summaryrefslogtreecommitdiffstats
path: root/fs/ext4/fsync.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/ext4/fsync.c')
-rw-r--r--fs/ext4/fsync.c88
1 files changed, 88 insertions, 0 deletions
diff --git a/fs/ext4/fsync.c b/fs/ext4/fsync.c
new file mode 100644
index 000000000000..dd1fd3c0fc05
--- /dev/null
+++ b/fs/ext4/fsync.c
@@ -0,0 +1,88 @@
+/*
+ * linux/fs/ext3/fsync.c
+ *
+ * Copyright (C) 1993 Stephen Tweedie (sct@redhat.com)
+ * from
+ * Copyright (C) 1992 Remy Card (card@masi.ibp.fr)
+ * Laboratoire MASI - Institut Blaise Pascal
+ * Universite Pierre et Marie Curie (Paris VI)
+ * from
+ * linux/fs/minix/truncate.c Copyright (C) 1991, 1992 Linus Torvalds
+ *
+ * ext3fs fsync primitive
+ *
+ * Big-endian to little-endian byte-swapping/bitmaps by
+ * David S. Miller (davem@caip.rutgers.edu), 1995
+ *
+ * Removed unnecessary code duplication for little endian machines
+ * and excessive __inline__s.
+ * Andi Kleen, 1997
+ *
+ * Major simplications and cleanup - we only need to do the metadata, because
+ * we can depend on generic_block_fdatasync() to sync the data blocks.
+ */
+
+#include <linux/time.h>
+#include <linux/fs.h>
+#include <linux/sched.h>
+#include <linux/writeback.h>
+#include <linux/jbd.h>
+#include <linux/ext3_fs.h>
+#include <linux/ext3_jbd.h>
+
+/*
+ * akpm: A new design for ext3_sync_file().
+ *
+ * This is only called from sys_fsync(), sys_fdatasync() and sys_msync().
+ * There cannot be a transaction open by this task.
+ * Another task could have dirtied this inode. Its data can be in any
+ * state in the journalling system.
+ *
+ * What we do is just kick off a commit and wait on it. This will snapshot the
+ * inode to disk.
+ */
+
+int ext3_sync_file(struct file * file, struct dentry *dentry, int datasync)
+{
+ struct inode *inode = dentry->d_inode;
+ int ret = 0;
+
+ J_ASSERT(ext3_journal_current_handle() == 0);
+
+ /*
+ * data=writeback:
+ * The caller's filemap_fdatawrite()/wait will sync the data.
+ * sync_inode() will sync the metadata
+ *
+ * data=ordered:
+ * The caller's filemap_fdatawrite() will write the data and
+ * sync_inode() will write the inode if it is dirty. Then the caller's
+ * filemap_fdatawait() will wait on the pages.
+ *
+ * data=journal:
+ * filemap_fdatawrite won't do anything (the buffers are clean).
+ * ext3_force_commit will write the file data into the journal and
+ * will wait on that.
+ * filemap_fdatawait() will encounter a ton of newly-dirtied pages
+ * (they were dirtied by commit). But that's OK - the blocks are
+ * safe in-journal, which is all fsync() needs to ensure.
+ */
+ if (ext3_should_journal_data(inode)) {
+ ret = ext3_force_commit(inode->i_sb);
+ goto out;
+ }
+
+ /*
+ * The VFS has written the file data. If the inode is unaltered
+ * then we need not start a commit.
+ */
+ if (inode->i_state & (I_DIRTY_SYNC|I_DIRTY_DATASYNC)) {
+ struct writeback_control wbc = {
+ .sync_mode = WB_SYNC_ALL,
+ .nr_to_write = 0, /* sys_fsync did this */
+ };
+ ret = sync_inode(inode, &wbc);
+ }
+out:
+ return ret;
+}