageHighMem(page))
continue;
list_del(&page->lru);
update_and_free_page(page);
free_huge_pages--;
free_huge_pages_node[page_to_nid(page)]--;
- if (count >= nr_huge_pages)
- return;
}
}
}
@@ -241,26 +452,61 @@ static inline void try_to_free_low(unsigned long count)
}
#endif
+#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
static unsigned long set_max_huge_pages(unsigned long count)
{
- while (count > nr_huge_pages) {
- if (!alloc_fresh_huge_page())
- return nr_huge_pages;
- }
- if (count >= nr_huge_pages)
- return nr_huge_pages;
+ unsigned long min_count, ret;
+ /*
+ * Increase the pool size
+ * First take pages out of surplus state. Then make up the
+ * remaining difference by allocating fresh huge pages.
+ */
spin_lock(&hugetlb_lock);
- count = max(count, resv_huge_pages);
- try_to_free_low(count);
- while (count < nr_huge_pages) {
+ while (surplus_huge_pages && count > persistent_huge_pages) {
+ if (!adjust_pool_surplus(-1))
+ break;
+ }
+
+ while (count > persistent_huge_pages) {
+ int ret;
+ /*
+ * If this allocation races such that we no longer need the
+ * page, free_huge_page will handle it by freeing the page
+ * and reducing the surplus.
+ */
+ spin_unlock(&hugetlb_lock);
+ ret = alloc_fresh_huge_page();
+ spin_lock(&hugetlb_lock);
+ if (!ret)
+ goto out;
+
+ }
+
+ /*
+ * Decrease the pool size
+ * First return free pages to the buddy allocator (being careful
+ * to keep enough around to satisfy reservations). Then place
+ * pages into surplus state as needed so the pool will shrink
+ * to the desired size as pages become free.
+ */
+ min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
+ min_count = max(count, min_count);
+ try_to_free_low(min_count);
+ while (min_count < persistent_huge_pages) {
struct page *page = dequeue_huge_page(NULL, 0);
if (!page)
break;
update_and_free_page(page);
}
+ while (count < persistent_huge_pages) {
+ if (!adjust_pool_surplus(1))
+ break;
+ }
+out:
+ ret = persistent_huge_pages;
spin_unlock(&hugetlb_lock);
- return nr_huge_pages;
+ return ret;
}
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
@@ -292,10 +538,12 @@ int hugetlb_report_meminfo(char *buf)
"HugePages_Total: %5lu\n"
"HugePages_Free: %5lu\n"
"HugePages_Rsvd: %5lu\n"
+ "HugePages_Surp: %5lu\n"
"Hugepagesize: %5lu kB\n",
nr_huge_pages,
free_huge_pages,
resv_huge_pages,
+ surplus_huge_pages,
HPAGE_SIZE/1024);
}
@@ -355,7 +603,6 @@ static void set_huge_ptep_writable(struct vm_area_struct *vma,
entry = pte_mkwrite(pte_mkdirty(*ptep));
if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
update_mmu_cache(vma, address, entry);
- lazy_mmu_prot_update(entry);
}
}
@@ -708,7 +955,6 @@ void hugetlb_change_protection(struct vm_area_struct *vma,
pte = huge_ptep_get_and_clear(mm, address, ptep);
pte = pte_mkhuge(pte_modify(pte, newprot));
set_huge_pte_at(mm, address, ptep, pte);
- lazy_mmu_prot_update(pte);
}
}
spin_unlock(&mm->page_table_lock);
@@ -843,21 +1089,6 @@ static int hugetlb_acct_memory(long delta)
int ret = -ENOMEM;
spin_lock(&hugetlb_lock);
- if ((delta + resv_huge_pages) <= free_huge_pages) {
- resv_huge_pages += delta;
- ret = 0;
- }
- spin_unlock(&hugetlb_lock);
- return ret;
-}
-
-int hugetlb_reserve_pages(struct inode *inode, long from, long to)
-{
- long ret, chg;
-
- chg = region_chg(&inode->i_mapping->private_list, from, to);
- if (chg < 0)
- return chg;
/*
* When cpuset is configured, it breaks the strict hugetlb page
* reservation as the accounting is done on a global variable. Such
@@ -875,8 +1106,31 @@ int hugetlb_reserve_pages(struct inode *inode, long from, long to)
* a best attempt and hopefully to minimize the impact of changing
* semantics that cpuset has.
*/
- if (chg > cpuset_mems_nr(free_huge_pages_node))
- return -ENOMEM;
+ if (delta > 0) {
+ if (gather_surplus_pages(delta) < 0)
+ goto out;
+
+ if (delta > cpuset_mems_nr(free_huge_pages_node))
+ goto out;
+ }
+
+ ret = 0;
+ resv_huge_pages += delta;
+ if (delta < 0)
+ return_unused_surplus_pages((unsigned long) -delta);
+
+out:
+ spin_unlock(&hugetlb_lock);
+ return ret;
+}
+
+int hugetlb_reserve_pages(struct inode *inode, long from, long to)
+{
+ long ret, chg;
+
+ chg = region_chg(&inode->i_mapping->private_list, from, to);
+ if (chg < 0)
+ return chg;
ret = hugetlb_acct_memory(chg);
if (ret < 0)
diff --git a/mm/internal.h b/mm/internal.h
index a3110c02aea7..953f941ea867 100644
--- a/mm/internal.h
+++ b/mm/internal.h
@@ -37,4 +37,14 @@ static inline void __put_page(struct page *page)
extern void fastcall __init __free_pages_bootmem(struct page *page,
unsigned int order);
+/*
+ * function for dealing with page's order in buddy system.
+ * zone->lock is already acquired when we use these.
+ * So, we don't need atomic page->flags operations here.
+ */
+static inline unsigned long page_order(struct page *page)
+{
+ VM_BUG_ON(!PageBuddy(page));
+ return page_private(page);
+}
#endif
diff --git a/mm/memory.c b/mm/memory.c
index f82b359b2745..bd16dcaeefb8 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -966,7 +966,7 @@ no_page_table:
* has touched so far, we don't want to allocate page tables.
*/
if (flags & FOLL_ANON) {
- page = ZERO_PAGE(address);
+ page = ZERO_PAGE(0);
if (flags & FOLL_GET)
get_page(page);
BUG_ON(flags & FOLL_WRITE);
@@ -1111,95 +1111,6 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
}
EXPORT_SYMBOL(get_user_pages);
-static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
- unsigned long addr, unsigned long end, pgprot_t prot)
-{
- pte_t *pte;
- spinlock_t *ptl;
- int err = 0;
-
- pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
- if (!pte)
- return -EAGAIN;
- arch_enter_lazy_mmu_mode();
- do {
- struct page *page = ZERO_PAGE(addr);
- pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
-
- if (unlikely(!pte_none(*pte))) {
- err = -EEXIST;
- pte++;
- break;
- }
- page_cache_get(page);
- page_add_file_rmap(page);
- inc_mm_counter(mm, file_rss);
- set_pte_at(mm, addr, pte, zero_pte);
- } while (pte++, addr += PAGE_SIZE, addr != end);
- arch_leave_lazy_mmu_mode();
- pte_unmap_unlock(pte - 1, ptl);
- return err;
-}
-
-static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
- unsigned long addr, unsigned long end, pgprot_t prot)
-{
- pmd_t *pmd;
- unsigned long next;
- int err;
-
- pmd = pmd_alloc(mm, pud, addr);
- if (!pmd)
- return -EAGAIN;
- do {
- next = pmd_addr_end(addr, end);
- err = zeromap_pte_range(mm, pmd, addr, next, prot);
- if (err)
- break;
- } while (pmd++, addr = next, addr != end);
- return err;
-}
-
-static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
- unsigned long addr, unsigned long end, pgprot_t prot)
-{
- pud_t *pud;
- unsigned long next;
- int err;
-
- pud = pud_alloc(mm, pgd, addr);
- if (!pud)
- return -EAGAIN;
- do {
- next = pud_addr_end(addr, end);
- err = zeromap_pmd_range(mm, pud, addr, next, prot);
- if (err)
- break;
- } while (pud++, addr = next, addr != end);
- return err;
-}
-
-int zeromap_page_range(struct vm_area_struct *vma,
- unsigned long addr, unsigned long size, pgprot_t prot)
-{
- pgd_t *pgd;
- unsigned long next;
- unsigned long end = addr + size;
- struct mm_struct *mm = vma->vm_mm;
- int err;
-
- BUG_ON(addr >= end);
- pgd = pgd_offset(mm, addr);
- flush_cache_range(vma, addr, end);
- do {
- next = pgd_addr_end(addr, end);
- err = zeromap_pud_range(mm, pgd, addr, next, prot);
- if (err)
- break;
- } while (pgd++, addr = next, addr != end);
- return err;
-}
-
pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
{
pgd_t * pgd = pgd_offset(mm, addr);
@@ -1700,10 +1611,8 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
flush_cache_page(vma, address, pte_pfn(orig_pte));
entry = pte_mkyoung(orig_pte);
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
- if (ptep_set_access_flags(vma, address, page_table, entry,1)) {
+ if (ptep_set_access_flags(vma, address, page_table, entry,1))
update_mmu_cache(vma, address, entry);
- lazy_mmu_prot_update(entry);
- }
ret |= VM_FAULT_WRITE;
goto unlock;
}
@@ -1717,16 +1626,11 @@ gotten:
if (unlikely(anon_vma_prepare(vma)))
goto oom;
- if (old_page == ZERO_PAGE(address)) {
- new_page = alloc_zeroed_user_highpage_movable(vma, address);
- if (!new_page)
- goto oom;
- } else {
- new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
- if (!new_page)
- goto oom;
- cow_user_page(new_page, old_page, address, vma);
- }
+ VM_BUG_ON(old_page == ZERO_PAGE(0));
+ new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
+ if (!new_page)
+ goto oom;
+ cow_user_page(new_page, old_page, address, vma);
/*
* Re-check the pte - we dropped the lock
@@ -1744,7 +1648,6 @@ gotten:
flush_cache_page(vma, address, pte_pfn(orig_pte));
entry = mk_pte(new_page, vma->vm_page_prot);
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
- lazy_mmu_prot_update(entry);
/*
* Clear the pte entry and flush it first, before updating the
* pte with the new entry. This will avoid a race condition
@@ -2252,44 +2155,28 @@ static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
spinlock_t *ptl;
pte_t entry;
- if (write_access) {
- /* Allocate our own private page. */
- pte_unmap(page_table);
-
- if (unlikely(anon_vma_prepare(vma)))
- goto oom;
- page = alloc_zeroed_user_highpage_movable(vma, address);
- if (!page)
- goto oom;
-
- entry = mk_pte(page, vma->vm_page_prot);
- entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+ /* Allocate our own private page. */
+ pte_unmap(page_table);
- page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
- if (!pte_none(*page_table))
- goto release;
- inc_mm_counter(mm, anon_rss);
- lru_cache_add_active(page);
- page_add_new_anon_rmap(page, vma, address);
- } else {
- /* Map the ZERO_PAGE - vm_page_prot is readonly */
- page = ZERO_PAGE(address);
- page_cache_get(page);
- entry = mk_pte(page, vma->vm_page_prot);
+ if (unlikely(anon_vma_prepare(vma)))
+ goto oom;
+ page = alloc_zeroed_user_highpage_movable(vma, address);
+ if (!page)
+ goto oom;
- ptl = pte_lockptr(mm, pmd);
- spin_lock(ptl);
- if (!pte_none(*page_table))
- goto release;
- inc_mm_counter(mm, file_rss);
- page_add_file_rmap(page);
- }
+ entry = mk_pte(page, vma->vm_page_prot);
+ entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+ page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
+ if (!pte_none(*page_table))
+ goto release;
+ inc_mm_counter(mm, anon_rss);
+ lru_cache_add_active(page);
+ page_add_new_anon_rmap(page, vma, address);
set_pte_at(mm, address, page_table, entry);
/* No need to invalidate - it was non-present before */
update_mmu_cache(vma, address, entry);
- lazy_mmu_prot_update(entry);
unlock:
pte_unmap_unlock(page_table, ptl);
return 0;
@@ -2442,7 +2329,6 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
/* no need to invalidate: a not-present page won't be cached */
update_mmu_cache(vma, address, entry);
- lazy_mmu_prot_update(entry);
} else {
if (anon)
page_cache_release(page);
@@ -2470,7 +2356,7 @@ static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
int write_access, pte_t orig_pte)
{
pgoff_t pgoff = (((address & PAGE_MASK)
- - vma->vm_start) >> PAGE_CACHE_SHIFT) + vma->vm_pgoff;
+ - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
pte_unmap(page_table);
@@ -2614,7 +2500,6 @@ static inline int handle_pte_fault(struct mm_struct *mm,
entry = pte_mkyoung(entry);
if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
update_mmu_cache(vma, address, entry);
- lazy_mmu_prot_update(entry);
} else {
/*
* This is needed only for protection faults but the arch code
diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c
index df9d554bea30..091b9c6c2529 100644
--- a/mm/memory_hotplug.c
+++ b/mm/memory_hotplug.c
@@ -23,6 +23,9 @@
#include <linux/vmalloc.h>
#include <linux/ioport.h>
#include <linux/cpuset.h>
+#include <linux/delay.h>
+#include <linux/migrate.h>
+#include <linux/page-isolation.h>
#include <asm/tlbflush.h>
@@ -161,14 +164,27 @@ static void grow_pgdat_span(struct pglist_data *pgdat,
pgdat->node_start_pfn;
}
-int online_pages(unsigned long pfn, unsigned long nr_pages)
+static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
+ void *arg)
{
unsigned long i;
+ unsigned long onlined_pages = *(unsigned long *)arg;
+ struct page *page;
+ if (PageReserved(pfn_to_page(start_pfn)))
+ for (i = 0; i < nr_pages; i++) {
+ page = pfn_to_page(start_pfn + i);
+ online_page(page);
+ onlined_pages++;
+ }
+ *(unsigned long *)arg = onlined_pages;
+ return 0;
+}
+
+
+int online_pages(unsigned long pfn, unsigned long nr_pages)
+{
unsigned long flags;
unsigned long onlined_pages = 0;
- struct resource res;
- u64 section_end;
- unsigned long start_pfn;
struct zone *zone;
int need_zonelists_rebuild = 0;
@@ -191,32 +207,16 @@ int online_pages(unsigned long pfn, unsigned long nr_pages)
if (!populated_zone(zone))
need_zonelists_rebuild = 1;
- res.start = (u64)pfn << PAGE_SHIFT;
- res.end = res.start + ((u64)nr_pages << PAGE_SHIFT) - 1;
- res.flags = IORESOURCE_MEM; /* we just need system ram */
- section_end = res.end;
-
- while ((res.start < res.end) && (find_next_system_ram(&res) >= 0)) {
- start_pfn = (unsigned long)(res.start >> PAGE_SHIFT);
- nr_pages = (unsigned long)
- ((res.end + 1 - res.start) >> PAGE_SHIFT);
-
- if (PageReserved(pfn_to_page(start_pfn))) {
- /* this region's page is not onlined now */
- for (i = 0; i < nr_pages; i++) {
- struct page *page = pfn_to_page(start_pfn + i);
- online_page(page);
- onlined_pages++;
- }
- }
-
- res.start = res.end + 1;
- res.end = section_end;
- }
+ walk_memory_resource(pfn, nr_pages, &onlined_pages,
+ online_pages_range);
zone->present_pages += onlined_pages;
zone->zone_pgdat->node_present_pages += onlined_pages;
setup_per_zone_pages_min();
+ if (onlined_pages) {
+ kswapd_run(zone_to_nid(zone));
+ node_set_state(zone_to_nid(zone), N_HIGH_MEMORY);
+ }
if (need_zonelists_rebuild)
build_all_zonelists();
@@ -271,9 +271,6 @@ int add_memory(int nid, u64 start, u64 size)
if (!pgdat)
return -ENOMEM;
new_pgdat = 1;
- ret = kswapd_run(nid);
- if (ret)
- goto error;
}
/* call arch's memory hotadd */
@@ -308,3 +305,260 @@ error:
return ret;
}
EXPORT_SYMBOL_GPL(add_memory);
+
+#ifdef CONFIG_MEMORY_HOTREMOVE
+/*
+ * Confirm all pages in a range [start, end) is belongs to the same zone.
+ */
+static int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
+{
+ unsigned long pfn;
+ struct zone *zone = NULL;
+ struct page *page;
+ int i;
+ for (pfn = start_pfn;
+ pfn < end_pfn;
+ pfn += MAX_ORDER_NR_PAGES) {
+ i = 0;
+ /* This is just a CONFIG_HOLES_IN_ZONE check.*/
+ while ((i < MAX_ORDER_NR_PAGES) && !pfn_valid_within(pfn + i))
+ i++;
+ if (i == MAX_ORDER_NR_PAGES)
+ continue;
+ page = pfn_to_page(pfn + i);
+ if (zone && page_zone(page) != zone)
+ return 0;
+ zone = page_zone(page);
+ }
+ return 1;
+}
+
+/*
+ * Scanning pfn is much easier than scanning lru list.
+ * Scan pfn from start to end and Find LRU page.
+ */
+int scan_lru_pages(unsigned long start, unsigned long end)
+{
+ unsigned long pfn;
+ struct page *page;
+ for (pfn = start; pfn < end; pfn++) {
+ if (pfn_valid(pfn)) {
+ page = pfn_to_page(pfn);
+ if (PageLRU(page))
+ return pfn;
+ }
+ }
+ return 0;
+}
+
+static struct page *
+hotremove_migrate_alloc(struct page *page,
+ unsigned long private,
+ int **x)
+{
+ /* This should be improoooooved!! */
+ return alloc_page(GFP_HIGHUSER_PAGECACHE);
+}
+
+
+#define NR_OFFLINE_AT_ONCE_PAGES (256)
+static int
+do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
+{
+ unsigned long pfn;
+ struct page *page;
+ int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
+ int not_managed = 0;
+ int ret = 0;
+ LIST_HEAD(source);
+
+ for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
+ if (!pfn_valid(pfn))
+ continue;
+ page = pfn_to_page(pfn);
+ if (!page_count(page))
+ continue;
+ /*
+ * We can skip free pages. And we can only deal with pages on
+ * LRU.
+ */
+ ret = isolate_lru_page(page, &source);
+ if (!ret) { /* Success */
+ move_pages--;
+ } else {
+ /* Becasue we don't have big zone->lock. we should
+ check this again here. */
+ if (page_count(page))
+ not_managed++;
+#ifdef CONFIG_DEBUG_VM
+ printk(KERN_INFO "removing from LRU failed"
+ " %lx/%d/%lx\n",
+ pfn, page_count(page), page->flags);
+#endif
+ }
+ }
+ ret = -EBUSY;
+ if (not_managed) {
+ if (!list_empty(&source))
+ putback_lru_pages(&source);
+ goto out;
+ }
+ ret = 0;
+ if (list_empty(&source))
+ goto out;
+ /* this function returns # of failed pages */
+ ret = migrate_pages(&source, hotremove_migrate_alloc, 0);
+
+out:
+ return ret;
+}
+
+/*
+ * remove from free_area[] and mark all as Reserved.
+ */
+static int
+offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
+ void *data)
+{
+ __offline_isolated_pages(start, start + nr_pages);
+ return 0;
+}
+
+static void
+offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
+{
+ walk_memory_resource(start_pfn, end_pfn - start_pfn, NULL,
+ offline_isolated_pages_cb);
+}
+
+/*
+ * Check all pages in range, recoreded as memory resource, are isolated.
+ */
+static int
+check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
+ void *data)
+{
+ int ret;
+ long offlined = *(long *)data;
+ ret = test_pages_isolated(start_pfn, start_pfn + nr_pages);
+ offlined = nr_pages;
+ if (!ret)
+ *(long *)data += offlined;
+ return ret;
+}
+
+static long
+check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
+{
+ long offlined = 0;
+ int ret;
+
+ ret = walk_memory_resource(start_pfn, end_pfn - start_pfn, &offlined,
+ check_pages_isolated_cb);
+ if (ret < 0)
+ offlined = (long)ret;
+ return offlined;
+}
+
+extern void drain_all_local_pages(void);
+
+int offline_pages(unsigned long start_pfn,
+ unsigned long end_pfn, unsigned long timeout)
+{
+ unsigned long pfn, nr_pages, expire;
+ long offlined_pages;
+ int ret, drain, retry_max;
+ struct zone *zone;
+
+ BUG_ON(start_pfn >= end_pfn);
+ /* at least, alignment against pageblock is necessary */
+ if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
+ return -EINVAL;
+ if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
+ return -EINVAL;
+ /* This makes hotplug much easier...and readable.
+ we assume this for now. .*/
+ if (!test_pages_in_a_zone(start_pfn, end_pfn))
+ return -EINVAL;
+ /* set above range as isolated */
+ ret = start_isolate_page_range(start_pfn, end_pfn);
+ if (ret)
+ return ret;
+ nr_pages = end_pfn - start_pfn;
+ pfn = start_pfn;
+ expire = jiffies + timeout;
+ drain = 0;
+ retry_max = 5;
+repeat:
+ /* start memory hot removal */
+ ret = -EAGAIN;
+ if (time_after(jiffies, expire))
+ goto failed_removal;
+ ret = -EINTR;
+ if (signal_pending(current))
+ goto failed_removal;
+ ret = 0;
+ if (drain) {
+ lru_add_drain_all();
+ flush_scheduled_work();
+ cond_resched();
+ drain_all_local_pages();
+ }
+
+ pfn = scan_lru_pages(start_pfn, end_pfn);
+ if (pfn) { /* We have page on LRU */
+ ret = do_migrate_range(pfn, end_pfn);
+ if (!ret) {
+ drain = 1;
+ goto repeat;
+ } else {
+ if (ret < 0)
+ if (--retry_max == 0)
+ goto failed_removal;
+ yield();
+ drain = 1;
+ goto repeat;
+ }
+ }
+ /* drain all zone's lru pagevec, this is asyncronous... */
+ lru_add_drain_all();
+ flush_scheduled_work();
+ yield();
+ /* drain pcp pages , this is synchrouns. */
+ drain_all_local_pages();
+ /* check again */
+ offlined_pages = check_pages_isolated(start_pfn, end_pfn);
+ if (offlined_pages < 0) {
+ ret = -EBUSY;
+ goto failed_removal;
+ }
+ printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages);
+ /* Ok, all of our target is islaoted.
+ We cannot do rollback at this point. */
+ offline_isolated_pages(start_pfn, end_pfn);
+ /* reset pagetype flags */
+ start_isolate_page_range(start_pfn, end_pfn);
+ /* removal success */
+ zone = page_zone(pfn_to_page(start_pfn));
+ zone->present_pages -= offlined_pages;
+ zone->zone_pgdat->node_present_pages -= offlined_pages;
+ totalram_pages -= offlined_pages;
+ num_physpages -= offlined_pages;
+ vm_total_pages = nr_free_pagecache_pages();
+ writeback_set_ratelimit();
+ return 0;
+
+failed_removal:
+ printk(KERN_INFO "memory offlining %lx to %lx failed\n",
+ start_pfn, end_pfn);
+ /* pushback to free area */
+ undo_isolate_page_range(start_pfn, end_pfn);
+ return ret;
+}
+#else
+int remove_memory(u64 start, u64 size)
+{
+ return -EINVAL;
+}
+EXPORT_SYMBOL_GPL(remove_memory);
+#endif /* CONFIG_MEMORY_HOTREMOVE */
diff --git a/mm/mempolicy.c b/mm/mempolicy.c
index 3d6ac9505d07..568152ae6caf 100644
--- a/mm/mempolicy.c
+++ b/mm/mempolicy.c
@@ -72,7 +72,6 @@
#include <linux/hugetlb.h>
#include <linux/kernel.h>
#include <linux/sched.h>
-#include <linux/mm.h>
#include <linux/nodemask.h>
#include <linux/cpuset.h>
#include <linux/gfp.h>
@@ -82,13 +81,13 @@
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/compat.h>
-#include <linux/mempolicy.h>
#include <linux/swap.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/migrate.h>
#include <linux/rmap.h>
#include <linux/security.h>
+#include <linux/syscalls.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
@@ -110,6 +109,9 @@ struct mempolicy default_policy = {
.policy = MPOL_DEFAULT,
};
+static void mpol_rebind_policy(struct mempolicy *pol,
+ const nodemask_t *newmask);
+
/* Do sanity checking on a policy */
static int mpol_check_policy(int mode, nodemask_t *nodes)
{
@@ -128,7 +130,7 @@ static int mpol_check_policy(int mode, nodemask_t *nodes)
return -EINVAL;
break;
}
- return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL;
+ return nodes_subset(*nodes, node_states[N_HIGH_MEMORY]) ? 0 : -EINVAL;
}
/* Generate a custom zonelist for the BIND policy. */
@@ -185,7 +187,9 @@ static struct mempolicy *mpol_new(int mode, nodemask_t *nodes)
switch (mode) {
case MPOL_INTERLEAVE:
policy->v.nodes = *nodes;
- if (nodes_weight(*nodes) == 0) {
+ nodes_and(policy->v.nodes, policy->v.nodes,
+ node_states[N_HIGH_MEMORY]);
+ if (nodes_weight(policy->v.nodes) == 0) {
kmem_cache_free(policy_cache, policy);
return ERR_PTR(-EINVAL);
}
@@ -459,7 +463,7 @@ static void mpol_set_task_struct_flag(void)
}
/* Set the process memory policy */
-long do_set_mempolicy(int mode, nodemask_t *nodes)
+static long do_set_mempolicy(int mode, nodemask_t *nodes)
{
struct mempolicy *new;
@@ -494,9 +498,9 @@ static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
*nodes = p->v.nodes;
break;
case MPOL_PREFERRED:
- /* or use current node instead of online map? */
+ /* or use current node instead of memory_map? */
if (p->v.preferred_node < 0)
- *nodes = node_online_map;
+ *nodes = node_states[N_HIGH_MEMORY];
else
node_set(p->v.preferred_node, *nodes);
break;
@@ -519,8 +523,8 @@ static int lookup_node(struct mm_struct *mm, unsigned long addr)
}
/* Retrieve NUMA policy */
-long do_get_mempolicy(int *policy, nodemask_t *nmask,
- unsigned long addr, unsigned long flags)
+static long do_get_mempolicy(int *policy, nodemask_t *nmask,
+ unsigned long addr, unsigned long flags)
{
int err;
struct mm_struct *mm = current->mm;
@@ -528,8 +532,18 @@ long do_get_mempolicy(int *policy, nodemask_t *nmask,
struct mempolicy *pol = current->mempolicy;
cpuset_update_task_memory_state();
- if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR))
+ if (flags &
+ ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
return -EINVAL;
+
+ if (flags & MPOL_F_MEMS_ALLOWED) {
+ if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
+ return -EINVAL;
+ *policy = 0; /* just so it's initialized */
+ *nmask = cpuset_current_mems_allowed;
+ return 0;
+ }
+
if (flags & MPOL_F_ADDR) {
down_read(&mm->mmap_sem);
vma = find_vma_intersection(mm, addr, addr+1);
@@ -601,7 +615,8 @@ static struct page *new_node_page(struct page *page, unsigned long node, int **x
* Migrate pages from one node to a target node.
* Returns error or the number of pages not migrated.
*/
-int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags)
+static int migrate_to_node(struct mm_struct *mm, int source, int dest,
+ int flags)
{
nodemask_t nmask;
LIST_HEAD(pagelist);
@@ -732,8 +747,9 @@ static struct page *new_vma_page(struct page *page, unsigned long private, int *
}
#endif
-long do_mbind(unsigned long start, unsigned long len,
- unsigned long mode, nodemask_t *nmask, unsigned long flags)
+static long do_mbind(unsigned long start, unsigned long len,
+ unsigned long mode, nodemask_t *nmask,
+ unsigned long flags)
{
struct vm_area_struct *vma;
struct mm_struct *mm = current->mm;
@@ -955,7 +971,7 @@ asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
goto out;
}
- if (!nodes_subset(new, node_online_map)) {
+ if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
err = -EINVAL;
goto out;
}
@@ -978,7 +994,8 @@ asmlinkage long sys_get_mempolicy(int __user *policy,
unsigned long maxnode,
unsigned long addr, unsigned long flags)
{
- int err, pval;
+ int err;
+ int uninitialized_var(pval);
nodemask_t nodes;
if (nmask != NULL && maxnode < MAX_NUMNODES)
@@ -1527,8 +1544,8 @@ static void sp_delete(struct shared_policy *sp, struct sp_node *n)
kmem_cache_free(sn_cache, n);
}
-struct sp_node *
-sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol)
+static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
+ struct mempolicy *pol)
{
struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
@@ -1677,7 +1694,7 @@ void __init numa_policy_init(void)
* fall back to the largest node if they're all smaller.
*/
nodes_clear(interleave_nodes);
- for_each_online_node(nid) {
+ for_each_node_state(nid, N_HIGH_MEMORY) {
unsigned long total_pages = node_present_pages(nid);
/* Preserve the largest node */
@@ -1706,7 +1723,8 @@ void numa_default_policy(void)
}
/* Migrate a policy to a different set of nodes */
-void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
+static void mpol_rebind_policy(struct mempolicy *pol,
+ const nodemask_t *newmask)
{
nodemask_t *mpolmask;
nodemask_t tmp;
@@ -1963,7 +1981,7 @@ int show_numa_map(struct seq_file *m, void *v)
seq_printf(m, " huge");
} else {
check_pgd_range(vma, vma->vm_start, vma->vm_end,
- &node_online_map, MPOL_MF_STATS, md);
+ &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
}
if (!md->pages)
@@ -1990,7 +2008,7 @@ int show_numa_map(struct seq_file *m, void *v)
if (md->writeback)
seq_printf(m," writeback=%lu", md->writeback);
- for_each_online_node(n)
+ for_each_node_state(n, N_HIGH_MEMORY)
if (md->node[n])
seq_printf(m, " N%d=%lu", n, md->node[n]);
out:
diff --git a/mm/migrate.c b/mm/migrate.c
index e2fdbce1874b..06d0877a66ef 100644
--- a/mm/migrate.c
+++ b/mm/migrate.c
@@ -171,6 +171,7 @@ static void remove_migration_pte(struct vm_area_struct *vma,
pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
if (is_write_migration_entry(entry))
pte = pte_mkwrite(pte);
+ flush_cache_page(vma, addr, pte_pfn(pte));
set_pte_at(mm, addr, ptep, pte);
if (PageAnon(new))
@@ -180,7 +181,6 @@ static void remove_migration_pte(struct vm_area_struct *vma,
/* No need to invalidate - it was non-present before */
update_mmu_cache(vma, addr, pte);
- lazy_mmu_prot_update(pte);
out:
pte_unmap_unlock(ptep, ptl);
@@ -972,7 +972,7 @@ asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
* array. Return various errors if the user did something wrong.
*/
for (i = 0; i < nr_pages; i++) {
- const void *p;
+ const void __user *p;
err = -EFAULT;
if (get_user(p, pages + i))
@@ -986,7 +986,7 @@ asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
goto out;
err = -ENODEV;
- if (!node_online(node))
+ if (!node_state(node, N_HIGH_MEMORY))
goto out;
err = -EACCES;
diff --git a/mm/mmap.c b/mm/mmap.c
index 0d40e66c841b..4275e81e25ba 100644
--- a/mm/mmap.c
+++ b/mm/mmap.c
@@ -7,6 +7,7 @@
*/
#include <linux/slab.h>
+#include <linux/backing-dev.h>
#include <linux/mm.h>
#include <linux/shm.h>
#include <linux/mman.h>
@@ -180,8 +181,6 @@ error:
return -ENOMEM;
}
-EXPORT_SYMBOL(__vm_enough_memory);
-
/*
* Requires inode->i_mapping->i_mmap_lock
*/
diff --git a/mm/mprotect.c b/mm/mprotect.c
index e8346c30abec..1d4d69790e59 100644
--- a/mm/mprotect.c
+++ b/mm/mprotect.c
@@ -53,7 +53,6 @@ static void change_pte_range(struct mm_struct *mm, pmd_t *pmd,
if (dirty_accountable && pte_dirty(ptent))
ptent = pte_mkwrite(ptent);
set_pte_at(mm, addr, pte, ptent);
- lazy_mmu_prot_update(ptent);
#ifdef CONFIG_MIGRATION
} else if (!pte_file(oldpte)) {
swp_entry_t entry = pte_to_swp_entry(oldpte);
diff --git a/mm/nommu.c b/mm/nommu.c
index 8ed0cb43118a..42fb84e9e815 100644
--- a/mm/nommu.c
+++ b/mm/nommu.c
@@ -44,7 +44,6 @@ int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
int heap_stack_gap = 0;
EXPORT_SYMBOL(mem_map);
-EXPORT_SYMBOL(__vm_enough_memory);
EXPORT_SYMBOL(num_physpages);
/* list of shareable VMAs */
diff --git a/mm/oom_kill.c b/mm/oom_kill.c
index f9b82ad5047f..a64decb5b13f 100644
--- a/mm/oom_kill.c
+++ b/mm/oom_kill.c
@@ -27,6 +27,8 @@
#include <linux/notifier.h>
int sysctl_panic_on_oom;
+int sysctl_oom_kill_allocating_task;
+static DEFINE_SPINLOCK(zone_scan_mutex);
/* #define DEBUG */
/**
@@ -141,7 +143,7 @@ unsigned long badness(struct task_struct *p, unsigned long uptime)
* because p may have allocated or otherwise mapped memory on
* this node before. However it will be less likely.
*/
- if (!cpuset_excl_nodes_overlap(p))
+ if (!cpuset_mems_allowed_intersects(current, p))
points /= 8;
/*
@@ -164,27 +166,14 @@ unsigned long badness(struct task_struct *p, unsigned long uptime)
}
/*
- * Types of limitations to the nodes from which allocations may occur
- */
-#define CONSTRAINT_NONE 1
-#define CONSTRAINT_MEMORY_POLICY 2
-#define CONSTRAINT_CPUSET 3
-
-/*
* Determine the type of allocation constraint.
*/
-static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask)
+static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
+ gfp_t gfp_mask)
{
#ifdef CONFIG_NUMA
struct zone **z;
- nodemask_t nodes;
- int node;
-
- nodes_clear(nodes);
- /* node has memory ? */
- for_each_online_node(node)
- if (NODE_DATA(node)->node_present_pages)
- node_set(node, nodes);
+ nodemask_t nodes = node_states[N_HIGH_MEMORY];
for (z = zonelist->zones; *z; z++)
if (cpuset_zone_allowed_softwall(*z, gfp_mask))
@@ -344,12 +333,20 @@ static int oom_kill_task(struct task_struct *p)
return 0;
}
-static int oom_kill_process(struct task_struct *p, unsigned long points,
- const char *message)
+static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
+ unsigned long points, const char *message)
{
struct task_struct *c;
struct list_head *tsk;
+ if (printk_ratelimit()) {
+ printk(KERN_WARNING "%s invoked oom-killer: "
+ "gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
+ current->comm, gfp_mask, order, current->oomkilladj);
+ dump_stack();
+ show_mem();
+ }
+
/*
* If the task is already exiting, don't alarm the sysadmin or kill
* its children or threads, just set TIF_MEMDIE so it can die quickly
@@ -387,6 +384,57 @@ int unregister_oom_notifier(struct notifier_block *nb)
}
EXPORT_SYMBOL_GPL(unregister_oom_notifier);
+/*
+ * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
+ * if a parallel OOM killing is already taking place that includes a zone in
+ * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
+ */
+int try_set_zone_oom(struct zonelist *zonelist)
+{
+ struct zone **z;
+ int ret = 1;
+
+ z = zonelist->zones;
+
+ spin_lock(&zone_scan_mutex);
+ do {
+ if (zone_is_oom_locked(*z)) {
+ ret = 0;
+ goto out;
+ }
+ } while (*(++z) != NULL);
+
+ /*
+ * Lock each zone in the zonelist under zone_scan_mutex so a parallel
+ * invocation of try_set_zone_oom() doesn't succeed when it shouldn't.
+ */
+ z = zonelist->zones;
+ do {
+ zone_set_flag(*z, ZONE_OOM_LOCKED);
+ } while (*(++z) != NULL);
+out:
+ spin_unlock(&zone_scan_mutex);
+ return ret;
+}
+
+/*
+ * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
+ * allocation attempts with zonelists containing them may now recall the OOM
+ * killer, if necessary.
+ */
+void clear_zonelist_oom(struct zonelist *zonelist)
+{
+ struct zone **z;
+
+ z = zonelist->zones;
+
+ spin_lock(&zone_scan_mutex);
+ do {
+ zone_clear_flag(*z, ZONE_OOM_LOCKED);
+ } while (*(++z) != NULL);
+ spin_unlock(&zone_scan_mutex);
+}
+
/**
* out_of_memory - kill the "best" process when we run out of memory
*
@@ -400,21 +448,13 @@ void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
struct task_struct *p;
unsigned long points = 0;
unsigned long freed = 0;
- int constraint;
+ enum oom_constraint constraint;
blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
if (freed > 0)
/* Got some memory back in the last second. */
return;
- if (printk_ratelimit()) {
- printk(KERN_WARNING "%s invoked oom-killer: "
- "gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
- current->comm, gfp_mask, order, current->oomkilladj);
- dump_stack();
- show_mem();
- }
-
if (sysctl_panic_on_oom == 2)
panic("out of memory. Compulsory panic_on_oom is selected.\n");
@@ -423,23 +463,24 @@ void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
* NUMA) that may require different handling.
*/
constraint = constrained_alloc(zonelist, gfp_mask);
- cpuset_lock();
read_lock(&tasklist_lock);
switch (constraint) {
case CONSTRAINT_MEMORY_POLICY:
- oom_kill_process(current, points,
+ oom_kill_process(current, gfp_mask, order, points,
"No available memory (MPOL_BIND)");
break;
- case CONSTRAINT_CPUSET:
- oom_kill_process(current, points,
- "No available memory in cpuset");
- break;
-
case CONSTRAINT_NONE:
if (sysctl_panic_on_oom)
panic("out of memory. panic_on_oom is selected\n");
+ /* Fall-through */
+ case CONSTRAINT_CPUSET:
+ if (sysctl_oom_kill_allocating_task) {
+ oom_kill_process(current, gfp_mask, order, points,
+ "Out of memory (oom_kill_allocating_task)");
+ break;
+ }
retry:
/*
* Rambo mode: Shoot down a process and hope it solves whatever
@@ -453,11 +494,11 @@ retry:
/* Found nothing?!?! Either we hang forever, or we panic. */
if (!p) {
read_unlock(&tasklist_lock);
- cpuset_unlock();
panic("Out of memory and no killable processes...\n");
}
- if (oom_kill_process(p, points, "Out of memory"))
+ if (oom_kill_process(p, points, gfp_mask, order,
+ "Out of memory"))
goto retry;
break;
@@ -465,7 +506,6 @@ retry:
out:
read_unlock(&tasklist_lock);
- cpuset_unlock();
/*
* Give "p" a good chance of killing itself before we
diff --git a/mm/page-writeback.c b/mm/page-writeback.c
index 44720363374c..7845462064f4 100644
--- a/mm/page-writeback.c
+++ b/mm/page-writeback.c
@@ -2,6 +2,7 @@
* mm/page-writeback.c
*
* Copyright (C) 2002, Linus Torvalds.
+ * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
*
* Contains functions related to writing back dirty pages at the
* address_space level.
@@ -36,7 +37,7 @@
/*
* The maximum number of pages to writeout in a single bdflush/kupdate
- * operation. We do this so we don't hold I_LOCK against an inode for
+ * operation. We do this so we don't hold I_SYNC against an inode for
* enormous amounts of time, which would block a userspace task which has
* been forced to throttle against that inode. Also, the code reevaluates
* the dirty each time it has written this many pages.
@@ -49,8 +50,6 @@
*/
static long ratelimit_pages = 32;
-static int dirty_exceeded __cacheline_aligned_in_smp; /* Dirty mem may be over limit */
-
/*
* When balance_dirty_pages decides that the caller needs to perform some
* non-background writeback, this is how many pages it will attempt to write.
@@ -103,6 +102,141 @@ EXPORT_SYMBOL(laptop_mode);
static void background_writeout(unsigned long _min_pages);
/*
+ * Scale the writeback cache size proportional to the relative writeout speeds.
+ *
+ * We do this by keeping a floating proportion between BDIs, based on page
+ * writeback completions [end_page_writeback()]. Those devices that write out
+ * pages fastest will get the larger share, while the slower will get a smaller
+ * share.
+ *
+ * We use page writeout completions because we are interested in getting rid of
+ * dirty pages. Having them written out is the primary goal.
+ *
+ * We introduce a concept of time, a period over which we measure these events,
+ * because demand can/will vary over time. The length of this period itself is
+ * measured in page writeback completions.
+ *
+ */
+static struct prop_descriptor vm_completions;
+static struct prop_descriptor vm_dirties;
+
+static unsigned long determine_dirtyable_memory(void);
+
+/*
+ * couple the period to the dirty_ratio:
+ *
+ * period/2 ~ roundup_pow_of_two(dirty limit)
+ */
+static int calc_period_shift(void)
+{
+ unsigned long dirty_total;
+
+ dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
+ return 2 + ilog2(dirty_total - 1);
+}
+
+/*
+ * update the period when the dirty ratio changes.
+ */
+int dirty_ratio_handler(struct ctl_table *table, int write,
+ struct file *filp, void __user *buffer, size_t *lenp,
+ loff_t *ppos)
+{
+ int old_ratio = vm_dirty_ratio;
+ int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
+ if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
+ int shift = calc_period_shift();
+ prop_change_shift(&vm_completions, shift);
+ prop_change_shift(&vm_dirties, shift);
+ }
+ return ret;
+}
+
+/*
+ * Increment the BDI's writeout completion count and the global writeout
+ * completion count. Called from test_clear_page_writeback().
+ */
+static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
+{
+ __prop_inc_percpu(&vm_completions, &bdi->completions);
+}
+
+static inline void task_dirty_inc(struct task_struct *tsk)
+{
+ prop_inc_single(&vm_dirties, &tsk->dirties);
+}
+
+/*
+ * Obtain an accurate fraction of the BDI's portion.
+ */
+static void bdi_writeout_fraction(struct backing_dev_info *bdi,
+ long *numerator, long *denominator)
+{
+ if (bdi_cap_writeback_dirty(bdi)) {
+ prop_fraction_percpu(&vm_completions, &bdi->completions,
+ numerator, denominator);
+ } else {
+ *numerator = 0;
+ *denominator = 1;
+ }
+}
+
+/*
+ * Clip the earned share of dirty pages to that which is actually available.
+ * This avoids exceeding the total dirty_limit when the floating averages
+ * fluctuate too quickly.
+ */
+static void
+clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
+{
+ long avail_dirty;
+
+ avail_dirty = dirty -
+ (global_page_state(NR_FILE_DIRTY) +
+ global_page_state(NR_WRITEBACK) +
+ global_page_state(NR_UNSTABLE_NFS));
+
+ if (avail_dirty < 0)
+ avail_dirty = 0;
+
+ avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
+ bdi_stat(bdi, BDI_WRITEBACK);
+
+ *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
+}
+
+static inline void task_dirties_fraction(struct task_struct *tsk,
+ long *numerator, long *denominator)
+{
+ prop_fraction_single(&vm_dirties, &tsk->dirties,
+ numerator, denominator);
+}
+
+/*
+ * scale the dirty limit
+ *
+ * task specific dirty limit:
+ *
+ * dirty -= (dirty/8) * p_{t}
+ */
+void task_dirty_limit(struct task_struct *tsk, long *pdirty)
+{
+ long numerator, denominator;
+ long dirty = *pdirty;
+ u64 inv = dirty >> 3;
+
+ task_dirties_fraction(tsk, &numerator, &denominator);
+ inv *= numerator;
+ do_div(inv, denominator);
+
+ dirty -= inv;
+ if (dirty < *pdirty/2)
+ dirty = *pdirty/2;
+
+ *pdirty = dirty;
+}
+
+/*
* Work out the current dirty-memory clamping and background writeout
* thresholds.
*
@@ -126,7 +260,7 @@ static unsigned long highmem_dirtyable_memory(unsigned long total)
int node;
unsigned long x = 0;
- for_each_online_node(node) {
+ for_each_node_state(node, N_HIGH_MEMORY) {
struct zone *z =
&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
@@ -158,8 +292,8 @@ static unsigned long determine_dirtyable_memory(void)
}
static void
-get_dirty_limits(long *pbackground, long *pdirty,
- struct address_space *mapping)
+get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
+ struct backing_dev_info *bdi)
{
int background_ratio; /* Percentages */
int dirty_ratio;
@@ -193,6 +327,23 @@ get_dirty_limits(long *pbackground, long *pdirty,
}
*pbackground = background;
*pdirty = dirty;
+
+ if (bdi) {
+ u64 bdi_dirty = dirty;
+ long numerator, denominator;
+
+ /*
+ * Calculate this BDI's share of the dirty ratio.
+ */
+ bdi_writeout_fraction(bdi, &numerator, &denominator);
+
+ bdi_dirty *= numerator;
+ do_div(bdi_dirty, denominator);
+
+ *pbdi_dirty = bdi_dirty;
+ clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
+ task_dirty_limit(current, pbdi_dirty);
+ }
}
/*
@@ -204,9 +355,11 @@ get_dirty_limits(long *pbackground, long *pdirty,
*/
static void balance_dirty_pages(struct address_space *mapping)
{
- long nr_reclaimable;
+ long bdi_nr_reclaimable;
+ long bdi_nr_writeback;
long background_thresh;
long dirty_thresh;
+ long bdi_thresh;
unsigned long pages_written = 0;
unsigned long write_chunk = sync_writeback_pages();
@@ -221,15 +374,15 @@ static void balance_dirty_pages(struct address_space *mapping)
.range_cyclic = 1,
};
- get_dirty_limits(&background_thresh, &dirty_thresh, mapping);
- nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
- global_page_state(NR_UNSTABLE_NFS);
- if (nr_reclaimable + global_page_state(NR_WRITEBACK) <=
- dirty_thresh)
- break;
+ get_dirty_limits(&background_thresh, &dirty_thresh,
+ &bdi_thresh, bdi);
+ bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
+ bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
+ if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
+ break;
- if (!dirty_exceeded)
- dirty_exceeded = 1;
+ if (!bdi->dirty_exceeded)
+ bdi->dirty_exceeded = 1;
/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
* Unstable writes are a feature of certain networked
@@ -237,26 +390,42 @@ static void balance_dirty_pages(struct address_space *mapping)
* written to the server's write cache, but has not yet
* been flushed to permanent storage.
*/
- if (nr_reclaimable) {
+ if (bdi_nr_reclaimable) {
writeback_inodes(&wbc);
- get_dirty_limits(&background_thresh,
- &dirty_thresh, mapping);
- nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
- global_page_state(NR_UNSTABLE_NFS);
- if (nr_reclaimable +
- global_page_state(NR_WRITEBACK)
- <= dirty_thresh)
- break;
pages_written += write_chunk - wbc.nr_to_write;
- if (pages_written >= write_chunk)
- break; /* We've done our duty */
+ get_dirty_limits(&background_thresh, &dirty_thresh,
+ &bdi_thresh, bdi);
}
+
+ /*
+ * In order to avoid the stacked BDI deadlock we need
+ * to ensure we accurately count the 'dirty' pages when
+ * the threshold is low.
+ *
+ * Otherwise it would be possible to get thresh+n pages
+ * reported dirty, even though there are thresh-m pages
+ * actually dirty; with m+n sitting in the percpu
+ * deltas.
+ */
+ if (bdi_thresh < 2*bdi_stat_error(bdi)) {
+ bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
+ bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
+ } else if (bdi_nr_reclaimable) {
+ bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
+ bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
+ }
+
+ if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
+ break;
+ if (pages_written >= write_chunk)
+ break; /* We've done our duty */
+
congestion_wait(WRITE, HZ/10);
}
- if (nr_reclaimable + global_page_state(NR_WRITEBACK)
- <= dirty_thresh && dirty_exceeded)
- dirty_exceeded = 0;
+ if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
+ bdi->dirty_exceeded)
+ bdi->dirty_exceeded = 0;
if (writeback_in_progress(bdi))
return; /* pdflush is already working this queue */
@@ -270,7 +439,9 @@ static void balance_dirty_pages(struct address_space *mapping)
* background_thresh, to keep the amount of dirty memory low.
*/
if ((laptop_mode && pages_written) ||
- (!laptop_mode && (nr_reclaimable > background_thresh)))
+ (!laptop_mode && (global_page_state(NR_FILE_DIRTY)
+ + global_page_state(NR_UNSTABLE_NFS)
+ > background_thresh)))
pdflush_operation(background_writeout, 0);
}
@@ -306,7 +477,7 @@ void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
unsigned long *p;
ratelimit = ratelimit_pages;
- if (dirty_exceeded)
+ if (mapping->backing_dev_info->dirty_exceeded)
ratelimit = 8;
/*
@@ -331,18 +502,8 @@ void throttle_vm_writeout(gfp_t gfp_mask)
long background_thresh;
long dirty_thresh;
- if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) {
- /*
- * The caller might hold locks which can prevent IO completion
- * or progress in the filesystem. So we cannot just sit here
- * waiting for IO to complete.
- */
- congestion_wait(WRITE, HZ/10);
- return;
- }
-
for ( ; ; ) {
- get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
+ get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
/*
* Boost the allowable dirty threshold a bit for page
@@ -354,6 +515,14 @@ void throttle_vm_writeout(gfp_t gfp_mask)
global_page_state(NR_WRITEBACK) <= dirty_thresh)
break;
congestion_wait(WRITE, HZ/10);
+
+ /*
+ * The caller might hold locks which can prevent IO completion
+ * or progress in the filesystem. So we cannot just sit here
+ * waiting for IO to complete.
+ */
+ if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
+ break;
}
}
@@ -377,11 +546,12 @@ static void background_writeout(unsigned long _min_pages)
long background_thresh;
long dirty_thresh;
- get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
+ get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
if (global_page_state(NR_FILE_DIRTY) +
global_page_state(NR_UNSTABLE_NFS) < background_thresh
&& min_pages <= 0)
break;
+ wbc.more_io = 0;
wbc.encountered_congestion = 0;
wbc.nr_to_write = MAX_WRITEBACK_PAGES;
wbc.pages_skipped = 0;
@@ -389,8 +559,9 @@ static void background_writeout(unsigned long _min_pages)
min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
/* Wrote less than expected */
- congestion_wait(WRITE, HZ/10);
- if (!wbc.encountered_congestion)
+ if (wbc.encountered_congestion || wbc.more_io)
+ congestion_wait(WRITE, HZ/10);
+ else
break;
}
}
@@ -455,11 +626,12 @@ static void wb_kupdate(unsigned long arg)
global_page_state(NR_UNSTABLE_NFS) +
(inodes_stat.nr_inodes - inodes_stat.nr_unused);
while (nr_to_write > 0) {
+ wbc.more_io = 0;
wbc.encountered_congestion = 0;
wbc.nr_to_write = MAX_WRITEBACK_PAGES;
writeback_inodes(&wbc);
if (wbc.nr_to_write > 0) {
- if (wbc.encountered_congestion)
+ if (wbc.encountered_congestion || wbc.more_io)
congestion_wait(WRITE, HZ/10);
else
break; /* All the old data is written */
@@ -580,9 +752,15 @@ static struct notifier_block __cpuinitdata ratelimit_nb = {
*/
void __init page_writeback_init(void)
{
+ int shift;
+
mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
writeback_set_ratelimit();
register_cpu_notifier(&ratelimit_nb);
+
+ shift = calc_period_shift();
+ prop_descriptor_init(&vm_completions, shift);
+ prop_descriptor_init(&vm_dirties, shift);
}
/**
@@ -672,8 +850,10 @@ retry:
ret = (*writepage)(page, wbc, data);
- if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE))
+ if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
unlock_page(page);
+ ret = 0;
+ }
if (ret || (--(wbc->nr_to_write) <= 0))
done = 1;
if (wbc->nonblocking && bdi_write_congested(bdi)) {
@@ -827,6 +1007,8 @@ int __set_page_dirty_nobuffers(struct page *page)
WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
if (mapping_cap_account_dirty(mapping)) {
__inc_zone_page_state(page, NR_FILE_DIRTY);
+ __inc_bdi_stat(mapping->backing_dev_info,
+ BDI_RECLAIMABLE);
task_io_account_write(PAGE_CACHE_SIZE);
}
radix_tree_tag_set(&mapping->page_tree,
@@ -859,7 +1041,7 @@ EXPORT_SYMBOL(redirty_page_for_writepage);
* If the mapping doesn't provide a set_page_dirty a_op, then
* just fall through and assume that it wants buffer_heads.
*/
-int fastcall set_page_dirty(struct page *page)
+static int __set_page_dirty(struct page *page)
{
struct address_space *mapping = page_mapping(page);
@@ -877,6 +1059,14 @@ int fastcall set_page_dirty(struct page *page)
}
return 0;
}
+
+int fastcall set_page_dirty(struct page *page)
+{
+ int ret = __set_page_dirty(page);
+ if (ret)
+ task_dirty_inc(current);
+ return ret;
+}
EXPORT_SYMBOL(set_page_dirty);
/*
@@ -961,6 +1151,8 @@ int clear_page_dirty_for_io(struct page *page)
*/
if (TestClearPageDirty(page)) {
dec_zone_page_state(page, NR_FILE_DIRTY);
+ dec_bdi_stat(mapping->backing_dev_info,
+ BDI_RECLAIMABLE);
return 1;
}
return 0;
@@ -975,14 +1167,20 @@ int test_clear_page_writeback(struct page *page)
int ret;
if (mapping) {
+ struct backing_dev_info *bdi = mapping->backing_dev_info;
unsigned long flags;
write_lock_irqsave(&mapping->tree_lock, flags);
ret = TestClearPageWriteback(page);
- if (ret)
+ if (ret) {
radix_tree_tag_clear(&mapping->page_tree,
page_index(page),
PAGECACHE_TAG_WRITEBACK);
+ if (bdi_cap_writeback_dirty(bdi)) {
+ __dec_bdi_stat(bdi, BDI_WRITEBACK);
+ __bdi_writeout_inc(bdi);
+ }
+ }
write_unlock_irqrestore(&mapping->tree_lock, flags);
} else {
ret = TestClearPageWriteback(page);
@@ -998,14 +1196,18 @@ int test_set_page_writeback(struct page *page)
int ret;
if (mapping) {
+ struct backing_dev_info *bdi = mapping->backing_dev_info;
unsigned long flags;
write_lock_irqsave(&mapping->tree_lock, flags);
ret = TestSetPageWriteback(page);
- if (!ret)
+ if (!ret) {
radix_tree_tag_set(&mapping->page_tree,
page_index(page),
PAGECACHE_TAG_WRITEBACK);
+ if (bdi_cap_writeback_dirty(bdi))
+ __inc_bdi_stat(bdi, BDI_WRITEBACK);
+ }
if (!PageDirty(page))
radix_tree_tag_clear(&mapping->page_tree,
page_index(page),
@@ -1022,17 +1224,15 @@ int test_set_page_writeback(struct page *page)
EXPORT_SYMBOL(test_set_page_writeback);
/*
- * Return true if any of the pages in the mapping are marged with the
+ * Return true if any of the pages in the mapping are marked with the
* passed tag.
*/
int mapping_tagged(struct address_space *mapping, int tag)
{
- unsigned long flags;
int ret;
-
- read_lock_irqsave(&mapping->tree_lock, flags);
+ rcu_read_lock();
ret = radix_tree_tagged(&mapping->page_tree, tag);
- read_unlock_irqrestore(&mapping->tree_lock, flags);
+ rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL(mapping_tagged);
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index 1a8c59571cb7..43f757fcf30f 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -27,6 +27,7 @@
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
+#include <linux/oom.h>
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
@@ -41,24 +42,37 @@
#include <linux/pfn.h>
#include <linux/backing-dev.h>
#include <linux/fault-inject.h>
+#include <linux/page-isolation.h>
#include <asm/tlbflush.h>
#include <asm/div64.h>
#include "internal.h"
/*
- * MCD - HACK: Find somewhere to initialize this EARLY, or make this
- * initializer cleaner
+ * Array of node states.
*/
-nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
-EXPORT_SYMBOL(node_online_map);
-nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
-EXPORT_SYMBOL(node_possible_map);
+nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
+ [N_POSSIBLE] = NODE_MASK_ALL,
+ [N_ONLINE] = { { [0] = 1UL } },
+#ifndef CONFIG_NUMA
+ [N_NORMAL_MEMORY] = { { [0] = 1UL } },
+#ifdef CONFIG_HIGHMEM
+ [N_HIGH_MEMORY] = { { [0] = 1UL } },
+#endif
+ [N_CPU] = { { [0] = 1UL } },
+#endif /* NUMA */
+};
+EXPORT_SYMBOL(node_states);
+
unsigned long totalram_pages __read_mostly;
unsigned long totalreserve_pages __read_mostly;
long nr_swap_pages;
int percpu_pagelist_fraction;
+#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
+int pageblock_order __read_mostly;
+#endif
+
static void __free_pages_ok(struct page *page, unsigned int order);
/*
@@ -137,7 +151,7 @@ static unsigned long __meminitdata dma_reserve;
static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
unsigned long __initdata required_kernelcore;
- unsigned long __initdata required_movablecore;
+ static unsigned long __initdata required_movablecore;
unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
@@ -150,6 +164,14 @@ int nr_node_ids __read_mostly = MAX_NUMNODES;
EXPORT_SYMBOL(nr_node_ids);
#endif
+int page_group_by_mobility_disabled __read_mostly;
+
+static void set_pageblock_migratetype(struct page *page, int migratetype)
+{
+ set_pageblock_flags_group(page, (unsigned long)migratetype,
+ PB_migrate, PB_migrate_end);
+}
+
#ifdef CONFIG_DEBUG_VM
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
{
@@ -293,16 +315,6 @@ static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
clear_highpage(page + i);
}
-/*
- * function for dealing with page's order in buddy system.
- * zone->lock is already acquired when we use these.
- * So, we don't need atomic page->flags operations here.
- */
-static inline unsigned long page_order(struct page *page)
-{
- return page_private(page);
-}
-
static inline void set_page_order(struct page *page, int order)
{
set_page_private(page, order);
@@ -404,6 +416,7 @@ static inline void __free_one_page(struct page *page,
{
unsigned long page_idx;
int order_size = 1 << order;
+ int migratetype = get_pageblock_migratetype(page);
if (unlikely(PageCompound(page)))
destroy_compound_page(page, order);
@@ -416,7 +429,6 @@ static inline void __free_one_page(struct page *page,
__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
while (order < MAX_ORDER-1) {
unsigned long combined_idx;
- struct free_area *area;
struct page *buddy;
buddy = __page_find_buddy(page, page_idx, order);
@@ -424,8 +436,7 @@ static inline void __free_one_page(struct page *page,
break; /* Move the buddy up one level. */
list_del(&buddy->lru);
- area = zone->free_area + order;
- area->nr_free--;
+ zone->free_area[order].nr_free--;
rmv_page_order(buddy);
combined_idx = __find_combined_index(page_idx, order);
page = page + (combined_idx - page_idx);
@@ -433,7 +444,8 @@ static inline void __free_one_page(struct page *page,
order++;
}
set_page_order(page, order);
- list_add(&page->lru, &zone->free_area[order].free_list);
+ list_add(&page->lru,
+ &zone->free_area[order].free_list[migratetype]);
zone->free_area[order].nr_free++;
}
@@ -478,7 +490,7 @@ static void free_pages_bulk(struct zone *zone, int count,
struct list_head *list, int order)
{
spin_lock(&zone->lock);
- zone->all_unreclaimable = 0;
+ zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
zone->pages_scanned = 0;
while (count--) {
struct page *page;
@@ -495,7 +507,7 @@ static void free_pages_bulk(struct zone *zone, int count,
static void free_one_page(struct zone *zone, struct page *page, int order)
{
spin_lock(&zone->lock);
- zone->all_unreclaimable = 0;
+ zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
zone->pages_scanned = 0;
__free_one_page(page, zone, order);
spin_unlock(&zone->lock);
@@ -567,7 +579,8 @@ void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
* -- wli
*/
static inline void expand(struct zone *zone, struct page *page,
- int low, int high, struct free_area *area)
+ int low, int high, struct free_area *area,
+ int migratetype)
{
unsigned long size = 1 << high;
@@ -576,7 +589,7 @@ static inline void expand(struct zone *zone, struct page *page,
high--;
size >>= 1;
VM_BUG_ON(bad_range(zone, &page[size]));
- list_add(&page[size].lru, &area->free_list);
+ list_add(&page[size].lru, &area->free_list[migratetype]);
area->nr_free++;
set_page_order(&page[size], high);
}
@@ -628,49 +641,235 @@ static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
return 0;
}
-/*
- * Do the hard work of removing an element from the buddy allocator.
- * Call me with the zone->lock already held.
+/*
+ * Go through the free lists for the given migratetype and remove
+ * the smallest available page from the freelists
*/
-static struct page *__rmqueue(struct zone *zone, unsigned int order)
+static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
+ int migratetype)
{
- struct free_area * area;
unsigned int current_order;
+ struct free_area * area;
struct page *page;
+ /* Find a page of the appropriate size in the preferred list */
for (current_order = order; current_order < MAX_ORDER; ++current_order) {
- area = zone->free_area + current_order;
- if (list_empty(&area->free_list))
+ area = &(zone->free_area[current_order]);
+ if (list_empty(&area->free_list[migratetype]))
continue;
- page = list_entry(area->free_list.next, struct page, lru);
+ page = list_entry(area->free_list[migratetype].next,
+ struct page, lru);
list_del(&page->lru);
rmv_page_order(page);
area->nr_free--;
__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
- expand(zone, page, order, current_order, area);
+ expand(zone, page, order, current_order, area, migratetype);
return page;
}
return NULL;
}
+
+/*
+ * This array describes the order lists are fallen back to when
+ * the free lists for the desirable migrate type are depleted
+ */
+static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
+ [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
+ [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
+ [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
+ [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
+};
+
+/*
+ * Move the free pages in a range to the free lists of the requested type.
+ * Note that start_page and end_pages are not aligned on a pageblock
+ * boundary. If alignment is required, use move_freepages_block()
+ */
+int move_freepages(struct zone *zone,
+ struct page *start_page, struct page *end_page,
+ int migratetype)
+{
+ struct page *page;
+ unsigned long order;
+ int pages_moved = 0;
+
+#ifndef CONFIG_HOLES_IN_ZONE
+ /*
+ * page_zone is not safe to call in this context when
+ * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
+ * anyway as we check zone boundaries in move_freepages_block().
+ * Remove at a later date when no bug reports exist related to
+ * grouping pages by mobility
+ */
+ BUG_ON(page_zone(start_page) != page_zone(end_page));
+#endif
+
+ for (page = start_page; page <= end_page;) {
+ if (!pfn_valid_within(page_to_pfn(page))) {
+ page++;
+ continue;
+ }
+
+ if (!PageBuddy(page)) {
+ page++;
+ continue;
+ }
+
+ order = page_order(page);
+ list_del(&page->lru);
+ list_add(&page->lru,
+ &zone->free_area[order].free_list[migratetype]);
+ page += 1 << order;
+ pages_moved += 1 << order;
+ }
+
+ return pages_moved;
+}
+
+int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
+{
+ unsigned long start_pfn, end_pfn;
+ struct page *start_page, *end_page;
+
+ start_pfn = page_to_pfn(page);
+ start_pfn = start_pfn & ~(pageblock_nr_pages-1);
+ start_page = pfn_to_page(start_pfn);
+ end_page = start_page + pageblock_nr_pages - 1;
+ end_pfn = start_pfn + pageblock_nr_pages - 1;
+
+ /* Do not cross zone boundaries */
+ if (start_pfn < zone->zone_start_pfn)
+ start_page = page;
+ if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
+ return 0;
+
+ return move_freepages(zone, start_page, end_page, migratetype);
+}
+
+/* Return the page with the lowest PFN in the list */
+static struct page *min_page(struct list_head *list)
+{
+ unsigned long min_pfn = -1UL;
+ struct page *min_page = NULL, *page;;
+
+ list_for_each_entry(page, list, lru) {
+ unsigned long pfn = page_to_pfn(page);
+ if (pfn < min_pfn) {
+ min_pfn = pfn;
+ min_page = page;
+ }
+ }
+
+ return min_page;
+}
+
+/* Remove an element from the buddy allocator from the fallback list */
+static struct page *__rmqueue_fallback(struct zone *zone, int order,
+ int start_migratetype)
+{
+ struct free_area * area;
+ int current_order;
+ struct page *page;
+ int migratetype, i;
+
+ /* Find the largest possible block of pages in the other list */
+ for (current_order = MAX_ORDER-1; current_order >= order;
+ --current_order) {
+ for (i = 0; i < MIGRATE_TYPES - 1; i++) {
+ migratetype = fallbacks[start_migratetype][i];
+
+ /* MIGRATE_RESERVE handled later if necessary */
+ if (migratetype == MIGRATE_RESERVE)
+ continue;
+
+ area = &(zone->free_area[current_order]);
+ if (list_empty(&area->free_list[migratetype]))
+ continue;
+
+ /* Bias kernel allocations towards low pfns */
+ page = list_entry(area->free_list[migratetype].next,
+ struct page, lru);
+ if (unlikely(start_migratetype != MIGRATE_MOVABLE))
+ page = min_page(&area->free_list[migratetype]);
+ area->nr_free--;
+
+ /*
+ * If breaking a large block of pages, move all free
+ * pages to the preferred allocation list. If falling
+ * back for a reclaimable kernel allocation, be more
+ * agressive about taking ownership of free pages
+ */
+ if (unlikely(current_order >= (pageblock_order >> 1)) ||
+ start_migratetype == MIGRATE_RECLAIMABLE) {
+ unsigned long pages;
+ pages = move_freepages_block(zone, page,
+ start_migratetype);
+
+ /* Claim the whole block if over half of it is free */
+ if (pages >= (1 << (pageblock_order-1)))
+ set_pageblock_migratetype(page,
+ start_migratetype);
+
+ migratetype = start_migratetype;
+ }
+
+ /* Remove the page from the freelists */
+ list_del(&page->lru);
+ rmv_page_order(page);
+ __mod_zone_page_state(zone, NR_FREE_PAGES,
+ -(1UL << order));
+
+ if (current_order == pageblock_order)
+ set_pageblock_migratetype(page,
+ start_migratetype);
+
+ expand(zone, page, order, current_order, area, migratetype);
+ return page;
+ }
+ }
+
+ /* Use MIGRATE_RESERVE rather than fail an allocation */
+ return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
+}
+
+/*
+ * Do the hard work of removing an element from the buddy allocator.
+ * Call me with the zone->lock already held.
+ */
+static struct page *__rmqueue(struct zone *zone, unsigned int order,
+ int migratetype)
+{
+ struct page *page;
+
+ page = __rmqueue_smallest(zone, order, migratetype);
+
+ if (unlikely(!page))
+ page = __rmqueue_fallback(zone, order, migratetype);
+
+ return page;
+}
+
/*
* Obtain a specified number of elements from the buddy allocator, all under
* a single hold of the lock, for efficiency. Add them to the supplied list.
* Returns the number of new pages which were placed at *list.
*/
static int rmqueue_bulk(struct zone *zone, unsigned int order,
- unsigned long count, struct list_head *list)
+ unsigned long count, struct list_head *list,
+ int migratetype)
{
int i;
spin_lock(&zone->lock);
for (i = 0; i < count; ++i) {
- struct page *page = __rmqueue(zone, order);
+ struct page *page = __rmqueue(zone, order, migratetype);
if (unlikely(page == NULL))
break;
- list_add_tail(&page->lru, list);
+ list_add(&page->lru, list);
+ set_page_private(page, migratetype);
}
spin_unlock(&zone->lock);
return i;
@@ -732,7 +931,7 @@ void mark_free_pages(struct zone *zone)
{
unsigned long pfn, max_zone_pfn;
unsigned long flags;
- int order;
+ int order, t;
struct list_head *curr;
if (!zone->spanned_pages)
@@ -749,17 +948,18 @@ void mark_free_pages(struct zone *zone)
swsusp_unset_page_free(page);
}
- for (order = MAX_ORDER - 1; order >= 0; --order)
- list_for_each(curr, &zone->free_area[order].free_list) {
+ for_each_migratetype_order(order, t) {
+ list_for_each(curr, &zone->free_area[order].free_list[t]) {
unsigned long i;
pfn = page_to_pfn(list_entry(curr, struct page, lru));
for (i = 0; i < (1UL << order); i++)
swsusp_set_page_free(pfn_to_page(pfn + i));
}
-
+ }
spin_unlock_irqrestore(&zone->lock, flags);
}
+#endif /* CONFIG_PM */
/*
* Spill all of this CPU's per-cpu pages back into the buddy allocator.
@@ -772,7 +972,25 @@ void drain_local_pages(void)
__drain_pages(smp_processor_id());
local_irq_restore(flags);
}
-#endif /* CONFIG_HIBERNATION */
+
+void smp_drain_local_pages(void *arg)
+{
+ drain_local_pages();
+}
+
+/*
+ * Spill all the per-cpu pages from all CPUs back into the buddy allocator
+ */
+void drain_all_local_pages(void)
+{
+ unsigned long flags;
+
+ local_irq_save(flags);
+ __drain_pages(smp_processor_id());
+ local_irq_restore(flags);
+
+ smp_call_function(smp_drain_local_pages, NULL, 0, 1);
+}
/*
* Free a 0-order page
@@ -797,6 +1015,7 @@ static void fastcall free_hot_cold_page(struct page *page, int cold)
local_irq_save(flags);
__count_vm_event(PGFREE);
list_add(&page->lru, &pcp->list);
+ set_page_private(page, get_pageblock_migratetype(page));
pcp->count++;
if (pcp->count >= pcp->high) {
free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
@@ -846,6 +1065,7 @@ static struct page *buffered_rmqueue(struct zonelist *zonelist,
struct page *page;
int cold = !!(gfp_flags & __GFP_COLD);
int cpu;
+ int migratetype = allocflags_to_migratetype(gfp_flags);
again:
cpu = get_cpu();
@@ -856,16 +1076,28 @@ again:
local_irq_save(flags);
if (!pcp->count) {
pcp->count = rmqueue_bulk(zone, 0,
- pcp->batch, &pcp->list);
+ pcp->batch, &pcp->list, migratetype);
if (unlikely(!pcp->count))
goto failed;
}
- page = list_entry(pcp->list.next, struct page, lru);
+
+ /* Find a page of the appropriate migrate type */
+ list_for_each_entry(page, &pcp->list, lru)
+ if (page_private(page) == migratetype)
+ break;
+
+ /* Allocate more to the pcp list if necessary */
+ if (unlikely(&page->lru == &pcp->list)) {
+ pcp->count += rmqueue_bulk(zone, 0,
+ pcp->batch, &pcp->list, migratetype);
+ page = list_entry(pcp->list.next, struct page, lru);
+ }
+
list_del(&page->lru);
pcp->count--;
} else {
spin_lock_irqsave(&zone->lock, flags);
- page = __rmqueue(zone, order);
+ page = __rmqueue(zone, order, migratetype);
spin_unlock(&zone->lock);
if (!page)
goto failed;
@@ -1032,7 +1264,7 @@ int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
*
* If the zonelist cache is present in the passed in zonelist, then
* returns a pointer to the allowed node mask (either the current
- * tasks mems_allowed, or node_online_map.)
+ * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
*
* If the zonelist cache is not available for this zonelist, does
* nothing and returns NULL.
@@ -1061,7 +1293,7 @@ static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
&cpuset_current_mems_allowed :
- &node_online_map;
+ &node_states[N_HIGH_MEMORY];
return allowednodes;
}
@@ -1183,9 +1415,6 @@ zonelist_scan:
!zlc_zone_worth_trying(zonelist, z, allowednodes))
continue;
zone = *z;
- if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
- zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
- break;
if ((alloc_flags & ALLOC_CPUSET) &&
!cpuset_zone_allowed_softwall(zone, gfp_mask))
goto try_next_zone;
@@ -1254,7 +1483,10 @@ restart:
z = zonelist->zones; /* the list of zones suitable for gfp_mask */
if (unlikely(*z == NULL)) {
- /* Should this ever happen?? */
+ /*
+ * Happens if we have an empty zonelist as a result of
+ * GFP_THISNODE being used on a memoryless node
+ */
return NULL;
}
@@ -1346,12 +1578,20 @@ nofail_alloc:
cond_resched();
+ if (order != 0)
+ drain_all_local_pages();
+
if (likely(did_some_progress)) {
page = get_page_from_freelist(gfp_mask, order,
zonelist, alloc_flags);
if (page)
goto got_pg;
} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
+ if (!try_set_zone_oom(zonelist)) {
+ schedule_timeout_uninterruptible(1);
+ goto restart;
+ }
+
/*
* Go through the zonelist yet one more time, keep
* very high watermark here, this is only to catch
@@ -1360,14 +1600,19 @@ nofail_alloc:
*/
page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
- if (page)
+ if (page) {
+ clear_zonelist_oom(zonelist);
goto got_pg;
+ }
/* The OOM killer will not help higher order allocs so fail */
- if (order > PAGE_ALLOC_COSTLY_ORDER)
+ if (order > PAGE_ALLOC_COSTLY_ORDER) {
+ clear_zonelist_oom(zonelist);
goto nopage;
+ }
out_of_memory(zonelist, gfp_mask, order);
+ clear_zonelist_oom(zonelist);
goto restart;
}
@@ -1616,7 +1861,7 @@ void show_free_areas(void)
K(zone_page_state(zone, NR_INACTIVE)),
K(zone->present_pages),
zone->pages_scanned,
- (zone->all_unreclaimable ? "yes" : "no")
+ (zone_is_all_unreclaimable(zone) ? "yes" : "no")
);
printk("lowmem_reserve[]:");
for (i = 0; i < MAX_NR_ZONES; i++)
@@ -1794,7 +2039,7 @@ static int find_next_best_node(int node, nodemask_t *used_node_mask)
return node;
}
- for_each_online_node(n) {
+ for_each_node_state(n, N_HIGH_MEMORY) {
cpumask_t tmp;
/* Don't want a node to appear more than once */
@@ -1850,6 +2095,22 @@ static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
}
/*
+ * Build gfp_thisnode zonelists
+ */
+static void build_thisnode_zonelists(pg_data_t *pgdat)
+{
+ enum zone_type i;
+ int j;
+ struct zonelist *zonelist;
+
+ for (i = 0; i < MAX_NR_ZONES; i++) {
+ zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
+ j = build_zonelists_node(pgdat, zonelist, 0, i);
+ zonelist->zones[j] = NULL;
+ }
+}
+
+/*
* Build zonelists ordered by zone and nodes within zones.
* This results in conserving DMA zone[s] until all Normal memory is
* exhausted, but results in overflowing to remote node while memory
@@ -1915,7 +2176,8 @@ static int default_zonelist_order(void)
* If there is a node whose DMA/DMA32 memory is very big area on
* local memory, NODE_ORDER may be suitable.
*/
- average_size = total_size / (num_online_nodes() + 1);
+ average_size = total_size /
+ (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
for_each_online_node(nid) {
low_kmem_size = 0;
total_size = 0;
@@ -1953,7 +2215,7 @@ static void build_zonelists(pg_data_t *pgdat)
int order = current_zonelist_order;
/* initialize zonelists */
- for (i = 0; i < MAX_NR_ZONES; i++) {
+ for (i = 0; i < MAX_ZONELISTS; i++) {
zonelist = pgdat->node_zonelists + i;
zonelist->zones[0] = NULL;
}
@@ -1998,6 +2260,8 @@ static void build_zonelists(pg_data_t *pgdat)
/* calculate node order -- i.e., DMA last! */
build_zonelists_in_zone_order(pgdat, j);
}
+
+ build_thisnode_zonelists(pgdat);
}
/* Construct the zonelist performance cache - see further mmzone.h */
@@ -2078,8 +2342,10 @@ static int __build_all_zonelists(void *dummy)
int nid;
for_each_online_node(nid) {
- build_zonelists(NODE_DATA(nid));
- build_zonelist_cache(NODE_DATA(nid));
+ pg_data_t *pgdat = NODE_DATA(nid);
+
+ build_zonelists(pgdat);
+ build_zonelist_cache(pgdat);
}
return 0;
}
@@ -2098,9 +2364,23 @@ void build_all_zonelists(void)
/* cpuset refresh routine should be here */
}
vm_total_pages = nr_free_pagecache_pages();
- printk("Built %i zonelists in %s order. Total pages: %ld\n",
+ /*
+ * Disable grouping by mobility if the number of pages in the
+ * system is too low to allow the mechanism to work. It would be
+ * more accurate, but expensive to check per-zone. This check is
+ * made on memory-hotadd so a system can start with mobility
+ * disabled and enable it later
+ */
+ if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
+ page_group_by_mobility_disabled = 1;
+ else
+ page_group_by_mobility_disabled = 0;
+
+ printk("Built %i zonelists in %s order, mobility grouping %s. "
+ "Total pages: %ld\n",
num_online_nodes(),
zonelist_order_name[current_zonelist_order],
+ page_group_by_mobility_disabled ? "off" : "on",
vm_total_pages);
#ifdef CONFIG_NUMA
printk("Policy zone: %s\n", zone_names[policy_zone]);
@@ -2176,6 +2456,61 @@ static inline unsigned long wait_table_bits(unsigned long size)
#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
/*
+ * Mark a number of pageblocks as MIGRATE_RESERVE. The number
+ * of blocks reserved is based on zone->pages_min. The memory within the
+ * reserve will tend to store contiguous free pages. Setting min_free_kbytes
+ * higher will lead to a bigger reserve which will get freed as contiguous
+ * blocks as reclaim kicks in
+ */
+static void setup_zone_migrate_reserve(struct zone *zone)
+{
+ unsigned long start_pfn, pfn, end_pfn;
+ struct page *page;
+ unsigned long reserve, block_migratetype;
+
+ /* Get the start pfn, end pfn and the number of blocks to reserve */
+ start_pfn = zone->zone_start_pfn;
+ end_pfn = start_pfn + zone->spanned_pages;
+ reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
+ pageblock_order;
+
+ for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
+ if (!pfn_valid(pfn))
+ continue;
+ page = pfn_to_page(pfn);
+
+ /* Blocks with reserved pages will never free, skip them. */
+ if (PageReserved(page))
+ continue;
+
+ block_migratetype = get_pageblock_migratetype(page);
+
+ /* If this block is reserved, account for it */
+ if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
+ reserve--;
+ continue;
+ }
+
+ /* Suitable for reserving if this block is movable */
+ if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
+ set_pageblock_migratetype(page, MIGRATE_RESERVE);
+ move_freepages_block(zone, page, MIGRATE_RESERVE);
+ reserve--;
+ continue;
+ }
+
+ /*
+ * If the reserve is met and this is a previous reserved block,
+ * take it back
+ */
+ if (block_migratetype == MIGRATE_RESERVE) {
+ set_pageblock_migratetype(page, MIGRATE_MOVABLE);
+ move_freepages_block(zone, page, MIGRATE_MOVABLE);
+ }
+ }
+}
+
+/*
* Initially all pages are reserved - free ones are freed
* up by free_all_bootmem() once the early boot process is
* done. Non-atomic initialization, single-pass.
@@ -2204,6 +2539,19 @@ void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
init_page_count(page);
reset_page_mapcount(page);
SetPageReserved(page);
+
+ /*
+ * Mark the block movable so that blocks are reserved for
+ * movable at startup. This will force kernel allocations
+ * to reserve their blocks rather than leaking throughout
+ * the address space during boot when many long-lived
+ * kernel allocations are made. Later some blocks near
+ * the start are marked MIGRATE_RESERVE by
+ * setup_zone_migrate_reserve()
+ */
+ if ((pfn & (pageblock_nr_pages-1)))
+ set_pageblock_migratetype(page, MIGRATE_MOVABLE);
+
INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
/* The shift won't overflow because ZONE_NORMAL is below 4G. */
@@ -2216,9 +2564,9 @@ void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
struct zone *zone, unsigned long size)
{
- int order;
- for (order = 0; order < MAX_ORDER ; order++) {
- INIT_LIST_HEAD(&zone->free_area[order].free_list);
+ int order, t;
+ for_each_migratetype_order(order, t) {
+ INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
zone->free_area[order].nr_free = 0;
}
}
@@ -2324,6 +2672,9 @@ static struct per_cpu_pageset boot_pageset[NR_CPUS];
static int __cpuinit process_zones(int cpu)
{
struct zone *zone, *dzone;
+ int node = cpu_to_node(cpu);
+
+ node_set_state(node, N_CPU); /* this node has a cpu */
for_each_zone(zone) {
@@ -2331,7 +2682,7 @@ static int __cpuinit process_zones(int cpu)
continue;
zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
- GFP_KERNEL, cpu_to_node(cpu));
+ GFP_KERNEL, node);
if (!zone_pcp(zone, cpu))
goto bad;
@@ -2444,7 +2795,7 @@ int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
* To use this new node's memory, further consideration will be
* necessary.
*/
- zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
+ zone->wait_table = vmalloc(alloc_size);
}
if (!zone->wait_table)
return -ENOMEM;
@@ -2680,10 +3031,8 @@ void __meminit get_pfn_range_for_nid(unsigned int nid,
*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
}
- if (*start_pfn == -1UL) {
- printk(KERN_WARNING "Node %u active with no memory\n", nid);
+ if (*start_pfn == -1UL)
*start_pfn = 0;
- }
/* Push the node boundaries out if requested */
account_node_boundary(nid, start_pfn, end_pfn);
@@ -2901,6 +3250,62 @@ static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
realtotalpages);
}
+#ifndef CONFIG_SPARSEMEM
+/*
+ * Calculate the size of the zone->blockflags rounded to an unsigned long
+ * Start by making sure zonesize is a multiple of pageblock_order by rounding
+ * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
+ * round what is now in bits to nearest long in bits, then return it in
+ * bytes.
+ */
+static unsigned long __init usemap_size(unsigned long zonesize)
+{
+ unsigned long usemapsize;
+
+ usemapsize = roundup(zonesize, pageblock_nr_pages);
+ usemapsize = usemapsize >> pageblock_order;
+ usemapsize *= NR_PAGEBLOCK_BITS;
+ usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
+
+ return usemapsize / 8;
+}
+
+static void __init setup_usemap(struct pglist_data *pgdat,
+ struct zone *zone, unsigned long zonesize)
+{
+ unsigned long usemapsize = usemap_size(zonesize);
+ zone->pageblock_flags = NULL;
+ if (usemapsize) {
+ zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
+ memset(zone->pageblock_flags, 0, usemapsize);
+ }
+}
+#else
+static void inline setup_usemap(struct pglist_data *pgdat,
+ struct zone *zone, unsigned long zonesize) {}
+#endif /* CONFIG_SPARSEMEM */
+
+#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
+/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
+static inline void __init set_pageblock_order(unsigned int order)
+{
+ /* Check that pageblock_nr_pages has not already been setup */
+ if (pageblock_order)
+ return;
+
+ /*
+ * Assume the largest contiguous order of interest is a huge page.
+ * This value may be variable depending on boot parameters on IA64
+ */
+ pageblock_order = order;
+}
+#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
+
+/* Defined this way to avoid accidently referencing HUGETLB_PAGE_ORDER */
+#define set_pageblock_order(x) do {} while (0)
+
+#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
+
/*
* Set up the zone data structures:
* - mark all pages reserved
@@ -2977,10 +3382,12 @@ static void __meminit free_area_init_core(struct pglist_data *pgdat,
zone->nr_scan_active = 0;
zone->nr_scan_inactive = 0;
zap_zone_vm_stats(zone);
- atomic_set(&zone->reclaim_in_progress, 0);
+ zone->flags = 0;
if (!size)
continue;
+ set_pageblock_order(HUGETLB_PAGE_ORDER);
+ setup_usemap(pgdat, zone, size);
ret = init_currently_empty_zone(zone, zone_start_pfn,
size, MEMMAP_EARLY);
BUG_ON(ret);
@@ -3234,16 +3641,24 @@ unsigned long __init find_max_pfn_with_active_regions(void)
return max_pfn;
}
-unsigned long __init early_calculate_totalpages(void)
+/*
+ * early_calculate_totalpages()
+ * Sum pages in active regions for movable zone.
+ * Populate N_HIGH_MEMORY for calculating usable_nodes.
+ */
+static unsigned long __init early_calculate_totalpages(void)
{
int i;
unsigned long totalpages = 0;
- for (i = 0; i < nr_nodemap_entries; i++)
- totalpages += early_node_map[i].end_pfn -
+ for (i = 0; i < nr_nodemap_entries; i++) {
+ unsigned long pages = early_node_map[i].end_pfn -
early_node_map[i].start_pfn;
-
- return totalpages;
+ totalpages += pages;
+ if (pages)
+ node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
+ }
+ return totalpages;
}
/*
@@ -3257,7 +3672,8 @@ void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
int i, nid;
unsigned long usable_startpfn;
unsigned long kernelcore_node, kernelcore_remaining;
- int usable_nodes = num_online_nodes();
+ unsigned long totalpages = early_calculate_totalpages();
+ int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
/*
* If movablecore was specified, calculate what size of
@@ -3268,7 +3684,6 @@ void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
* what movablecore would have allowed.
*/
if (required_movablecore) {
- unsigned long totalpages = early_calculate_totalpages();
unsigned long corepages;
/*
@@ -3293,7 +3708,7 @@ void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
restart:
/* Spread kernelcore memory as evenly as possible throughout nodes */
kernelcore_node = required_kernelcore / usable_nodes;
- for_each_online_node(nid) {
+ for_each_node_state(nid, N_HIGH_MEMORY) {
/*
* Recalculate kernelcore_node if the division per node
* now exceeds what is necessary to satisfy the requested
@@ -3385,6 +3800,20 @@ restart:
roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
}
+/* Any regular memory on that node ? */
+static void check_for_regular_memory(pg_data_t *pgdat)
+{
+#ifdef CONFIG_HIGHMEM
+ enum zone_type zone_type;
+
+ for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
+ struct zone *zone = &pgdat->node_zones[zone_type];
+ if (zone->present_pages)
+ node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
+ }
+#endif
+}
+
/**
* free_area_init_nodes - Initialise all pg_data_t and zone data
* @max_zone_pfn: an array of max PFNs for each zone
@@ -3459,6 +3888,11 @@ void __init free_area_init_nodes(unsigned long *max_zone_pfn)
pg_data_t *pgdat = NODE_DATA(nid);
free_area_init_node(nid, pgdat, NULL,
find_min_pfn_for_node(nid), NULL);
+
+ /* Any memory on that node */
+ if (pgdat->node_present_pages)
+ node_set_state(nid, N_HIGH_MEMORY);
+ check_for_regular_memory(pgdat);
}
}
@@ -3673,6 +4107,7 @@ void setup_per_zone_pages_min(void)
zone->pages_low = zone->pages_min + (tmp >> 2);
zone->pages_high = zone->pages_min + (tmp >> 1);
+ setup_zone_migrate_reserve(zone);
spin_unlock_irqrestore(&zone->lru_lock, flags);
}
@@ -3934,4 +4369,169 @@ EXPORT_SYMBOL(pfn_to_page);
EXPORT_SYMBOL(page_to_pfn);
#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
+/* Return a pointer to the bitmap storing bits affecting a block of pages */
+static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
+ unsigned long pfn)
+{
+#ifdef CONFIG_SPARSEMEM
+ return __pfn_to_section(pfn)->pageblock_flags;
+#else
+ return zone->pageblock_flags;
+#endif /* CONFIG_SPARSEMEM */
+}
+
+static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
+{
+#ifdef CONFIG_SPARSEMEM
+ pfn &= (PAGES_PER_SECTION-1);
+ return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
+#else
+ pfn = pfn - zone->zone_start_pfn;
+ return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
+#endif /* CONFIG_SPARSEMEM */
+}
+
+/**
+ * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
+ * @page: The page within the block of interest
+ * @start_bitidx: The first bit of interest to retrieve
+ * @end_bitidx: The last bit of interest
+ * returns pageblock_bits flags
+ */
+unsigned long get_pageblock_flags_group(struct page *page,
+ int start_bitidx, int end_bitidx)
+{
+ struct zone *zone;
+ unsigned long *bitmap;
+ unsigned long pfn, bitidx;
+ unsigned long flags = 0;
+ unsigned long value = 1;
+
+ zone = page_zone(page);
+ pfn = page_to_pfn(page);
+ bitmap = get_pageblock_bitmap(zone, pfn);
+ bitidx = pfn_to_bitidx(zone, pfn);
+
+ for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
+ if (test_bit(bitidx + start_bitidx, bitmap))
+ flags |= value;
+
+ return flags;
+}
+
+/**
+ * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
+ * @page: The page within the block of interest
+ * @start_bitidx: The first bit of interest
+ * @end_bitidx: The last bit of interest
+ * @flags: The flags to set
+ */
+void set_pageblock_flags_group(struct page *page, unsigned long flags,
+ int start_bitidx, int end_bitidx)
+{
+ struct zone *zone;
+ unsigned long *bitmap;
+ unsigned long pfn, bitidx;
+ unsigned long value = 1;
+
+ zone = page_zone(page);
+ pfn = page_to_pfn(page);
+ bitmap = get_pageblock_bitmap(zone, pfn);
+ bitidx = pfn_to_bitidx(zone, pfn);
+
+ for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
+ if (flags & value)
+ __set_bit(bitidx + start_bitidx, bitmap);
+ else
+ __clear_bit(bitidx + start_bitidx, bitmap);
+}
+
+/*
+ * This is designed as sub function...plz see page_isolation.c also.
+ * set/clear page block's type to be ISOLATE.
+ * page allocater never alloc memory from ISOLATE block.
+ */
+
+int set_migratetype_isolate(struct page *page)
+{
+ struct zone *zone;
+ unsigned long flags;
+ int ret = -EBUSY;
+
+ zone = page_zone(page);
+ spin_lock_irqsave(&zone->lock, flags);
+ /*
+ * In future, more migrate types will be able to be isolation target.
+ */
+ if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
+ goto out;
+ set_pageblock_migratetype(page, MIGRATE_ISOLATE);
+ move_freepages_block(zone, page, MIGRATE_ISOLATE);
+ ret = 0;
+out:
+ spin_unlock_irqrestore(&zone->lock, flags);
+ if (!ret)
+ drain_all_local_pages();
+ return ret;
+}
+void unset_migratetype_isolate(struct page *page)
+{
+ struct zone *zone;
+ unsigned long flags;
+ zone = page_zone(page);
+ spin_lock_irqsave(&zone->lock, flags);
+ if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
+ goto out;
+ set_pageblock_migratetype(page, MIGRATE_MOVABLE);
+ move_freepages_block(zone, page, MIGRATE_MOVABLE);
+out:
+ spin_unlock_irqrestore(&zone->lock, flags);
+}
+
+#ifdef CONFIG_MEMORY_HOTREMOVE
+/*
+ * All pages in the range must be isolated before calling this.
+ */
+void
+__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
+{
+ struct page *page;
+ struct zone *zone;
+ int order, i;
+ unsigned long pfn;
+ unsigned long flags;
+ /* find the first valid pfn */
+ for (pfn = start_pfn; pfn < end_pfn; pfn++)
+ if (pfn_valid(pfn))
+ break;
+ if (pfn == end_pfn)
+ return;
+ zone = page_zone(pfn_to_page(pfn));
+ spin_lock_irqsave(&zone->lock, flags);
+ pfn = start_pfn;
+ while (pfn < end_pfn) {
+ if (!pfn_valid(pfn)) {
+ pfn++;
+ continue;
+ }
+ page = pfn_to_page(pfn);
+ BUG_ON(page_count(page));
+ BUG_ON(!PageBuddy(page));
+ order = page_order(page);
+#ifdef CONFIG_DEBUG_VM
+ printk(KERN_INFO "remove from free list %lx %d %lx\n",
+ pfn, 1 << order, end_pfn);
+#endif
+ list_del(&page->lru);
+ rmv_page_order(page);
+ zone->free_area[order].nr_free--;
+ __mod_zone_page_state(zone, NR_FREE_PAGES,
+ - (1UL << order));
+ for (i = 0; i < (1 << order); i++)
+ SetPageReserved((page+i));
+ pfn += (1 << order);
+ }
+ spin_unlock_irqrestore(&zone->lock, flags);
+}
+#endif
diff --git a/mm/page_isolation.c b/mm/page_isolation.c
new file mode 100644
index 000000000000..8f92a29695cc
--- /dev/null
+++ b/mm/page_isolation.c
@@ -0,0 +1,138 @@
+/*
+ * linux/mm/page_isolation.c
+ */
+
+#include <stddef.h>
+#include <linux/mm.h>
+#include <linux/page-isolation.h>
+#include <linux/pageblock-flags.h>
+#include "internal.h"
+
+static inline struct page *
+__first_valid_page(unsigned long pfn, unsigned long nr_pages)
+{
+ int i;
+ for (i = 0; i < nr_pages; i++)
+ if (pfn_valid_within(pfn + i))
+ break;
+ if (unlikely(i == nr_pages))
+ return NULL;
+ return pfn_to_page(pfn + i);
+}
+
+/*
+ * start_isolate_page_range() -- make page-allocation-type of range of pages
+ * to be MIGRATE_ISOLATE.
+ * @start_pfn: The lower PFN of the range to be isolated.
+ * @end_pfn: The upper PFN of the range to be isolated.
+ *
+ * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
+ * the range will never be allocated. Any free pages and pages freed in the
+ * future will not be allocated again.
+ *
+ * start_pfn/end_pfn must be aligned to pageblock_order.
+ * Returns 0 on success and -EBUSY if any part of range cannot be isolated.
+ */
+int
+start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn)
+{
+ unsigned long pfn;
+ unsigned long undo_pfn;
+ struct page *page;
+
+ BUG_ON((start_pfn) & (pageblock_nr_pages - 1));
+ BUG_ON((end_pfn) & (pageblock_nr_pages - 1));
+
+ for (pfn = start_pfn;
+ pfn < end_pfn;
+ pfn += pageblock_nr_pages) {
+ page = __first_valid_page(pfn, pageblock_nr_pages);
+ if (page && set_migratetype_isolate(page)) {
+ undo_pfn = pfn;
+ goto undo;
+ }
+ }
+ return 0;
+undo:
+ for (pfn = start_pfn;
+ pfn <= undo_pfn;
+ pfn += pageblock_nr_pages)
+ unset_migratetype_isolate(pfn_to_page(pfn));
+
+ return -EBUSY;
+}
+
+/*
+ * Make isolated pages available again.
+ */
+int
+undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn)
+{
+ unsigned long pfn;
+ struct page *page;
+ BUG_ON((start_pfn) & (pageblock_nr_pages - 1));
+ BUG_ON((end_pfn) & (pageblock_nr_pages - 1));
+ for (pfn = start_pfn;
+ pfn < end_pfn;
+ pfn += pageblock_nr_pages) {
+ page = __first_valid_page(pfn, pageblock_nr_pages);
+ if (!page || get_pageblock_flags(page) != MIGRATE_ISOLATE)
+ continue;
+ unset_migratetype_isolate(page);
+ }
+ return 0;
+}
+/*
+ * Test all pages in the range is free(means isolated) or not.
+ * all pages in [start_pfn...end_pfn) must be in the same zone.
+ * zone->lock must be held before call this.
+ *
+ * Returns 0 if all pages in the range is isolated.
+ */
+static int
+__test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn)
+{
+ struct page *page;
+
+ while (pfn < end_pfn) {
+ if (!pfn_valid_within(pfn)) {
+ pfn++;
+ continue;
+ }
+ page = pfn_to_page(pfn);
+ if (PageBuddy(page))
+ pfn += 1 << page_order(page);
+ else if (page_count(page) == 0 &&
+ page_private(page) == MIGRATE_ISOLATE)
+ pfn += 1;
+ else
+ break;
+ }
+ if (pfn < end_pfn)
+ return 0;
+ return 1;
+}
+
+int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
+{
+ unsigned long pfn;
+ struct page *page;
+
+ pfn = start_pfn;
+ /*
+ * Note: pageblock_nr_page != MAX_ORDER. Then, chunks of free page
+ * is not aligned to pageblock_nr_pages.
+ * Then we just check pagetype fist.
+ */
+ for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
+ page = __first_valid_page(pfn, pageblock_nr_pages);
+ if (page && get_pageblock_flags(page) != MIGRATE_ISOLATE)
+ break;
+ }
+ if (pfn < end_pfn)
+ return -EBUSY;
+ /* Check all pages are free or Marked as ISOLATED */
+ if (__test_page_isolated_in_pageblock(start_pfn, end_pfn))
+ return 0;
+ return -EBUSY;
+}
diff --git a/mm/readahead.c b/mm/readahead.c
index be20c9d699d3..c9c50ca1ec38 100644
--- a/mm/readahead.c
+++ b/mm/readahead.c
@@ -22,16 +22,8 @@ void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
}
EXPORT_SYMBOL(default_unplug_io_fn);
-/*
- * Convienent macros for min/max read-ahead pages.
- * Note that MAX_RA_PAGES is rounded down, while MIN_RA_PAGES is rounded up.
- * The latter is necessary for systems with large page size(i.e. 64k).
- */
-#define MAX_RA_PAGES (VM_MAX_READAHEAD*1024 / PAGE_CACHE_SIZE)
-#define MIN_RA_PAGES DIV_ROUND_UP(VM_MIN_READAHEAD*1024, PAGE_CACHE_SIZE)
-
struct backing_dev_info default_backing_dev_info = {
- .ra_pages = MAX_RA_PAGES,
+ .ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE,
.state = 0,
.capabilities = BDI_CAP_MAP_COPY,
.unplug_io_fn = default_unplug_io_fn,
@@ -46,7 +38,7 @@ void
file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
{
ra->ra_pages = mapping->backing_dev_info->ra_pages;
- ra->prev_index = -1;
+ ra->prev_pos = -1;
}
EXPORT_SYMBOL_GPL(file_ra_state_init);
@@ -66,28 +58,25 @@ int read_cache_pages(struct address_space *mapping, struct list_head *pages,
int (*filler)(void *, struct page *), void *data)
{
struct page *page;
- struct pagevec lru_pvec;
int ret = 0;
- pagevec_init(&lru_pvec, 0);
-
while (!list_empty(pages)) {
page = list_to_page(pages);
list_del(&page->lru);
- if (add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) {
+ if (add_to_page_cache_lru(page, mapping,
+ page->index, GFP_KERNEL)) {
page_cache_release(page);
continue;
}
+ page_cache_release(page);
+
ret = filler(data, page);
- if (!pagevec_add(&lru_pvec, page))
- __pagevec_lru_add(&lru_pvec);
- if (ret) {
+ if (unlikely(ret)) {
put_pages_list(pages);
break;
}
task_io_account_read(PAGE_CACHE_SIZE);
}
- pagevec_lru_add(&lru_pvec);
return ret;
}
@@ -97,7 +86,6 @@ static int read_pages(struct address_space *mapping, struct file *filp,
struct list_head *pages, unsigned nr_pages)
{
unsigned page_idx;
- struct pagevec lru_pvec;
int ret;
if (mapping->a_ops->readpages) {
@@ -107,19 +95,15 @@ static int read_pages(struct address_space *mapping, struct file *filp,
goto out;
}
- pagevec_init(&lru_pvec, 0);
for (page_idx = 0; page_idx < nr_pages; page_idx++) {
struct page *page = list_to_page(pages);
list_del(&page->lru);
- if (!add_to_page_cache(page, mapping,
+ if (!add_to_page_cache_lru(page, mapping,
page->index, GFP_KERNEL)) {
mapping->a_ops->readpage(filp, page);
- if (!pagevec_add(&lru_pvec, page))
- __pagevec_lru_add(&lru_pvec);
- } else
- page_cache_release(page);
+ }
+ page_cache_release(page);
}
- pagevec_lru_add(&lru_pvec);
ret = 0;
out:
return ret;
@@ -157,20 +141,19 @@ __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
/*
* Preallocate as many pages as we will need.
*/
- read_lock_irq(&mapping->tree_lock);
for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
pgoff_t page_offset = offset + page_idx;
if (page_offset > end_index)
break;
+ rcu_read_lock();
page = radix_tree_lookup(&mapping->page_tree, page_offset);
+ rcu_read_unlock();
if (page)
continue;
- read_unlock_irq(&mapping->tree_lock);
page = page_cache_alloc_cold(mapping);
- read_lock_irq(&mapping->tree_lock);
if (!page)
break;
page->index = page_offset;
@@ -179,7 +162,6 @@ __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
SetPageReadahead(page);
ret++;
}
- read_unlock_irq(&mapping->tree_lock);
/*
* Now start the IO. We ignore I/O errors - if the page is not
@@ -251,6 +233,12 @@ unsigned long max_sane_readahead(unsigned long nr)
+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
}
+static int __init readahead_init(void)
+{
+ return bdi_init(&default_backing_dev_info);
+}
+subsys_initcall(readahead_init);
+
/*
* Submit IO for the read-ahead request in file_ra_state.
*/
@@ -327,7 +315,7 @@ static unsigned long get_next_ra_size(struct file_ra_state *ra,
* indicator. The flag won't be set on already cached pages, to avoid the
* readahead-for-nothing fuss, saving pointless page cache lookups.
*
- * prev_index tracks the last visited page in the _previous_ read request.
+ * prev_pos tracks the last visited byte in the _previous_ read request.
* It should be maintained by the caller, and will be used for detecting
* small random reads. Note that the readahead algorithm checks loosely
* for sequential patterns. Hence interleaved reads might be served as
@@ -351,11 +339,9 @@ ondemand_readahead(struct address_space *mapping,
bool hit_readahead_marker, pgoff_t offset,
unsigned long req_size)
{
- unsigned long max; /* max readahead pages */
- int sequential;
-
- max = ra->ra_pages;
- sequential = (offset - ra->prev_index <= 1UL) || (req_size > max);
+ int max = ra->ra_pages; /* max readahead pages */
+ pgoff_t prev_offset;
+ int sequential;
/*
* It's the expected callback offset, assume sequential access.
@@ -369,6 +355,9 @@ ondemand_readahead(struct address_space *mapping,
goto readit;
}
+ prev_offset = ra->prev_pos >> PAGE_CACHE_SHIFT;
+ sequential = offset - prev_offset <= 1UL || req_size > max;
+
/*
* Standalone, small read.
* Read as is, and do not pollute the readahead state.
@@ -379,6 +368,29 @@ ondemand_readahead(struct address_space *mapping,
}
/*
+ * Hit a marked page without valid readahead state.
+ * E.g. interleaved reads.
+ * Query the pagecache for async_size, which normally equals to
+ * readahead size. Ramp it up and use it as the new readahead size.
+ */
+ if (hit_readahead_marker) {
+ pgoff_t start;
+
+ read_lock_irq(&mapping->tree_lock);
+ start = radix_tree_next_hole(&mapping->page_tree, offset, max+1);
+ read_unlock_irq(&mapping->tree_lock);
+
+ if (!start || start - offset > max)
+ return 0;
+
+ ra->start = start;
+ ra->size = start - offset; /* old async_size */
+ ra->size = get_next_ra_size(ra, max);
+ ra->async_size = ra->size;
+ goto readit;
+ }
+
+ /*
* It may be one of
* - first read on start of file
* - sequential cache miss
@@ -389,16 +401,6 @@ ondemand_readahead(struct address_space *mapping,
ra->size = get_init_ra_size(req_size, max);
ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
- /*
- * Hit on a marked page without valid readahead state.
- * E.g. interleaved reads.
- * Not knowing its readahead pos/size, bet on the minimal possible one.
- */
- if (hit_readahead_marker) {
- ra->start++;
- ra->size = get_next_ra_size(ra, max);
- }
-
readit:
return ra_submit(ra, mapping, filp);
}
diff --git a/mm/rmap.c b/mm/rmap.c
index 41ac39749ef4..8990f909492f 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -36,6 +36,7 @@
* mapping->tree_lock (widely used, in set_page_dirty,
* in arch-dependent flush_dcache_mmap_lock,
* within inode_lock in __sync_single_inode)
+ * zone->lock (within radix tree node alloc)
*/
#include <linux/mm.h>
@@ -137,8 +138,7 @@ void anon_vma_unlink(struct vm_area_struct *vma)
anon_vma_free(anon_vma);
}
-static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
- unsigned long flags)
+static void anon_vma_ctor(struct kmem_cache *cachep, void *data)
{
struct anon_vma *anon_vma = data;
@@ -436,7 +436,6 @@ static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
entry = pte_wrprotect(entry);
entry = pte_mkclean(entry);
set_pte_at(mm, address, pte, entry);
- lazy_mmu_prot_update(entry);
ret = 1;
}
diff --git a/mm/shmem.c b/mm/shmem.c
index fcd19d323f9f..289dbb0a6fd6 100644
--- a/mm/shmem.c
+++ b/mm/shmem.c
@@ -49,7 +49,6 @@
#include <linux/ctype.h>
#include <linux/migrate.h>
#include <linux/highmem.h>
-#include <linux/backing-dev.h>
#include <asm/uaccess.h>
#include <asm/div64.h>
@@ -96,9 +95,9 @@ static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
* BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
* might be reconsidered if it ever diverges from PAGE_SIZE.
*
- * __GFP_MOVABLE is masked out as swap vectors cannot move
+ * Mobility flags are masked out as swap vectors cannot move
*/
- return alloc_pages((gfp_mask & ~__GFP_MOVABLE) | __GFP_ZERO,
+ return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
PAGE_CACHE_SHIFT-PAGE_SHIFT);
}
@@ -972,7 +971,7 @@ static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_
*nodelist++ = '\0';
if (nodelist_parse(nodelist, *policy_nodes))
goto out;
- if (!nodes_subset(*policy_nodes, node_online_map))
+ if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
goto out;
}
if (!strcmp(value, "default")) {
@@ -997,9 +996,11 @@ static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_
err = 0;
} else if (!strcmp(value, "interleave")) {
*policy = MPOL_INTERLEAVE;
- /* Default to nodes online if no nodelist */
+ /*
+ * Default to online nodes with memory if no nodelist
+ */
if (!nodelist)
- *policy_nodes = node_online_map;
+ *policy_nodes = node_states[N_HIGH_MEMORY];
err = 0;
}
out:
@@ -1025,8 +1026,8 @@ static struct page *shmem_swapin_async(struct shared_policy *p,
return page;
}
-struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
- unsigned long idx)
+static struct page *shmem_swapin(struct shmem_inode_info *info,
+ swp_entry_t entry, unsigned long idx)
{
struct shared_policy *p = &info->policy;
int i, num;
@@ -1061,7 +1062,8 @@ shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
return page;
}
#else
-static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
+static inline int shmem_parse_mpol(char *value, int *policy,
+ nodemask_t *policy_nodes)
{
return 1;
}
@@ -1109,7 +1111,7 @@ static int shmem_getpage(struct inode *inode, unsigned long idx,
* Normally, filepage is NULL on entry, and either found
* uptodate immediately, or allocated and zeroed, or read
* in under swappage, which is then assigned to filepage.
- * But shmem_readpage and shmem_prepare_write pass in a locked
+ * But shmem_readpage and shmem_write_begin pass in a locked
* filepage, which may be found not uptodate by other callers
* too, and may need to be copied from the swappage read in.
*/
@@ -1327,14 +1329,14 @@ static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
}
#ifdef CONFIG_NUMA
-int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
+static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
{
struct inode *i = vma->vm_file->f_path.dentry->d_inode;
return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
}
-struct mempolicy *
-shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
+static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
+ unsigned long addr)
{
struct inode *i = vma->vm_file->f_path.dentry->d_inode;
unsigned long idx;
@@ -1446,7 +1448,7 @@ static const struct inode_operations shmem_symlink_inode_operations;
static const struct inode_operations shmem_symlink_inline_operations;
/*
- * Normally tmpfs avoids the use of shmem_readpage and shmem_prepare_write;
+ * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
* but providing them allows a tmpfs file to be used for splice, sendfile, and
* below the loop driver, in the generic fashion that many filesystems support.
*/
@@ -1459,10 +1461,30 @@ static int shmem_readpage(struct file *file, struct page *page)
}
static int
-shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
+shmem_write_begin(struct file *file, struct address_space *mapping,
+ loff_t pos, unsigned len, unsigned flags,
+ struct page **pagep, void **fsdata)
{
- struct inode *inode = page->mapping->host;
- return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
+ struct inode *inode = mapping->host;
+ pgoff_t index = pos >> PAGE_CACHE_SHIFT;
+ *pagep = NULL;
+ return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
+}
+
+static int
+shmem_write_end(struct file *file, struct address_space *mapping,
+ loff_t pos, unsigned len, unsigned copied,
+ struct page *page, void *fsdata)
+{
+ struct inode *inode = mapping->host;
+
+ set_page_dirty(page);
+ page_cache_release(page);
+
+ if (pos+copied > inode->i_size)
+ i_size_write(inode, pos+copied);
+
+ return copied;
}
static ssize_t
@@ -2219,7 +2241,7 @@ static int shmem_fill_super(struct super_block *sb,
unsigned long blocks = 0;
unsigned long inodes = 0;
int policy = MPOL_DEFAULT;
- nodemask_t policy_nodes = node_online_map;
+ nodemask_t policy_nodes = node_states[N_HIGH_MEMORY];
#ifdef CONFIG_TMPFS
/*
@@ -2306,8 +2328,7 @@ static void shmem_destroy_inode(struct inode *inode)
kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
}
-static void init_once(void *foo, struct kmem_cache *cachep,
- unsigned long flags)
+static void init_once(struct kmem_cache *cachep, void *foo)
{
struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
@@ -2322,9 +2343,7 @@ static int init_inodecache(void)
{
shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
sizeof(struct shmem_inode_info),
- 0, 0, init_once);
- if (shmem_inode_cachep == NULL)
- return -ENOMEM;
+ 0, SLAB_PANIC, init_once);
return 0;
}
@@ -2338,8 +2357,8 @@ static const struct address_space_operations shmem_aops = {
.set_page_dirty = __set_page_dirty_no_writeback,
#ifdef CONFIG_TMPFS
.readpage = shmem_readpage,
- .prepare_write = shmem_prepare_write,
- .commit_write = simple_commit_write,
+ .write_begin = shmem_write_begin,
+ .write_end = shmem_write_end,
#endif
.migratepage = migrate_page,
};
@@ -2442,6 +2461,10 @@ static int __init init_tmpfs(void)
{
int error;
+ error = bdi_init(&shmem_backing_dev_info);
+ if (error)
+ goto out4;
+
error = init_inodecache();
if (error)
goto out3;
@@ -2466,6 +2489,8 @@ out1:
out2:
destroy_inodecache();
out3:
+ bdi_destroy(&shmem_backing_dev_info);
+out4:
shm_mnt = ERR_PTR(error);
return error;
}
@@ -2518,11 +2543,8 @@ struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
d_instantiate(dentry, inode);
inode->i_size = size;
inode->i_nlink = 0; /* It is unlinked */
- file->f_path.mnt = mntget(shm_mnt);
- file->f_path.dentry = dentry;
- file->f_mapping = inode->i_mapping;
- file->f_op = &shmem_file_operations;
- file->f_mode = FMODE_WRITE | FMODE_READ;
+ init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
+ &shmem_file_operations);
return file;
close_file:
diff --git a/mm/slab.c b/mm/slab.c
index 6f6abef83a1a..3ce9bc024d67 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -267,11 +267,10 @@ struct array_cache {
unsigned int batchcount;
unsigned int touched;
spinlock_t lock;
- void *entry[0]; /*
+ void *entry[]; /*
* Must have this definition in here for the proper
* alignment of array_cache. Also simplifies accessing
* the entries.
- * [0] is for gcc 2.95. It should really be [].
*/
};
@@ -408,7 +407,7 @@ struct kmem_cache {
unsigned int dflags; /* dynamic flags */
/* constructor func */
- void (*ctor) (void *, struct kmem_cache *, unsigned long);
+ void (*ctor)(struct kmem_cache *, void *);
/* 5) cache creation/removal */
const char *name;
@@ -1568,7 +1567,7 @@ void __init kmem_cache_init(void)
/* Replace the static kmem_list3 structures for the boot cpu */
init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
- for_each_online_node(nid) {
+ for_each_node_state(nid, N_NORMAL_MEMORY) {
init_list(malloc_sizes[INDEX_AC].cs_cachep,
&initkmem_list3[SIZE_AC + nid], nid);
@@ -1643,6 +1642,8 @@ static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
#endif
flags |= cachep->gfpflags;
+ if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
+ flags |= __GFP_RECLAIMABLE;
page = alloc_pages_node(nodeid, flags, cachep->gfporder);
if (!page)
@@ -1944,7 +1945,7 @@ static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
int node;
- for_each_online_node(node) {
+ for_each_node_state(node, N_NORMAL_MEMORY) {
cachep->nodelists[node] = &initkmem_list3[index + node];
cachep->nodelists[node]->next_reap = jiffies +
REAPTIMEOUT_LIST3 +
@@ -2075,7 +2076,7 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
g_cpucache_up = PARTIAL_L3;
} else {
int node;
- for_each_online_node(node) {
+ for_each_node_state(node, N_NORMAL_MEMORY) {
cachep->nodelists[node] =
kmalloc_node(sizeof(struct kmem_list3),
GFP_KERNEL, node);
@@ -2127,7 +2128,7 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
struct kmem_cache *
kmem_cache_create (const char *name, size_t size, size_t align,
unsigned long flags,
- void (*ctor)(void*, struct kmem_cache *, unsigned long))
+ void (*ctor)(struct kmem_cache *, void *))
{
size_t left_over, slab_size, ralign;
struct kmem_cache *cachep = NULL, *pc;
@@ -2634,8 +2635,7 @@ static void cache_init_objs(struct kmem_cache *cachep,
* They must also be threaded.
*/
if (cachep->ctor && !(cachep->flags & SLAB_POISON))
- cachep->ctor(objp + obj_offset(cachep), cachep,
- 0);
+ cachep->ctor(cachep, objp + obj_offset(cachep));
if (cachep->flags & SLAB_RED_ZONE) {
if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
@@ -2651,7 +2651,7 @@ static void cache_init_objs(struct kmem_cache *cachep,
cachep->buffer_size / PAGE_SIZE, 0);
#else
if (cachep->ctor)
- cachep->ctor(objp, cachep, 0);
+ cachep->ctor(cachep, objp);
#endif
slab_bufctl(slabp)[i] = i + 1;
}
@@ -2746,9 +2746,9 @@ static int cache_grow(struct kmem_cache *cachep,
* Be lazy and only check for valid flags here, keeping it out of the
* critical path in kmem_cache_alloc().
*/
- BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK));
+ BUG_ON(flags & GFP_SLAB_BUG_MASK);
+ local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
- local_flags = (flags & GFP_LEVEL_MASK);
/* Take the l3 list lock to change the colour_next on this node */
check_irq_off();
l3 = cachep->nodelists[nodeid];
@@ -2785,7 +2785,7 @@ static int cache_grow(struct kmem_cache *cachep,
/* Get slab management. */
slabp = alloc_slabmgmt(cachep, objp, offset,
- local_flags & ~GFP_THISNODE, nodeid);
+ local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
if (!slabp)
goto opps1;
@@ -3076,7 +3076,7 @@ static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
#endif
objp += obj_offset(cachep);
if (cachep->ctor && cachep->flags & SLAB_POISON)
- cachep->ctor(objp, cachep, 0);
+ cachep->ctor(cachep, objp);
#if ARCH_SLAB_MINALIGN
if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
@@ -3225,7 +3225,7 @@ static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
zonelist = &NODE_DATA(slab_node(current->mempolicy))
->node_zonelists[gfp_zone(flags)];
- local_flags = (flags & GFP_LEVEL_MASK);
+ local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
retry:
/*
@@ -3792,7 +3792,7 @@ static int alloc_kmemlist(struct kmem_cache *cachep)
struct array_cache *new_shared;
struct array_cache **new_alien = NULL;
- for_each_online_node(node) {
+ for_each_node_state(node, N_NORMAL_MEMORY) {
if (use_alien_caches) {
new_alien = alloc_alien_cache(node, cachep->limit);
@@ -4446,7 +4446,8 @@ const struct seq_operations slabstats_op = {
*/
size_t ksize(const void *objp)
{
- if (unlikely(ZERO_OR_NULL_PTR(objp)))
+ BUG_ON(!objp);
+ if (unlikely(objp == ZERO_SIZE_PTR))
return 0;
return obj_size(virt_to_cache(objp));
diff --git a/mm/slob.c b/mm/slob.c
index ec33fcdc852e..5bc2ceb692ec 100644
--- a/mm/slob.c
+++ b/mm/slob.c
@@ -360,7 +360,7 @@ static void slob_free(void *block, int size)
slobidx_t units;
unsigned long flags;
- if (ZERO_OR_NULL_PTR(block))
+ if (unlikely(ZERO_OR_NULL_PTR(block)))
return;
BUG_ON(!size);
@@ -466,7 +466,7 @@ void kfree(const void *block)
{
struct slob_page *sp;
- if (ZERO_OR_NULL_PTR(block))
+ if (unlikely(ZERO_OR_NULL_PTR(block)))
return;
sp = (struct slob_page *)virt_to_page(block);
@@ -484,7 +484,8 @@ size_t ksize(const void *block)
{
struct slob_page *sp;
- if (ZERO_OR_NULL_PTR(block))
+ BUG_ON(!block);
+ if (unlikely(block == ZERO_SIZE_PTR))
return 0;
sp = (struct slob_page *)virt_to_page(block);
@@ -498,12 +499,12 @@ struct kmem_cache {
unsigned int size, align;
unsigned long flags;
const char *name;
- void (*ctor)(void *, struct kmem_cache *, unsigned long);
+ void (*ctor)(struct kmem_cache *, void *);
};
struct kmem_cache *kmem_cache_create(const char *name, size_t size,
size_t align, unsigned long flags,
- void (*ctor)(void*, struct kmem_cache *, unsigned long))
+ void (*ctor)(struct kmem_cache *, void *))
{
struct kmem_cache *c;
@@ -547,7 +548,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
b = slob_new_page(flags, get_order(c->size), node);
if (c->ctor)
- c->ctor(b, c, 0);
+ c->ctor(c, b);
return b;
}
diff --git a/mm/slub.c b/mm/slub.c
index addb20a6d67d..e29a42988c78 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -90,7 +90,7 @@
* One use of this flag is to mark slabs that are
* used for allocations. Then such a slab becomes a cpu
* slab. The cpu slab may be equipped with an additional
- * lockless_freelist that allows lockless access to
+ * freelist that allows lockless access to
* free objects in addition to the regular freelist
* that requires the slab lock.
*
@@ -140,11 +140,6 @@ static inline void ClearSlabDebug(struct page *page)
/*
* Issues still to be resolved:
*
- * - The per cpu array is updated for each new slab and and is a remote
- * cacheline for most nodes. This could become a bouncing cacheline given
- * enough frequent updates. There are 16 pointers in a cacheline, so at
- * max 16 cpus could compete for the cacheline which may be okay.
- *
* - Support PAGE_ALLOC_DEBUG. Should be easy to do.
*
* - Variable sizing of the per node arrays
@@ -205,11 +200,6 @@ static inline void ClearSlabDebug(struct page *page)
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
#endif
-/*
- * The page->inuse field is 16 bit thus we have this limitation
- */
-#define MAX_OBJECTS_PER_SLAB 65535
-
/* Internal SLUB flags */
#define __OBJECT_POISON 0x80000000 /* Poison object */
#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
@@ -277,6 +267,15 @@ static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
#endif
}
+static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
+{
+#ifdef CONFIG_SMP
+ return s->cpu_slab[cpu];
+#else
+ return &s->cpu_slab;
+#endif
+}
+
static inline int check_valid_pointer(struct kmem_cache *s,
struct page *page, const void *object)
{
@@ -729,11 +728,6 @@ static int check_slab(struct kmem_cache *s, struct page *page)
slab_err(s, page, "Not a valid slab page");
return 0;
}
- if (page->offset * sizeof(void *) != s->offset) {
- slab_err(s, page, "Corrupted offset %lu",
- (unsigned long)(page->offset * sizeof(void *)));
- return 0;
- }
if (page->inuse > s->objects) {
slab_err(s, page, "inuse %u > max %u",
s->name, page->inuse, s->objects);
@@ -872,8 +866,6 @@ bad:
slab_fix(s, "Marking all objects used");
page->inuse = s->objects;
page->freelist = NULL;
- /* Fix up fields that may be corrupted */
- page->offset = s->offset / sizeof(void *);
}
return 0;
}
@@ -988,7 +980,7 @@ __setup("slub_debug", setup_slub_debug);
static unsigned long kmem_cache_flags(unsigned long objsize,
unsigned long flags, const char *name,
- void (*ctor)(void *, struct kmem_cache *, unsigned long))
+ void (*ctor)(struct kmem_cache *, void *))
{
/*
* The page->offset field is only 16 bit wide. This is an offset
@@ -1035,7 +1027,7 @@ static inline int check_object(struct kmem_cache *s, struct page *page,
static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
static inline unsigned long kmem_cache_flags(unsigned long objsize,
unsigned long flags, const char *name,
- void (*ctor)(void *, struct kmem_cache *, unsigned long))
+ void (*ctor)(struct kmem_cache *, void *))
{
return flags;
}
@@ -1055,6 +1047,9 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
if (s->flags & SLAB_CACHE_DMA)
flags |= SLUB_DMA;
+ if (s->flags & SLAB_RECLAIM_ACCOUNT)
+ flags |= __GFP_RECLAIMABLE;
+
if (node == -1)
page = alloc_pages(flags, s->order);
else
@@ -1076,7 +1071,7 @@ static void setup_object(struct kmem_cache *s, struct page *page,
{
setup_object_debug(s, page, object);
if (unlikely(s->ctor))
- s->ctor(object, s, 0);
+ s->ctor(s, object);
}
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
@@ -1088,19 +1083,16 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
void *last;
void *p;
- BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK));
-
- if (flags & __GFP_WAIT)
- local_irq_enable();
+ BUG_ON(flags & GFP_SLAB_BUG_MASK);
- page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
+ page = allocate_slab(s,
+ flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
if (!page)
goto out;
n = get_node(s, page_to_nid(page));
if (n)
atomic_long_inc(&n->nr_slabs);
- page->offset = s->offset / sizeof(void *);
page->slab = s;
page->flags |= 1 << PG_slab;
if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
@@ -1123,11 +1115,8 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
set_freepointer(s, last, NULL);
page->freelist = start;
- page->lockless_freelist = NULL;
page->inuse = 0;
out:
- if (flags & __GFP_WAIT)
- local_irq_disable();
return page;
}
@@ -1149,7 +1138,6 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
- pages);
- page->mapping = NULL;
__free_pages(page, s->order);
}
@@ -1383,33 +1371,34 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page)
/*
* Remove the cpu slab
*/
-static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
+static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
{
+ struct page *page = c->page;
/*
* Merge cpu freelist into freelist. Typically we get here
* because both freelists are empty. So this is unlikely
* to occur.
*/
- while (unlikely(page->lockless_freelist)) {
+ while (unlikely(c->freelist)) {
void **object;
/* Retrieve object from cpu_freelist */
- object = page->lockless_freelist;
- page->lockless_freelist = page->lockless_freelist[page->offset];
+ object = c->freelist;
+ c->freelist = c->freelist[c->offset];
/* And put onto the regular freelist */
- object[page->offset] = page->freelist;
+ object[c->offset] = page->freelist;
page->freelist = object;
page->inuse--;
}
- s->cpu_slab[cpu] = NULL;
+ c->page = NULL;
unfreeze_slab(s, page);
}
-static inline void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
+static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
{
- slab_lock(page);
- deactivate_slab(s, page, cpu);
+ slab_lock(c->page);
+ deactivate_slab(s, c);
}
/*
@@ -1418,18 +1407,17 @@ static inline void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
*/
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
{
- struct page *page = s->cpu_slab[cpu];
+ struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
- if (likely(page))
- flush_slab(s, page, cpu);
+ if (likely(c && c->page))
+ flush_slab(s, c);
}
static void flush_cpu_slab(void *d)
{
struct kmem_cache *s = d;
- int cpu = smp_processor_id();
- __flush_cpu_slab(s, cpu);
+ __flush_cpu_slab(s, smp_processor_id());
}
static void flush_all(struct kmem_cache *s)
@@ -1446,6 +1434,19 @@ static void flush_all(struct kmem_cache *s)
}
/*
+ * Check if the objects in a per cpu structure fit numa
+ * locality expectations.
+ */
+static inline int node_match(struct kmem_cache_cpu *c, int node)
+{
+#ifdef CONFIG_NUMA
+ if (node != -1 && c->node != node)
+ return 0;
+#endif
+ return 1;
+}
+
+/*
* Slow path. The lockless freelist is empty or we need to perform
* debugging duties.
*
@@ -1463,45 +1464,53 @@ static void flush_all(struct kmem_cache *s)
* we need to allocate a new slab. This is slowest path since we may sleep.
*/
static void *__slab_alloc(struct kmem_cache *s,
- gfp_t gfpflags, int node, void *addr, struct page *page)
+ gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
{
void **object;
- int cpu = smp_processor_id();
+ struct page *new;
- if (!page)
+ if (!c->page)
goto new_slab;
- slab_lock(page);
- if (unlikely(node != -1 && page_to_nid(page) != node))
+ slab_lock(c->page);
+ if (unlikely(!node_match(c, node)))
goto another_slab;
load_freelist:
- object = page->freelist;
+ object = c->page->freelist;
if (unlikely(!object))
goto another_slab;
- if (unlikely(SlabDebug(page)))
+ if (unlikely(SlabDebug(c->page)))
goto debug;
- object = page->freelist;
- page->lockless_freelist = object[page->offset];
- page->inuse = s->objects;
- page->freelist = NULL;
- slab_unlock(page);
+ object = c->page->freelist;
+ c->freelist = object[c->offset];
+ c->page->inuse = s->objects;
+ c->page->freelist = NULL;
+ c->node = page_to_nid(c->page);
+ slab_unlock(c->page);
return object;
another_slab:
- deactivate_slab(s, page, cpu);
+ deactivate_slab(s, c);
new_slab:
- page = get_partial(s, gfpflags, node);
- if (page) {
- s->cpu_slab[cpu] = page;
+ new = get_partial(s, gfpflags, node);
+ if (new) {
+ c->page = new;
goto load_freelist;
}
- page = new_slab(s, gfpflags, node);
- if (page) {
- cpu = smp_processor_id();
- if (s->cpu_slab[cpu]) {
+ if (gfpflags & __GFP_WAIT)
+ local_irq_enable();
+
+ new = new_slab(s, gfpflags, node);
+
+ if (gfpflags & __GFP_WAIT)
+ local_irq_disable();
+
+ if (new) {
+ c = get_cpu_slab(s, smp_processor_id());
+ if (c->page) {
/*
* Someone else populated the cpu_slab while we
* enabled interrupts, or we have gotten scheduled
@@ -1509,34 +1518,33 @@ new_slab:
* requested node even if __GFP_THISNODE was
* specified. So we need to recheck.
*/
- if (node == -1 ||
- page_to_nid(s->cpu_slab[cpu]) == node) {
+ if (node_match(c, node)) {
/*
* Current cpuslab is acceptable and we
* want the current one since its cache hot
*/
- discard_slab(s, page);
- page = s->cpu_slab[cpu];
- slab_lock(page);
+ discard_slab(s, new);
+ slab_lock(c->page);
goto load_freelist;
}
/* New slab does not fit our expectations */
- flush_slab(s, s->cpu_slab[cpu], cpu);
+ flush_slab(s, c);
}
- slab_lock(page);
- SetSlabFrozen(page);
- s->cpu_slab[cpu] = page;
+ slab_lock(new);
+ SetSlabFrozen(new);
+ c->page = new;
goto load_freelist;
}
return NULL;
debug:
- object = page->freelist;
- if (!alloc_debug_processing(s, page, object, addr))
+ object = c->page->freelist;
+ if (!alloc_debug_processing(s, c->page, object, addr))
goto another_slab;
- page->inuse++;
- page->freelist = object[page->offset];
- slab_unlock(page);
+ c->page->inuse++;
+ c->page->freelist = object[c->offset];
+ c->node = -1;
+ slab_unlock(c->page);
return object;
}
@@ -1553,25 +1561,24 @@ debug:
static void __always_inline *slab_alloc(struct kmem_cache *s,
gfp_t gfpflags, int node, void *addr)
{
- struct page *page;
void **object;
unsigned long flags;
+ struct kmem_cache_cpu *c;
local_irq_save(flags);
- page = s->cpu_slab[smp_processor_id()];
- if (unlikely(!page || !page->lockless_freelist ||
- (node != -1 && page_to_nid(page) != node)))
+ c = get_cpu_slab(s, smp_processor_id());
+ if (unlikely(!c->freelist || !node_match(c, node)))
- object = __slab_alloc(s, gfpflags, node, addr, page);
+ object = __slab_alloc(s, gfpflags, node, addr, c);
else {
- object = page->lockless_freelist;
- page->lockless_freelist = object[page->offset];
+ object = c->freelist;
+ c->freelist = object[c->offset];
}
local_irq_restore(flags);
if (unlikely((gfpflags & __GFP_ZERO) && object))
- memset(object, 0, s->objsize);
+ memset(object, 0, c->objsize);
return object;
}
@@ -1599,7 +1606,7 @@ EXPORT_SYMBOL(kmem_cache_alloc_node);
* handling required then we can return immediately.
*/
static void __slab_free(struct kmem_cache *s, struct page *page,
- void *x, void *addr)
+ void *x, void *addr, unsigned int offset)
{
void *prior;
void **object = (void *)x;
@@ -1609,7 +1616,7 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
if (unlikely(SlabDebug(page)))
goto debug;
checks_ok:
- prior = object[page->offset] = page->freelist;
+ prior = object[offset] = page->freelist;
page->freelist = object;
page->inuse--;
@@ -1664,15 +1671,16 @@ static void __always_inline slab_free(struct kmem_cache *s,
{
void **object = (void *)x;
unsigned long flags;
+ struct kmem_cache_cpu *c;
local_irq_save(flags);
debug_check_no_locks_freed(object, s->objsize);
- if (likely(page == s->cpu_slab[smp_processor_id()] &&
- !SlabDebug(page))) {
- object[page->offset] = page->lockless_freelist;
- page->lockless_freelist = object;
+ c = get_cpu_slab(s, smp_processor_id());
+ if (likely(page == c->page && c->node >= 0)) {
+ object[c->offset] = c->freelist;
+ c->freelist = object;
} else
- __slab_free(s, page, x, addr);
+ __slab_free(s, page, x, addr, c->offset);
local_irq_restore(flags);
}
@@ -1759,14 +1767,6 @@ static inline int slab_order(int size, int min_objects,
int rem;
int min_order = slub_min_order;
- /*
- * If we would create too many object per slab then reduce
- * the slab order even if it goes below slub_min_order.
- */
- while (min_order > 0 &&
- (PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size)
- min_order--;
-
for (order = max(min_order,
fls(min_objects * size - 1) - PAGE_SHIFT);
order <= max_order; order++) {
@@ -1781,9 +1781,6 @@ static inline int slab_order(int size, int min_objects,
if (rem <= slab_size / fract_leftover)
break;
- /* If the next size is too high then exit now */
- if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size)
- break;
}
return order;
@@ -1858,6 +1855,16 @@ static unsigned long calculate_alignment(unsigned long flags,
return ALIGN(align, sizeof(void *));
}
+static void init_kmem_cache_cpu(struct kmem_cache *s,
+ struct kmem_cache_cpu *c)
+{
+ c->page = NULL;
+ c->freelist = NULL;
+ c->node = 0;
+ c->offset = s->offset / sizeof(void *);
+ c->objsize = s->objsize;
+}
+
static void init_kmem_cache_node(struct kmem_cache_node *n)
{
n->nr_partial = 0;
@@ -1869,6 +1876,131 @@ static void init_kmem_cache_node(struct kmem_cache_node *n)
#endif
}
+#ifdef CONFIG_SMP
+/*
+ * Per cpu array for per cpu structures.
+ *
+ * The per cpu array places all kmem_cache_cpu structures from one processor
+ * close together meaning that it becomes possible that multiple per cpu
+ * structures are contained in one cacheline. This may be particularly
+ * beneficial for the kmalloc caches.
+ *
+ * A desktop system typically has around 60-80 slabs. With 100 here we are
+ * likely able to get per cpu structures for all caches from the array defined
+ * here. We must be able to cover all kmalloc caches during bootstrap.
+ *
+ * If the per cpu array is exhausted then fall back to kmalloc
+ * of individual cachelines. No sharing is possible then.
+ */
+#define NR_KMEM_CACHE_CPU 100
+
+static DEFINE_PER_CPU(struct kmem_cache_cpu,
+ kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
+
+static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
+static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
+
+static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
+ int cpu, gfp_t flags)
+{
+ struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
+
+ if (c)
+ per_cpu(kmem_cache_cpu_free, cpu) =
+ (void *)c->freelist;
+ else {
+ /* Table overflow: So allocate ourselves */
+ c = kmalloc_node(
+ ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
+ flags, cpu_to_node(cpu));
+ if (!c)
+ return NULL;
+ }
+
+ init_kmem_cache_cpu(s, c);
+ return c;
+}
+
+static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
+{
+ if (c < per_cpu(kmem_cache_cpu, cpu) ||
+ c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
+ kfree(c);
+ return;
+ }
+ c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
+ per_cpu(kmem_cache_cpu_free, cpu) = c;
+}
+
+static void free_kmem_cache_cpus(struct kmem_cache *s)
+{
+ int cpu;
+
+ for_each_online_cpu(cpu) {
+ struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
+
+ if (c) {
+ s->cpu_slab[cpu] = NULL;
+ free_kmem_cache_cpu(c, cpu);
+ }
+ }
+}
+
+static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
+{
+ int cpu;
+
+ for_each_online_cpu(cpu) {
+ struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
+
+ if (c)
+ continue;
+
+ c = alloc_kmem_cache_cpu(s, cpu, flags);
+ if (!c) {
+ free_kmem_cache_cpus(s);
+ return 0;
+ }
+ s->cpu_slab[cpu] = c;
+ }
+ return 1;
+}
+
+/*
+ * Initialize the per cpu array.
+ */
+static void init_alloc_cpu_cpu(int cpu)
+{
+ int i;
+
+ if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
+ return;
+
+ for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
+ free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
+
+ cpu_set(cpu, kmem_cach_cpu_free_init_once);
+}
+
+static void __init init_alloc_cpu(void)
+{
+ int cpu;
+
+ for_each_online_cpu(cpu)
+ init_alloc_cpu_cpu(cpu);
+ }
+
+#else
+static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
+static inline void init_alloc_cpu(void) {}
+
+static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
+{
+ init_kmem_cache_cpu(s, &s->cpu_slab);
+ return 1;
+}
+#endif
+
#ifdef CONFIG_NUMA
/*
* No kmalloc_node yet so do it by hand. We know that this is the first
@@ -1876,10 +2008,11 @@ static void init_kmem_cache_node(struct kmem_cache_node *n)
* possible.
*
* Note that this function only works on the kmalloc_node_cache
- * when allocating for the kmalloc_node_cache.
+ * when allocating for the kmalloc_node_cache. This is used for bootstrapping
+ * memory on a fresh node that has no slab structures yet.
*/
-static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
- int node)
+static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
+ int node)
{
struct page *page;
struct kmem_cache_node *n;
@@ -1908,12 +2041,6 @@ static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflag
init_kmem_cache_node(n);
atomic_long_inc(&n->nr_slabs);
add_partial(n, page);
-
- /*
- * new_slab() disables interupts. If we do not reenable interrupts here
- * then bootup would continue with interrupts disabled.
- */
- local_irq_enable();
return n;
}
@@ -1921,7 +2048,7 @@ static void free_kmem_cache_nodes(struct kmem_cache *s)
{
int node;
- for_each_online_node(node) {
+ for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n = s->node[node];
if (n && n != &s->local_node)
kmem_cache_free(kmalloc_caches, n);
@@ -1939,7 +2066,7 @@ static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
else
local_node = 0;
- for_each_online_node(node) {
+ for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n;
if (local_node == node)
@@ -2077,21 +2204,14 @@ static int calculate_sizes(struct kmem_cache *s)
*/
s->objects = (PAGE_SIZE << s->order) / size;
- /*
- * Verify that the number of objects is within permitted limits.
- * The page->inuse field is only 16 bit wide! So we cannot have
- * more than 64k objects per slab.
- */
- if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB)
- return 0;
- return 1;
+ return !!s->objects;
}
static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
const char *name, size_t size,
size_t align, unsigned long flags,
- void (*ctor)(void *, struct kmem_cache *, unsigned long))
+ void (*ctor)(struct kmem_cache *, void *))
{
memset(s, 0, kmem_size);
s->name = name;
@@ -2107,9 +2227,12 @@ static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
#ifdef CONFIG_NUMA
s->defrag_ratio = 100;
#endif
+ if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
+ goto error;
- if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
+ if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
return 1;
+ free_kmem_cache_nodes(s);
error:
if (flags & SLAB_PANIC)
panic("Cannot create slab %s size=%lu realsize=%u "
@@ -2192,7 +2315,8 @@ static inline int kmem_cache_close(struct kmem_cache *s)
flush_all(s);
/* Attempt to free all objects */
- for_each_online_node(node) {
+ free_kmem_cache_cpus(s);
+ for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n = get_node(s, node);
n->nr_partial -= free_list(s, n, &n->partial);
@@ -2227,11 +2351,11 @@ EXPORT_SYMBOL(kmem_cache_destroy);
* Kmalloc subsystem
*******************************************************************/
-struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
+struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
EXPORT_SYMBOL(kmalloc_caches);
#ifdef CONFIG_ZONE_DMA
-static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
+static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
#endif
static int __init setup_slub_min_order(char *str)
@@ -2397,12 +2521,8 @@ static struct kmem_cache *get_slab(size_t size, gfp_t flags)
return ZERO_SIZE_PTR;
index = size_index[(size - 1) / 8];
- } else {
- if (size > KMALLOC_MAX_SIZE)
- return NULL;
-
+ } else
index = fls(size - 1);
- }
#ifdef CONFIG_ZONE_DMA
if (unlikely((flags & SLUB_DMA)))
@@ -2414,9 +2534,15 @@ static struct kmem_cache *get_slab(size_t size, gfp_t flags)
void *__kmalloc(size_t size, gfp_t flags)
{
- struct kmem_cache *s = get_slab(size, flags);
+ struct kmem_cache *s;
- if (ZERO_OR_NULL_PTR(s))
+ if (unlikely(size > PAGE_SIZE / 2))
+ return (void *)__get_free_pages(flags | __GFP_COMP,
+ get_order(size));
+
+ s = get_slab(size, flags);
+
+ if (unlikely(ZERO_OR_NULL_PTR(s)))
return s;
return slab_alloc(s, flags, -1, __builtin_return_address(0));
@@ -2426,9 +2552,15 @@ EXPORT_SYMBOL(__kmalloc);
#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
- struct kmem_cache *s = get_slab(size, flags);
+ struct kmem_cache *s;
- if (ZERO_OR_NULL_PTR(s))
+ if (unlikely(size > PAGE_SIZE / 2))
+ return (void *)__get_free_pages(flags | __GFP_COMP,
+ get_order(size));
+
+ s = get_slab(size, flags);
+
+ if (unlikely(ZERO_OR_NULL_PTR(s)))
return s;
return slab_alloc(s, flags, node, __builtin_return_address(0));
@@ -2441,7 +2573,8 @@ size_t ksize(const void *object)
struct page *page;
struct kmem_cache *s;
- if (ZERO_OR_NULL_PTR(object))
+ BUG_ON(!object);
+ if (unlikely(object == ZERO_SIZE_PTR))
return 0;
page = get_object_page(object);
@@ -2473,22 +2606,17 @@ EXPORT_SYMBOL(ksize);
void kfree(const void *x)
{
- struct kmem_cache *s;
struct page *page;
- /*
- * This has to be an unsigned comparison. According to Linus
- * some gcc version treat a pointer as a signed entity. Then
- * this comparison would be true for all "negative" pointers
- * (which would cover the whole upper half of the address space).
- */
- if (ZERO_OR_NULL_PTR(x))
+ if (unlikely(ZERO_OR_NULL_PTR(x)))
return;
page = virt_to_head_page(x);
- s = page->slab;
-
- slab_free(s, page, (void *)x, __builtin_return_address(0));
+ if (unlikely(!PageSlab(page))) {
+ put_page(page);
+ return;
+ }
+ slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
}
EXPORT_SYMBOL(kfree);
@@ -2517,7 +2645,7 @@ int kmem_cache_shrink(struct kmem_cache *s)
return -ENOMEM;
flush_all(s);
- for_each_online_node(node) {
+ for_each_node_state(node, N_NORMAL_MEMORY) {
n = get_node(s, node);
if (!n->nr_partial)
@@ -2575,6 +2703,8 @@ void __init kmem_cache_init(void)
int i;
int caches = 0;
+ init_alloc_cpu();
+
#ifdef CONFIG_NUMA
/*
* Must first have the slab cache available for the allocations of the
@@ -2602,7 +2732,7 @@ void __init kmem_cache_init(void)
caches++;
}
- for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
+ for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
create_kmalloc_cache(&kmalloc_caches[i],
"kmalloc", 1 << i, GFP_KERNEL);
caches++;
@@ -2629,16 +2759,18 @@ void __init kmem_cache_init(void)
slab_state = UP;
/* Provide the correct kmalloc names now that the caches are up */
- for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
+ for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
kmalloc_caches[i]. name =
kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
#ifdef CONFIG_SMP
register_cpu_notifier(&slab_notifier);
+ kmem_size = offsetof(struct kmem_cache, cpu_slab) +
+ nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
+#else
+ kmem_size = sizeof(struct kmem_cache);
#endif
- kmem_size = offsetof(struct kmem_cache, cpu_slab) +
- nr_cpu_ids * sizeof(struct page *);
printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
" CPUs=%d, Nodes=%d\n",
@@ -2669,7 +2801,7 @@ static int slab_unmergeable(struct kmem_cache *s)
static struct kmem_cache *find_mergeable(size_t size,
size_t align, unsigned long flags, const char *name,
- void (*ctor)(void *, struct kmem_cache *, unsigned long))
+ void (*ctor)(struct kmem_cache *, void *))
{
struct kmem_cache *s;
@@ -2710,19 +2842,28 @@ static struct kmem_cache *find_mergeable(size_t size,
struct kmem_cache *kmem_cache_create(const char *name, size_t size,
size_t align, unsigned long flags,
- void (*ctor)(void *, struct kmem_cache *, unsigned long))
+ void (*ctor)(struct kmem_cache *, void *))
{
struct kmem_cache *s;
down_write(&slub_lock);
s = find_mergeable(size, align, flags, name, ctor);
if (s) {
+ int cpu;
+
s->refcount++;
/*
* Adjust the object sizes so that we clear
* the complete object on kzalloc.
*/
s->objsize = max(s->objsize, (int)size);
+
+ /*
+ * And then we need to update the object size in the
+ * per cpu structures
+ */
+ for_each_online_cpu(cpu)
+ get_cpu_slab(s, cpu)->objsize = s->objsize;
s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
up_write(&slub_lock);
if (sysfs_slab_alias(s, name))
@@ -2765,15 +2906,29 @@ static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
unsigned long flags;
switch (action) {
+ case CPU_UP_PREPARE:
+ case CPU_UP_PREPARE_FROZEN:
+ init_alloc_cpu_cpu(cpu);
+ down_read(&slub_lock);
+ list_for_each_entry(s, &slab_caches, list)
+ s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
+ GFP_KERNEL);
+ up_read(&slub_lock);
+ break;
+
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
case CPU_DEAD:
case CPU_DEAD_FROZEN:
down_read(&slub_lock);
list_for_each_entry(s, &slab_caches, list) {
+ struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
+
local_irq_save(flags);
__flush_cpu_slab(s, cpu);
local_irq_restore(flags);
+ free_kmem_cache_cpu(c, cpu);
+ s->cpu_slab[cpu] = NULL;
}
up_read(&slub_lock);
break;
@@ -2790,9 +2945,14 @@ static struct notifier_block __cpuinitdata slab_notifier =
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
{
- struct kmem_cache *s = get_slab(size, gfpflags);
+ struct kmem_cache *s;
+
+ if (unlikely(size > PAGE_SIZE / 2))
+ return (void *)__get_free_pages(gfpflags | __GFP_COMP,
+ get_order(size));
+ s = get_slab(size, gfpflags);
- if (ZERO_OR_NULL_PTR(s))
+ if (unlikely(ZERO_OR_NULL_PTR(s)))
return s;
return slab_alloc(s, gfpflags, -1, caller);
@@ -2801,9 +2961,14 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
int node, void *caller)
{
- struct kmem_cache *s = get_slab(size, gfpflags);
+ struct kmem_cache *s;
+
+ if (unlikely(size > PAGE_SIZE / 2))
+ return (void *)__get_free_pages(gfpflags | __GFP_COMP,
+ get_order(size));
+ s = get_slab(size, gfpflags);
- if (ZERO_OR_NULL_PTR(s))
+ if (unlikely(ZERO_OR_NULL_PTR(s)))
return s;
return slab_alloc(s, gfpflags, node, caller);
@@ -2902,7 +3067,7 @@ static long validate_slab_cache(struct kmem_cache *s)
return -ENOMEM;
flush_all(s);
- for_each_online_node(node) {
+ for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n = get_node(s, node);
count += validate_slab_node(s, n, map);
@@ -3116,13 +3281,13 @@ static int list_locations(struct kmem_cache *s, char *buf,
int node;
if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
- GFP_KERNEL))
+ GFP_TEMPORARY))
return sprintf(buf, "Out of memory\n");
/* Push back cpu slabs */
flush_all(s);
- for_each_online_node(node) {
+ for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n = get_node(s, node);
unsigned long flags;
struct page *page;
@@ -3230,11 +3395,18 @@ static unsigned long slab_objects(struct kmem_cache *s,
per_cpu = nodes + nr_node_ids;
for_each_possible_cpu(cpu) {
- struct page *page = s->cpu_slab[cpu];
+ struct page *page;
int node;
+ struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
+ if (!c)
+ continue;
+
+ page = c->page;
+ node = c->node;
+ if (node < 0)
+ continue;
if (page) {
- node = page_to_nid(page);
if (flags & SO_CPU) {
int x = 0;
@@ -3249,7 +3421,7 @@ static unsigned long slab_objects(struct kmem_cache *s,
}
}
- for_each_online_node(node) {
+ for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n = get_node(s, node);
if (flags & SO_PARTIAL) {
@@ -3277,7 +3449,7 @@ static unsigned long slab_objects(struct kmem_cache *s,
x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
- for_each_online_node(node)
+ for_each_node_state(node, N_NORMAL_MEMORY)
if (nodes[node])
x += sprintf(buf + x, " N%d=%lu",
node, nodes[node]);
@@ -3291,13 +3463,19 @@ static int any_slab_objects(struct kmem_cache *s)
int node;
int cpu;
- for_each_possible_cpu(cpu)
- if (s->cpu_slab[cpu])
+ for_each_possible_cpu(cpu) {
+ struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
+
+ if (c && c->page)
return 1;
+ }
- for_each_node(node) {
+ for_each_online_node(node) {
struct kmem_cache_node *n = get_node(s, node);
+ if (!n)
+ continue;
+
if (n->nr_partial || atomic_long_read(&n->nr_slabs))
return 1;
}
diff --git a/mm/sparse-vmemmap.c b/mm/sparse-vmemmap.c
new file mode 100644
index 000000000000..d3b718b0c20a
--- /dev/null
+++ b/mm/sparse-vmemmap.c
@@ -0,0 +1,148 @@
+/*
+ * Virtual Memory Map support
+ *
+ * (C) 2007 sgi. Christoph Lameter <clameter@sgi.com>.
+ *
+ * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
+ * virt_to_page, page_address() to be implemented as a base offset
+ * calculation without memory access.
+ *
+ * However, virtual mappings need a page table and TLBs. Many Linux
+ * architectures already map their physical space using 1-1 mappings
+ * via TLBs. For those arches the virtual memmory map is essentially
+ * for free if we use the same page size as the 1-1 mappings. In that
+ * case the overhead consists of a few additional pages that are
+ * allocated to create a view of memory for vmemmap.
+ *
+ * The architecture is expected to provide a vmemmap_populate() function
+ * to instantiate the mapping.
+ */
+#include <linux/mm.h>
+#include <linux/mmzone.h>
+#include <linux/bootmem.h>
+#include <linux/highmem.h>
+#include <linux/module.h>
+#include <linux/spinlock.h>
+#include <linux/vmalloc.h>
+#include <asm/dma.h>
+#include <asm/pgalloc.h>
+#include <asm/pgtable.h>
+
+/*
+ * Allocate a block of memory to be used to back the virtual memory map
+ * or to back the page tables that are used to create the mapping.
+ * Uses the main allocators if they are available, else bootmem.
+ */
+void * __meminit vmemmap_alloc_block(unsigned long size, int node)
+{
+ /* If the main allocator is up use that, fallback to bootmem. */
+ if (slab_is_available()) {
+ struct page *page = alloc_pages_node(node,
+ GFP_KERNEL | __GFP_ZERO, get_order(size));
+ if (page)
+ return page_address(page);
+ return NULL;
+ } else
+ return __alloc_bootmem_node(NODE_DATA(node), size, size,
+ __pa(MAX_DMA_ADDRESS));
+}
+
+void __meminit vmemmap_verify(pte_t *pte, int node,
+ unsigned long start, unsigned long end)
+{
+ unsigned long pfn = pte_pfn(*pte);
+ int actual_node = early_pfn_to_nid(pfn);
+
+ if (actual_node != node)
+ printk(KERN_WARNING "[%lx-%lx] potential offnode "
+ "page_structs\n", start, end - 1);
+}
+
+pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
+{
+ pte_t *pte = pte_offset_kernel(pmd, addr);
+ if (pte_none(*pte)) {
+ pte_t entry;
+ void *p = vmemmap_alloc_block(PAGE_SIZE, node);
+ if (!p)
+ return 0;
+ entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
+ set_pte_at(&init_mm, addr, pte, entry);
+ }
+ return pte;
+}
+
+pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
+{
+ pmd_t *pmd = pmd_offset(pud, addr);
+ if (pmd_none(*pmd)) {
+ void *p = vmemmap_alloc_block(PAGE_SIZE, node);
+ if (!p)
+ return 0;
+ pmd_populate_kernel(&init_mm, pmd, p);
+ }
+ return pmd;
+}
+
+pud_t * __meminit vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node)
+{
+ pud_t *pud = pud_offset(pgd, addr);
+ if (pud_none(*pud)) {
+ void *p = vmemmap_alloc_block(PAGE_SIZE, node);
+ if (!p)
+ return 0;
+ pud_populate(&init_mm, pud, p);
+ }
+ return pud;
+}
+
+pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
+{
+ pgd_t *pgd = pgd_offset_k(addr);
+ if (pgd_none(*pgd)) {
+ void *p = vmemmap_alloc_block(PAGE_SIZE, node);
+ if (!p)
+ return 0;
+ pgd_populate(&init_mm, pgd, p);
+ }
+ return pgd;
+}
+
+int __meminit vmemmap_populate_basepages(struct page *start_page,
+ unsigned long size, int node)
+{
+ unsigned long addr = (unsigned long)start_page;
+ unsigned long end = (unsigned long)(start_page + size);
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ for (; addr < end; addr += PAGE_SIZE) {
+ pgd = vmemmap_pgd_populate(addr, node);
+ if (!pgd)
+ return -ENOMEM;
+ pud = vmemmap_pud_populate(pgd, addr, node);
+ if (!pud)
+ return -ENOMEM;
+ pmd = vmemmap_pmd_populate(pud, addr, node);
+ if (!pmd)
+ return -ENOMEM;
+ pte = vmemmap_pte_populate(pmd, addr, node);
+ if (!pte)
+ return -ENOMEM;
+ vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
+ }
+
+ return 0;
+}
+
+struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid)
+{
+ struct page *map = pfn_to_page(pnum * PAGES_PER_SECTION);
+ int error = vmemmap_populate(map, PAGES_PER_SECTION, nid);
+ if (error)
+ return NULL;
+
+ return map;
+}
diff --git a/mm/sparse.c b/mm/sparse.c
index 239f5a720d38..08fb14f5eea3 100644
--- a/mm/sparse.c
+++ b/mm/sparse.c
@@ -9,6 +9,8 @@
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include <asm/dma.h>
+#include <asm/pgalloc.h>
+#include <asm/pgtable.h>
/*
* Permanent SPARSEMEM data:
@@ -106,7 +108,7 @@ static inline int sparse_index_init(unsigned long section_nr, int nid)
/*
* Although written for the SPARSEMEM_EXTREME case, this happens
- * to also work for the flat array case becase
+ * to also work for the flat array case because
* NR_SECTION_ROOTS==NR_MEM_SECTIONS.
*/
int __section_nr(struct mem_section* ms)
@@ -176,7 +178,7 @@ unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
if (nid != early_pfn_to_nid(pfn))
continue;
- if (pfn_valid(pfn))
+ if (pfn_present(pfn))
nr_pages += PAGES_PER_SECTION;
}
@@ -204,13 +206,16 @@ struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pn
}
static int __meminit sparse_init_one_section(struct mem_section *ms,
- unsigned long pnum, struct page *mem_map)
+ unsigned long pnum, struct page *mem_map,
+ unsigned long *pageblock_bitmap)
{
- if (!valid_section(ms))
+ if (!present_section(ms))
return -EINVAL;
ms->section_mem_map &= ~SECTION_MAP_MASK;
- ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum);
+ ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
+ SECTION_HAS_MEM_MAP;
+ ms->pageblock_flags = pageblock_bitmap;
return 1;
}
@@ -221,12 +226,43 @@ void *alloc_bootmem_high_node(pg_data_t *pgdat, unsigned long size)
return NULL;
}
-static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
+static unsigned long usemap_size(void)
{
- struct page *map;
+ unsigned long size_bytes;
+ size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
+ size_bytes = roundup(size_bytes, sizeof(unsigned long));
+ return size_bytes;
+}
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+static unsigned long *__kmalloc_section_usemap(void)
+{
+ return kmalloc(usemap_size(), GFP_KERNEL);
+}
+#endif /* CONFIG_MEMORY_HOTPLUG */
+
+static unsigned long *sparse_early_usemap_alloc(unsigned long pnum)
+{
+ unsigned long *usemap;
struct mem_section *ms = __nr_to_section(pnum);
int nid = sparse_early_nid(ms);
+ usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
+ if (usemap)
+ return usemap;
+
+ /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
+ nid = 0;
+
+ printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
+ return NULL;
+}
+
+#ifndef CONFIG_SPARSEMEM_VMEMMAP
+struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
+{
+ struct page *map;
+
map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
if (map)
return map;
@@ -238,10 +274,22 @@ static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
map = alloc_bootmem_node(NODE_DATA(nid),
sizeof(struct page) * PAGES_PER_SECTION);
+ return map;
+}
+#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
+
+struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
+{
+ struct page *map;
+ struct mem_section *ms = __nr_to_section(pnum);
+ int nid = sparse_early_nid(ms);
+
+ map = sparse_mem_map_populate(pnum, nid);
if (map)
return map;
- printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
+ printk(KERN_ERR "%s: sparsemem memory map backing failed "
+ "some memory will not be available.\n", __FUNCTION__);
ms->section_mem_map = 0;
return NULL;
}
@@ -254,19 +302,38 @@ void __init sparse_init(void)
{
unsigned long pnum;
struct page *map;
+ unsigned long *usemap;
for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
- if (!valid_section_nr(pnum))
+ if (!present_section_nr(pnum))
continue;
map = sparse_early_mem_map_alloc(pnum);
if (!map)
continue;
- sparse_init_one_section(__nr_to_section(pnum), pnum, map);
+
+ usemap = sparse_early_usemap_alloc(pnum);
+ if (!usemap)
+ continue;
+
+ sparse_init_one_section(__nr_to_section(pnum), pnum, map,
+ usemap);
}
}
#ifdef CONFIG_MEMORY_HOTPLUG
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
+ unsigned long nr_pages)
+{
+ /* This will make the necessary allocations eventually. */
+ return sparse_mem_map_populate(pnum, nid);
+}
+static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
+{
+ return; /* XXX: Not implemented yet */
+}
+#else
static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
{
struct page *page, *ret;
@@ -289,6 +356,12 @@ got_map_ptr:
return ret;
}
+static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
+ unsigned long nr_pages)
+{
+ return __kmalloc_section_memmap(nr_pages);
+}
+
static int vaddr_in_vmalloc_area(void *addr)
{
if (addr >= (void *)VMALLOC_START &&
@@ -305,6 +378,7 @@ static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
free_pages((unsigned long)memmap,
get_order(sizeof(struct page) * nr_pages));
}
+#endif /* CONFIG_SPARSEMEM_VMEMMAP */
/*
* returns the number of sections whose mem_maps were properly
@@ -318,6 +392,7 @@ int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
struct pglist_data *pgdat = zone->zone_pgdat;
struct mem_section *ms;
struct page *memmap;
+ unsigned long *usemap;
unsigned long flags;
int ret;
@@ -326,7 +401,8 @@ int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
* plus, it does a kmalloc
*/
sparse_index_init(section_nr, pgdat->node_id);
- memmap = __kmalloc_section_memmap(nr_pages);
+ memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
+ usemap = __kmalloc_section_usemap();
pgdat_resize_lock(pgdat, &flags);
@@ -335,9 +411,14 @@ int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
ret = -EEXIST;
goto out;
}
+
+ if (!usemap) {
+ ret = -ENOMEM;
+ goto out;
+ }
ms->section_mem_map |= SECTION_MARKED_PRESENT;
- ret = sparse_init_one_section(ms, section_nr, memmap);
+ ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
out:
pgdat_resize_unlock(pgdat, &flags);
diff --git a/mm/swap.c b/mm/swap.c
index d3cb966fe992..a65eff8a517a 100644
--- a/mm/swap.c
+++ b/mm/swap.c
@@ -24,16 +24,19 @@
#include <linux/module.h>
#include <linux/mm_inline.h>
#include <linux/buffer_head.h> /* for try_to_release_page() */
-#include <linux/module.h>
#include <linux/percpu_counter.h>
#include <linux/percpu.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
-#include <linux/init.h>
+#include <linux/backing-dev.h>
/* How many pages do we try to swap or page in/out together? */
int page_cluster;
+static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, };
+static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, };
+static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs) = { 0, };
+
/*
* This path almost never happens for VM activity - pages are normally
* freed via pagevecs. But it gets used by networking.
@@ -94,23 +97,47 @@ void put_pages_list(struct list_head *pages)
EXPORT_SYMBOL(put_pages_list);
/*
+ * pagevec_move_tail() must be called with IRQ disabled.
+ * Otherwise this may cause nasty races.
+ */
+static void pagevec_move_tail(struct pagevec *pvec)
+{
+ int i;
+ int pgmoved = 0;
+ struct zone *zone = NULL;
+
+ for (i = 0; i < pagevec_count(pvec); i++) {
+ struct page *page = pvec->pages[i];
+ struct zone *pagezone = page_zone(page);
+
+ if (pagezone != zone) {
+ if (zone)
+ spin_unlock(&zone->lru_lock);
+ zone = pagezone;
+ spin_lock(&zone->lru_lock);
+ }
+ if (PageLRU(page) && !PageActive(page)) {
+ list_move_tail(&page->lru, &zone->inactive_list);
+ pgmoved++;
+ }
+ }
+ if (zone)
+ spin_unlock(&zone->lru_lock);
+ __count_vm_events(PGROTATED, pgmoved);
+ release_pages(pvec->pages, pvec->nr, pvec->cold);
+ pagevec_reinit(pvec);
+}
+
+/*
* Writeback is about to end against a page which has been marked for immediate
* reclaim. If it still appears to be reclaimable, move it to the tail of the
- * inactive list. The page still has PageWriteback set, which will pin it.
- *
- * We don't expect many pages to come through here, so don't bother batching
- * things up.
- *
- * To avoid placing the page at the tail of the LRU while PG_writeback is still
- * set, this function will clear PG_writeback before performing the page
- * motion. Do that inside the lru lock because once PG_writeback is cleared
- * we may not touch the page.
+ * inactive list.
*
* Returns zero if it cleared PG_writeback.
*/
int rotate_reclaimable_page(struct page *page)
{
- struct zone *zone;
+ struct pagevec *pvec;
unsigned long flags;
if (PageLocked(page))
@@ -122,15 +149,16 @@ int rotate_reclaimable_page(struct page *page)
if (!PageLRU(page))
return 1;
- zone = page_zone(page);
- spin_lock_irqsave(&zone->lru_lock, flags);
- if (PageLRU(page) && !PageActive(page)) {
- list_move_tail(&page->lru, &zone->inactive_list);
- __count_vm_event(PGROTATED);
- }
+ page_cache_get(page);
+ local_irq_save(flags);
+ pvec = &__get_cpu_var(lru_rotate_pvecs);
+ if (!pagevec_add(pvec, page))
+ pagevec_move_tail(pvec);
+ local_irq_restore(flags);
+
if (!test_clear_page_writeback(page))
BUG();
- spin_unlock_irqrestore(&zone->lru_lock, flags);
+
return 0;
}
@@ -174,9 +202,6 @@ EXPORT_SYMBOL(mark_page_accessed);
* lru_cache_add: add a page to the page lists
* @page: the page to add
*/
-static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, };
-static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, };
-
void fastcall lru_cache_add(struct page *page)
{
struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
@@ -197,21 +222,37 @@ void fastcall lru_cache_add_active(struct page *page)
put_cpu_var(lru_add_active_pvecs);
}
-static void __lru_add_drain(int cpu)
+/*
+ * Drain pages out of the cpu's pagevecs.
+ * Either "cpu" is the current CPU, and preemption has already been
+ * disabled; or "cpu" is being hot-unplugged, and is already dead.
+ */
+static void drain_cpu_pagevecs(int cpu)
{
- struct pagevec *pvec = &per_cpu(lru_add_pvecs, cpu);
+ struct pagevec *pvec;
- /* CPU is dead, so no locking needed. */
+ pvec = &per_cpu(lru_add_pvecs, cpu);
if (pagevec_count(pvec))
__pagevec_lru_add(pvec);
+
pvec = &per_cpu(lru_add_active_pvecs, cpu);
if (pagevec_count(pvec))
__pagevec_lru_add_active(pvec);
+
+ pvec = &per_cpu(lru_rotate_pvecs, cpu);
+ if (pagevec_count(pvec)) {
+ unsigned long flags;
+
+ /* No harm done if a racing interrupt already did this */
+ local_irq_save(flags);
+ pagevec_move_tail(pvec);
+ local_irq_restore(flags);
+ }
}
void lru_add_drain(void)
{
- __lru_add_drain(get_cpu());
+ drain_cpu_pagevecs(get_cpu());
put_cpu();
}
@@ -258,6 +299,7 @@ void release_pages(struct page **pages, int nr, int cold)
int i;
struct pagevec pages_to_free;
struct zone *zone = NULL;
+ unsigned long uninitialized_var(flags);
pagevec_init(&pages_to_free, cold);
for (i = 0; i < nr; i++) {
@@ -265,7 +307,7 @@ void release_pages(struct page **pages, int nr, int cold)
if (unlikely(PageCompound(page))) {
if (zone) {
- spin_unlock_irq(&zone->lru_lock);
+ spin_unlock_irqrestore(&zone->lru_lock, flags);
zone = NULL;
}
put_compound_page(page);
@@ -279,9 +321,10 @@ void release_pages(struct page **pages, int nr, int cold)
struct zone *pagezone = page_zone(page);
if (pagezone != zone) {
if (zone)
- spin_unlock_irq(&zone->lru_lock);
+ spin_unlock_irqrestore(&zone->lru_lock,
+ flags);
zone = pagezone;
- spin_lock_irq(&zone->lru_lock);
+ spin_lock_irqsave(&zone->lru_lock, flags);
}
VM_BUG_ON(!PageLRU(page));
__ClearPageLRU(page);
@@ -290,7 +333,7 @@ void release_pages(struct page **pages, int nr, int cold)
if (!pagevec_add(&pages_to_free, page)) {
if (zone) {
- spin_unlock_irq(&zone->lru_lock);
+ spin_unlock_irqrestore(&zone->lru_lock, flags);
zone = NULL;
}
__pagevec_free(&pages_to_free);
@@ -298,7 +341,7 @@ void release_pages(struct page **pages, int nr, int cold)
}
}
if (zone)
- spin_unlock_irq(&zone->lru_lock);
+ spin_unlock_irqrestore(&zone->lru_lock, flags);
pagevec_free(&pages_to_free);
}
@@ -491,7 +534,7 @@ static int cpu_swap_callback(struct notifier_block *nfb,
if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
atomic_add(*committed, &vm_committed_space);
*committed = 0;
- __lru_add_drain((long)hcpu);
+ drain_cpu_pagevecs((long)hcpu);
}
return NOTIFY_OK;
}
@@ -505,6 +548,10 @@ void __init swap_setup(void)
{
unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
+#ifdef CONFIG_SWAP
+ bdi_init(swapper_space.backing_dev_info);
+#endif
+
/* Use a smaller cluster for small-memory machines */
if (megs < 16)
page_cluster = 2;
diff --git a/mm/swap_state.c b/mm/swap_state.c
index 67daecb6031a..b52635601dfe 100644
--- a/mm/swap_state.c
+++ b/mm/swap_state.c
@@ -74,6 +74,7 @@ static int __add_to_swap_cache(struct page *page, swp_entry_t entry,
{
int error;
+ BUG_ON(!PageLocked(page));
BUG_ON(PageSwapCache(page));
BUG_ON(PagePrivate(page));
error = radix_tree_preload(gfp_mask);
@@ -83,7 +84,6 @@ static int __add_to_swap_cache(struct page *page, swp_entry_t entry,
entry.val, page);
if (!error) {
page_cache_get(page);
- SetPageLocked(page);
SetPageSwapCache(page);
set_page_private(page, entry.val);
total_swapcache_pages++;
@@ -99,15 +99,18 @@ static int add_to_swap_cache(struct page *page, swp_entry_t entry)
{
int error;
+ BUG_ON(PageLocked(page));
if (!swap_duplicate(entry)) {
INC_CACHE_INFO(noent_race);
return -ENOENT;
}
+ SetPageLocked(page);
error = __add_to_swap_cache(page, entry, GFP_KERNEL);
/*
* Anon pages are already on the LRU, we don't run lru_cache_add here.
*/
if (error) {
+ ClearPageLocked(page);
swap_free(entry);
if (error == -EEXIST)
INC_CACHE_INFO(exist_race);
diff --git a/mm/tiny-shmem.c b/mm/tiny-shmem.c
index 8803471593fd..d436a9c82db7 100644
--- a/mm/tiny-shmem.c
+++ b/mm/tiny-shmem.c
@@ -66,24 +66,19 @@ struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
if (!dentry)
goto put_memory;
- error = -ENFILE;
- file = get_empty_filp();
- if (!file)
- goto put_dentry;
-
error = -ENOSPC;
inode = ramfs_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
if (!inode)
- goto close_file;
+ goto put_dentry;
d_instantiate(dentry, inode);
- inode->i_nlink = 0; /* It is unlinked */
+ error = -ENFILE;
+ file = alloc_file(shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
+ &ramfs_file_operations);
+ if (!file)
+ goto put_dentry;
- file->f_path.mnt = mntget(shm_mnt);
- file->f_path.dentry = dentry;
- file->f_mapping = inode->i_mapping;
- file->f_op = &ramfs_file_operations;
- file->f_mode = FMODE_WRITE | FMODE_READ;
+ inode->i_nlink = 0; /* It is unlinked */
/* notify everyone as to the change of file size */
error = do_truncate(dentry, size, 0, file);
diff --git a/mm/truncate.c b/mm/truncate.c
index 5cdfbc1a59fd..cadc15653dde 100644
--- a/mm/truncate.c
+++ b/mm/truncate.c
@@ -8,6 +8,7 @@
*/
#include <linux/kernel.h>
+#include <linux/backing-dev.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/module.h>
@@ -72,6 +73,8 @@ void cancel_dirty_page(struct page *page, unsigned int account_size)
struct address_space *mapping = page->mapping;
if (mapping && mapping_cap_account_dirty(mapping)) {
dec_zone_page_state(page, NR_FILE_DIRTY);
+ dec_bdi_stat(mapping->backing_dev_info,
+ BDI_RECLAIMABLE);
if (account_size)
task_io_account_cancelled_write(account_size);
}
diff --git a/mm/util.c b/mm/util.c
index bf340d806868..5f64026cbb4d 100644
--- a/mm/util.c
+++ b/mm/util.c
@@ -81,14 +81,16 @@ EXPORT_SYMBOL(kmemdup);
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
void *ret;
- size_t ks;
+ size_t ks = 0;
if (unlikely(!new_size)) {
kfree(p);
return ZERO_SIZE_PTR;
}
- ks = ksize(p);
+ if (p)
+ ks = ksize(p);
+
if (ks >= new_size)
return (void *)p;
diff --git a/mm/vmalloc.c b/mm/vmalloc.c
index 3cee76a8c9f0..2e01af365848 100644
--- a/mm/vmalloc.c
+++ b/mm/vmalloc.c
@@ -190,7 +190,8 @@ static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long fl
if (unlikely(!size))
return NULL;
- area = kmalloc_node(sizeof(*area), gfp_mask & GFP_LEVEL_MASK, node);
+ area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
+
if (unlikely(!area))
return NULL;
@@ -439,7 +440,7 @@ void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
area->flags |= VM_VPAGES;
} else {
pages = kmalloc_node(array_size,
- (gfp_mask & GFP_LEVEL_MASK) | __GFP_ZERO,
+ (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
node);
}
area->pages = pages;
diff --git a/mm/vmscan.c b/mm/vmscan.c
index a6e65d024995..e1471385d001 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -932,6 +932,7 @@ static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
long mapped_ratio;
long distress;
long swap_tendency;
+ long imbalance;
if (zone_is_near_oom(zone))
goto force_reclaim_mapped;
@@ -967,6 +968,46 @@ static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
/*
+ * If there's huge imbalance between active and inactive
+ * (think active 100 times larger than inactive) we should
+ * become more permissive, or the system will take too much
+ * cpu before it start swapping during memory pressure.
+ * Distress is about avoiding early-oom, this is about
+ * making swappiness graceful despite setting it to low
+ * values.
+ *
+ * Avoid div by zero with nr_inactive+1, and max resulting
+ * value is vm_total_pages.
+ */
+ imbalance = zone_page_state(zone, NR_ACTIVE);
+ imbalance /= zone_page_state(zone, NR_INACTIVE) + 1;
+
+ /*
+ * Reduce the effect of imbalance if swappiness is low,
+ * this means for a swappiness very low, the imbalance
+ * must be much higher than 100 for this logic to make
+ * the difference.
+ *
+ * Max temporary value is vm_total_pages*100.
+ */
+ imbalance *= (vm_swappiness + 1);
+ imbalance /= 100;
+
+ /*
+ * If not much of the ram is mapped, makes the imbalance
+ * less relevant, it's high priority we refill the inactive
+ * list with mapped pages only in presence of high ratio of
+ * mapped pages.
+ *
+ * Max temporary value is vm_total_pages*100.
+ */
+ imbalance *= mapped_ratio;
+ imbalance /= 100;
+
+ /* apply imbalance feedback to swap_tendency */
+ swap_tendency += imbalance;
+
+ /*
* Now use this metric to decide whether to start moving mapped
* memory onto the inactive list.
*/
@@ -1067,8 +1108,6 @@ static unsigned long shrink_zone(int priority, struct zone *zone,
unsigned long nr_to_scan;
unsigned long nr_reclaimed = 0;
- atomic_inc(&zone->reclaim_in_progress);
-
/*
* Add one to `nr_to_scan' just to make sure that the kernel will
* slowly sift through the active list.
@@ -1107,8 +1146,6 @@ static unsigned long shrink_zone(int priority, struct zone *zone,
}
throttle_vm_writeout(sc->gfp_mask);
-
- atomic_dec(&zone->reclaim_in_progress);
return nr_reclaimed;
}
@@ -1146,7 +1183,7 @@ static unsigned long shrink_zones(int priority, struct zone **zones,
note_zone_scanning_priority(zone, priority);
- if (zone->all_unreclaimable && priority != DEF_PRIORITY)
+ if (zone_is_all_unreclaimable(zone) && priority != DEF_PRIORITY)
continue; /* Let kswapd poll it */
sc->all_unreclaimable = 0;
@@ -1327,7 +1364,8 @@ loop_again:
if (!populated_zone(zone))
continue;
- if (zone->all_unreclaimable && priority != DEF_PRIORITY)
+ if (zone_is_all_unreclaimable(zone) &&
+ priority != DEF_PRIORITY)
continue;
if (!zone_watermark_ok(zone, order, zone->pages_high,
@@ -1362,7 +1400,8 @@ loop_again:
if (!populated_zone(zone))
continue;
- if (zone->all_unreclaimable && priority != DEF_PRIORITY)
+ if (zone_is_all_unreclaimable(zone) &&
+ priority != DEF_PRIORITY)
continue;
if (!zone_watermark_ok(zone, order, zone->pages_high,
@@ -1371,18 +1410,25 @@ loop_again:
temp_priority[i] = priority;
sc.nr_scanned = 0;
note_zone_scanning_priority(zone, priority);
- nr_reclaimed += shrink_zone(priority, zone, &sc);
+ /*
+ * We put equal pressure on every zone, unless one
+ * zone has way too many pages free already.
+ */
+ if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
+ end_zone, 0))
+ nr_reclaimed += shrink_zone(priority, zone, &sc);
reclaim_state->reclaimed_slab = 0;
nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
lru_pages);
nr_reclaimed += reclaim_state->reclaimed_slab;
total_scanned += sc.nr_scanned;
- if (zone->all_unreclaimable)
+ if (zone_is_all_unreclaimable(zone))
continue;
if (nr_slab == 0 && zone->pages_scanned >=
(zone_page_state(zone, NR_ACTIVE)
+ zone_page_state(zone, NR_INACTIVE)) * 6)
- zone->all_unreclaimable = 1;
+ zone_set_flag(zone,
+ ZONE_ALL_UNRECLAIMABLE);
/*
* If we've done a decent amount of scanning and
* the reclaim ratio is low, start doing writepage
@@ -1548,7 +1594,7 @@ static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
if (!populated_zone(zone))
continue;
- if (zone->all_unreclaimable && prio != DEF_PRIORITY)
+ if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
continue;
/* For pass = 0 we don't shrink the active list */
@@ -1688,9 +1734,11 @@ static int __devinit cpu_callback(struct notifier_block *nfb,
{
pg_data_t *pgdat;
cpumask_t mask;
+ int nid;
if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
- for_each_online_pgdat(pgdat) {
+ for_each_node_state(nid, N_HIGH_MEMORY) {
+ pgdat = NODE_DATA(nid);
mask = node_to_cpumask(pgdat->node_id);
if (any_online_cpu(mask) != NR_CPUS)
/* One of our CPUs online: restore mask */
@@ -1727,7 +1775,7 @@ static int __init kswapd_init(void)
int nid;
swap_setup();
- for_each_online_node(nid)
+ for_each_node_state(nid, N_HIGH_MEMORY)
kswapd_run(nid);
hotcpu_notifier(cpu_callback, 0);
return 0;
@@ -1847,8 +1895,8 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
- cpumask_t mask;
int node_id;
+ int ret;
/*
* Zone reclaim reclaims unmapped file backed pages and
@@ -1866,15 +1914,13 @@ int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
<= zone->min_slab_pages)
return 0;
+ if (zone_is_all_unreclaimable(zone))
+ return 0;
+
/*
- * Avoid concurrent zone reclaims, do not reclaim in a zone that does
- * not have reclaimable pages and if we should not delay the allocation
- * then do not scan.
+ * Do not scan if the allocation should not be delayed.
*/
- if (!(gfp_mask & __GFP_WAIT) ||
- zone->all_unreclaimable ||
- atomic_read(&zone->reclaim_in_progress) > 0 ||
- (current->flags & PF_MEMALLOC))
+ if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
return 0;
/*
@@ -1884,9 +1930,14 @@ int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
* as wide as possible.
*/
node_id = zone_to_nid(zone);
- mask = node_to_cpumask(node_id);
- if (!cpus_empty(mask) && node_id != numa_node_id())
+ if (node_state(node_id, N_CPU) && node_id != numa_node_id())
+ return 0;
+
+ if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
return 0;
- return __zone_reclaim(zone, gfp_mask, order);
+ ret = __zone_reclaim(zone, gfp_mask, order);
+ zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
+
+ return ret;
}
#endif
diff --git a/mm/vmstat.c b/mm/vmstat.c
index c64d169537bf..4651bf153f35 100644
--- a/mm/vmstat.c
+++ b/mm/vmstat.c
@@ -353,23 +353,6 @@ void refresh_cpu_vm_stats(int cpu)
}
}
-static void __refresh_cpu_vm_stats(void *dummy)
-{
- refresh_cpu_vm_stats(smp_processor_id());
-}
-
-/*
- * Consolidate all counters.
- *
- * Note that the result is less inaccurate but still inaccurate
- * if concurrent processes are allowed to run.
- */
-void refresh_vm_stats(void)
-{
- on_each_cpu(__refresh_cpu_vm_stats, NULL, 0, 1);
-}
-EXPORT_SYMBOL(refresh_vm_stats);
-
#endif
#ifdef CONFIG_NUMA
@@ -398,6 +381,13 @@ void zone_statistics(struct zonelist *zonelist, struct zone *z)
#include <linux/seq_file.h>
+static char * const migratetype_names[MIGRATE_TYPES] = {
+ "Unmovable",
+ "Reclaimable",
+ "Movable",
+ "Reserve",
+};
+
static void *frag_start(struct seq_file *m, loff_t *pos)
{
pg_data_t *pgdat;
@@ -422,28 +412,144 @@ static void frag_stop(struct seq_file *m, void *arg)
{
}
-/*
- * This walks the free areas for each zone.
- */
-static int frag_show(struct seq_file *m, void *arg)
+/* Walk all the zones in a node and print using a callback */
+static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
+ void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
{
- pg_data_t *pgdat = (pg_data_t *)arg;
struct zone *zone;
struct zone *node_zones = pgdat->node_zones;
unsigned long flags;
- int order;
for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
if (!populated_zone(zone))
continue;
spin_lock_irqsave(&zone->lock, flags);
- seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
- for (order = 0; order < MAX_ORDER; ++order)
- seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
+ print(m, pgdat, zone);
spin_unlock_irqrestore(&zone->lock, flags);
+ }
+}
+
+static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
+ struct zone *zone)
+{
+ int order;
+
+ seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
+ for (order = 0; order < MAX_ORDER; ++order)
+ seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
+ seq_putc(m, '\n');
+}
+
+/*
+ * This walks the free areas for each zone.
+ */
+static int frag_show(struct seq_file *m, void *arg)
+{
+ pg_data_t *pgdat = (pg_data_t *)arg;
+ walk_zones_in_node(m, pgdat, frag_show_print);
+ return 0;
+}
+
+static void pagetypeinfo_showfree_print(struct seq_file *m,
+ pg_data_t *pgdat, struct zone *zone)
+{
+ int order, mtype;
+
+ for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
+ seq_printf(m, "Node %4d, zone %8s, type %12s ",
+ pgdat->node_id,
+ zone->name,
+ migratetype_names[mtype]);
+ for (order = 0; order < MAX_ORDER; ++order) {
+ unsigned long freecount = 0;
+ struct free_area *area;
+ struct list_head *curr;
+
+ area = &(zone->free_area[order]);
+
+ list_for_each(curr, &area->free_list[mtype])
+ freecount++;
+ seq_printf(m, "%6lu ", freecount);
+ }
seq_putc(m, '\n');
}
+}
+
+/* Print out the free pages at each order for each migatetype */
+static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
+{
+ int order;
+ pg_data_t *pgdat = (pg_data_t *)arg;
+
+ /* Print header */
+ seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
+ for (order = 0; order < MAX_ORDER; ++order)
+ seq_printf(m, "%6d ", order);
+ seq_putc(m, '\n');
+
+ walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
+
+ return 0;
+}
+
+static void pagetypeinfo_showblockcount_print(struct seq_file *m,
+ pg_data_t *pgdat, struct zone *zone)
+{
+ int mtype;
+ unsigned long pfn;
+ unsigned long start_pfn = zone->zone_start_pfn;
+ unsigned long end_pfn = start_pfn + zone->spanned_pages;
+ unsigned long count[MIGRATE_TYPES] = { 0, };
+
+ for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
+ struct page *page;
+
+ if (!pfn_valid(pfn))
+ continue;
+
+ page = pfn_to_page(pfn);
+ mtype = get_pageblock_migratetype(page);
+
+ count[mtype]++;
+ }
+
+ /* Print counts */
+ seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
+ for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
+ seq_printf(m, "%12lu ", count[mtype]);
+ seq_putc(m, '\n');
+}
+
+/* Print out the free pages at each order for each migratetype */
+static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
+{
+ int mtype;
+ pg_data_t *pgdat = (pg_data_t *)arg;
+
+ seq_printf(m, "\n%-23s", "Number of blocks type ");
+ for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
+ seq_printf(m, "%12s ", migratetype_names[mtype]);
+ seq_putc(m, '\n');
+ walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
+
+ return 0;
+}
+
+/*
+ * This prints out statistics in relation to grouping pages by mobility.
+ * It is expensive to collect so do not constantly read the file.
+ */
+static int pagetypeinfo_show(struct seq_file *m, void *arg)
+{
+ pg_data_t *pgdat = (pg_data_t *)arg;
+
+ seq_printf(m, "Page block order: %d\n", pageblock_order);
+ seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
+ seq_putc(m, '\n');
+ pagetypeinfo_showfree(m, pgdat);
+ pagetypeinfo_showblockcount(m, pgdat);
+
return 0;
}
@@ -454,6 +560,13 @@ const struct seq_operations fragmentation_op = {
.show = frag_show,
};
+const struct seq_operations pagetypeinfo_op = {
+ .start = frag_start,
+ .next = frag_next,
+ .stop = frag_stop,
+ .show = pagetypeinfo_show,
+};
+
#ifdef CONFIG_ZONE_DMA
#define TEXT_FOR_DMA(xx) xx "_dma",
#else
@@ -532,84 +645,78 @@ static const char * const vmstat_text[] = {
#endif
};
-/*
- * Output information about zones in @pgdat.
- */
-static int zoneinfo_show(struct seq_file *m, void *arg)
+static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
+ struct zone *zone)
{
- pg_data_t *pgdat = arg;
- struct zone *zone;
- struct zone *node_zones = pgdat->node_zones;
- unsigned long flags;
-
- for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
- int i;
-
- if (!populated_zone(zone))
- continue;
-
- spin_lock_irqsave(&zone->lock, flags);
- seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
- seq_printf(m,
- "\n pages free %lu"
- "\n min %lu"
- "\n low %lu"
- "\n high %lu"
- "\n scanned %lu (a: %lu i: %lu)"
- "\n spanned %lu"
- "\n present %lu",
- zone_page_state(zone, NR_FREE_PAGES),
- zone->pages_min,
- zone->pages_low,
- zone->pages_high,
- zone->pages_scanned,
- zone->nr_scan_active, zone->nr_scan_inactive,
- zone->spanned_pages,
- zone->present_pages);
+ int i;
+ seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
+ seq_printf(m,
+ "\n pages free %lu"
+ "\n min %lu"
+ "\n low %lu"
+ "\n high %lu"
+ "\n scanned %lu (a: %lu i: %lu)"
+ "\n spanned %lu"
+ "\n present %lu",
+ zone_page_state(zone, NR_FREE_PAGES),
+ zone->pages_min,
+ zone->pages_low,
+ zone->pages_high,
+ zone->pages_scanned,
+ zone->nr_scan_active, zone->nr_scan_inactive,
+ zone->spanned_pages,
+ zone->present_pages);
- for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
- seq_printf(m, "\n %-12s %lu", vmstat_text[i],
- zone_page_state(zone, i));
-
- seq_printf(m,
- "\n protection: (%lu",
- zone->lowmem_reserve[0]);
- for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
- seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
- seq_printf(m,
- ")"
- "\n pagesets");
- for_each_online_cpu(i) {
- struct per_cpu_pageset *pageset;
- int j;
-
- pageset = zone_pcp(zone, i);
- for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
- seq_printf(m,
- "\n cpu: %i pcp: %i"
- "\n count: %i"
- "\n high: %i"
- "\n batch: %i",
- i, j,
- pageset->pcp[j].count,
- pageset->pcp[j].high,
- pageset->pcp[j].batch);
+ for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
+ seq_printf(m, "\n %-12s %lu", vmstat_text[i],
+ zone_page_state(zone, i));
+
+ seq_printf(m,
+ "\n protection: (%lu",
+ zone->lowmem_reserve[0]);
+ for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
+ seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
+ seq_printf(m,
+ ")"
+ "\n pagesets");
+ for_each_online_cpu(i) {
+ struct per_cpu_pageset *pageset;
+ int j;
+
+ pageset = zone_pcp(zone, i);
+ for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
+ seq_printf(m,
+ "\n cpu: %i pcp: %i"
+ "\n count: %i"
+ "\n high: %i"
+ "\n batch: %i",
+ i, j,
+ pageset->pcp[j].count,
+ pageset->pcp[j].high,
+ pageset->pcp[j].batch);
}
#ifdef CONFIG_SMP
- seq_printf(m, "\n vm stats threshold: %d",
- pageset->stat_threshold);
+ seq_printf(m, "\n vm stats threshold: %d",
+ pageset->stat_threshold);
#endif
- }
- seq_printf(m,
- "\n all_unreclaimable: %u"
- "\n prev_priority: %i"
- "\n start_pfn: %lu",
- zone->all_unreclaimable,
- zone->prev_priority,
- zone->zone_start_pfn);
- spin_unlock_irqrestore(&zone->lock, flags);
- seq_putc(m, '\n');
}
+ seq_printf(m,
+ "\n all_unreclaimable: %u"
+ "\n prev_priority: %i"
+ "\n start_pfn: %lu",
+ zone_is_all_unreclaimable(zone),
+ zone->prev_priority,
+ zone->zone_start_pfn);
+ seq_putc(m, '\n');
+}
+
+/*
+ * Output information about zones in @pgdat.
+ */
+static int zoneinfo_show(struct seq_file *m, void *arg)
+{
+ pg_data_t *pgdat = (pg_data_t *)arg;
+ walk_zones_in_node(m, pgdat, zoneinfo_show_print);
return 0;
}
@@ -741,7 +848,7 @@ static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
static struct notifier_block __cpuinitdata vmstat_notifier =
{ &vmstat_cpuup_callback, NULL, 0 };
-int __init setup_vmstat(void)
+static int __init setup_vmstat(void)
{
int cpu;