diff options
Diffstat (limited to 'drivers/net/bnx2x/bnx2x_init_ops.h')
-rw-r--r-- | drivers/net/bnx2x/bnx2x_init_ops.h | 506 |
1 files changed, 506 insertions, 0 deletions
diff --git a/drivers/net/bnx2x/bnx2x_init_ops.h b/drivers/net/bnx2x/bnx2x_init_ops.h new file mode 100644 index 000000000000..2b1363a6fe78 --- /dev/null +++ b/drivers/net/bnx2x/bnx2x_init_ops.h @@ -0,0 +1,506 @@ +/* bnx2x_init_ops.h: Broadcom Everest network driver. + * Static functions needed during the initialization. + * This file is "included" in bnx2x_main.c. + * + * Copyright (c) 2007-2010 Broadcom Corporation + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation. + * + * Maintained by: Eilon Greenstein <eilong@broadcom.com> + * Written by: Vladislav Zolotarov <vladz@broadcom.com> + */ + +#ifndef BNX2X_INIT_OPS_H +#define BNX2X_INIT_OPS_H + +static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len); + + +static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data, + u32 len) +{ + u32 i; + + for (i = 0; i < len; i++) + REG_WR(bp, addr + i*4, data[i]); +} + +static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data, + u32 len) +{ + u32 i; + + for (i = 0; i < len; i++) + REG_WR_IND(bp, addr + i*4, data[i]); +} + +static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len) +{ + if (bp->dmae_ready) + bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len); + else + bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len); +} + +static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) +{ + u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4)); + u32 buf_len32 = buf_len/4; + u32 i; + + memset(GUNZIP_BUF(bp), (u8)fill, buf_len); + + for (i = 0; i < len; i += buf_len32) { + u32 cur_len = min(buf_len32, len - i); + + bnx2x_write_big_buf(bp, addr + i*4, cur_len); + } +} + +static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data, + u32 len64) +{ + u32 buf_len32 = FW_BUF_SIZE/4; + u32 len = len64*2; + u64 data64 = 0; + u32 i; + + /* 64 bit value is in a blob: first low DWORD, then high DWORD */ + data64 = HILO_U64((*(data + 1)), (*data)); + + len64 = min((u32)(FW_BUF_SIZE/8), len64); + for (i = 0; i < len64; i++) { + u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i; + + *pdata = data64; + } + + for (i = 0; i < len; i += buf_len32) { + u32 cur_len = min(buf_len32, len - i); + + bnx2x_write_big_buf(bp, addr + i*4, cur_len); + } +} + +/********************************************************* + There are different blobs for each PRAM section. + In addition, each blob write operation is divided into a few operations + in order to decrease the amount of phys. contiguous buffer needed. + Thus, when we select a blob the address may be with some offset + from the beginning of PRAM section. + The same holds for the INT_TABLE sections. +**********************************************************/ +#define IF_IS_INT_TABLE_ADDR(base, addr) \ + if (((base) <= (addr)) && ((base) + 0x400 >= (addr))) + +#define IF_IS_PRAM_ADDR(base, addr) \ + if (((base) <= (addr)) && ((base) + 0x40000 >= (addr))) + +static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, const u8 *data) +{ + IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr) + data = INIT_TSEM_INT_TABLE_DATA(bp); + else + IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr) + data = INIT_CSEM_INT_TABLE_DATA(bp); + else + IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr) + data = INIT_USEM_INT_TABLE_DATA(bp); + else + IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr) + data = INIT_XSEM_INT_TABLE_DATA(bp); + else + IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr) + data = INIT_TSEM_PRAM_DATA(bp); + else + IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr) + data = INIT_CSEM_PRAM_DATA(bp); + else + IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr) + data = INIT_USEM_PRAM_DATA(bp); + else + IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr) + data = INIT_XSEM_PRAM_DATA(bp); + + return data; +} + +static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len) +{ + if (bp->dmae_ready) + bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len); + else + bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len); +} + +static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data, + u32 len) +{ + const u32 *old_data = data; + + data = (const u32 *)bnx2x_sel_blob(bp, addr, (const u8 *)data); + + if (bp->dmae_ready) { + if (old_data != data) + VIRT_WR_DMAE_LEN(bp, data, addr, len, 1); + else + VIRT_WR_DMAE_LEN(bp, data, addr, len, 0); + } else + bnx2x_init_ind_wr(bp, addr, data, len); +} + +static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len, u32 blob_off) +{ + const u8 *data = NULL; + int rc; + u32 i; + + data = bnx2x_sel_blob(bp, addr, data) + blob_off*4; + + rc = bnx2x_gunzip(bp, data, len); + if (rc) + return; + + /* gunzip_outlen is in dwords */ + len = GUNZIP_OUTLEN(bp); + for (i = 0; i < len; i++) + ((u32 *)GUNZIP_BUF(bp))[i] = + cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]); + + bnx2x_write_big_buf_wb(bp, addr, len); +} + +static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage) +{ + u16 op_start = + INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_START)]; + u16 op_end = + INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_END)]; + union init_op *op; + int hw_wr; + u32 i, op_type, addr, len; + const u32 *data, *data_base; + + /* If empty block */ + if (op_start == op_end) + return; + + if (CHIP_REV_IS_FPGA(bp)) + hw_wr = OP_WR_FPGA; + else if (CHIP_REV_IS_EMUL(bp)) + hw_wr = OP_WR_EMUL; + else + hw_wr = OP_WR_ASIC; + + data_base = INIT_DATA(bp); + + for (i = op_start; i < op_end; i++) { + + op = (union init_op *)&(INIT_OPS(bp)[i]); + + op_type = op->str_wr.op; + addr = op->str_wr.offset; + len = op->str_wr.data_len; + data = data_base + op->str_wr.data_off; + + /* HW/EMUL specific */ + if ((op_type > OP_WB) && (op_type == hw_wr)) + op_type = OP_WR; + + switch (op_type) { + case OP_RD: + REG_RD(bp, addr); + break; + case OP_WR: + REG_WR(bp, addr, op->write.val); + break; + case OP_SW: + bnx2x_init_str_wr(bp, addr, data, len); + break; + case OP_WB: + bnx2x_init_wr_wb(bp, addr, data, len); + break; + case OP_SI: + bnx2x_init_ind_wr(bp, addr, data, len); + break; + case OP_ZR: + bnx2x_init_fill(bp, addr, 0, op->zero.len); + break; + case OP_ZP: + bnx2x_init_wr_zp(bp, addr, len, + op->str_wr.data_off); + break; + case OP_WR_64: + bnx2x_init_wr_64(bp, addr, data, len); + break; + default: + /* happens whenever an op is of a diff HW */ + break; + } + } +} + + +/**************************************************************************** +* PXP Arbiter +****************************************************************************/ +/* + * This code configures the PCI read/write arbiter + * which implements a weighted round robin + * between the virtual queues in the chip. + * + * The values were derived for each PCI max payload and max request size. + * since max payload and max request size are only known at run time, + * this is done as a separate init stage. + */ + +#define NUM_WR_Q 13 +#define NUM_RD_Q 29 +#define MAX_RD_ORD 3 +#define MAX_WR_ORD 2 + +/* configuration for one arbiter queue */ +struct arb_line { + int l; + int add; + int ubound; +}; + +/* derived configuration for each read queue for each max request size */ +static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = { +/* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} }, + { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} }, + { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} }, + { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} }, + { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} }, + { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, + { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, + { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, + { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, +/* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, + { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, + { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, + { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, + { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, + { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, + { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, + { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} }, + { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, + { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, +/* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, + { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, + { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, + { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, + { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, + { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, + { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, + { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, + { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, + { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} } +}; + +/* derived configuration for each write queue for each max request size */ +static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = { +/* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} }, + { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} }, + { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, + { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, + { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, + { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, + { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} }, + { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, + { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, +/* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} }, + { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} }, + { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} }, + { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} } +}; + +/* register addresses for read queues */ +static const struct arb_line read_arb_addr[NUM_RD_Q-1] = { +/* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0, + PXP2_REG_RQ_BW_RD_UBOUND0}, + {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, + PXP2_REG_PSWRQ_BW_UB1}, + {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, + PXP2_REG_PSWRQ_BW_UB2}, + {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, + PXP2_REG_PSWRQ_BW_UB3}, + {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4, + PXP2_REG_RQ_BW_RD_UBOUND4}, + {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5, + PXP2_REG_RQ_BW_RD_UBOUND5}, + {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, + PXP2_REG_PSWRQ_BW_UB6}, + {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, + PXP2_REG_PSWRQ_BW_UB7}, + {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, + PXP2_REG_PSWRQ_BW_UB8}, +/* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, + PXP2_REG_PSWRQ_BW_UB9}, + {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, + PXP2_REG_PSWRQ_BW_UB10}, + {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, + PXP2_REG_PSWRQ_BW_UB11}, + {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12, + PXP2_REG_RQ_BW_RD_UBOUND12}, + {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13, + PXP2_REG_RQ_BW_RD_UBOUND13}, + {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14, + PXP2_REG_RQ_BW_RD_UBOUND14}, + {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15, + PXP2_REG_RQ_BW_RD_UBOUND15}, + {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16, + PXP2_REG_RQ_BW_RD_UBOUND16}, + {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17, + PXP2_REG_RQ_BW_RD_UBOUND17}, + {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18, + PXP2_REG_RQ_BW_RD_UBOUND18}, +/* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19, + PXP2_REG_RQ_BW_RD_UBOUND19}, + {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20, + PXP2_REG_RQ_BW_RD_UBOUND20}, + {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22, + PXP2_REG_RQ_BW_RD_UBOUND22}, + {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23, + PXP2_REG_RQ_BW_RD_UBOUND23}, + {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24, + PXP2_REG_RQ_BW_RD_UBOUND24}, + {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25, + PXP2_REG_RQ_BW_RD_UBOUND25}, + {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26, + PXP2_REG_RQ_BW_RD_UBOUND26}, + {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27, + PXP2_REG_RQ_BW_RD_UBOUND27}, + {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, + PXP2_REG_PSWRQ_BW_UB28} +}; + +/* register addresses for write queues */ +static const struct arb_line write_arb_addr[NUM_WR_Q-1] = { +/* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, + PXP2_REG_PSWRQ_BW_UB1}, + {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, + PXP2_REG_PSWRQ_BW_UB2}, + {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, + PXP2_REG_PSWRQ_BW_UB3}, + {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, + PXP2_REG_PSWRQ_BW_UB6}, + {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, + PXP2_REG_PSWRQ_BW_UB7}, + {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, + PXP2_REG_PSWRQ_BW_UB8}, + {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, + PXP2_REG_PSWRQ_BW_UB9}, + {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, + PXP2_REG_PSWRQ_BW_UB10}, + {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, + PXP2_REG_PSWRQ_BW_UB11}, +/* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, + PXP2_REG_PSWRQ_BW_UB28}, + {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29, + PXP2_REG_RQ_BW_WR_UBOUND29}, + {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30, + PXP2_REG_RQ_BW_WR_UBOUND30} +}; + +static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order, int w_order) +{ + u32 val, i; + + if (r_order > MAX_RD_ORD) { + DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n", + r_order, MAX_RD_ORD); + r_order = MAX_RD_ORD; + } + if (w_order > MAX_WR_ORD) { + DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n", + w_order, MAX_WR_ORD); + w_order = MAX_WR_ORD; + } + if (CHIP_REV_IS_FPGA(bp)) { + DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n"); + w_order = 0; + } + DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order); + + for (i = 0; i < NUM_RD_Q-1; i++) { + REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l); + REG_WR(bp, read_arb_addr[i].add, + read_arb_data[i][r_order].add); + REG_WR(bp, read_arb_addr[i].ubound, + read_arb_data[i][r_order].ubound); + } + + for (i = 0; i < NUM_WR_Q-1; i++) { + if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) || + (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) { + + REG_WR(bp, write_arb_addr[i].l, + write_arb_data[i][w_order].l); + + REG_WR(bp, write_arb_addr[i].add, + write_arb_data[i][w_order].add); + + REG_WR(bp, write_arb_addr[i].ubound, + write_arb_data[i][w_order].ubound); + } else { + + val = REG_RD(bp, write_arb_addr[i].l); + REG_WR(bp, write_arb_addr[i].l, + val | (write_arb_data[i][w_order].l << 10)); + + val = REG_RD(bp, write_arb_addr[i].add); + REG_WR(bp, write_arb_addr[i].add, + val | (write_arb_data[i][w_order].add << 10)); + + val = REG_RD(bp, write_arb_addr[i].ubound); + REG_WR(bp, write_arb_addr[i].ubound, + val | (write_arb_data[i][w_order].ubound << 7)); + } + } + + val = write_arb_data[NUM_WR_Q-1][w_order].add; + val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10; + val += write_arb_data[NUM_WR_Q-1][w_order].l << 17; + REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val); + + val = read_arb_data[NUM_RD_Q-1][r_order].add; + val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10; + val += read_arb_data[NUM_RD_Q-1][r_order].l << 17; + REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val); + + REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order); + REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order); + REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order); + REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order); + + if (r_order == MAX_RD_ORD) + REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00); + + REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order)); + + if (CHIP_IS_E1H(bp)) { + /* MPS w_order optimal TH presently TH + * 128 0 0 2 + * 256 1 1 3 + * >=512 2 2 3 + */ + val = ((w_order == 0) ? 2 : 3); + REG_WR(bp, PXP2_REG_WR_HC_MPS, val); + REG_WR(bp, PXP2_REG_WR_USDM_MPS, val); + REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val); + REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val); + REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val); + REG_WR(bp, PXP2_REG_WR_QM_MPS, val); + REG_WR(bp, PXP2_REG_WR_TM_MPS, val); + REG_WR(bp, PXP2_REG_WR_SRC_MPS, val); + REG_WR(bp, PXP2_REG_WR_DBG_MPS, val); + REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */ + REG_WR(bp, PXP2_REG_WR_CDU_MPS, val); + } +} + +#endif /* BNX2X_INIT_OPS_H */ |