summaryrefslogtreecommitdiffstats
path: root/include
diff options
context:
space:
mode:
Diffstat (limited to 'include')
-rw-r--r--include/linux/lru_cache.h4
-rw-r--r--include/linux/vgaarb.h4
-rw-r--r--include/linux/watchdog.h2
-rw-r--r--include/net/sock.h2
4 files changed, 6 insertions, 6 deletions
diff --git a/include/linux/lru_cache.h b/include/linux/lru_cache.h
index 7a71ffad037c..cafc7f99e124 100644
--- a/include/linux/lru_cache.h
+++ b/include/linux/lru_cache.h
@@ -52,8 +52,8 @@ We replicate IO (more or less synchronously) to local and remote disk.
For crash recovery after replication node failure,
we need to resync all regions that have been target of in-flight WRITE IO
- (in use, or "hot", regions), as we don't know wether or not those WRITEs have
- made it to stable storage.
+ (in use, or "hot", regions), as we don't know whether or not those WRITEs
+ have made it to stable storage.
To avoid a "full resync", we need to persistently track these regions.
diff --git a/include/linux/vgaarb.h b/include/linux/vgaarb.h
index 0ee42d9acdc0..2c02f3a8d2ba 100644
--- a/include/linux/vgaarb.h
+++ b/include/linux/vgaarb.h
@@ -78,7 +78,7 @@ extern void vga_set_legacy_decoding(struct pci_dev *pdev,
* This function acquires VGA resources for the given
* card and mark those resources locked. If the resource requested
* are "normal" (and not legacy) resources, the arbiter will first check
- * wether the card is doing legacy decoding for that type of resource. If
+ * whether the card is doing legacy decoding for that type of resource. If
* yes, the lock is "converted" into a legacy resource lock.
* The arbiter will first look for all VGA cards that might conflict
* and disable their IOs and/or Memory access, including VGA forwarding
@@ -89,7 +89,7 @@ extern void vga_set_legacy_decoding(struct pci_dev *pdev,
* This function will block if some conflicting card is already locking
* one of the required resources (or any resource on a different bus
* segment, since P2P bridges don't differenciate VGA memory and IO
- * afaik). You can indicate wether this blocking should be interruptible
+ * afaik). You can indicate whether this blocking should be interruptible
* by a signal (for userland interface) or not.
* Must not be called at interrupt time or in atomic context.
* If the card already owns the resources, the function succeeds.
diff --git a/include/linux/watchdog.h b/include/linux/watchdog.h
index b7f45d48b2de..87490ac4bd87 100644
--- a/include/linux/watchdog.h
+++ b/include/linux/watchdog.h
@@ -105,7 +105,7 @@ struct watchdog_device {
#define WATCHDOG_NOWAYOUT_INIT_STATUS 0
#endif
-/* Use the following function to check wether or not the watchdog is active */
+/* Use the following function to check whether or not the watchdog is active */
static inline bool watchdog_active(struct watchdog_device *wdd)
{
return test_bit(WDOG_ACTIVE, &wdd->status);
diff --git a/include/net/sock.h b/include/net/sock.h
index c945fba4f543..a95e0756e56e 100644
--- a/include/net/sock.h
+++ b/include/net/sock.h
@@ -213,7 +213,7 @@ struct cg_proto;
* @sk_sndbuf: size of send buffer in bytes
* @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
* %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
- * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
+ * @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
* @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
* @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
* @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)