summaryrefslogtreecommitdiffstats
path: root/drivers/thermal/qcom/tsens.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/thermal/qcom/tsens.c')
-rw-r--r--drivers/thermal/qcom/tsens.c838
1 files changed, 838 insertions, 0 deletions
diff --git a/drivers/thermal/qcom/tsens.c b/drivers/thermal/qcom/tsens.c
index 2f77d235cf73..8d3e94d2a9ed 100644
--- a/drivers/thermal/qcom/tsens.c
+++ b/drivers/thermal/qcom/tsens.c
@@ -1,19 +1,857 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2015, The Linux Foundation. All rights reserved.
+ * Copyright (c) 2019, 2020, Linaro Ltd.
*/
#include <linux/debugfs.h>
#include <linux/err.h>
+#include <linux/io.h>
#include <linux/module.h>
+#include <linux/nvmem-consumer.h>
#include <linux/of.h>
+#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
+#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/thermal.h>
#include "tsens.h"
+/**
+ * struct tsens_irq_data - IRQ status and temperature violations
+ * @up_viol: upper threshold violated
+ * @up_thresh: upper threshold temperature value
+ * @up_irq_mask: mask register for upper threshold irqs
+ * @up_irq_clear: clear register for uppper threshold irqs
+ * @low_viol: lower threshold violated
+ * @low_thresh: lower threshold temperature value
+ * @low_irq_mask: mask register for lower threshold irqs
+ * @low_irq_clear: clear register for lower threshold irqs
+ * @crit_viol: critical threshold violated
+ * @crit_thresh: critical threshold temperature value
+ * @crit_irq_mask: mask register for critical threshold irqs
+ * @crit_irq_clear: clear register for critical threshold irqs
+ *
+ * Structure containing data about temperature threshold settings and
+ * irq status if they were violated.
+ */
+struct tsens_irq_data {
+ u32 up_viol;
+ int up_thresh;
+ u32 up_irq_mask;
+ u32 up_irq_clear;
+ u32 low_viol;
+ int low_thresh;
+ u32 low_irq_mask;
+ u32 low_irq_clear;
+ u32 crit_viol;
+ u32 crit_thresh;
+ u32 crit_irq_mask;
+ u32 crit_irq_clear;
+};
+
+char *qfprom_read(struct device *dev, const char *cname)
+{
+ struct nvmem_cell *cell;
+ ssize_t data;
+ char *ret;
+
+ cell = nvmem_cell_get(dev, cname);
+ if (IS_ERR(cell))
+ return ERR_CAST(cell);
+
+ ret = nvmem_cell_read(cell, &data);
+ nvmem_cell_put(cell);
+
+ return ret;
+}
+
+/*
+ * Use this function on devices where slope and offset calculations
+ * depend on calibration data read from qfprom. On others the slope
+ * and offset values are derived from tz->tzp->slope and tz->tzp->offset
+ * resp.
+ */
+void compute_intercept_slope(struct tsens_priv *priv, u32 *p1,
+ u32 *p2, u32 mode)
+{
+ int i;
+ int num, den;
+
+ for (i = 0; i < priv->num_sensors; i++) {
+ dev_dbg(priv->dev,
+ "%s: sensor%d - data_point1:%#x data_point2:%#x\n",
+ __func__, i, p1[i], p2[i]);
+
+ priv->sensor[i].slope = SLOPE_DEFAULT;
+ if (mode == TWO_PT_CALIB) {
+ /*
+ * slope (m) = adc_code2 - adc_code1 (y2 - y1)/
+ * temp_120_degc - temp_30_degc (x2 - x1)
+ */
+ num = p2[i] - p1[i];
+ num *= SLOPE_FACTOR;
+ den = CAL_DEGC_PT2 - CAL_DEGC_PT1;
+ priv->sensor[i].slope = num / den;
+ }
+
+ priv->sensor[i].offset = (p1[i] * SLOPE_FACTOR) -
+ (CAL_DEGC_PT1 *
+ priv->sensor[i].slope);
+ dev_dbg(priv->dev, "%s: offset:%d\n", __func__,
+ priv->sensor[i].offset);
+ }
+}
+
+static inline u32 degc_to_code(int degc, const struct tsens_sensor *s)
+{
+ u64 code = div_u64(((u64)degc * s->slope + s->offset), SLOPE_FACTOR);
+
+ pr_debug("%s: raw_code: 0x%llx, degc:%d\n", __func__, code, degc);
+ return clamp_val(code, THRESHOLD_MIN_ADC_CODE, THRESHOLD_MAX_ADC_CODE);
+}
+
+static inline int code_to_degc(u32 adc_code, const struct tsens_sensor *s)
+{
+ int degc, num, den;
+
+ num = (adc_code * SLOPE_FACTOR) - s->offset;
+ den = s->slope;
+
+ if (num > 0)
+ degc = num + (den / 2);
+ else if (num < 0)
+ degc = num - (den / 2);
+ else
+ degc = num;
+
+ degc /= den;
+
+ return degc;
+}
+
+/**
+ * tsens_hw_to_mC - Return sign-extended temperature in mCelsius.
+ * @s: Pointer to sensor struct
+ * @field: Index into regmap_field array pointing to temperature data
+ *
+ * This function handles temperature returned in ADC code or deciCelsius
+ * depending on IP version.
+ *
+ * Return: Temperature in milliCelsius on success, a negative errno will
+ * be returned in error cases
+ */
+static int tsens_hw_to_mC(const struct tsens_sensor *s, int field)
+{
+ struct tsens_priv *priv = s->priv;
+ u32 resolution;
+ u32 temp = 0;
+ int ret;
+
+ resolution = priv->fields[LAST_TEMP_0].msb -
+ priv->fields[LAST_TEMP_0].lsb;
+
+ ret = regmap_field_read(priv->rf[field], &temp);
+ if (ret)
+ return ret;
+
+ /* Convert temperature from ADC code to milliCelsius */
+ if (priv->feat->adc)
+ return code_to_degc(temp, s) * 1000;
+
+ /* deciCelsius -> milliCelsius along with sign extension */
+ return sign_extend32(temp, resolution) * 100;
+}
+
+/**
+ * tsens_mC_to_hw - Convert temperature to hardware register value
+ * @s: Pointer to sensor struct
+ * @temp: temperature in milliCelsius to be programmed to hardware
+ *
+ * This function outputs the value to be written to hardware in ADC code
+ * or deciCelsius depending on IP version.
+ *
+ * Return: ADC code or temperature in deciCelsius.
+ */
+static int tsens_mC_to_hw(const struct tsens_sensor *s, int temp)
+{
+ struct tsens_priv *priv = s->priv;
+
+ /* milliC to adc code */
+ if (priv->feat->adc)
+ return degc_to_code(temp / 1000, s);
+
+ /* milliC to deciC */
+ return temp / 100;
+}
+
+static inline enum tsens_ver tsens_version(struct tsens_priv *priv)
+{
+ return priv->feat->ver_major;
+}
+
+static void tsens_set_interrupt_v1(struct tsens_priv *priv, u32 hw_id,
+ enum tsens_irq_type irq_type, bool enable)
+{
+ u32 index = 0;
+
+ switch (irq_type) {
+ case UPPER:
+ index = UP_INT_CLEAR_0 + hw_id;
+ break;
+ case LOWER:
+ index = LOW_INT_CLEAR_0 + hw_id;
+ break;
+ case CRITICAL:
+ /* No critical interrupts before v2 */
+ return;
+ }
+ regmap_field_write(priv->rf[index], enable ? 0 : 1);
+}
+
+static void tsens_set_interrupt_v2(struct tsens_priv *priv, u32 hw_id,
+ enum tsens_irq_type irq_type, bool enable)
+{
+ u32 index_mask = 0, index_clear = 0;
+
+ /*
+ * To enable the interrupt flag for a sensor:
+ * - clear the mask bit
+ * To disable the interrupt flag for a sensor:
+ * - Mask further interrupts for this sensor
+ * - Write 1 followed by 0 to clear the interrupt
+ */
+ switch (irq_type) {
+ case UPPER:
+ index_mask = UP_INT_MASK_0 + hw_id;
+ index_clear = UP_INT_CLEAR_0 + hw_id;
+ break;
+ case LOWER:
+ index_mask = LOW_INT_MASK_0 + hw_id;
+ index_clear = LOW_INT_CLEAR_0 + hw_id;
+ break;
+ case CRITICAL:
+ index_mask = CRIT_INT_MASK_0 + hw_id;
+ index_clear = CRIT_INT_CLEAR_0 + hw_id;
+ break;
+ }
+
+ if (enable) {
+ regmap_field_write(priv->rf[index_mask], 0);
+ } else {
+ regmap_field_write(priv->rf[index_mask], 1);
+ regmap_field_write(priv->rf[index_clear], 1);
+ regmap_field_write(priv->rf[index_clear], 0);
+ }
+}
+
+/**
+ * tsens_set_interrupt - Set state of an interrupt
+ * @priv: Pointer to tsens controller private data
+ * @hw_id: Hardware ID aka. sensor number
+ * @irq_type: irq_type from enum tsens_irq_type
+ * @enable: false = disable, true = enable
+ *
+ * Call IP-specific function to set state of an interrupt
+ *
+ * Return: void
+ */
+static void tsens_set_interrupt(struct tsens_priv *priv, u32 hw_id,
+ enum tsens_irq_type irq_type, bool enable)
+{
+ dev_dbg(priv->dev, "[%u] %s: %s -> %s\n", hw_id, __func__,
+ irq_type ? ((irq_type == 1) ? "UP" : "CRITICAL") : "LOW",
+ enable ? "en" : "dis");
+ if (tsens_version(priv) > VER_1_X)
+ tsens_set_interrupt_v2(priv, hw_id, irq_type, enable);
+ else
+ tsens_set_interrupt_v1(priv, hw_id, irq_type, enable);
+}
+
+/**
+ * tsens_threshold_violated - Check if a sensor temperature violated a preset threshold
+ * @priv: Pointer to tsens controller private data
+ * @hw_id: Hardware ID aka. sensor number
+ * @d: Pointer to irq state data
+ *
+ * Return: 0 if threshold was not violated, 1 if it was violated and negative
+ * errno in case of errors
+ */
+static int tsens_threshold_violated(struct tsens_priv *priv, u32 hw_id,
+ struct tsens_irq_data *d)
+{
+ int ret;
+
+ ret = regmap_field_read(priv->rf[UPPER_STATUS_0 + hw_id], &d->up_viol);
+ if (ret)
+ return ret;
+ ret = regmap_field_read(priv->rf[LOWER_STATUS_0 + hw_id], &d->low_viol);
+ if (ret)
+ return ret;
+
+ if (priv->feat->crit_int) {
+ ret = regmap_field_read(priv->rf[CRITICAL_STATUS_0 + hw_id],
+ &d->crit_viol);
+ if (ret)
+ return ret;
+ }
+
+ if (d->up_viol || d->low_viol || d->crit_viol)
+ return 1;
+
+ return 0;
+}
+
+static int tsens_read_irq_state(struct tsens_priv *priv, u32 hw_id,
+ const struct tsens_sensor *s,
+ struct tsens_irq_data *d)
+{
+ int ret;
+
+ ret = regmap_field_read(priv->rf[UP_INT_CLEAR_0 + hw_id], &d->up_irq_clear);
+ if (ret)
+ return ret;
+ ret = regmap_field_read(priv->rf[LOW_INT_CLEAR_0 + hw_id], &d->low_irq_clear);
+ if (ret)
+ return ret;
+ if (tsens_version(priv) > VER_1_X) {
+ ret = regmap_field_read(priv->rf[UP_INT_MASK_0 + hw_id], &d->up_irq_mask);
+ if (ret)
+ return ret;
+ ret = regmap_field_read(priv->rf[LOW_INT_MASK_0 + hw_id], &d->low_irq_mask);
+ if (ret)
+ return ret;
+ ret = regmap_field_read(priv->rf[CRIT_INT_CLEAR_0 + hw_id],
+ &d->crit_irq_clear);
+ if (ret)
+ return ret;
+ ret = regmap_field_read(priv->rf[CRIT_INT_MASK_0 + hw_id],
+ &d->crit_irq_mask);
+ if (ret)
+ return ret;
+
+ d->crit_thresh = tsens_hw_to_mC(s, CRIT_THRESH_0 + hw_id);
+ } else {
+ /* No mask register on older TSENS */
+ d->up_irq_mask = 0;
+ d->low_irq_mask = 0;
+ d->crit_irq_clear = 0;
+ d->crit_irq_mask = 0;
+ d->crit_thresh = 0;
+ }
+
+ d->up_thresh = tsens_hw_to_mC(s, UP_THRESH_0 + hw_id);
+ d->low_thresh = tsens_hw_to_mC(s, LOW_THRESH_0 + hw_id);
+
+ dev_dbg(priv->dev, "[%u] %s%s: status(%u|%u|%u) | clr(%u|%u|%u) | mask(%u|%u|%u)\n",
+ hw_id, __func__,
+ (d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "",
+ d->low_viol, d->up_viol, d->crit_viol,
+ d->low_irq_clear, d->up_irq_clear, d->crit_irq_clear,
+ d->low_irq_mask, d->up_irq_mask, d->crit_irq_mask);
+ dev_dbg(priv->dev, "[%u] %s%s: thresh: (%d:%d:%d)\n", hw_id, __func__,
+ (d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "",
+ d->low_thresh, d->up_thresh, d->crit_thresh);
+
+ return 0;
+}
+
+static inline u32 masked_irq(u32 hw_id, u32 mask, enum tsens_ver ver)
+{
+ if (ver > VER_1_X)
+ return mask & (1 << hw_id);
+
+ /* v1, v0.1 don't have a irq mask register */
+ return 0;
+}
+
+/**
+ * tsens_critical_irq_thread() - Threaded handler for critical interrupts
+ * @irq: irq number
+ * @data: tsens controller private data
+ *
+ * Check FSM watchdog bark status and clear if needed.
+ * Check all sensors to find ones that violated their critical threshold limits.
+ * Clear and then re-enable the interrupt.
+ *
+ * The level-triggered interrupt might deassert if the temperature returned to
+ * within the threshold limits by the time the handler got scheduled. We
+ * consider the irq to have been handled in that case.
+ *
+ * Return: IRQ_HANDLED
+ */
+irqreturn_t tsens_critical_irq_thread(int irq, void *data)
+{
+ struct tsens_priv *priv = data;
+ struct tsens_irq_data d;
+ int temp, ret, i;
+ u32 wdog_status, wdog_count;
+
+ if (priv->feat->has_watchdog) {
+ ret = regmap_field_read(priv->rf[WDOG_BARK_STATUS],
+ &wdog_status);
+ if (ret)
+ return ret;
+
+ if (wdog_status) {
+ /* Clear WDOG interrupt */
+ regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 1);
+ regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 0);
+ ret = regmap_field_read(priv->rf[WDOG_BARK_COUNT],
+ &wdog_count);
+ if (ret)
+ return ret;
+ if (wdog_count)
+ dev_dbg(priv->dev, "%s: watchdog count: %d\n",
+ __func__, wdog_count);
+
+ /* Fall through to handle critical interrupts if any */
+ }
+ }
+
+ for (i = 0; i < priv->num_sensors; i++) {
+ const struct tsens_sensor *s = &priv->sensor[i];
+ u32 hw_id = s->hw_id;
+
+ if (IS_ERR(s->tzd))
+ continue;
+ if (!tsens_threshold_violated(priv, hw_id, &d))
+ continue;
+ ret = get_temp_tsens_valid(s, &temp);
+ if (ret) {
+ dev_err(priv->dev, "[%u] %s: error reading sensor\n",
+ hw_id, __func__);
+ continue;
+ }
+
+ tsens_read_irq_state(priv, hw_id, s, &d);
+ if (d.crit_viol &&
+ !masked_irq(hw_id, d.crit_irq_mask, tsens_version(priv))) {
+ /* Mask critical interrupts, unused on Linux */
+ tsens_set_interrupt(priv, hw_id, CRITICAL, false);
+ }
+ }
+
+ return IRQ_HANDLED;
+}
+
+/**
+ * tsens_irq_thread - Threaded interrupt handler for uplow interrupts
+ * @irq: irq number
+ * @data: tsens controller private data
+ *
+ * Check all sensors to find ones that violated their threshold limits. If the
+ * temperature is still outside the limits, call thermal_zone_device_update() to
+ * update the thresholds, else re-enable the interrupts.
+ *
+ * The level-triggered interrupt might deassert if the temperature returned to
+ * within the threshold limits by the time the handler got scheduled. We
+ * consider the irq to have been handled in that case.
+ *
+ * Return: IRQ_HANDLED
+ */
+irqreturn_t tsens_irq_thread(int irq, void *data)
+{
+ struct tsens_priv *priv = data;
+ struct tsens_irq_data d;
+ bool enable = true, disable = false;
+ unsigned long flags;
+ int temp, ret, i;
+
+ for (i = 0; i < priv->num_sensors; i++) {
+ bool trigger = false;
+ const struct tsens_sensor *s = &priv->sensor[i];
+ u32 hw_id = s->hw_id;
+
+ if (IS_ERR(s->tzd))
+ continue;
+ if (!tsens_threshold_violated(priv, hw_id, &d))
+ continue;
+ ret = get_temp_tsens_valid(s, &temp);
+ if (ret) {
+ dev_err(priv->dev, "[%u] %s: error reading sensor\n",
+ hw_id, __func__);
+ continue;
+ }
+
+ spin_lock_irqsave(&priv->ul_lock, flags);
+
+ tsens_read_irq_state(priv, hw_id, s, &d);
+
+ if (d.up_viol &&
+ !masked_irq(hw_id, d.up_irq_mask, tsens_version(priv))) {
+ tsens_set_interrupt(priv, hw_id, UPPER, disable);
+ if (d.up_thresh > temp) {
+ dev_dbg(priv->dev, "[%u] %s: re-arm upper\n",
+ hw_id, __func__);
+ tsens_set_interrupt(priv, hw_id, UPPER, enable);
+ } else {
+ trigger = true;
+ /* Keep irq masked */
+ }
+ } else if (d.low_viol &&
+ !masked_irq(hw_id, d.low_irq_mask, tsens_version(priv))) {
+ tsens_set_interrupt(priv, hw_id, LOWER, disable);
+ if (d.low_thresh < temp) {
+ dev_dbg(priv->dev, "[%u] %s: re-arm low\n",
+ hw_id, __func__);
+ tsens_set_interrupt(priv, hw_id, LOWER, enable);
+ } else {
+ trigger = true;
+ /* Keep irq masked */
+ }
+ }
+
+ spin_unlock_irqrestore(&priv->ul_lock, flags);
+
+ if (trigger) {
+ dev_dbg(priv->dev, "[%u] %s: TZ update trigger (%d mC)\n",
+ hw_id, __func__, temp);
+ thermal_zone_device_update(s->tzd,
+ THERMAL_EVENT_UNSPECIFIED);
+ } else {
+ dev_dbg(priv->dev, "[%u] %s: no violation: %d\n",
+ hw_id, __func__, temp);
+ }
+ }
+
+ return IRQ_HANDLED;
+}
+
+int tsens_set_trips(void *_sensor, int low, int high)
+{
+ struct tsens_sensor *s = _sensor;
+ struct tsens_priv *priv = s->priv;
+ struct device *dev = priv->dev;
+ struct tsens_irq_data d;
+ unsigned long flags;
+ int high_val, low_val, cl_high, cl_low;
+ u32 hw_id = s->hw_id;
+
+ dev_dbg(dev, "[%u] %s: proposed thresholds: (%d:%d)\n",
+ hw_id, __func__, low, high);
+
+ cl_high = clamp_val(high, -40000, 120000);
+ cl_low = clamp_val(low, -40000, 120000);
+
+ high_val = tsens_mC_to_hw(s, cl_high);
+ low_val = tsens_mC_to_hw(s, cl_low);
+
+ spin_lock_irqsave(&priv->ul_lock, flags);
+
+ tsens_read_irq_state(priv, hw_id, s, &d);
+
+ /* Write the new thresholds and clear the status */
+ regmap_field_write(priv->rf[LOW_THRESH_0 + hw_id], low_val);
+ regmap_field_write(priv->rf[UP_THRESH_0 + hw_id], high_val);
+ tsens_set_interrupt(priv, hw_id, LOWER, true);
+ tsens_set_interrupt(priv, hw_id, UPPER, true);
+
+ spin_unlock_irqrestore(&priv->ul_lock, flags);
+
+ dev_dbg(dev, "[%u] %s: (%d:%d)->(%d:%d)\n",
+ hw_id, __func__, d.low_thresh, d.up_thresh, cl_low, cl_high);
+
+ return 0;
+}
+
+int tsens_enable_irq(struct tsens_priv *priv)
+{
+ int ret;
+ int val = tsens_version(priv) > VER_1_X ? 7 : 1;
+
+ ret = regmap_field_write(priv->rf[INT_EN], val);
+ if (ret < 0)
+ dev_err(priv->dev, "%s: failed to enable interrupts\n",
+ __func__);
+
+ return ret;
+}
+
+void tsens_disable_irq(struct tsens_priv *priv)
+{
+ regmap_field_write(priv->rf[INT_EN], 0);
+}
+
+int get_temp_tsens_valid(const struct tsens_sensor *s, int *temp)
+{
+ struct tsens_priv *priv = s->priv;
+ int hw_id = s->hw_id;
+ u32 temp_idx = LAST_TEMP_0 + hw_id;
+ u32 valid_idx = VALID_0 + hw_id;
+ u32 valid;
+ int ret;
+
+ ret = regmap_field_read(priv->rf[valid_idx], &valid);
+ if (ret)
+ return ret;
+ while (!valid) {
+ /* Valid bit is 0 for 6 AHB clock cycles.
+ * At 19.2MHz, 1 AHB clock is ~60ns.
+ * We should enter this loop very, very rarely.
+ */
+ ndelay(400);
+ ret = regmap_field_read(priv->rf[valid_idx], &valid);
+ if (ret)
+ return ret;
+ }
+
+ /* Valid bit is set, OK to read the temperature */
+ *temp = tsens_hw_to_mC(s, temp_idx);
+
+ return 0;
+}
+
+int get_temp_common(const struct tsens_sensor *s, int *temp)
+{
+ struct tsens_priv *priv = s->priv;
+ int hw_id = s->hw_id;
+ int last_temp = 0, ret;
+
+ ret = regmap_field_read(priv->rf[LAST_TEMP_0 + hw_id], &last_temp);
+ if (ret)
+ return ret;
+
+ *temp = code_to_degc(last_temp, s) * 1000;
+
+ return 0;
+}
+
+#ifdef CONFIG_DEBUG_FS
+static int dbg_sensors_show(struct seq_file *s, void *data)
+{
+ struct platform_device *pdev = s->private;
+ struct tsens_priv *priv = platform_get_drvdata(pdev);
+ int i;
+
+ seq_printf(s, "max: %2d\nnum: %2d\n\n",
+ priv->feat->max_sensors, priv->num_sensors);
+
+ seq_puts(s, " id slope offset\n--------------------------\n");
+ for (i = 0; i < priv->num_sensors; i++) {
+ seq_printf(s, "%8d %8d %8d\n", priv->sensor[i].hw_id,
+ priv->sensor[i].slope, priv->sensor[i].offset);
+ }
+
+ return 0;
+}
+
+static int dbg_version_show(struct seq_file *s, void *data)
+{
+ struct platform_device *pdev = s->private;
+ struct tsens_priv *priv = platform_get_drvdata(pdev);
+ u32 maj_ver, min_ver, step_ver;
+ int ret;
+
+ if (tsens_version(priv) > VER_0_1) {
+ ret = regmap_field_read(priv->rf[VER_MAJOR], &maj_ver);
+ if (ret)
+ return ret;
+ ret = regmap_field_read(priv->rf[VER_MINOR], &min_ver);
+ if (ret)
+ return ret;
+ ret = regmap_field_read(priv->rf[VER_STEP], &step_ver);
+ if (ret)
+ return ret;
+ seq_printf(s, "%d.%d.%d\n", maj_ver, min_ver, step_ver);
+ } else {
+ seq_puts(s, "0.1.0\n");
+ }
+
+ return 0;
+}
+
+DEFINE_SHOW_ATTRIBUTE(dbg_version);
+DEFINE_SHOW_ATTRIBUTE(dbg_sensors);
+
+static void tsens_debug_init(struct platform_device *pdev)
+{
+ struct tsens_priv *priv = platform_get_drvdata(pdev);
+ struct dentry *root, *file;
+
+ root = debugfs_lookup("tsens", NULL);
+ if (!root)
+ priv->debug_root = debugfs_create_dir("tsens", NULL);
+ else
+ priv->debug_root = root;
+
+ file = debugfs_lookup("version", priv->debug_root);
+ if (!file)
+ debugfs_create_file("version", 0444, priv->debug_root,
+ pdev, &dbg_version_fops);
+
+ /* A directory for each instance of the TSENS IP */
+ priv->debug = debugfs_create_dir(dev_name(&pdev->dev), priv->debug_root);
+ debugfs_create_file("sensors", 0444, priv->debug, pdev, &dbg_sensors_fops);
+}
+#else
+static inline void tsens_debug_init(struct platform_device *pdev) {}
+#endif
+
+static const struct regmap_config tsens_config = {
+ .name = "tm",
+ .reg_bits = 32,
+ .val_bits = 32,
+ .reg_stride = 4,
+};
+
+static const struct regmap_config tsens_srot_config = {
+ .name = "srot",
+ .reg_bits = 32,
+ .val_bits = 32,
+ .reg_stride = 4,
+};
+
+int __init init_common(struct tsens_priv *priv)
+{
+ void __iomem *tm_base, *srot_base;
+ struct device *dev = priv->dev;
+ u32 ver_minor;
+ struct resource *res;
+ u32 enabled;
+ int ret, i, j;
+ struct platform_device *op = of_find_device_by_node(priv->dev->of_node);
+
+ if (!op)
+ return -EINVAL;
+
+ if (op->num_resources > 1) {
+ /* DT with separate SROT and TM address space */
+ priv->tm_offset = 0;
+ res = platform_get_resource(op, IORESOURCE_MEM, 1);
+ srot_base = devm_ioremap_resource(dev, res);
+ if (IS_ERR(srot_base)) {
+ ret = PTR_ERR(srot_base);
+ goto err_put_device;
+ }
+
+ priv->srot_map = devm_regmap_init_mmio(dev, srot_base,
+ &tsens_srot_config);
+ if (IS_ERR(priv->srot_map)) {
+ ret = PTR_ERR(priv->srot_map);
+ goto err_put_device;
+ }
+ } else {
+ /* old DTs where SROT and TM were in a contiguous 2K block */
+ priv->tm_offset = 0x1000;
+ }
+
+ res = platform_get_resource(op, IORESOURCE_MEM, 0);
+ tm_base = devm_ioremap_resource(dev, res);
+ if (IS_ERR(tm_base)) {
+ ret = PTR_ERR(tm_base);
+ goto err_put_device;
+ }
+
+ priv->tm_map = devm_regmap_init_mmio(dev, tm_base, &tsens_config);
+ if (IS_ERR(priv->tm_map)) {
+ ret = PTR_ERR(priv->tm_map);
+ goto err_put_device;
+ }
+
+ if (tsens_version(priv) > VER_0_1) {
+ for (i = VER_MAJOR; i <= VER_STEP; i++) {
+ priv->rf[i] = devm_regmap_field_alloc(dev, priv->srot_map,
+ priv->fields[i]);
+ if (IS_ERR(priv->rf[i]))
+ return PTR_ERR(priv->rf[i]);
+ }
+ ret = regmap_field_read(priv->rf[VER_MINOR], &ver_minor);
+ if (ret)
+ goto err_put_device;
+ }
+
+ priv->rf[TSENS_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
+ priv->fields[TSENS_EN]);
+ if (IS_ERR(priv->rf[TSENS_EN])) {
+ ret = PTR_ERR(priv->rf[TSENS_EN]);
+ goto err_put_device;
+ }
+ ret = regmap_field_read(priv->rf[TSENS_EN], &enabled);
+ if (ret)
+ goto err_put_device;
+ if (!enabled) {
+ dev_err(dev, "%s: device not enabled\n", __func__);
+ ret = -ENODEV;
+ goto err_put_device;
+ }
+
+ priv->rf[SENSOR_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
+ priv->fields[SENSOR_EN]);
+ if (IS_ERR(priv->rf[SENSOR_EN])) {
+ ret = PTR_ERR(priv->rf[SENSOR_EN]);
+ goto err_put_device;
+ }
+ priv->rf[INT_EN] = devm_regmap_field_alloc(dev, priv->tm_map,
+ priv->fields[INT_EN]);
+ if (IS_ERR(priv->rf[INT_EN])) {
+ ret = PTR_ERR(priv->rf[INT_EN]);
+ goto err_put_device;
+ }
+
+ /* This loop might need changes if enum regfield_ids is reordered */
+ for (j = LAST_TEMP_0; j <= UP_THRESH_15; j += 16) {
+ for (i = 0; i < priv->feat->max_sensors; i++) {
+ int idx = j + i;
+
+ priv->rf[idx] = devm_regmap_field_alloc(dev,
+ priv->tm_map,
+ priv->fields[idx]);
+ if (IS_ERR(priv->rf[idx])) {
+ ret = PTR_ERR(priv->rf[idx]);
+ goto err_put_device;
+ }
+ }
+ }
+
+ if (priv->feat->crit_int) {
+ /* Loop might need changes if enum regfield_ids is reordered */
+ for (j = CRITICAL_STATUS_0; j <= CRIT_THRESH_15; j += 16) {
+ for (i = 0; i < priv->feat->max_sensors; i++) {
+ int idx = j + i;
+
+ priv->rf[idx] =
+ devm_regmap_field_alloc(dev,
+ priv->tm_map,
+ priv->fields[idx]);
+ if (IS_ERR(priv->rf[idx])) {
+ ret = PTR_ERR(priv->rf[idx]);
+ goto err_put_device;
+ }
+ }
+ }
+ }
+
+ if (tsens_version(priv) > VER_1_X && ver_minor > 2) {
+ /* Watchdog is present only on v2.3+ */
+ priv->feat->has_watchdog = 1;
+ for (i = WDOG_BARK_STATUS; i <= CC_MON_MASK; i++) {
+ priv->rf[i] = devm_regmap_field_alloc(dev, priv->tm_map,
+ priv->fields[i]);
+ if (IS_ERR(priv->rf[i])) {
+ ret = PTR_ERR(priv->rf[i]);
+ goto err_put_device;
+ }
+ }
+ /*
+ * Watchdog is already enabled, unmask the bark.
+ * Disable cycle completion monitoring
+ */
+ regmap_field_write(priv->rf[WDOG_BARK_MASK], 0);
+ regmap_field_write(priv->rf[CC_MON_MASK], 1);
+ }
+
+ spin_lock_init(&priv->ul_lock);
+ tsens_enable_irq(priv);
+ tsens_debug_init(op);
+
+err_put_device:
+ put_device(&op->dev);
+ return ret;
+}
+
static int tsens_get_temp(void *data, int *temp)
{
struct tsens_sensor *s = data;