diff options
Diffstat (limited to 'kernel/futex.c')
-rw-r--r-- | kernel/futex.c | 83 |
1 files changed, 61 insertions, 22 deletions
diff --git a/kernel/futex.c b/kernel/futex.c index 684d7549825a..8a310e240cda 100644 --- a/kernel/futex.c +++ b/kernel/futex.c @@ -725,9 +725,12 @@ static struct futex_pi_state * alloc_pi_state(void) } /* + * Drops a reference to the pi_state object and frees or caches it + * when the last reference is gone. + * * Must be called with the hb lock held. */ -static void free_pi_state(struct futex_pi_state *pi_state) +static void put_pi_state(struct futex_pi_state *pi_state) { if (!pi_state) return; @@ -1706,31 +1709,35 @@ retry_private: * exist yet, look it up one more time to ensure we have a * reference to it. If the lock was taken, ret contains the * vpid of the top waiter task. + * If the lock was not taken, we have pi_state and an initial + * refcount on it. In case of an error we have nothing. */ if (ret > 0) { WARN_ON(pi_state); drop_count++; task_count++; /* - * If we acquired the lock, then the user - * space value of uaddr2 should be vpid. It - * cannot be changed by the top waiter as it - * is blocked on hb2 lock if it tries to do - * so. If something fiddled with it behind our - * back the pi state lookup might unearth - * it. So we rather use the known value than - * rereading and handing potential crap to - * lookup_pi_state. + * If we acquired the lock, then the user space value + * of uaddr2 should be vpid. It cannot be changed by + * the top waiter as it is blocked on hb2 lock if it + * tries to do so. If something fiddled with it behind + * our back the pi state lookup might unearth it. So + * we rather use the known value than rereading and + * handing potential crap to lookup_pi_state. + * + * If that call succeeds then we have pi_state and an + * initial refcount on it. */ ret = lookup_pi_state(ret, hb2, &key2, &pi_state); } switch (ret) { case 0: + /* We hold a reference on the pi state. */ break; + + /* If the above failed, then pi_state is NULL */ case -EFAULT: - free_pi_state(pi_state); - pi_state = NULL; double_unlock_hb(hb1, hb2); hb_waiters_dec(hb2); put_futex_key(&key2); @@ -1746,8 +1753,6 @@ retry_private: * exit to complete. * - The user space value changed. */ - free_pi_state(pi_state); - pi_state = NULL; double_unlock_hb(hb1, hb2); hb_waiters_dec(hb2); put_futex_key(&key2); @@ -1801,30 +1806,58 @@ retry_private: * of requeue_pi if we couldn't acquire the lock atomically. */ if (requeue_pi) { - /* Prepare the waiter to take the rt_mutex. */ + /* + * Prepare the waiter to take the rt_mutex. Take a + * refcount on the pi_state and store the pointer in + * the futex_q object of the waiter. + */ atomic_inc(&pi_state->refcount); this->pi_state = pi_state; ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex, this->rt_waiter, this->task); if (ret == 1) { - /* We got the lock. */ + /* + * We got the lock. We do neither drop the + * refcount on pi_state nor clear + * this->pi_state because the waiter needs the + * pi_state for cleaning up the user space + * value. It will drop the refcount after + * doing so. + */ requeue_pi_wake_futex(this, &key2, hb2); drop_count++; continue; } else if (ret) { - /* -EDEADLK */ + /* + * rt_mutex_start_proxy_lock() detected a + * potential deadlock when we tried to queue + * that waiter. Drop the pi_state reference + * which we took above and remove the pointer + * to the state from the waiters futex_q + * object. + */ this->pi_state = NULL; - free_pi_state(pi_state); - goto out_unlock; + put_pi_state(pi_state); + /* + * We stop queueing more waiters and let user + * space deal with the mess. + */ + break; } } requeue_futex(this, hb1, hb2, &key2); drop_count++; } + /* + * We took an extra initial reference to the pi_state either + * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We + * need to drop it here again. + */ + put_pi_state(pi_state); + out_unlock: - free_pi_state(pi_state); double_unlock_hb(hb1, hb2); wake_up_q(&wake_q); hb_waiters_dec(hb2); @@ -1973,7 +2006,7 @@ static void unqueue_me_pi(struct futex_q *q) __unqueue_futex(q); BUG_ON(!q->pi_state); - free_pi_state(q->pi_state); + put_pi_state(q->pi_state); q->pi_state = NULL; spin_unlock(q->lock_ptr); @@ -2755,6 +2788,11 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, if (q.pi_state && (q.pi_state->owner != current)) { spin_lock(q.lock_ptr); ret = fixup_pi_state_owner(uaddr2, &q, current); + /* + * Drop the reference to the pi state which + * the requeue_pi() code acquired for us. + */ + put_pi_state(q.pi_state); spin_unlock(q.lock_ptr); } } else { @@ -3046,7 +3084,8 @@ long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout, if (op & FUTEX_CLOCK_REALTIME) { flags |= FLAGS_CLOCKRT; - if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI) + if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \ + cmd != FUTEX_WAIT_REQUEUE_PI) return -ENOSYS; } |