summaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/time/clockevents.c88
-rw-r--r--kernel/time/clocksource.c170
-rw-r--r--kernel/time/jiffies.c5
-rw-r--r--kernel/time/sched_clock.c236
-rw-r--r--kernel/time/timekeeping.c345
-rw-r--r--kernel/time/timer_list.c32
6 files changed, 589 insertions, 287 deletions
diff --git a/kernel/time/clockevents.c b/kernel/time/clockevents.c
index 55449909f114..489642b08d64 100644
--- a/kernel/time/clockevents.c
+++ b/kernel/time/clockevents.c
@@ -94,6 +94,57 @@ u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
}
EXPORT_SYMBOL_GPL(clockevent_delta2ns);
+static int __clockevents_set_mode(struct clock_event_device *dev,
+ enum clock_event_mode mode)
+{
+ /* Transition with legacy set_mode() callback */
+ if (dev->set_mode) {
+ /* Legacy callback doesn't support new modes */
+ if (mode > CLOCK_EVT_MODE_RESUME)
+ return -ENOSYS;
+ dev->set_mode(mode, dev);
+ return 0;
+ }
+
+ if (dev->features & CLOCK_EVT_FEAT_DUMMY)
+ return 0;
+
+ /* Transition with new mode-specific callbacks */
+ switch (mode) {
+ case CLOCK_EVT_MODE_UNUSED:
+ /*
+ * This is an internal state, which is guaranteed to go from
+ * SHUTDOWN to UNUSED. No driver interaction required.
+ */
+ return 0;
+
+ case CLOCK_EVT_MODE_SHUTDOWN:
+ return dev->set_mode_shutdown(dev);
+
+ case CLOCK_EVT_MODE_PERIODIC:
+ /* Core internal bug */
+ if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC))
+ return -ENOSYS;
+ return dev->set_mode_periodic(dev);
+
+ case CLOCK_EVT_MODE_ONESHOT:
+ /* Core internal bug */
+ if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
+ return -ENOSYS;
+ return dev->set_mode_oneshot(dev);
+
+ case CLOCK_EVT_MODE_RESUME:
+ /* Optional callback */
+ if (dev->set_mode_resume)
+ return dev->set_mode_resume(dev);
+ else
+ return 0;
+
+ default:
+ return -ENOSYS;
+ }
+}
+
/**
* clockevents_set_mode - set the operating mode of a clock event device
* @dev: device to modify
@@ -105,7 +156,9 @@ void clockevents_set_mode(struct clock_event_device *dev,
enum clock_event_mode mode)
{
if (dev->mode != mode) {
- dev->set_mode(mode, dev);
+ if (__clockevents_set_mode(dev, mode))
+ return;
+
dev->mode = mode;
/*
@@ -373,6 +426,35 @@ int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
}
EXPORT_SYMBOL_GPL(clockevents_unbind);
+/* Sanity check of mode transition callbacks */
+static int clockevents_sanity_check(struct clock_event_device *dev)
+{
+ /* Legacy set_mode() callback */
+ if (dev->set_mode) {
+ /* We shouldn't be supporting new modes now */
+ WARN_ON(dev->set_mode_periodic || dev->set_mode_oneshot ||
+ dev->set_mode_shutdown || dev->set_mode_resume);
+ return 0;
+ }
+
+ if (dev->features & CLOCK_EVT_FEAT_DUMMY)
+ return 0;
+
+ /* New mode-specific callbacks */
+ if (!dev->set_mode_shutdown)
+ return -EINVAL;
+
+ if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
+ !dev->set_mode_periodic)
+ return -EINVAL;
+
+ if ((dev->features & CLOCK_EVT_FEAT_ONESHOT) &&
+ !dev->set_mode_oneshot)
+ return -EINVAL;
+
+ return 0;
+}
+
/**
* clockevents_register_device - register a clock event device
* @dev: device to register
@@ -382,6 +464,8 @@ void clockevents_register_device(struct clock_event_device *dev)
unsigned long flags;
BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
+ BUG_ON(clockevents_sanity_check(dev));
+
if (!dev->cpumask) {
WARN_ON(num_possible_cpus() > 1);
dev->cpumask = cpumask_of(smp_processor_id());
@@ -449,7 +533,7 @@ int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
return clockevents_program_event(dev, dev->next_event, false);
if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
- dev->set_mode(CLOCK_EVT_MODE_PERIODIC, dev);
+ return __clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC);
return 0;
}
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c
index 4892352f0e49..c3be3c71bbad 100644
--- a/kernel/time/clocksource.c
+++ b/kernel/time/clocksource.c
@@ -142,13 +142,6 @@ static void __clocksource_unstable(struct clocksource *cs)
schedule_work(&watchdog_work);
}
-static void clocksource_unstable(struct clocksource *cs, int64_t delta)
-{
- printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n",
- cs->name, delta);
- __clocksource_unstable(cs);
-}
-
/**
* clocksource_mark_unstable - mark clocksource unstable via watchdog
* @cs: clocksource to be marked unstable
@@ -174,7 +167,7 @@ void clocksource_mark_unstable(struct clocksource *cs)
static void clocksource_watchdog(unsigned long data)
{
struct clocksource *cs;
- cycle_t csnow, wdnow, delta;
+ cycle_t csnow, wdnow, cslast, wdlast, delta;
int64_t wd_nsec, cs_nsec;
int next_cpu, reset_pending;
@@ -213,6 +206,8 @@ static void clocksource_watchdog(unsigned long data)
delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
+ wdlast = cs->wd_last; /* save these in case we print them */
+ cslast = cs->cs_last;
cs->cs_last = csnow;
cs->wd_last = wdnow;
@@ -221,7 +216,12 @@ static void clocksource_watchdog(unsigned long data)
/* Check the deviation from the watchdog clocksource. */
if ((abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD)) {
- clocksource_unstable(cs, cs_nsec - wd_nsec);
+ pr_warn("timekeeping watchdog: Marking clocksource '%s' as unstable, because the skew is too large:\n", cs->name);
+ pr_warn(" '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
+ watchdog->name, wdnow, wdlast, watchdog->mask);
+ pr_warn(" '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
+ cs->name, csnow, cslast, cs->mask);
+ __clocksource_unstable(cs);
continue;
}
@@ -469,26 +469,22 @@ static u32 clocksource_max_adjustment(struct clocksource *cs)
* @shift: cycle to nanosecond divisor (power of two)
* @maxadj: maximum adjustment value to mult (~11%)
* @mask: bitmask for two's complement subtraction of non 64 bit counters
+ * @max_cyc: maximum cycle value before potential overflow (does not include
+ * any safety margin)
+ *
+ * NOTE: This function includes a safety margin of 50%, so that bad clock values
+ * can be detected.
*/
-u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask)
+u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
{
u64 max_nsecs, max_cycles;
/*
* Calculate the maximum number of cycles that we can pass to the
- * cyc2ns function without overflowing a 64-bit signed result. The
- * maximum number of cycles is equal to ULLONG_MAX/(mult+maxadj)
- * which is equivalent to the below.
- * max_cycles < (2^63)/(mult + maxadj)
- * max_cycles < 2^(log2((2^63)/(mult + maxadj)))
- * max_cycles < 2^(log2(2^63) - log2(mult + maxadj))
- * max_cycles < 2^(63 - log2(mult + maxadj))
- * max_cycles < 1 << (63 - log2(mult + maxadj))
- * Please note that we add 1 to the result of the log2 to account for
- * any rounding errors, ensure the above inequality is satisfied and
- * no overflow will occur.
+ * cyc2ns() function without overflowing a 64-bit result.
*/
- max_cycles = 1ULL << (63 - (ilog2(mult + maxadj) + 1));
+ max_cycles = ULLONG_MAX;
+ do_div(max_cycles, mult+maxadj);
/*
* The actual maximum number of cycles we can defer the clocksource is
@@ -499,27 +495,26 @@ u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask)
max_cycles = min(max_cycles, mask);
max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
+ /* return the max_cycles value as well if requested */
+ if (max_cyc)
+ *max_cyc = max_cycles;
+
+ /* Return 50% of the actual maximum, so we can detect bad values */
+ max_nsecs >>= 1;
+
return max_nsecs;
}
/**
- * clocksource_max_deferment - Returns max time the clocksource can be deferred
- * @cs: Pointer to clocksource
+ * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
+ * @cs: Pointer to clocksource to be updated
*
*/
-static u64 clocksource_max_deferment(struct clocksource *cs)
+static inline void clocksource_update_max_deferment(struct clocksource *cs)
{
- u64 max_nsecs;
-
- max_nsecs = clocks_calc_max_nsecs(cs->mult, cs->shift, cs->maxadj,
- cs->mask);
- /*
- * To ensure that the clocksource does not wrap whilst we are idle,
- * limit the time the clocksource can be deferred by 12.5%. Please
- * note a margin of 12.5% is used because this can be computed with
- * a shift, versus say 10% which would require division.
- */
- return max_nsecs - (max_nsecs >> 3);
+ cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
+ cs->maxadj, cs->mask,
+ &cs->max_cycles);
}
#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
@@ -648,7 +643,7 @@ static void clocksource_enqueue(struct clocksource *cs)
}
/**
- * __clocksource_updatefreq_scale - Used update clocksource with new freq
+ * __clocksource_update_freq_scale - Used update clocksource with new freq
* @cs: clocksource to be registered
* @scale: Scale factor multiplied against freq to get clocksource hz
* @freq: clocksource frequency (cycles per second) divided by scale
@@ -656,48 +651,64 @@ static void clocksource_enqueue(struct clocksource *cs)
* This should only be called from the clocksource->enable() method.
*
* This *SHOULD NOT* be called directly! Please use the
- * clocksource_updatefreq_hz() or clocksource_updatefreq_khz helper functions.
+ * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
+ * functions.
*/
-void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
+void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
{
u64 sec;
+
/*
- * Calc the maximum number of seconds which we can run before
- * wrapping around. For clocksources which have a mask > 32bit
- * we need to limit the max sleep time to have a good
- * conversion precision. 10 minutes is still a reasonable
- * amount. That results in a shift value of 24 for a
- * clocksource with mask >= 40bit and f >= 4GHz. That maps to
- * ~ 0.06ppm granularity for NTP. We apply the same 12.5%
- * margin as we do in clocksource_max_deferment()
+ * Default clocksources are *special* and self-define their mult/shift.
+ * But, you're not special, so you should specify a freq value.
*/
- sec = (cs->mask - (cs->mask >> 3));
- do_div(sec, freq);
- do_div(sec, scale);
- if (!sec)
- sec = 1;
- else if (sec > 600 && cs->mask > UINT_MAX)
- sec = 600;
-
- clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
- NSEC_PER_SEC / scale, sec * scale);
-
+ if (freq) {
+ /*
+ * Calc the maximum number of seconds which we can run before
+ * wrapping around. For clocksources which have a mask > 32-bit
+ * we need to limit the max sleep time to have a good
+ * conversion precision. 10 minutes is still a reasonable
+ * amount. That results in a shift value of 24 for a
+ * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
+ * ~ 0.06ppm granularity for NTP.
+ */
+ sec = cs->mask;
+ do_div(sec, freq);
+ do_div(sec, scale);
+ if (!sec)
+ sec = 1;
+ else if (sec > 600 && cs->mask > UINT_MAX)
+ sec = 600;
+
+ clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
+ NSEC_PER_SEC / scale, sec * scale);
+ }
/*
- * for clocksources that have large mults, to avoid overflow.
- * Since mult may be adjusted by ntp, add an safety extra margin
- *
+ * Ensure clocksources that have large 'mult' values don't overflow
+ * when adjusted.
*/
cs->maxadj = clocksource_max_adjustment(cs);
- while ((cs->mult + cs->maxadj < cs->mult)
- || (cs->mult - cs->maxadj > cs->mult)) {
+ while (freq && ((cs->mult + cs->maxadj < cs->mult)
+ || (cs->mult - cs->maxadj > cs->mult))) {
cs->mult >>= 1;
cs->shift--;
cs->maxadj = clocksource_max_adjustment(cs);
}
- cs->max_idle_ns = clocksource_max_deferment(cs);
+ /*
+ * Only warn for *special* clocksources that self-define
+ * their mult/shift values and don't specify a freq.
+ */
+ WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
+ "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
+ cs->name);
+
+ clocksource_update_max_deferment(cs);
+
+ pr_info("clocksource %s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
+ cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
}
-EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale);
+EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
/**
* __clocksource_register_scale - Used to install new clocksources
@@ -714,7 +725,7 @@ int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
{
/* Initialize mult/shift and max_idle_ns */
- __clocksource_updatefreq_scale(cs, scale, freq);
+ __clocksource_update_freq_scale(cs, scale, freq);
/* Add clocksource to the clocksource list */
mutex_lock(&clocksource_mutex);
@@ -726,33 +737,6 @@ int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
}
EXPORT_SYMBOL_GPL(__clocksource_register_scale);
-
-/**
- * clocksource_register - Used to install new clocksources
- * @cs: clocksource to be registered
- *
- * Returns -EBUSY if registration fails, zero otherwise.
- */
-int clocksource_register(struct clocksource *cs)
-{
- /* calculate max adjustment for given mult/shift */
- cs->maxadj = clocksource_max_adjustment(cs);
- WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
- "Clocksource %s might overflow on 11%% adjustment\n",
- cs->name);
-
- /* calculate max idle time permitted for this clocksource */
- cs->max_idle_ns = clocksource_max_deferment(cs);
-
- mutex_lock(&clocksource_mutex);
- clocksource_enqueue(cs);
- clocksource_enqueue_watchdog(cs);
- clocksource_select();
- mutex_unlock(&clocksource_mutex);
- return 0;
-}
-EXPORT_SYMBOL(clocksource_register);
-
static void __clocksource_change_rating(struct clocksource *cs, int rating)
{
list_del(&cs->list);
diff --git a/kernel/time/jiffies.c b/kernel/time/jiffies.c
index a6a5bf53e86d..c4bb518725b5 100644
--- a/kernel/time/jiffies.c
+++ b/kernel/time/jiffies.c
@@ -71,6 +71,7 @@ static struct clocksource clocksource_jiffies = {
.mask = 0xffffffff, /*32bits*/
.mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */
.shift = JIFFIES_SHIFT,
+ .max_cycles = 10,
};
__cacheline_aligned_in_smp DEFINE_SEQLOCK(jiffies_lock);
@@ -94,7 +95,7 @@ EXPORT_SYMBOL(jiffies);
static int __init init_jiffies_clocksource(void)
{
- return clocksource_register(&clocksource_jiffies);
+ return __clocksource_register(&clocksource_jiffies);
}
core_initcall(init_jiffies_clocksource);
@@ -130,6 +131,6 @@ int register_refined_jiffies(long cycles_per_second)
refined_jiffies.mult = ((u32)nsec_per_tick) << JIFFIES_SHIFT;
- clocksource_register(&refined_jiffies);
+ __clocksource_register(&refined_jiffies);
return 0;
}
diff --git a/kernel/time/sched_clock.c b/kernel/time/sched_clock.c
index 01d2d15aa662..a26036d37a38 100644
--- a/kernel/time/sched_clock.c
+++ b/kernel/time/sched_clock.c
@@ -1,5 +1,6 @@
/*
- * sched_clock.c: support for extending counters to full 64-bit ns counter
+ * sched_clock.c: Generic sched_clock() support, to extend low level
+ * hardware time counters to full 64-bit ns values.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@@ -18,15 +19,53 @@
#include <linux/seqlock.h>
#include <linux/bitops.h>
-struct clock_data {
- ktime_t wrap_kt;
+/**
+ * struct clock_read_data - data required to read from sched_clock()
+ *
+ * @epoch_ns: sched_clock() value at last update
+ * @epoch_cyc: Clock cycle value at last update.
+ * @sched_clock_mask: Bitmask for two's complement subtraction of non 64bit
+ * clocks.
+ * @read_sched_clock: Current clock source (or dummy source when suspended).
+ * @mult: Multipler for scaled math conversion.
+ * @shift: Shift value for scaled math conversion.
+ *
+ * Care must be taken when updating this structure; it is read by
+ * some very hot code paths. It occupies <=40 bytes and, when combined
+ * with the seqcount used to synchronize access, comfortably fits into
+ * a 64 byte cache line.
+ */
+struct clock_read_data {
u64 epoch_ns;
u64 epoch_cyc;
- seqcount_t seq;
- unsigned long rate;
+ u64 sched_clock_mask;
+ u64 (*read_sched_clock)(void);
u32 mult;
u32 shift;
- bool suspended;
+};
+
+/**
+ * struct clock_data - all data needed for sched_clock() (including
+ * registration of a new clock source)
+ *
+ * @seq: Sequence counter for protecting updates. The lowest
+ * bit is the index for @read_data.
+ * @read_data: Data required to read from sched_clock.
+ * @wrap_kt: Duration for which clock can run before wrapping.
+ * @rate: Tick rate of the registered clock.
+ * @actual_read_sched_clock: Registered hardware level clock read function.
+ *
+ * The ordering of this structure has been chosen to optimize cache
+ * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
+ * into a single 64-byte cache line.
+ */
+struct clock_data {
+ seqcount_t seq;
+ struct clock_read_data read_data[2];
+ ktime_t wrap_kt;
+ unsigned long rate;
+
+ u64 (*actual_read_sched_clock)(void);
};
static struct hrtimer sched_clock_timer;
@@ -34,12 +73,6 @@ static int irqtime = -1;
core_param(irqtime, irqtime, int, 0400);
-static struct clock_data cd = {
- .mult = NSEC_PER_SEC / HZ,
-};
-
-static u64 __read_mostly sched_clock_mask;
-
static u64 notrace jiffy_sched_clock_read(void)
{
/*
@@ -49,7 +82,11 @@ static u64 notrace jiffy_sched_clock_read(void)
return (u64)(jiffies - INITIAL_JIFFIES);
}
-static u64 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
+static struct clock_data cd ____cacheline_aligned = {
+ .read_data[0] = { .mult = NSEC_PER_SEC / HZ,
+ .read_sched_clock = jiffy_sched_clock_read, },
+ .actual_read_sched_clock = jiffy_sched_clock_read,
+};
static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
{
@@ -58,111 +95,136 @@ static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
unsigned long long notrace sched_clock(void)
{
- u64 epoch_ns;
- u64 epoch_cyc;
- u64 cyc;
+ u64 cyc, res;
unsigned long seq;
-
- if (cd.suspended)
- return cd.epoch_ns;
+ struct clock_read_data *rd;
do {
- seq = raw_read_seqcount_begin(&cd.seq);
- epoch_cyc = cd.epoch_cyc;
- epoch_ns = cd.epoch_ns;
+ seq = raw_read_seqcount(&cd.seq);
+ rd = cd.read_data + (seq & 1);
+
+ cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
+ rd->sched_clock_mask;
+ res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
} while (read_seqcount_retry(&cd.seq, seq));
- cyc = read_sched_clock();
- cyc = (cyc - epoch_cyc) & sched_clock_mask;
- return epoch_ns + cyc_to_ns(cyc, cd.mult, cd.shift);
+ return res;
+}
+
+/*
+ * Updating the data required to read the clock.
+ *
+ * sched_clock() will never observe mis-matched data even if called from
+ * an NMI. We do this by maintaining an odd/even copy of the data and
+ * steering sched_clock() to one or the other using a sequence counter.
+ * In order to preserve the data cache profile of sched_clock() as much
+ * as possible the system reverts back to the even copy when the update
+ * completes; the odd copy is used *only* during an update.
+ */
+static void update_clock_read_data(struct clock_read_data *rd)
+{
+ /* update the backup (odd) copy with the new data */
+ cd.read_data[1] = *rd;
+
+ /* steer readers towards the odd copy */
+ raw_write_seqcount_latch(&cd.seq);
+
+ /* now its safe for us to update the normal (even) copy */
+ cd.read_data[0] = *rd;
+
+ /* switch readers back to the even copy */
+ raw_write_seqcount_latch(&cd.seq);
}
/*
- * Atomically update the sched_clock epoch.
+ * Atomically update the sched_clock() epoch.
*/
-static void notrace update_sched_clock(void)
+static void update_sched_clock(void)
{
- unsigned long flags;
u64 cyc;
u64 ns;
+ struct clock_read_data rd;
+
+ rd = cd.read_data[0];
+
+ cyc = cd.actual_read_sched_clock();
+ ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
+
+ rd.epoch_ns = ns;
+ rd.epoch_cyc = cyc;
- cyc = read_sched_clock();
- ns = cd.epoch_ns +
- cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
- cd.mult, cd.shift);
-
- raw_local_irq_save(flags);
- raw_write_seqcount_begin(&cd.seq);
- cd.epoch_ns = ns;
- cd.epoch_cyc = cyc;
- raw_write_seqcount_end(&cd.seq);
- raw_local_irq_restore(flags);
+ update_clock_read_data(&rd);
}
static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
{
update_sched_clock();
hrtimer_forward_now(hrt, cd.wrap_kt);
+
return HRTIMER_RESTART;
}
-void __init sched_clock_register(u64 (*read)(void), int bits,
- unsigned long rate)
+void __init
+sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
{
u64 res, wrap, new_mask, new_epoch, cyc, ns;
u32 new_mult, new_shift;
- ktime_t new_wrap_kt;
unsigned long r;
char r_unit;
+ struct clock_read_data rd;
if (cd.rate > rate)
return;
WARN_ON(!irqs_disabled());
- /* calculate the mult/shift to convert counter ticks to ns. */
+ /* Calculate the mult/shift to convert counter ticks to ns. */
clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
new_mask = CLOCKSOURCE_MASK(bits);
+ cd.rate = rate;
+
+ /* Calculate how many nanosecs until we risk wrapping */
+ wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
+ cd.wrap_kt = ns_to_ktime(wrap);
- /* calculate how many ns until we wrap */
- wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask);
- new_wrap_kt = ns_to_ktime(wrap - (wrap >> 3));
+ rd = cd.read_data[0];
- /* update epoch for new counter and update epoch_ns from old counter*/
+ /* Update epoch for new counter and update 'epoch_ns' from old counter*/
new_epoch = read();
- cyc = read_sched_clock();
- ns = cd.epoch_ns + cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
- cd.mult, cd.shift);
+ cyc = cd.actual_read_sched_clock();
+ ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
+ cd.actual_read_sched_clock = read;
- raw_write_seqcount_begin(&cd.seq);
- read_sched_clock = read;
- sched_clock_mask = new_mask;
- cd.rate = rate;
- cd.wrap_kt = new_wrap_kt;
- cd.mult = new_mult;
- cd.shift = new_shift;
- cd.epoch_cyc = new_epoch;
- cd.epoch_ns = ns;
- raw_write_seqcount_end(&cd.seq);
+ rd.read_sched_clock = read;
+ rd.sched_clock_mask = new_mask;
+ rd.mult = new_mult;
+ rd.shift = new_shift;
+ rd.epoch_cyc = new_epoch;
+ rd.epoch_ns = ns;
+
+ update_clock_read_data(&rd);
r = rate;
if (r >= 4000000) {
r /= 1000000;
r_unit = 'M';
- } else if (r >= 1000) {
- r /= 1000;
- r_unit = 'k';
- } else
- r_unit = ' ';
-
- /* calculate the ns resolution of this counter */
+ } else {
+ if (r >= 1000) {
+ r /= 1000;
+ r_unit = 'k';
+ } else {
+ r_unit = ' ';
+ }
+ }
+
+ /* Calculate the ns resolution of this counter */
res = cyc_to_ns(1ULL, new_mult, new_shift);
pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
bits, r, r_unit, res, wrap);
- /* Enable IRQ time accounting if we have a fast enough sched_clock */
+ /* Enable IRQ time accounting if we have a fast enough sched_clock() */
if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
enable_sched_clock_irqtime();
@@ -172,10 +234,10 @@ void __init sched_clock_register(u64 (*read)(void), int bits,
void __init sched_clock_postinit(void)
{
/*
- * If no sched_clock function has been provided at that point,
+ * If no sched_clock() function has been provided at that point,
* make it the final one one.
*/
- if (read_sched_clock == jiffy_sched_clock_read)
+ if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
update_sched_clock();
@@ -189,29 +251,53 @@ void __init sched_clock_postinit(void)
hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
}
+/*
+ * Clock read function for use when the clock is suspended.
+ *
+ * This function makes it appear to sched_clock() as if the clock
+ * stopped counting at its last update.
+ *
+ * This function must only be called from the critical
+ * section in sched_clock(). It relies on the read_seqcount_retry()
+ * at the end of the critical section to be sure we observe the
+ * correct copy of 'epoch_cyc'.
+ */
+static u64 notrace suspended_sched_clock_read(void)
+{
+ unsigned long seq = raw_read_seqcount(&cd.seq);
+
+ return cd.read_data[seq & 1].epoch_cyc;
+}
+
static int sched_clock_suspend(void)
{
+ struct clock_read_data *rd = &cd.read_data[0];
+
update_sched_clock();
hrtimer_cancel(&sched_clock_timer);
- cd.suspended = true;
+ rd->read_sched_clock = suspended_sched_clock_read;
+
return 0;
}
static void sched_clock_resume(void)
{
- cd.epoch_cyc = read_sched_clock();
+ struct clock_read_data *rd = &cd.read_data[0];
+
+ rd->epoch_cyc = cd.actual_read_sched_clock();
hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
- cd.suspended = false;
+ rd->read_sched_clock = cd.actual_read_sched_clock;
}
static struct syscore_ops sched_clock_ops = {
- .suspend = sched_clock_suspend,
- .resume = sched_clock_resume,
+ .suspend = sched_clock_suspend,
+ .resume = sched_clock_resume,
};
static int __init sched_clock_syscore_init(void)
{
register_syscore_ops(&sched_clock_ops);
+
return 0;
}
device_initcall(sched_clock_syscore_init);
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c
index 91db94136c10..c3fcff06d30a 100644
--- a/kernel/time/timekeeping.c
+++ b/kernel/time/timekeeping.c
@@ -59,6 +59,7 @@ struct tk_fast {
};
static struct tk_fast tk_fast_mono ____cacheline_aligned;
+static struct tk_fast tk_fast_raw ____cacheline_aligned;
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;
@@ -68,8 +69,8 @@ bool __read_mostly persistent_clock_exist = false;
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
- while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
- tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
+ while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
+ tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
tk->xtime_sec++;
}
}
@@ -79,20 +80,20 @@ static inline struct timespec64 tk_xtime(struct timekeeper *tk)
struct timespec64 ts;
ts.tv_sec = tk->xtime_sec;
- ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
+ ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
return ts;
}
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
{
tk->xtime_sec = ts->tv_sec;
- tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
+ tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
}
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
{
tk->xtime_sec += ts->tv_sec;
- tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
+ tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
tk_normalize_xtime(tk);
}
@@ -118,6 +119,117 @@ static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
tk->offs_boot = ktime_add(tk->offs_boot, delta);
}
+#ifdef CONFIG_DEBUG_TIMEKEEPING
+#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
+/*
+ * These simple flag variables are managed
+ * without locks, which is racy, but ok since
+ * we don't really care about being super
+ * precise about how many events were seen,
+ * just that a problem was observed.
+ */
+static int timekeeping_underflow_seen;
+static int timekeeping_overflow_seen;
+
+/* last_warning is only modified under the timekeeping lock */
+static long timekeeping_last_warning;
+
+static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
+{
+
+ cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
+ const char *name = tk->tkr_mono.clock->name;
+
+ if (offset > max_cycles) {
+ printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
+ offset, name, max_cycles);
+ printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
+ } else {
+ if (offset > (max_cycles >> 1)) {
+ printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
+ offset, name, max_cycles >> 1);
+ printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
+ }
+ }
+
+ if (timekeeping_underflow_seen) {
+ if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
+ printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
+ printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
+ printk_deferred(" Your kernel is probably still fine.\n");
+ timekeeping_last_warning = jiffies;
+ }
+ timekeeping_underflow_seen = 0;
+ }
+
+ if (timekeeping_overflow_seen) {
+ if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
+ printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
+ printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
+ printk_deferred(" Your kernel is probably still fine.\n");
+ timekeeping_last_warning = jiffies;
+ }
+ timekeeping_overflow_seen = 0;
+ }
+}
+
+static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
+{
+ cycle_t now, last, mask, max, delta;
+ unsigned int seq;
+
+ /*
+ * Since we're called holding a seqlock, the data may shift
+ * under us while we're doing the calculation. This can cause
+ * false positives, since we'd note a problem but throw the
+ * results away. So nest another seqlock here to atomically
+ * grab the points we are checking with.
+ */
+ do {
+ seq = read_seqcount_begin(&tk_core.seq);
+ now = tkr->read(tkr->clock);
+ last = tkr->cycle_last;
+ mask = tkr->mask;
+ max = tkr->clock->max_cycles;
+ } while (read_seqcount_retry(&tk_core.seq, seq));
+
+ delta = clocksource_delta(now, last, mask);
+
+ /*
+ * Try to catch underflows by checking if we are seeing small
+ * mask-relative negative values.
+ */
+ if (unlikely((~delta & mask) < (mask >> 3))) {
+ timekeeping_underflow_seen = 1;
+ delta = 0;
+ }
+
+ /* Cap delta value to the max_cycles values to avoid mult overflows */
+ if (unlikely(delta > max)) {
+ timekeeping_overflow_seen = 1;
+ delta = tkr->clock->max_cycles;
+ }
+
+ return delta;
+}
+#else
+static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
+{
+}
+static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
+{
+ cycle_t cycle_now, delta;
+
+ /* read clocksource */
+ cycle_now = tkr->read(tkr->clock);
+
+ /* calculate the delta since the last update_wall_time */
+ delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
+
+ return delta;
+}
+#endif
+
/**
* tk_setup_internals - Set up internals to use clocksource clock.
*
@@ -135,11 +247,16 @@ static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
u64 tmp, ntpinterval;
struct clocksource *old_clock;
- old_clock = tk->tkr.clock;
- tk->tkr.clock = clock;
- tk->tkr.read = clock->read;
- tk->tkr.mask = clock->mask;
- tk->tkr.cycle_last = tk->tkr.read(clock);
+ old_clock = tk->tkr_mono.clock;
+ tk->tkr_mono.clock = clock;
+ tk->tkr_mono.read = clock->read;
+ tk->tkr_mono.mask = clock->mask;
+ tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
+
+ tk->tkr_raw.clock = clock;
+ tk->tkr_raw.read = clock->read;
+ tk->tkr_raw.mask = clock->mask;
+ tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
/* Do the ns -> cycle conversion first, using original mult */
tmp = NTP_INTERVAL_LENGTH;
@@ -163,11 +280,14 @@ static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
if (old_clock) {
int shift_change = clock->shift - old_clock->shift;
if (shift_change < 0)
- tk->tkr.xtime_nsec >>= -shift_change;
+ tk->tkr_mono.xtime_nsec >>= -shift_change;
else
- tk->tkr.xtime_nsec <<= shift_change;
+ tk->tkr_mono.xtime_nsec <<= shift_change;
}
- tk->tkr.shift = clock->shift;
+ tk->tkr_raw.xtime_nsec = 0;
+
+ tk->tkr_mono.shift = clock->shift;
+ tk->tkr_raw.shift = clock->shift;
tk->ntp_error = 0;
tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
@@ -178,7 +298,8 @@ static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
* active clocksource. These value will be adjusted via NTP
* to counteract clock drifting.
*/
- tk->tkr.mult = clock->mult;
+ tk->tkr_mono.mult = clock->mult;
+ tk->tkr_raw.mult = clock->mult;
tk->ntp_err_mult = 0;
}
@@ -193,14 +314,10 @@ static inline u32 arch_gettimeoffset(void) { return 0; }
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
{
- cycle_t cycle_now, delta;
+ cycle_t delta;
s64 nsec;
- /* read clocksource: */
- cycle_now = tkr->read(tkr->clock);
-
- /* calculate the delta since the last update_wall_time: */
- delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
+ delta = timekeeping_get_delta(tkr);
nsec = delta * tkr->mult + tkr->xtime_nsec;
nsec >>= tkr->shift;
@@ -209,25 +326,6 @@ static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
return nsec + arch_gettimeoffset();
}
-static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
-{
- struct clocksource *clock = tk->tkr.clock;
- cycle_t cycle_now, delta;
- s64 nsec;
-
- /* read clocksource: */
- cycle_now = tk->tkr.read(clock);
-
- /* calculate the delta since the last update_wall_time: */
- delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
-
- /* convert delta to nanoseconds. */
- nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
-
- /* If arch requires, add in get_arch_timeoffset() */
- return nsec + arch_gettimeoffset();
-}
-
/**
* update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
* @tkr: Timekeeping readout base from which we take the update
@@ -267,18 +365,18 @@ static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
* slightly wrong timestamp (a few nanoseconds). See
* @ktime_get_mono_fast_ns.
*/
-static void update_fast_timekeeper(struct tk_read_base *tkr)
+static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
{
- struct tk_read_base *base = tk_fast_mono.base;
+ struct tk_read_base *base = tkf->base;
/* Force readers off to base[1] */
- raw_write_seqcount_latch(&tk_fast_mono.seq);
+ raw_write_seqcount_latch(&tkf->seq);
/* Update base[0] */
memcpy(base, tkr, sizeof(*base));
/* Force readers back to base[0] */
- raw_write_seqcount_latch(&tk_fast_mono.seq);
+ raw_write_seqcount_latch(&tkf->seq);
/* Update base[1] */
memcpy(base + 1, base, sizeof(*base));
@@ -316,22 +414,33 @@ static void update_fast_timekeeper(struct tk_read_base *tkr)
* of the following timestamps. Callers need to be aware of that and
* deal with it.
*/
-u64 notrace ktime_get_mono_fast_ns(void)
+static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
{
struct tk_read_base *tkr;
unsigned int seq;
u64 now;
do {
- seq = raw_read_seqcount(&tk_fast_mono.seq);
- tkr = tk_fast_mono.base + (seq & 0x01);
- now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
+ seq = raw_read_seqcount(&tkf->seq);
+ tkr = tkf->base + (seq & 0x01);
+ now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
+ } while (read_seqcount_retry(&tkf->seq, seq));
- } while (read_seqcount_retry(&tk_fast_mono.seq, seq));
return now;
}
+
+u64 ktime_get_mono_fast_ns(void)
+{
+ return __ktime_get_fast_ns(&tk_fast_mono);
+}
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
+u64 ktime_get_raw_fast_ns(void)
+{
+ return __ktime_get_fast_ns(&tk_fast_raw);
+}
+EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
+
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;
@@ -353,12 +462,17 @@ static cycle_t dummy_clock_read(struct clocksource *cs)
static void halt_fast_timekeeper(struct timekeeper *tk)
{
static struct tk_read_base tkr_dummy;
- struct tk_read_base *tkr = &tk->tkr;
+ struct tk_read_base *tkr = &tk->tkr_mono;
memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
cycles_at_suspend = tkr->read(tkr->clock);
tkr_dummy.read = dummy_clock_read;
- update_fast_timekeeper(&tkr_dummy);
+ update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
+
+ tkr = &tk->tkr_raw;
+ memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
+ tkr_dummy.read = dummy_clock_read;
+ update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
}
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
@@ -369,8 +483,8 @@ static inline void update_vsyscall(struct timekeeper *tk)
xt = timespec64_to_timespec(tk_xtime(tk));
wm = timespec64_to_timespec(tk->wall_to_monotonic);
- update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
- tk->tkr.cycle_last);
+ update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
+ tk->tkr_mono.cycle_last);
}
static inline void old_vsyscall_fixup(struct timekeeper *tk)
@@ -387,11 +501,11 @@ static inline void old_vsyscall_fixup(struct timekeeper *tk)
* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
* users are removed, this can be killed.
*/
- remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
- tk->tkr.xtime_nsec -= remainder;
- tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
+ remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
+ tk->tkr_mono.xtime_nsec -= remainder;
+ tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
tk->ntp_error += remainder << tk->ntp_error_shift;
- tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
+ tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
}
#else
#define old_vsyscall_fixup(tk)
@@ -456,17 +570,17 @@ static inline void tk_update_ktime_data(struct timekeeper *tk)
*/
seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
nsec = (u32) tk->wall_to_monotonic.tv_nsec;
- tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
+ tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
/* Update the monotonic raw base */
- tk->base_raw = timespec64_to_ktime(tk->raw_time);
+ tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
/*
* The sum of the nanoseconds portions of xtime and
* wall_to_monotonic can be greater/equal one second. Take
* this into account before updating tk->ktime_sec.
*/
- nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift);
+ nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
if (nsec >= NSEC_PER_SEC)
seconds++;
tk->ktime_sec = seconds;
@@ -489,7 +603,8 @@ static void timekeeping_update(struct timekeeper *tk, unsigned int action)
memcpy(&shadow_timekeeper, &tk_core.timekeeper,
sizeof(tk_core.timekeeper));
- update_fast_timekeeper(&tk->tkr);
+ update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
+ update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
}
/**
@@ -501,22 +616,23 @@ static void timekeeping_update(struct timekeeper *tk, unsigned int action)
*/
static void timekeeping_forward_now(struct timekeeper *tk)
{
- struct clocksource *clock = tk->tkr.clock;
+ struct clocksource *clock = tk->tkr_mono.clock;
cycle_t cycle_now, delta;
s64 nsec;
- cycle_now = tk->tkr.read(clock);
- delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
- tk->tkr.cycle_last = cycle_now;
+ cycle_now = tk->tkr_mono.read(clock);
+ delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
+ tk->tkr_mono.cycle_last = cycle_now;
+ tk->tkr_raw.cycle_last = cycle_now;
- tk->tkr.xtime_nsec += delta * tk->tkr.mult;
+ tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
/* If arch requires, add in get_arch_timeoffset() */
- tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
+ tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
tk_normalize_xtime(tk);
- nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
+ nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
timespec64_add_ns(&tk->raw_time, nsec);
}
@@ -537,7 +653,7 @@ int __getnstimeofday64(struct timespec64 *ts)
seq = read_seqcount_begin(&tk_core.seq);
ts->tv_sec = tk->xtime_sec;
- nsecs = timekeeping_get_ns(&tk->tkr);
+ nsecs = timekeeping_get_ns(&tk->tkr_mono);
} while (read_seqcount_retry(&tk_core.seq, seq));
@@ -577,8 +693,8 @@ ktime_t ktime_get(void)
do {
seq = read_seqcount_begin(&tk_core.seq);
- base = tk->tkr.base_mono;
- nsecs = timekeeping_get_ns(&tk->tkr);
+ base = tk->tkr_mono.base;
+ nsecs = timekeeping_get_ns(&tk->tkr_mono);
} while (read_seqcount_retry(&tk_core.seq, seq));
@@ -603,8 +719,8 @@ ktime_t ktime_get_with_offset(enum tk_offsets offs)
do {
seq = read_seqcount_begin(&tk_core.seq);
- base = ktime_add(tk->tkr.base_mono, *offset);
- nsecs = timekeeping_get_ns(&tk->tkr);
+ base = ktime_add(tk->tkr_mono.base, *offset);
+ nsecs = timekeeping_get_ns(&tk->tkr_mono);
} while (read_seqcount_retry(&tk_core.seq, seq));
@@ -645,8 +761,8 @@ ktime_t ktime_get_raw(void)
do {
seq = read_seqcount_begin(&tk_core.seq);
- base = tk->base_raw;
- nsecs = timekeeping_get_ns_raw(tk);
+ base = tk->tkr_raw.base;
+ nsecs = timekeeping_get_ns(&tk->tkr_raw);
} while (read_seqcount_retry(&tk_core.seq, seq));
@@ -674,7 +790,7 @@ void ktime_get_ts64(struct timespec64 *ts)
do {
seq = read_seqcount_begin(&tk_core.seq);
ts->tv_sec = tk->xtime_sec;
- nsec = timekeeping_get_ns(&tk->tkr);
+ nsec = timekeeping_get_ns(&tk->tkr_mono);
tomono = tk->wall_to_monotonic;
} while (read_seqcount_retry(&tk_core.seq, seq));
@@ -759,8 +875,8 @@ void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
ts_real->tv_sec = tk->xtime_sec;
ts_real->tv_nsec = 0;
- nsecs_raw = timekeeping_get_ns_raw(tk);
- nsecs_real = timekeeping_get_ns(&tk->tkr);
+ nsecs_raw = timekeeping_get_ns(&tk->tkr_raw);
+ nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
} while (read_seqcount_retry(&tk_core.seq, seq));
@@ -943,7 +1059,7 @@ static int change_clocksource(void *data)
*/
if (try_module_get(new->owner)) {
if (!new->enable || new->enable(new) == 0) {
- old = tk->tkr.clock;
+ old = tk->tkr_mono.clock;
tk_setup_internals(tk, new);
if (old->disable)
old->disable(old);
@@ -971,11 +1087,11 @@ int timekeeping_notify(struct clocksource *clock)
{
struct timekeeper *tk = &tk_core.timekeeper;
- if (tk->tkr.clock == clock)
+ if (tk->tkr_mono.clock == clock)
return 0;
stop_machine(change_clocksource, clock, NULL);
tick_clock_notify();
- return tk->tkr.clock == clock ? 0 : -1;
+ return tk->tkr_mono.clock == clock ? 0 : -1;
}
/**
@@ -993,7 +1109,7 @@ void getrawmonotonic64(struct timespec64 *ts)
do {
seq = read_seqcount_begin(&tk_core.seq);
- nsecs = timekeeping_get_ns_raw(tk);
+ nsecs = timekeeping_get_ns(&tk->tkr_raw);
ts64 = tk->raw_time;
} while (read_seqcount_retry(&tk_core.seq, seq));
@@ -1016,7 +1132,7 @@ int timekeeping_valid_for_hres(void)
do {
seq = read_seqcount_begin(&tk_core.seq);
- ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
+ ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
} while (read_seqcount_retry(&tk_core.seq, seq));
@@ -1035,7 +1151,7 @@ u64 timekeeping_max_deferment(void)
do {
seq = read_seqcount_begin(&tk_core.seq);
- ret = tk->tkr.clock->max_idle_ns;
+ ret = tk->tkr_mono.clock->max_idle_ns;
} while (read_seqcount_retry(&tk_core.seq, seq));
@@ -1114,7 +1230,6 @@ void __init timekeeping_init(void)
tk_set_xtime(tk, &now);
tk->raw_time.tv_sec = 0;
tk->raw_time.tv_nsec = 0;
- tk->base_raw.tv64 = 0;
if (boot.tv_sec == 0 && boot.tv_nsec == 0)
boot = tk_xtime(tk);
@@ -1200,7 +1315,7 @@ void timekeeping_inject_sleeptime64(struct timespec64 *delta)
void timekeeping_resume(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
- struct clocksource *clock = tk->tkr.clock;
+ struct clocksource *clock = tk->tkr_mono.clock;
unsigned long flags;
struct timespec64 ts_new, ts_delta;
struct timespec tmp;
@@ -1228,16 +1343,16 @@ void timekeeping_resume(void)
* The less preferred source will only be tried if there is no better
* usable source. The rtc part is handled separately in rtc core code.
*/
- cycle_now = tk->tkr.read(clock);
+ cycle_now = tk->tkr_mono.read(clock);
if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
- cycle_now > tk->tkr.cycle_last) {
+ cycle_now > tk->tkr_mono.cycle_last) {
u64 num, max = ULLONG_MAX;
u32 mult = clock->mult;
u32 shift = clock->shift;
s64 nsec = 0;
- cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
- tk->tkr.mask);
+ cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
+ tk->tkr_mono.mask);
/*
* "cycle_delta * mutl" may cause 64 bits overflow, if the
@@ -1263,7 +1378,9 @@ void timekeeping_resume(void)
__timekeeping_inject_sleeptime(tk, &ts_delta);
/* Re-base the last cycle value */
- tk->tkr.cycle_last = cycle_now;
+ tk->tkr_mono.cycle_last = cycle_now;
+ tk->tkr_raw.cycle_last = cycle_now;
+
tk->ntp_error = 0;
timekeeping_suspended = 0;
timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
@@ -1416,15 +1533,15 @@ static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
*
* XXX - TODO: Doc ntp_error calculation.
*/
- if ((mult_adj > 0) && (tk->tkr.mult + mult_adj < mult_adj)) {
+ if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
/* NTP adjustment caused clocksource mult overflow */
WARN_ON_ONCE(1);
return;
}
- tk->tkr.mult += mult_adj;
+ tk->tkr_mono.mult += mult_adj;
tk->xtime_interval += interval;
- tk->tkr.xtime_nsec -= offset;
+ tk->tkr_mono.xtime_nsec -= offset;
tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
}
@@ -1486,13 +1603,13 @@ static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
tk->ntp_err_mult = 0;
}
- if (unlikely(tk->tkr.clock->maxadj &&
- (abs(tk->tkr.mult - tk->tkr.clock->mult)
- > tk->tkr.clock->maxadj))) {
+ if (unlikely(tk->tkr_mono.clock->maxadj &&
+ (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
+ > tk->tkr_mono.clock->maxadj))) {
printk_once(KERN_WARNING
"Adjusting %s more than 11%% (%ld vs %ld)\n",
- tk->tkr.clock->name, (long)tk->tkr.mult,
- (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
+ tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
+ (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
}
/*
@@ -1509,9 +1626,9 @@ static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
* We'll correct this error next time through this function, when
* xtime_nsec is not as small.
*/
- if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
- s64 neg = -(s64)tk->tkr.xtime_nsec;
- tk->tkr.xtime_nsec = 0;
+ if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
+ s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
+ tk->tkr_mono.xtime_nsec = 0;
tk->ntp_error += neg << tk->ntp_error_shift;
}
}
@@ -1526,13 +1643,13 @@ static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
*/
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
{
- u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
+ u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
unsigned int clock_set = 0;
- while (tk->tkr.xtime_nsec >= nsecps) {
+ while (tk->tkr_mono.xtime_nsec >= nsecps) {
int leap;
- tk->tkr.xtime_nsec -= nsecps;
+ tk->tkr_mono.xtime_nsec -= nsecps;
tk->xtime_sec++;
/* Figure out if its a leap sec and apply if needed */
@@ -1577,9 +1694,10 @@ static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
/* Accumulate one shifted interval */
offset -= interval;
- tk->tkr.cycle_last += interval;
+ tk->tkr_mono.cycle_last += interval;
+ tk->tkr_raw.cycle_last += interval;
- tk->tkr.xtime_nsec += tk->xtime_interval << shift;
+ tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
*clock_set |= accumulate_nsecs_to_secs(tk);
/* Accumulate raw time */
@@ -1622,14 +1740,17 @@ void update_wall_time(void)
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
offset = real_tk->cycle_interval;
#else
- offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
- tk->tkr.cycle_last, tk->tkr.mask);
+ offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
+ tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
#endif
/* Check if there's really nothing to do */
if (offset < real_tk->cycle_interval)
goto out;
+ /* Do some additional sanity checking */
+ timekeeping_check_update(real_tk, offset);
+
/*
* With NO_HZ we may have to accumulate many cycle_intervals
* (think "ticks") worth of time at once. To do this efficiently,
@@ -1784,8 +1905,8 @@ ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
do {
seq = read_seqcount_begin(&tk_core.seq);
- base = tk->tkr.base_mono;
- nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
+ base = tk->tkr_mono.base;
+ nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
*offs_real = tk->offs_real;
*offs_boot = tk->offs_boot;
@@ -1816,8 +1937,8 @@ ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
do {
seq = read_seqcount_begin(&tk_core.seq);
- base = tk->tkr.base_mono;
- nsecs = timekeeping_get_ns(&tk->tkr);
+ base = tk->tkr_mono.base;
+ nsecs = timekeeping_get_ns(&tk->tkr_mono);
*offs_real = tk->offs_real;
*offs_boot = tk->offs_boot;
diff --git a/kernel/time/timer_list.c b/kernel/time/timer_list.c
index 61ed862cdd37..2cfd19485824 100644
--- a/kernel/time/timer_list.c
+++ b/kernel/time/timer_list.c
@@ -228,9 +228,35 @@ print_tickdevice(struct seq_file *m, struct tick_device *td, int cpu)
print_name_offset(m, dev->set_next_event);
SEQ_printf(m, "\n");
- SEQ_printf(m, " set_mode: ");
- print_name_offset(m, dev->set_mode);
- SEQ_printf(m, "\n");
+ if (dev->set_mode) {
+ SEQ_printf(m, " set_mode: ");
+ print_name_offset(m, dev->set_mode);
+ SEQ_printf(m, "\n");
+ } else {
+ if (dev->set_mode_shutdown) {
+ SEQ_printf(m, " shutdown: ");
+ print_name_offset(m, dev->set_mode_shutdown);
+ SEQ_printf(m, "\n");
+ }
+
+ if (dev->set_mode_periodic) {
+ SEQ_printf(m, " periodic: ");
+ print_name_offset(m, dev->set_mode_periodic);
+ SEQ_printf(m, "\n");
+ }
+
+ if (dev->set_mode_oneshot) {
+ SEQ_printf(m, " oneshot: ");
+ print_name_offset(m, dev->set_mode_oneshot);
+ SEQ_printf(m, "\n");
+ }
+
+ if (dev->set_mode_resume) {
+ SEQ_printf(m, " resume: ");
+ print_name_offset(m, dev->set_mode_resume);
+ SEQ_printf(m, "\n");
+ }
+ }
SEQ_printf(m, " event_handler: ");
print_name_offset(m, dev->event_handler);