summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/devices
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/devices')
-rw-r--r--drivers/mtd/devices/Kconfig259
-rw-r--r--drivers/mtd/devices/Makefile25
-rw-r--r--drivers/mtd/devices/blkmtd.c823
-rw-r--r--drivers/mtd/devices/block2mtd.c495
-rw-r--r--drivers/mtd/devices/doc2000.c1309
-rw-r--r--drivers/mtd/devices/doc2001.c888
-rw-r--r--drivers/mtd/devices/doc2001plus.c1154
-rw-r--r--drivers/mtd/devices/docecc.c526
-rw-r--r--drivers/mtd/devices/docprobe.c355
-rw-r--r--drivers/mtd/devices/lart.c711
-rw-r--r--drivers/mtd/devices/ms02-nv.c326
-rw-r--r--drivers/mtd/devices/ms02-nv.h107
-rw-r--r--drivers/mtd/devices/mtdram.c235
-rw-r--r--drivers/mtd/devices/phram.c285
-rw-r--r--drivers/mtd/devices/pmc551.c843
-rw-r--r--drivers/mtd/devices/slram.c357
16 files changed, 8698 insertions, 0 deletions
diff --git a/drivers/mtd/devices/Kconfig b/drivers/mtd/devices/Kconfig
new file mode 100644
index 000000000000..c4a56a4ac5e2
--- /dev/null
+++ b/drivers/mtd/devices/Kconfig
@@ -0,0 +1,259 @@
+# drivers/mtd/maps/Kconfig
+# $Id: Kconfig,v 1.15 2004/12/22 17:51:15 joern Exp $
+
+menu "Self-contained MTD device drivers"
+ depends on MTD!=n
+
+config MTD_PMC551
+ tristate "Ramix PMC551 PCI Mezzanine RAM card support"
+ depends on MTD && PCI
+ ---help---
+ This provides a MTD device driver for the Ramix PMC551 RAM PCI card
+ from Ramix Inc. <http://www.ramix.com/products/memory/pmc551.html>.
+ These devices come in memory configurations from 32M - 1G. If you
+ have one, you probably want to enable this.
+
+ If this driver is compiled as a module you get the ability to select
+ the size of the aperture window pointing into the devices memory.
+ What this means is that if you have a 1G card, normally the kernel
+ will use a 1G memory map as its view of the device. As a module,
+ you can select a 1M window into the memory and the driver will
+ "slide" the window around the PMC551's memory. This was
+ particularly useful on the 2.2 kernels on PPC architectures as there
+ was limited kernel space to deal with.
+
+config MTD_PMC551_BUGFIX
+ bool "PMC551 256M DRAM Bugfix"
+ depends on MTD_PMC551
+ help
+ Some of Ramix's PMC551 boards with 256M configurations have invalid
+ column and row mux values. This option will fix them, but will
+ break other memory configurations. If unsure say N.
+
+config MTD_PMC551_DEBUG
+ bool "PMC551 Debugging"
+ depends on MTD_PMC551
+ help
+ This option makes the PMC551 more verbose during its operation and
+ is only really useful if you are developing on this driver or
+ suspect a possible hardware or driver bug. If unsure say N.
+
+config MTD_MS02NV
+ tristate "DEC MS02-NV NVRAM module support"
+ depends on MTD && MACH_DECSTATION
+ help
+ This is an MTD driver for the DEC's MS02-NV (54-20948-01) battery
+ backed-up NVRAM module. The module was originally meant as an NFS
+ accelerator. Say Y here if you have a DECstation 5000/2x0 or a
+ DECsystem 5900 equipped with such a module.
+
+config MTD_SLRAM
+ tristate "Uncached system RAM"
+ depends on MTD
+ help
+ If your CPU cannot cache all of the physical memory in your machine,
+ you can still use it for storage or swap by using this driver to
+ present it to the system as a Memory Technology Device.
+
+config MTD_PHRAM
+ tristate "Physical system RAM"
+ depends on MTD
+ help
+ This is a re-implementation of the slram driver above.
+
+ Use this driver to access physical memory that the kernel proper
+ doesn't have access to, memory beyond the mem=xxx limit, nvram,
+ memory on the video card, etc...
+
+config MTD_LART
+ tristate "28F160xx flash driver for LART"
+ depends on SA1100_LART && MTD
+ help
+ This enables the flash driver for LART. Please note that you do
+ not need any mapping/chip driver for LART. This one does it all
+ for you, so go disable all of those if you enabled some of them (:
+
+config MTD_MTDRAM
+ tristate "Test driver using RAM"
+ depends on MTD
+ help
+ This enables a test MTD device driver which uses vmalloc() to
+ provide storage. You probably want to say 'N' unless you're
+ testing stuff.
+
+config MTDRAM_TOTAL_SIZE
+ int "MTDRAM device size in KiB"
+ depends on MTD_MTDRAM
+ default "4096"
+ help
+ This allows you to configure the total size of the MTD device
+ emulated by the MTDRAM driver. If the MTDRAM driver is built
+ as a module, it is also possible to specify this as a parameter when
+ loading the module.
+
+config MTDRAM_ERASE_SIZE
+ int "MTDRAM erase block size in KiB"
+ depends on MTD_MTDRAM
+ default "128"
+ help
+ This allows you to configure the size of the erase blocks in the
+ device emulated by the MTDRAM driver. If the MTDRAM driver is built
+ as a module, it is also possible to specify this as a parameter when
+ loading the module.
+
+#If not a module (I don't want to test it as a module)
+config MTDRAM_ABS_POS
+ hex "SRAM Hexadecimal Absolute position or 0"
+ depends on MTD_MTDRAM=y
+ default "0"
+ help
+ If you have system RAM accessible by the CPU but not used by Linux
+ in normal operation, you can give the physical address at which the
+ available RAM starts, and the MTDRAM driver will use it instead of
+ allocating space from Linux's available memory. Otherwise, leave
+ this set to zero. Most people will want to leave this as zero.
+
+config MTD_BLKMTD
+ tristate "MTD emulation using block device"
+ depends on MTD
+ help
+ This driver allows a block device to appear as an MTD. It would
+ generally be used in the following cases:
+
+ Using Compact Flash as an MTD, these usually present themselves to
+ the system as an ATA drive.
+ Testing MTD users (eg JFFS2) on large media and media that might
+ be removed during a write (using the floppy drive).
+
+config MTD_BLOCK2MTD
+ tristate "MTD using block device (rewrite)"
+ depends on MTD && EXPERIMENTAL
+ help
+ This driver is basically the same at MTD_BLKMTD above, but
+ experienced some interface changes plus serious speedups. In
+ the long term, it should replace MTD_BLKMTD. Right now, you
+ shouldn't entrust important data to it yet.
+
+comment "Disk-On-Chip Device Drivers"
+
+config MTD_DOC2000
+ tristate "M-Systems Disk-On-Chip 2000 and Millennium (DEPRECATED)"
+ depends on MTD
+ select MTD_DOCPROBE
+ select MTD_NAND_IDS
+ ---help---
+ This provides an MTD device driver for the M-Systems DiskOnChip
+ 2000 and Millennium devices. Originally designed for the DiskOnChip
+ 2000, it also now includes support for the DiskOnChip Millennium.
+ If you have problems with this driver and the DiskOnChip Millennium,
+ you may wish to try the alternative Millennium driver below. To use
+ the alternative driver, you will need to undefine DOC_SINGLE_DRIVER
+ in the <file:drivers/mtd/devices/docprobe.c> source code.
+
+ If you use this device, you probably also want to enable the NFTL
+ 'NAND Flash Translation Layer' option below, which is used to
+ emulate a block device by using a kind of file system on the flash
+ chips.
+
+ NOTE: This driver is deprecated and will probably be removed soon.
+ Please try the new DiskOnChip driver under "NAND Flash Device
+ Drivers".
+
+config MTD_DOC2001
+ tristate "M-Systems Disk-On-Chip Millennium-only alternative driver (DEPRECATED)"
+ depends on MTD
+ select MTD_DOCPROBE
+ select MTD_NAND_IDS
+ ---help---
+ This provides an alternative MTD device driver for the M-Systems
+ DiskOnChip Millennium devices. Use this if you have problems with
+ the combined DiskOnChip 2000 and Millennium driver above. To get
+ the DiskOnChip probe code to load and use this driver instead of
+ the other one, you will need to undefine DOC_SINGLE_DRIVER near
+ the beginning of <file:drivers/mtd/devices/docprobe.c>.
+
+ If you use this device, you probably also want to enable the NFTL
+ 'NAND Flash Translation Layer' option below, which is used to
+ emulate a block device by using a kind of file system on the flash
+ chips.
+
+ NOTE: This driver is deprecated and will probably be removed soon.
+ Please try the new DiskOnChip driver under "NAND Flash Device
+ Drivers".
+
+config MTD_DOC2001PLUS
+ tristate "M-Systems Disk-On-Chip Millennium Plus"
+ depends on MTD
+ select MTD_DOCPROBE
+ select MTD_NAND_IDS
+ ---help---
+ This provides an MTD device driver for the M-Systems DiskOnChip
+ Millennium Plus devices.
+
+ If you use this device, you probably also want to enable the INFTL
+ 'Inverse NAND Flash Translation Layer' option below, which is used
+ to emulate a block device by using a kind of file system on the
+ flash chips.
+
+ NOTE: This driver will soon be replaced by the new DiskOnChip driver
+ under "NAND Flash Device Drivers" (currently that driver does not
+ support all Millennium Plus devices).
+
+config MTD_DOCPROBE
+ tristate
+ select MTD_DOCECC
+
+config MTD_DOCECC
+ tristate
+
+config MTD_DOCPROBE_ADVANCED
+ bool "Advanced detection options for DiskOnChip"
+ depends on MTD_DOCPROBE
+ help
+ This option allows you to specify nonstandard address at which to
+ probe for a DiskOnChip, or to change the detection options. You
+ are unlikely to need any of this unless you are using LinuxBIOS.
+ Say 'N'.
+
+config MTD_DOCPROBE_ADDRESS
+ hex "Physical address of DiskOnChip" if MTD_DOCPROBE_ADVANCED
+ depends on MTD_DOCPROBE
+ default "0x0000" if MTD_DOCPROBE_ADVANCED
+ default "0" if !MTD_DOCPROBE_ADVANCED
+ ---help---
+ By default, the probe for DiskOnChip devices will look for a
+ DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
+ This option allows you to specify a single address at which to probe
+ for the device, which is useful if you have other devices in that
+ range which get upset when they are probed.
+
+ (Note that on PowerPC, the normal probe will only check at
+ 0xE4000000.)
+
+ Normally, you should leave this set to zero, to allow the probe at
+ the normal addresses.
+
+config MTD_DOCPROBE_HIGH
+ bool "Probe high addresses"
+ depends on MTD_DOCPROBE_ADVANCED
+ help
+ By default, the probe for DiskOnChip devices will look for a
+ DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
+ This option changes to make it probe between 0xFFFC8000 and
+ 0xFFFEE000. Unless you are using LinuxBIOS, this is unlikely to be
+ useful to you. Say 'N'.
+
+config MTD_DOCPROBE_55AA
+ bool "Probe for 0x55 0xAA BIOS Extension Signature"
+ depends on MTD_DOCPROBE_ADVANCED
+ help
+ Check for the 0x55 0xAA signature of a DiskOnChip, and do not
+ continue with probing if it is absent. The signature will always be
+ present for a DiskOnChip 2000 or a normal DiskOnChip Millennium.
+ Only if you have overwritten the first block of a DiskOnChip
+ Millennium will it be absent. Enable this option if you are using
+ LinuxBIOS or if you need to recover a DiskOnChip Millennium on which
+ you have managed to wipe the first block.
+
+endmenu
+
diff --git a/drivers/mtd/devices/Makefile b/drivers/mtd/devices/Makefile
new file mode 100644
index 000000000000..e38db348057d
--- /dev/null
+++ b/drivers/mtd/devices/Makefile
@@ -0,0 +1,25 @@
+#
+# linux/drivers/devices/Makefile
+#
+# $Id: Makefile.common,v 1.7 2004/12/22 17:51:15 joern Exp $
+
+# *** BIG UGLY NOTE ***
+#
+# The removal of get_module_symbol() and replacement with
+# inter_module_register() et al has introduced a link order dependency
+# here where previously there was none. We now have to ensure that
+# doc200[01].o are linked before docprobe.o
+
+obj-$(CONFIG_MTD_DOC2000) += doc2000.o
+obj-$(CONFIG_MTD_DOC2001) += doc2001.o
+obj-$(CONFIG_MTD_DOC2001PLUS) += doc2001plus.o
+obj-$(CONFIG_MTD_DOCPROBE) += docprobe.o
+obj-$(CONFIG_MTD_DOCECC) += docecc.o
+obj-$(CONFIG_MTD_SLRAM) += slram.o
+obj-$(CONFIG_MTD_PHRAM) += phram.o
+obj-$(CONFIG_MTD_PMC551) += pmc551.o
+obj-$(CONFIG_MTD_MS02NV) += ms02-nv.o
+obj-$(CONFIG_MTD_MTDRAM) += mtdram.o
+obj-$(CONFIG_MTD_LART) += lart.o
+obj-$(CONFIG_MTD_BLKMTD) += blkmtd.o
+obj-$(CONFIG_MTD_BLOCK2MTD) += block2mtd.o
diff --git a/drivers/mtd/devices/blkmtd.c b/drivers/mtd/devices/blkmtd.c
new file mode 100644
index 000000000000..662e807801ed
--- /dev/null
+++ b/drivers/mtd/devices/blkmtd.c
@@ -0,0 +1,823 @@
+/*
+ * $Id: blkmtd.c,v 1.24 2004/11/16 18:29:01 dwmw2 Exp $
+ *
+ * blkmtd.c - use a block device as a fake MTD
+ *
+ * Author: Simon Evans <spse@secret.org.uk>
+ *
+ * Copyright (C) 2001,2002 Simon Evans
+ *
+ * Licence: GPL
+ *
+ * How it works:
+ * The driver uses raw/io to read/write the device and the page
+ * cache to cache access. Writes update the page cache with the
+ * new data and mark it dirty and add the page into a BIO which
+ * is then written out.
+ *
+ * It can be loaded Read-Only to prevent erases and writes to the
+ * medium.
+ *
+ */
+
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/fs.h>
+#include <linux/blkdev.h>
+#include <linux/bio.h>
+#include <linux/pagemap.h>
+#include <linux/list.h>
+#include <linux/init.h>
+#include <linux/mtd/mtd.h>
+
+
+#define err(format, arg...) printk(KERN_ERR "blkmtd: " format "\n" , ## arg)
+#define info(format, arg...) printk(KERN_INFO "blkmtd: " format "\n" , ## arg)
+#define warn(format, arg...) printk(KERN_WARNING "blkmtd: " format "\n" , ## arg)
+#define crit(format, arg...) printk(KERN_CRIT "blkmtd: " format "\n" , ## arg)
+
+
+/* Default erase size in K, always make it a multiple of PAGE_SIZE */
+#define CONFIG_MTD_BLKDEV_ERASESIZE (128 << 10) /* 128KiB */
+#define VERSION "$Revision: 1.24 $"
+
+/* Info for the block device */
+struct blkmtd_dev {
+ struct list_head list;
+ struct block_device *blkdev;
+ struct mtd_info mtd_info;
+ struct semaphore wrbuf_mutex;
+};
+
+
+/* Static info about the MTD, used in cleanup_module */
+static LIST_HEAD(blkmtd_device_list);
+
+
+static void blkmtd_sync(struct mtd_info *mtd);
+
+#define MAX_DEVICES 4
+
+/* Module parameters passed by insmod/modprobe */
+static char *device[MAX_DEVICES]; /* the block device to use */
+static int erasesz[MAX_DEVICES]; /* optional default erase size */
+static int ro[MAX_DEVICES]; /* optional read only flag */
+static int sync;
+
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Simon Evans <spse@secret.org.uk>");
+MODULE_DESCRIPTION("Emulate an MTD using a block device");
+module_param_array(device, charp, NULL, 0);
+MODULE_PARM_DESC(device, "block device to use");
+module_param_array(erasesz, int, NULL, 0);
+MODULE_PARM_DESC(erasesz, "optional erase size to use in KiB. eg 4=4KiB.");
+module_param_array(ro, bool, NULL, 0);
+MODULE_PARM_DESC(ro, "1=Read only, writes and erases cause errors");
+module_param(sync, bool, 0);
+MODULE_PARM_DESC(sync, "1=Synchronous writes");
+
+
+/* completion handler for BIO reads */
+static int bi_read_complete(struct bio *bio, unsigned int bytes_done, int error)
+{
+ if (bio->bi_size)
+ return 1;
+
+ complete((struct completion*)bio->bi_private);
+ return 0;
+}
+
+
+/* completion handler for BIO writes */
+static int bi_write_complete(struct bio *bio, unsigned int bytes_done, int error)
+{
+ const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
+ struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
+
+ if (bio->bi_size)
+ return 1;
+
+ if(!uptodate)
+ err("bi_write_complete: not uptodate\n");
+
+ do {
+ struct page *page = bvec->bv_page;
+ DEBUG(3, "Cleaning up page %ld\n", page->index);
+ if (--bvec >= bio->bi_io_vec)
+ prefetchw(&bvec->bv_page->flags);
+
+ if (uptodate) {
+ SetPageUptodate(page);
+ } else {
+ ClearPageUptodate(page);
+ SetPageError(page);
+ }
+ ClearPageDirty(page);
+ unlock_page(page);
+ page_cache_release(page);
+ } while (bvec >= bio->bi_io_vec);
+
+ complete((struct completion*)bio->bi_private);
+ return 0;
+}
+
+
+/* read one page from the block device */
+static int blkmtd_readpage(struct blkmtd_dev *dev, struct page *page)
+{
+ struct bio *bio;
+ struct completion event;
+ int err = -ENOMEM;
+
+ if(PageUptodate(page)) {
+ DEBUG(2, "blkmtd: readpage page %ld is already upto date\n", page->index);
+ unlock_page(page);
+ return 0;
+ }
+
+ ClearPageUptodate(page);
+ ClearPageError(page);
+
+ bio = bio_alloc(GFP_KERNEL, 1);
+ if(bio) {
+ init_completion(&event);
+ bio->bi_bdev = dev->blkdev;
+ bio->bi_sector = page->index << (PAGE_SHIFT-9);
+ bio->bi_private = &event;
+ bio->bi_end_io = bi_read_complete;
+ if(bio_add_page(bio, page, PAGE_SIZE, 0) == PAGE_SIZE) {
+ submit_bio(READ_SYNC, bio);
+ wait_for_completion(&event);
+ err = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : -EIO;
+ bio_put(bio);
+ }
+ }
+
+ if(err)
+ SetPageError(page);
+ else
+ SetPageUptodate(page);
+ flush_dcache_page(page);
+ unlock_page(page);
+ return err;
+}
+
+
+/* write out the current BIO and wait for it to finish */
+static int blkmtd_write_out(struct bio *bio)
+{
+ struct completion event;
+ int err;
+
+ if(!bio->bi_vcnt) {
+ bio_put(bio);
+ return 0;
+ }
+
+ init_completion(&event);
+ bio->bi_private = &event;
+ bio->bi_end_io = bi_write_complete;
+ submit_bio(WRITE_SYNC, bio);
+ wait_for_completion(&event);
+ DEBUG(3, "submit_bio completed, bi_vcnt = %d\n", bio->bi_vcnt);
+ err = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : -EIO;
+ bio_put(bio);
+ return err;
+}
+
+
+/**
+ * blkmtd_add_page - add a page to the current BIO
+ * @bio: bio to add to (NULL to alloc initial bio)
+ * @blkdev: block device
+ * @page: page to add
+ * @pagecnt: pages left to add
+ *
+ * Adds a page to the current bio, allocating it if necessary. If it cannot be
+ * added, the current bio is written out and a new one is allocated. Returns
+ * the new bio to add or NULL on error
+ */
+static struct bio *blkmtd_add_page(struct bio *bio, struct block_device *blkdev,
+ struct page *page, int pagecnt)
+{
+
+ retry:
+ if(!bio) {
+ bio = bio_alloc(GFP_KERNEL, pagecnt);
+ if(!bio)
+ return NULL;
+ bio->bi_sector = page->index << (PAGE_SHIFT-9);
+ bio->bi_bdev = blkdev;
+ }
+
+ if(bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) {
+ blkmtd_write_out(bio);
+ bio = NULL;
+ goto retry;
+ }
+ return bio;
+}
+
+
+/**
+ * write_pages - write block of data to device via the page cache
+ * @dev: device to write to
+ * @buf: data source or NULL if erase (output is set to 0xff)
+ * @to: offset into output device
+ * @len: amount to data to write
+ * @retlen: amount of data written
+ *
+ * Grab pages from the page cache and fill them with the source data.
+ * Non page aligned start and end result in a readin of the page and
+ * part of the page being modified. Pages are added to the bio and then written
+ * out.
+ */
+static int write_pages(struct blkmtd_dev *dev, const u_char *buf, loff_t to,
+ size_t len, size_t *retlen)
+{
+ int pagenr, offset;
+ size_t start_len = 0, end_len;
+ int pagecnt = 0;
+ int err = 0;
+ struct bio *bio = NULL;
+ size_t thislen = 0;
+
+ pagenr = to >> PAGE_SHIFT;
+ offset = to & ~PAGE_MASK;
+
+ DEBUG(2, "blkmtd: write_pages: buf = %p to = %ld len = %zd pagenr = %d offset = %d\n",
+ buf, (long)to, len, pagenr, offset);
+
+ /* see if we have to do a partial write at the start */
+ if(offset) {
+ start_len = ((offset + len) > PAGE_SIZE) ? PAGE_SIZE - offset : len;
+ len -= start_len;
+ }
+
+ /* calculate the length of the other two regions */
+ end_len = len & ~PAGE_MASK;
+ len -= end_len;
+
+ if(start_len)
+ pagecnt++;
+
+ if(len)
+ pagecnt += len >> PAGE_SHIFT;
+
+ if(end_len)
+ pagecnt++;
+
+ down(&dev->wrbuf_mutex);
+
+ DEBUG(3, "blkmtd: write: start_len = %zd len = %zd end_len = %zd pagecnt = %d\n",
+ start_len, len, end_len, pagecnt);
+
+ if(start_len) {
+ /* do partial start region */
+ struct page *page;
+
+ DEBUG(3, "blkmtd: write: doing partial start, page = %d len = %zd offset = %d\n",
+ pagenr, start_len, offset);
+
+ BUG_ON(!buf);
+ page = read_cache_page(dev->blkdev->bd_inode->i_mapping, pagenr, (filler_t *)blkmtd_readpage, dev);
+ lock_page(page);
+ if(PageDirty(page)) {
+ err("to = %lld start_len = %zd len = %zd end_len = %zd pagenr = %d\n",
+ to, start_len, len, end_len, pagenr);
+ BUG();
+ }
+ memcpy(page_address(page)+offset, buf, start_len);
+ SetPageDirty(page);
+ SetPageUptodate(page);
+ buf += start_len;
+ thislen = start_len;
+ bio = blkmtd_add_page(bio, dev->blkdev, page, pagecnt);
+ if(!bio) {
+ err = -ENOMEM;
+ err("bio_add_page failed\n");
+ goto write_err;
+ }
+ pagecnt--;
+ pagenr++;
+ }
+
+ /* Now do the main loop to a page aligned, n page sized output */
+ if(len) {
+ int pagesc = len >> PAGE_SHIFT;
+ DEBUG(3, "blkmtd: write: whole pages start = %d, count = %d\n",
+ pagenr, pagesc);
+ while(pagesc) {
+ struct page *page;
+
+ /* see if page is in the page cache */
+ DEBUG(3, "blkmtd: write: grabbing page %d from page cache\n", pagenr);
+ page = grab_cache_page(dev->blkdev->bd_inode->i_mapping, pagenr);
+ if(PageDirty(page)) {
+ BUG();
+ }
+ if(!page) {
+ warn("write: cannot grab cache page %d", pagenr);
+ err = -ENOMEM;
+ goto write_err;
+ }
+ if(!buf) {
+ memset(page_address(page), 0xff, PAGE_SIZE);
+ } else {
+ memcpy(page_address(page), buf, PAGE_SIZE);
+ buf += PAGE_SIZE;
+ }
+ bio = blkmtd_add_page(bio, dev->blkdev, page, pagecnt);
+ if(!bio) {
+ err = -ENOMEM;
+ err("bio_add_page failed\n");
+ goto write_err;
+ }
+ pagenr++;
+ pagecnt--;
+ SetPageDirty(page);
+ SetPageUptodate(page);
+ pagesc--;
+ thislen += PAGE_SIZE;
+ }
+ }
+
+ if(end_len) {
+ /* do the third region */
+ struct page *page;
+ DEBUG(3, "blkmtd: write: doing partial end, page = %d len = %zd\n",
+ pagenr, end_len);
+ BUG_ON(!buf);
+ page = read_cache_page(dev->blkdev->bd_inode->i_mapping, pagenr, (filler_t *)blkmtd_readpage, dev);
+ lock_page(page);
+ if(PageDirty(page)) {
+ err("to = %lld start_len = %zd len = %zd end_len = %zd pagenr = %d\n",
+ to, start_len, len, end_len, pagenr);
+ BUG();
+ }
+ memcpy(page_address(page), buf, end_len);
+ SetPageDirty(page);
+ SetPageUptodate(page);
+ DEBUG(3, "blkmtd: write: writing out partial end\n");
+ thislen += end_len;
+ bio = blkmtd_add_page(bio, dev->blkdev, page, pagecnt);
+ if(!bio) {
+ err = -ENOMEM;
+ err("bio_add_page failed\n");
+ goto write_err;
+ }
+ pagenr++;
+ }
+
+ DEBUG(3, "blkmtd: write: got %d vectors to write\n", bio->bi_vcnt);
+ write_err:
+ if(bio)
+ blkmtd_write_out(bio);
+
+ DEBUG(2, "blkmtd: write: end, retlen = %zd, err = %d\n", *retlen, err);
+ up(&dev->wrbuf_mutex);
+
+ if(retlen)
+ *retlen = thislen;
+ return err;
+}
+
+
+/* erase a specified part of the device */
+static int blkmtd_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+ struct blkmtd_dev *dev = mtd->priv;
+ struct mtd_erase_region_info *einfo = mtd->eraseregions;
+ int numregions = mtd->numeraseregions;
+ size_t from;
+ u_long len;
+ int err = -EIO;
+ size_t retlen;
+
+ instr->state = MTD_ERASING;
+ from = instr->addr;
+ len = instr->len;
+
+ /* check erase region has valid start and length */
+ DEBUG(2, "blkmtd: erase: dev = `%s' from = 0x%zx len = 0x%lx\n",
+ mtd->name+9, from, len);
+ while(numregions) {
+ DEBUG(3, "blkmtd: checking erase region = 0x%08X size = 0x%X num = 0x%x\n",
+ einfo->offset, einfo->erasesize, einfo->numblocks);
+ if(from >= einfo->offset
+ && from < einfo->offset + (einfo->erasesize * einfo->numblocks)) {
+ if(len == einfo->erasesize
+ && ( (from - einfo->offset) % einfo->erasesize == 0))
+ break;
+ }
+ numregions--;
+ einfo++;
+ }
+
+ if(!numregions) {
+ /* Not a valid erase block */
+ err("erase: invalid erase request 0x%lX @ 0x%08zX", len, from);
+ instr->state = MTD_ERASE_FAILED;
+ err = -EIO;
+ }
+
+ if(instr->state != MTD_ERASE_FAILED) {
+ /* do the erase */
+ DEBUG(3, "Doing erase from = %zd len = %ld\n", from, len);
+ err = write_pages(dev, NULL, from, len, &retlen);
+ if(err || retlen != len) {
+ err("erase failed err = %d", err);
+ instr->state = MTD_ERASE_FAILED;
+ } else {
+ instr->state = MTD_ERASE_DONE;
+ }
+ }
+
+ DEBUG(3, "blkmtd: erase: checking callback\n");
+ mtd_erase_callback(instr);
+ DEBUG(2, "blkmtd: erase: finished (err = %d)\n", err);
+ return err;
+}
+
+
+/* read a range of the data via the page cache */
+static int blkmtd_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ struct blkmtd_dev *dev = mtd->priv;
+ int err = 0;
+ int offset;
+ int pagenr, pages;
+ size_t thislen = 0;
+
+ DEBUG(2, "blkmtd: read: dev = `%s' from = %lld len = %zd buf = %p\n",
+ mtd->name+9, from, len, buf);
+
+ if(from > mtd->size)
+ return -EINVAL;
+ if(from + len > mtd->size)
+ len = mtd->size - from;
+
+ pagenr = from >> PAGE_SHIFT;
+ offset = from - (pagenr << PAGE_SHIFT);
+
+ pages = (offset+len+PAGE_SIZE-1) >> PAGE_SHIFT;
+ DEBUG(3, "blkmtd: read: pagenr = %d offset = %d, pages = %d\n",
+ pagenr, offset, pages);
+
+ while(pages) {
+ struct page *page;
+ int cpylen;
+
+ DEBUG(3, "blkmtd: read: looking for page: %d\n", pagenr);
+ page = read_cache_page(dev->blkdev->bd_inode->i_mapping, pagenr, (filler_t *)blkmtd_readpage, dev);
+ if(IS_ERR(page)) {
+ err = -EIO;
+ goto readerr;
+ }
+
+ cpylen = (PAGE_SIZE > len) ? len : PAGE_SIZE;
+ if(offset+cpylen > PAGE_SIZE)
+ cpylen = PAGE_SIZE-offset;
+
+ memcpy(buf + thislen, page_address(page) + offset, cpylen);
+ offset = 0;
+ len -= cpylen;
+ thislen += cpylen;
+ pagenr++;
+ pages--;
+ if(!PageDirty(page))
+ page_cache_release(page);
+ }
+
+ readerr:
+ if(retlen)
+ *retlen = thislen;
+ DEBUG(2, "blkmtd: end read: retlen = %zd, err = %d\n", thislen, err);
+ return err;
+}
+
+
+/* write data to the underlying device */
+static int blkmtd_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf)
+{
+ struct blkmtd_dev *dev = mtd->priv;
+ int err;
+
+ if(!len)
+ return 0;
+
+ DEBUG(2, "blkmtd: write: dev = `%s' to = %lld len = %zd buf = %p\n",
+ mtd->name+9, to, len, buf);
+
+ if(to >= mtd->size) {
+ return -ENOSPC;
+ }
+
+ if(to + len > mtd->size) {
+ len = mtd->size - to;
+ }
+
+ err = write_pages(dev, buf, to, len, retlen);
+ if(err > 0)
+ err = 0;
+ DEBUG(2, "blkmtd: write: end, err = %d\n", err);
+ return err;
+}
+
+
+/* sync the device - wait until the write queue is empty */
+static void blkmtd_sync(struct mtd_info *mtd)
+{
+ /* Currently all writes are synchronous */
+}
+
+
+static void free_device(struct blkmtd_dev *dev)
+{
+ DEBUG(2, "blkmtd: free_device() dev = %p\n", dev);
+ if(dev) {
+ if(dev->mtd_info.eraseregions)
+ kfree(dev->mtd_info.eraseregions);
+ if(dev->mtd_info.name)
+ kfree(dev->mtd_info.name);
+
+ if(dev->blkdev) {
+ invalidate_inode_pages(dev->blkdev->bd_inode->i_mapping);
+ close_bdev_excl(dev->blkdev);
+ }
+ kfree(dev);
+ }
+}
+
+
+/* For a given size and initial erase size, calculate the number
+ * and size of each erase region. Goes round the loop twice,
+ * once to find out how many regions, then allocates space,
+ * then round the loop again to fill it in.
+ */
+static struct mtd_erase_region_info *calc_erase_regions(
+ size_t erase_size, size_t total_size, int *regions)
+{
+ struct mtd_erase_region_info *info = NULL;
+
+ DEBUG(2, "calc_erase_regions, es = %zd size = %zd regions = %d\n",
+ erase_size, total_size, *regions);
+ /* Make any user specified erasesize be a power of 2
+ and at least PAGE_SIZE */
+ if(erase_size) {
+ int es = erase_size;
+ erase_size = 1;
+ while(es != 1) {
+ es >>= 1;
+ erase_size <<= 1;
+ }
+ if(erase_size < PAGE_SIZE)
+ erase_size = PAGE_SIZE;
+ } else {
+ erase_size = CONFIG_MTD_BLKDEV_ERASESIZE;
+ }
+
+ *regions = 0;
+
+ do {
+ int tot_size = total_size;
+ int er_size = erase_size;
+ int count = 0, offset = 0, regcnt = 0;
+
+ while(tot_size) {
+ count = tot_size / er_size;
+ if(count) {
+ tot_size = tot_size % er_size;
+ if(info) {
+ DEBUG(2, "adding to erase info off=%d er=%d cnt=%d\n",
+ offset, er_size, count);
+ (info+regcnt)->offset = offset;
+ (info+regcnt)->erasesize = er_size;
+ (info+regcnt)->numblocks = count;
+ (*regions)++;
+ }
+ regcnt++;
+ offset += (count * er_size);
+ }
+ while(er_size > tot_size)
+ er_size >>= 1;
+ }
+ if(info == NULL) {
+ info = kmalloc(regcnt * sizeof(struct mtd_erase_region_info), GFP_KERNEL);
+ if(!info)
+ break;
+ }
+ } while(!(*regions));
+ DEBUG(2, "calc_erase_regions done, es = %zd size = %zd regions = %d\n",
+ erase_size, total_size, *regions);
+ return info;
+}
+
+
+extern dev_t __init name_to_dev_t(const char *line);
+
+static struct blkmtd_dev *add_device(char *devname, int readonly, int erase_size)
+{
+ struct block_device *bdev;
+ int mode;
+ struct blkmtd_dev *dev;
+
+ if(!devname)
+ return NULL;
+
+ /* Get a handle on the device */
+
+
+#ifdef MODULE
+ mode = (readonly) ? O_RDONLY : O_RDWR;
+ bdev = open_bdev_excl(devname, mode, NULL);
+#else
+ mode = (readonly) ? FMODE_READ : FMODE_WRITE;
+ bdev = open_by_devnum(name_to_dev_t(devname), mode);
+#endif
+ if(IS_ERR(bdev)) {
+ err("error: cannot open device %s", devname);
+ DEBUG(2, "blkmtd: opening bdev returned %ld\n", PTR_ERR(bdev));
+ return NULL;
+ }
+
+ DEBUG(1, "blkmtd: found a block device major = %d, minor = %d\n",
+ MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
+
+ if(MAJOR(bdev->bd_dev) == MTD_BLOCK_MAJOR) {
+ err("attempting to use an MTD device as a block device");
+ blkdev_put(bdev);
+ return NULL;
+ }
+
+ dev = kmalloc(sizeof(struct blkmtd_dev), GFP_KERNEL);
+ if(dev == NULL) {
+ blkdev_put(bdev);
+ return NULL;
+ }
+
+ memset(dev, 0, sizeof(struct blkmtd_dev));
+ dev->blkdev = bdev;
+ if(!readonly) {
+ init_MUTEX(&dev->wrbuf_mutex);
+ }
+
+ dev->mtd_info.size = dev->blkdev->bd_inode->i_size & PAGE_MASK;
+
+ /* Setup the MTD structure */
+ /* make the name contain the block device in */
+ dev->mtd_info.name = kmalloc(sizeof("blkmtd: ") + strlen(devname), GFP_KERNEL);
+ if(dev->mtd_info.name == NULL)
+ goto devinit_err;
+
+ sprintf(dev->mtd_info.name, "blkmtd: %s", devname);
+ dev->mtd_info.eraseregions = calc_erase_regions(erase_size, dev->mtd_info.size,
+ &dev->mtd_info.numeraseregions);
+ if(dev->mtd_info.eraseregions == NULL)
+ goto devinit_err;
+
+ dev->mtd_info.erasesize = dev->mtd_info.eraseregions->erasesize;
+ DEBUG(1, "blkmtd: init: found %d erase regions\n",
+ dev->mtd_info.numeraseregions);
+
+ if(readonly) {
+ dev->mtd_info.type = MTD_ROM;
+ dev->mtd_info.flags = MTD_CAP_ROM;
+ } else {
+ dev->mtd_info.type = MTD_RAM;
+ dev->mtd_info.flags = MTD_CAP_RAM;
+ dev->mtd_info.erase = blkmtd_erase;
+ dev->mtd_info.write = blkmtd_write;
+ dev->mtd_info.writev = default_mtd_writev;
+ dev->mtd_info.sync = blkmtd_sync;
+ }
+ dev->mtd_info.read = blkmtd_read;
+ dev->mtd_info.readv = default_mtd_readv;
+ dev->mtd_info.priv = dev;
+ dev->mtd_info.owner = THIS_MODULE;
+
+ list_add(&dev->list, &blkmtd_device_list);
+ if (add_mtd_device(&dev->mtd_info)) {
+ /* Device didnt get added, so free the entry */
+ list_del(&dev->list);
+ goto devinit_err;
+ } else {
+ info("mtd%d: [%s] erase_size = %dKiB %s",
+ dev->mtd_info.index, dev->mtd_info.name + strlen("blkmtd: "),
+ dev->mtd_info.erasesize >> 10,
+ readonly ? "(read-only)" : "");
+ }
+
+ return dev;
+
+ devinit_err:
+ free_device(dev);
+ return NULL;
+}
+
+
+/* Cleanup and exit - sync the device and kill of the kernel thread */
+static void __devexit cleanup_blkmtd(void)
+{
+ struct list_head *temp1, *temp2;
+
+ /* Remove the MTD devices */
+ list_for_each_safe(temp1, temp2, &blkmtd_device_list) {
+ struct blkmtd_dev *dev = list_entry(temp1, struct blkmtd_dev,
+ list);
+ blkmtd_sync(&dev->mtd_info);
+ del_mtd_device(&dev->mtd_info);
+ info("mtd%d: [%s] removed", dev->mtd_info.index,
+ dev->mtd_info.name + strlen("blkmtd: "));
+ list_del(&dev->list);
+ free_device(dev);
+ }
+}
+
+#ifndef MODULE
+
+/* Handle kernel boot params */
+
+
+static int __init param_blkmtd_device(char *str)
+{
+ int i;
+
+ for(i = 0; i < MAX_DEVICES; i++) {
+ device[i] = str;
+ DEBUG(2, "blkmtd: device setup: %d = %s\n", i, device[i]);
+ strsep(&str, ",");
+ }
+ return 1;
+}
+
+
+static int __init param_blkmtd_erasesz(char *str)
+{
+ int i;
+ for(i = 0; i < MAX_DEVICES; i++) {
+ char *val = strsep(&str, ",");
+ if(val)
+ erasesz[i] = simple_strtoul(val, NULL, 0);
+ DEBUG(2, "blkmtd: erasesz setup: %d = %d\n", i, erasesz[i]);
+ }
+
+ return 1;
+}
+
+
+static int __init param_blkmtd_ro(char *str)
+{
+ int i;
+ for(i = 0; i < MAX_DEVICES; i++) {
+ char *val = strsep(&str, ",");
+ if(val)
+ ro[i] = simple_strtoul(val, NULL, 0);
+ DEBUG(2, "blkmtd: ro setup: %d = %d\n", i, ro[i]);
+ }
+
+ return 1;
+}
+
+
+static int __init param_blkmtd_sync(char *str)
+{
+ if(str[0] == '1')
+ sync = 1;
+ return 1;
+}
+
+__setup("blkmtd_device=", param_blkmtd_device);
+__setup("blkmtd_erasesz=", param_blkmtd_erasesz);
+__setup("blkmtd_ro=", param_blkmtd_ro);
+__setup("blkmtd_sync=", param_blkmtd_sync);
+
+#endif
+
+
+/* Startup */
+static int __init init_blkmtd(void)
+{
+ int i;
+
+ info("version " VERSION);
+ /* Check args - device[0] is the bare minimum*/
+ if(!device[0]) {
+ err("error: missing `device' name\n");
+ return -EINVAL;
+ }
+
+ for(i = 0; i < MAX_DEVICES; i++)
+ add_device(device[i], ro[i], erasesz[i] << 10);
+
+ if(list_empty(&blkmtd_device_list))
+ return -EINVAL;
+
+ return 0;
+}
+
+module_init(init_blkmtd);
+module_exit(cleanup_blkmtd);
diff --git a/drivers/mtd/devices/block2mtd.c b/drivers/mtd/devices/block2mtd.c
new file mode 100644
index 000000000000..cfe6ccf07972
--- /dev/null
+++ b/drivers/mtd/devices/block2mtd.c
@@ -0,0 +1,495 @@
+/*
+ * $Id: block2mtd.c,v 1.23 2005/01/05 17:05:46 dwmw2 Exp $
+ *
+ * block2mtd.c - create an mtd from a block device
+ *
+ * Copyright (C) 2001,2002 Simon Evans <spse@secret.org.uk>
+ * Copyright (C) 2004 Gareth Bult <Gareth@Encryptec.net>
+ * Copyright (C) 2004,2005 Jörn Engel <joern@wh.fh-wedel.de>
+ *
+ * Licence: GPL
+ */
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/fs.h>
+#include <linux/blkdev.h>
+#include <linux/bio.h>
+#include <linux/pagemap.h>
+#include <linux/list.h>
+#include <linux/init.h>
+#include <linux/mtd/mtd.h>
+#include <linux/buffer_head.h>
+
+#define VERSION "$Revision: 1.23 $"
+
+
+#define ERROR(fmt, args...) printk(KERN_ERR "block2mtd: " fmt "\n" , ## args)
+#define INFO(fmt, args...) printk(KERN_INFO "block2mtd: " fmt "\n" , ## args)
+
+
+/* Info for the block device */
+struct block2mtd_dev {
+ struct list_head list;
+ struct block_device *blkdev;
+ struct mtd_info mtd;
+ struct semaphore write_mutex;
+};
+
+
+/* Static info about the MTD, used in cleanup_module */
+static LIST_HEAD(blkmtd_device_list);
+
+
+#define PAGE_READAHEAD 64
+void cache_readahead(struct address_space *mapping, int index)
+{
+ filler_t *filler = (filler_t*)mapping->a_ops->readpage;
+ int i, pagei;
+ unsigned ret = 0;
+ unsigned long end_index;
+ struct page *page;
+ LIST_HEAD(page_pool);
+ struct inode *inode = mapping->host;
+ loff_t isize = i_size_read(inode);
+
+ if (!isize) {
+ INFO("iSize=0 in cache_readahead\n");
+ return;
+ }
+
+ end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
+
+ read_lock_irq(&mapping->tree_lock);
+ for (i = 0; i < PAGE_READAHEAD; i++) {
+ pagei = index + i;
+ if (pagei > end_index) {
+ INFO("Overrun end of disk in cache readahead\n");
+ break;
+ }
+ page = radix_tree_lookup(&mapping->page_tree, pagei);
+ if (page && (!i))
+ break;
+ if (page)
+ continue;
+ read_unlock_irq(&mapping->tree_lock);
+ page = page_cache_alloc_cold(mapping);
+ read_lock_irq(&mapping->tree_lock);
+ if (!page)
+ break;
+ page->index = pagei;
+ list_add(&page->lru, &page_pool);
+ ret++;
+ }
+ read_unlock_irq(&mapping->tree_lock);
+ if (ret)
+ read_cache_pages(mapping, &page_pool, filler, NULL);
+}
+
+
+static struct page* page_readahead(struct address_space *mapping, int index)
+{
+ filler_t *filler = (filler_t*)mapping->a_ops->readpage;
+ //do_page_cache_readahead(mapping, index, XXX, 64);
+ cache_readahead(mapping, index);
+ return read_cache_page(mapping, index, filler, NULL);
+}
+
+
+/* erase a specified part of the device */
+static int _block2mtd_erase(struct block2mtd_dev *dev, loff_t to, size_t len)
+{
+ struct address_space *mapping = dev->blkdev->bd_inode->i_mapping;
+ struct page *page;
+ int index = to >> PAGE_SHIFT; // page index
+ int pages = len >> PAGE_SHIFT;
+ u_long *p;
+ u_long *max;
+
+ while (pages) {
+ page = page_readahead(mapping, index);
+ if (!page)
+ return -ENOMEM;
+ if (IS_ERR(page))
+ return PTR_ERR(page);
+
+ max = (u_long*)page_address(page) + PAGE_SIZE;
+ for (p=(u_long*)page_address(page); p<max; p++)
+ if (*p != -1UL) {
+ lock_page(page);
+ memset(page_address(page), 0xff, PAGE_SIZE);
+ set_page_dirty(page);
+ unlock_page(page);
+ break;
+ }
+
+ page_cache_release(page);
+ pages--;
+ index++;
+ }
+ return 0;
+}
+static int block2mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+ struct block2mtd_dev *dev = mtd->priv;
+ size_t from = instr->addr;
+ size_t len = instr->len;
+ int err;
+
+ instr->state = MTD_ERASING;
+ down(&dev->write_mutex);
+ err = _block2mtd_erase(dev, from, len);
+ up(&dev->write_mutex);
+ if (err) {
+ ERROR("erase failed err = %d", err);
+ instr->state = MTD_ERASE_FAILED;
+ } else
+ instr->state = MTD_ERASE_DONE;
+
+ instr->state = MTD_ERASE_DONE;
+ mtd_erase_callback(instr);
+ return err;
+}
+
+
+static int block2mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ struct block2mtd_dev *dev = mtd->priv;
+ struct page *page;
+ int index = from >> PAGE_SHIFT;
+ int offset = from & (PAGE_SHIFT-1);
+ int cpylen;
+
+ if (from > mtd->size)
+ return -EINVAL;
+ if (from + len > mtd->size)
+ len = mtd->size - from;
+
+ if (retlen)
+ *retlen = 0;
+
+ while (len) {
+ if ((offset + len) > PAGE_SIZE)
+ cpylen = PAGE_SIZE - offset; // multiple pages
+ else
+ cpylen = len; // this page
+ len = len - cpylen;
+
+ // Get page
+ page = page_readahead(dev->blkdev->bd_inode->i_mapping, index);
+ if (!page)
+ return -ENOMEM;
+ if (IS_ERR(page))
+ return PTR_ERR(page);
+
+ memcpy(buf, page_address(page) + offset, cpylen);
+ page_cache_release(page);
+
+ if (retlen)
+ *retlen += cpylen;
+ buf += cpylen;
+ offset = 0;
+ index++;
+ }
+ return 0;
+}
+
+
+/* write data to the underlying device */
+static int _block2mtd_write(struct block2mtd_dev *dev, const u_char *buf,
+ loff_t to, size_t len, size_t *retlen)
+{
+ struct page *page;
+ struct address_space *mapping = dev->blkdev->bd_inode->i_mapping;
+ int index = to >> PAGE_SHIFT; // page index
+ int offset = to & ~PAGE_MASK; // page offset
+ int cpylen;
+
+ if (retlen)
+ *retlen = 0;
+ while (len) {
+ if ((offset+len) > PAGE_SIZE)
+ cpylen = PAGE_SIZE - offset; // multiple pages
+ else
+ cpylen = len; // this page
+ len = len - cpylen;
+
+ // Get page
+ page = page_readahead(mapping, index);
+ if (!page)
+ return -ENOMEM;
+ if (IS_ERR(page))
+ return PTR_ERR(page);
+
+ if (memcmp(page_address(page)+offset, buf, cpylen)) {
+ lock_page(page);
+ memcpy(page_address(page) + offset, buf, cpylen);
+ set_page_dirty(page);
+ unlock_page(page);
+ }
+ page_cache_release(page);
+
+ if (retlen)
+ *retlen += cpylen;
+
+ buf += cpylen;
+ offset = 0;
+ index++;
+ }
+ return 0;
+}
+static int block2mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf)
+{
+ struct block2mtd_dev *dev = mtd->priv;
+ int err;
+
+ if (!len)
+ return 0;
+ if (to >= mtd->size)
+ return -ENOSPC;
+ if (to + len > mtd->size)
+ len = mtd->size - to;
+
+ down(&dev->write_mutex);
+ err = _block2mtd_write(dev, buf, to, len, retlen);
+ up(&dev->write_mutex);
+ if (err > 0)
+ err = 0;
+ return err;
+}
+
+
+/* sync the device - wait until the write queue is empty */
+static void block2mtd_sync(struct mtd_info *mtd)
+{
+ struct block2mtd_dev *dev = mtd->priv;
+ sync_blockdev(dev->blkdev);
+ return;
+}
+
+
+static void block2mtd_free_device(struct block2mtd_dev *dev)
+{
+ if (!dev)
+ return;
+
+ kfree(dev->mtd.name);
+
+ if (dev->blkdev) {
+ invalidate_inode_pages(dev->blkdev->bd_inode->i_mapping);
+ close_bdev_excl(dev->blkdev);
+ }
+
+ kfree(dev);
+}
+
+
+/* FIXME: ensure that mtd->size % erase_size == 0 */
+static struct block2mtd_dev *add_device(char *devname, int erase_size)
+{
+ struct block_device *bdev;
+ struct block2mtd_dev *dev;
+
+ if (!devname)
+ return NULL;
+
+ dev = kmalloc(sizeof(struct block2mtd_dev), GFP_KERNEL);
+ if (!dev)
+ return NULL;
+ memset(dev, 0, sizeof(*dev));
+
+ /* Get a handle on the device */
+ bdev = open_bdev_excl(devname, O_RDWR, NULL);
+ if (IS_ERR(bdev)) {
+ ERROR("error: cannot open device %s", devname);
+ goto devinit_err;
+ }
+ dev->blkdev = bdev;
+
+ if (MAJOR(bdev->bd_dev) == MTD_BLOCK_MAJOR) {
+ ERROR("attempting to use an MTD device as a block device");
+ goto devinit_err;
+ }
+
+ init_MUTEX(&dev->write_mutex);
+
+ /* Setup the MTD structure */
+ /* make the name contain the block device in */
+ dev->mtd.name = kmalloc(sizeof("block2mtd: ") + strlen(devname),
+ GFP_KERNEL);
+ if (!dev->mtd.name)
+ goto devinit_err;
+
+ sprintf(dev->mtd.name, "block2mtd: %s", devname);
+
+ dev->mtd.size = dev->blkdev->bd_inode->i_size & PAGE_MASK;
+ dev->mtd.erasesize = erase_size;
+ dev->mtd.type = MTD_RAM;
+ dev->mtd.flags = MTD_CAP_RAM;
+ dev->mtd.erase = block2mtd_erase;
+ dev->mtd.write = block2mtd_write;
+ dev->mtd.writev = default_mtd_writev;
+ dev->mtd.sync = block2mtd_sync;
+ dev->mtd.read = block2mtd_read;
+ dev->mtd.readv = default_mtd_readv;
+ dev->mtd.priv = dev;
+ dev->mtd.owner = THIS_MODULE;
+
+ if (add_mtd_device(&dev->mtd)) {
+ /* Device didnt get added, so free the entry */
+ goto devinit_err;
+ }
+ list_add(&dev->list, &blkmtd_device_list);
+ INFO("mtd%d: [%s] erase_size = %dKiB [%d]", dev->mtd.index,
+ dev->mtd.name + strlen("blkmtd: "),
+ dev->mtd.erasesize >> 10, dev->mtd.erasesize);
+ return dev;
+
+devinit_err:
+ block2mtd_free_device(dev);
+ return NULL;
+}
+
+
+static int ustrtoul(const char *cp, char **endp, unsigned int base)
+{
+ unsigned long result = simple_strtoul(cp, endp, base);
+ switch (**endp) {
+ case 'G' :
+ result *= 1024;
+ case 'M':
+ result *= 1024;
+ case 'k':
+ result *= 1024;
+ /* By dwmw2 editorial decree, "ki", "Mi" or "Gi" are to be used. */
+ if ((*endp)[1] == 'i')
+ (*endp) += 2;
+ }
+ return result;
+}
+
+
+static int parse_num32(u32 *num32, const char *token)
+{
+ char *endp;
+ unsigned long n;
+
+ n = ustrtoul(token, &endp, 0);
+ if (*endp)
+ return -EINVAL;
+
+ *num32 = n;
+ return 0;
+}
+
+
+static int parse_name(char **pname, const char *token, size_t limit)
+{
+ size_t len;
+ char *name;
+
+ len = strlen(token) + 1;
+ if (len > limit)
+ return -ENOSPC;
+
+ name = kmalloc(len, GFP_KERNEL);
+ if (!name)
+ return -ENOMEM;
+
+ strcpy(name, token);
+
+ *pname = name;
+ return 0;
+}
+
+
+static inline void kill_final_newline(char *str)
+{
+ char *newline = strrchr(str, '\n');
+ if (newline && !newline[1])
+ *newline = 0;
+}
+
+
+#define parse_err(fmt, args...) do { \
+ ERROR("block2mtd: " fmt "\n", ## args); \
+ return 0; \
+} while (0)
+
+static int block2mtd_setup(const char *val, struct kernel_param *kp)
+{
+ char buf[80+12], *str=buf; /* 80 for device, 12 for erase size */
+ char *token[2];
+ char *name;
+ u32 erase_size = PAGE_SIZE;
+ int i, ret;
+
+ if (strnlen(val, sizeof(buf)) >= sizeof(buf))
+ parse_err("parameter too long");
+
+ strcpy(str, val);
+ kill_final_newline(str);
+
+ for (i=0; i<2; i++)
+ token[i] = strsep(&str, ",");
+
+ if (str)
+ parse_err("too many arguments");
+
+ if (!token[0])
+ parse_err("no argument");
+
+ ret = parse_name(&name, token[0], 80);
+ if (ret == -ENOMEM)
+ parse_err("out of memory");
+ if (ret == -ENOSPC)
+ parse_err("name too long");
+ if (ret)
+ return 0;
+
+ if (token[1]) {
+ ret = parse_num32(&erase_size, token[1]);
+ if (ret)
+ parse_err("illegal erase size");
+ }
+
+ add_device(name, erase_size);
+
+ return 0;
+}
+
+
+module_param_call(block2mtd, block2mtd_setup, NULL, NULL, 0200);
+MODULE_PARM_DESC(block2mtd, "Device to use. \"block2mtd=<dev>[,<erasesize>]\"");
+
+static int __init block2mtd_init(void)
+{
+ INFO("version " VERSION);
+ return 0;
+}
+
+
+static void __devexit block2mtd_exit(void)
+{
+ struct list_head *pos, *next;
+
+ /* Remove the MTD devices */
+ list_for_each_safe(pos, next, &blkmtd_device_list) {
+ struct block2mtd_dev *dev = list_entry(pos, typeof(*dev), list);
+ block2mtd_sync(&dev->mtd);
+ del_mtd_device(&dev->mtd);
+ INFO("mtd%d: [%s] removed", dev->mtd.index,
+ dev->mtd.name + strlen("blkmtd: "));
+ list_del(&dev->list);
+ block2mtd_free_device(dev);
+ }
+}
+
+
+module_init(block2mtd_init);
+module_exit(block2mtd_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Simon Evans <spse@secret.org.uk> and others");
+MODULE_DESCRIPTION("Emulate an MTD using a block device");
diff --git a/drivers/mtd/devices/doc2000.c b/drivers/mtd/devices/doc2000.c
new file mode 100644
index 000000000000..5fc532895a24
--- /dev/null
+++ b/drivers/mtd/devices/doc2000.c
@@ -0,0 +1,1309 @@
+
+/*
+ * Linux driver for Disk-On-Chip 2000 and Millennium
+ * (c) 1999 Machine Vision Holdings, Inc.
+ * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
+ *
+ * $Id: doc2000.c,v 1.66 2005/01/05 18:05:12 dwmw2 Exp $
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <asm/errno.h>
+#include <asm/io.h>
+#include <asm/uaccess.h>
+#include <linux/miscdevice.h>
+#include <linux/pci.h>
+#include <linux/delay.h>
+#include <linux/slab.h>
+#include <linux/sched.h>
+#include <linux/init.h>
+#include <linux/types.h>
+#include <linux/bitops.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/doc2000.h>
+
+#define DOC_SUPPORT_2000
+#define DOC_SUPPORT_2000TSOP
+#define DOC_SUPPORT_MILLENNIUM
+
+#ifdef DOC_SUPPORT_2000
+#define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k)
+#else
+#define DoC_is_2000(doc) (0)
+#endif
+
+#if defined(DOC_SUPPORT_2000TSOP) || defined(DOC_SUPPORT_MILLENNIUM)
+#define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil)
+#else
+#define DoC_is_Millennium(doc) (0)
+#endif
+
+/* #define ECC_DEBUG */
+
+/* I have no idea why some DoC chips can not use memcpy_from|to_io().
+ * This may be due to the different revisions of the ASIC controller built-in or
+ * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment
+ * this:
+ #undef USE_MEMCPY
+*/
+
+static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf);
+static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf);
+static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel);
+static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel);
+static int doc_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs,
+ unsigned long count, loff_t to, size_t *retlen,
+ u_char *eccbuf, struct nand_oobinfo *oobsel);
+static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
+ size_t *retlen, u_char *buf);
+static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
+ size_t *retlen, const u_char *buf);
+static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
+ size_t *retlen, const u_char *buf);
+static int doc_erase (struct mtd_info *mtd, struct erase_info *instr);
+
+static struct mtd_info *doc2klist = NULL;
+
+/* Perform the required delay cycles by reading from the appropriate register */
+static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles)
+{
+ volatile char dummy;
+ int i;
+
+ for (i = 0; i < cycles; i++) {
+ if (DoC_is_Millennium(doc))
+ dummy = ReadDOC(doc->virtadr, NOP);
+ else
+ dummy = ReadDOC(doc->virtadr, DOCStatus);
+ }
+
+}
+
+/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
+static int _DoC_WaitReady(struct DiskOnChip *doc)
+{
+ void __iomem *docptr = doc->virtadr;
+ unsigned long timeo = jiffies + (HZ * 10);
+
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "_DoC_WaitReady called for out-of-line wait\n");
+
+ /* Out-of-line routine to wait for chip response */
+ while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
+ /* issue 2 read from NOP register after reading from CDSNControl register
+ see Software Requirement 11.4 item 2. */
+ DoC_Delay(doc, 2);
+
+ if (time_after(jiffies, timeo)) {
+ DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n");
+ return -EIO;
+ }
+ udelay(1);
+ cond_resched();
+ }
+
+ return 0;
+}
+
+static inline int DoC_WaitReady(struct DiskOnChip *doc)
+{
+ void __iomem *docptr = doc->virtadr;
+
+ /* This is inline, to optimise the common case, where it's ready instantly */
+ int ret = 0;
+
+ /* 4 read form NOP register should be issued in prior to the read from CDSNControl
+ see Software Requirement 11.4 item 2. */
+ DoC_Delay(doc, 4);
+
+ if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
+ /* Call the out-of-line routine to wait */
+ ret = _DoC_WaitReady(doc);
+
+ /* issue 2 read from NOP register after reading from CDSNControl register
+ see Software Requirement 11.4 item 2. */
+ DoC_Delay(doc, 2);
+
+ return ret;
+}
+
+/* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to
+ bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
+ required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
+
+static inline int DoC_Command(struct DiskOnChip *doc, unsigned char command,
+ unsigned char xtraflags)
+{
+ void __iomem *docptr = doc->virtadr;
+
+ if (DoC_is_2000(doc))
+ xtraflags |= CDSN_CTRL_FLASH_IO;
+
+ /* Assert the CLE (Command Latch Enable) line to the flash chip */
+ WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
+ DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
+
+ if (DoC_is_Millennium(doc))
+ WriteDOC(command, docptr, CDSNSlowIO);
+
+ /* Send the command */
+ WriteDOC_(command, docptr, doc->ioreg);
+ if (DoC_is_Millennium(doc))
+ WriteDOC(command, docptr, WritePipeTerm);
+
+ /* Lower the CLE line */
+ WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
+ DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
+
+ /* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */
+ return DoC_WaitReady(doc);
+}
+
+/* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to
+ bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
+ required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
+
+static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs,
+ unsigned char xtraflags1, unsigned char xtraflags2)
+{
+ int i;
+ void __iomem *docptr = doc->virtadr;
+
+ if (DoC_is_2000(doc))
+ xtraflags1 |= CDSN_CTRL_FLASH_IO;
+
+ /* Assert the ALE (Address Latch Enable) line to the flash chip */
+ WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
+
+ DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
+
+ /* Send the address */
+ /* Devices with 256-byte page are addressed as:
+ Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
+ * there is no device on the market with page256
+ and more than 24 bits.
+ Devices with 512-byte page are addressed as:
+ Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
+ * 25-31 is sent only if the chip support it.
+ * bit 8 changes the read command to be sent
+ (NAND_CMD_READ0 or NAND_CMD_READ1).
+ */
+
+ if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) {
+ if (DoC_is_Millennium(doc))
+ WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
+ WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
+ }
+
+ if (doc->page256) {
+ ofs = ofs >> 8;
+ } else {
+ ofs = ofs >> 9;
+ }
+
+ if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
+ for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) {
+ if (DoC_is_Millennium(doc))
+ WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
+ WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
+ }
+ }
+
+ if (DoC_is_Millennium(doc))
+ WriteDOC(ofs & 0xff, docptr, WritePipeTerm);
+
+ DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */
+
+ /* FIXME: The SlowIO's for millennium could be replaced by
+ a single WritePipeTerm here. mf. */
+
+ /* Lower the ALE line */
+ WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr,
+ CDSNControl);
+
+ DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
+
+ /* Wait for the chip to respond - Software requirement 11.4.1 */
+ return DoC_WaitReady(doc);
+}
+
+/* Read a buffer from DoC, taking care of Millennium odditys */
+static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len)
+{
+ volatile int dummy;
+ int modulus = 0xffff;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (len <= 0)
+ return;
+
+ if (DoC_is_Millennium(doc)) {
+ /* Read the data via the internal pipeline through CDSN IO register,
+ see Pipelined Read Operations 11.3 */
+ dummy = ReadDOC(docptr, ReadPipeInit);
+
+ /* Millennium should use the LastDataRead register - Pipeline Reads */
+ len--;
+
+ /* This is needed for correctly ECC calculation */
+ modulus = 0xff;
+ }
+
+ for (i = 0; i < len; i++)
+ buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus));
+
+ if (DoC_is_Millennium(doc)) {
+ buf[i] = ReadDOC(docptr, LastDataRead);
+ }
+}
+
+/* Write a buffer to DoC, taking care of Millennium odditys */
+static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len)
+{
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (len <= 0)
+ return;
+
+ for (i = 0; i < len; i++)
+ WriteDOC_(buf[i], docptr, doc->ioreg + i);
+
+ if (DoC_is_Millennium(doc)) {
+ WriteDOC(0x00, docptr, WritePipeTerm);
+ }
+}
+
+
+/* DoC_SelectChip: Select a given flash chip within the current floor */
+
+static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip)
+{
+ void __iomem *docptr = doc->virtadr;
+
+ /* Software requirement 11.4.4 before writing DeviceSelect */
+ /* Deassert the CE line to eliminate glitches on the FCE# outputs */
+ WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl);
+ DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
+
+ /* Select the individual flash chip requested */
+ WriteDOC(chip, docptr, CDSNDeviceSelect);
+ DoC_Delay(doc, 4);
+
+ /* Reassert the CE line */
+ WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr,
+ CDSNControl);
+ DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
+
+ /* Wait for it to be ready */
+ return DoC_WaitReady(doc);
+}
+
+/* DoC_SelectFloor: Select a given floor (bank of flash chips) */
+
+static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor)
+{
+ void __iomem *docptr = doc->virtadr;
+
+ /* Select the floor (bank) of chips required */
+ WriteDOC(floor, docptr, FloorSelect);
+
+ /* Wait for the chip to be ready */
+ return DoC_WaitReady(doc);
+}
+
+/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
+
+static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
+{
+ int mfr, id, i, j;
+ volatile char dummy;
+
+ /* Page in the required floor/chip */
+ DoC_SelectFloor(doc, floor);
+ DoC_SelectChip(doc, chip);
+
+ /* Reset the chip */
+ if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) {
+ DEBUG(MTD_DEBUG_LEVEL2,
+ "DoC_Command (reset) for %d,%d returned true\n",
+ floor, chip);
+ return 0;
+ }
+
+
+ /* Read the NAND chip ID: 1. Send ReadID command */
+ if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) {
+ DEBUG(MTD_DEBUG_LEVEL2,
+ "DoC_Command (ReadID) for %d,%d returned true\n",
+ floor, chip);
+ return 0;
+ }
+
+ /* Read the NAND chip ID: 2. Send address byte zero */
+ DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0);
+
+ /* Read the manufacturer and device id codes from the device */
+
+ if (DoC_is_Millennium(doc)) {
+ DoC_Delay(doc, 2);
+ dummy = ReadDOC(doc->virtadr, ReadPipeInit);
+ mfr = ReadDOC(doc->virtadr, LastDataRead);
+
+ DoC_Delay(doc, 2);
+ dummy = ReadDOC(doc->virtadr, ReadPipeInit);
+ id = ReadDOC(doc->virtadr, LastDataRead);
+ } else {
+ /* CDSN Slow IO register see Software Req 11.4 item 5. */
+ dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
+ DoC_Delay(doc, 2);
+ mfr = ReadDOC_(doc->virtadr, doc->ioreg);
+
+ /* CDSN Slow IO register see Software Req 11.4 item 5. */
+ dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
+ DoC_Delay(doc, 2);
+ id = ReadDOC_(doc->virtadr, doc->ioreg);
+ }
+
+ /* No response - return failure */
+ if (mfr == 0xff || mfr == 0)
+ return 0;
+
+ /* Check it's the same as the first chip we identified.
+ * M-Systems say that any given DiskOnChip device should only
+ * contain _one_ type of flash part, although that's not a
+ * hardware restriction. */
+ if (doc->mfr) {
+ if (doc->mfr == mfr && doc->id == id)
+ return 1; /* This is another the same the first */
+ else
+ printk(KERN_WARNING
+ "Flash chip at floor %d, chip %d is different:\n",
+ floor, chip);
+ }
+
+ /* Print and store the manufacturer and ID codes. */
+ for (i = 0; nand_flash_ids[i].name != NULL; i++) {
+ if (id == nand_flash_ids[i].id) {
+ /* Try to identify manufacturer */
+ for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
+ if (nand_manuf_ids[j].id == mfr)
+ break;
+ }
+ printk(KERN_INFO
+ "Flash chip found: Manufacturer ID: %2.2X, "
+ "Chip ID: %2.2X (%s:%s)\n", mfr, id,
+ nand_manuf_ids[j].name, nand_flash_ids[i].name);
+ if (!doc->mfr) {
+ doc->mfr = mfr;
+ doc->id = id;
+ doc->chipshift =
+ ffs((nand_flash_ids[i].chipsize << 20)) - 1;
+ doc->page256 = (nand_flash_ids[i].pagesize == 256) ? 1 : 0;
+ doc->pageadrlen = doc->chipshift > 25 ? 3 : 2;
+ doc->erasesize =
+ nand_flash_ids[i].erasesize;
+ return 1;
+ }
+ return 0;
+ }
+ }
+
+
+ /* We haven't fully identified the chip. Print as much as we know. */
+ printk(KERN_WARNING "Unknown flash chip found: %2.2X %2.2X\n",
+ id, mfr);
+
+ printk(KERN_WARNING "Please report to dwmw2@infradead.org\n");
+ return 0;
+}
+
+/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
+
+static void DoC_ScanChips(struct DiskOnChip *this, int maxchips)
+{
+ int floor, chip;
+ int numchips[MAX_FLOORS];
+ int ret = 1;
+
+ this->numchips = 0;
+ this->mfr = 0;
+ this->id = 0;
+
+ /* For each floor, find the number of valid chips it contains */
+ for (floor = 0; floor < MAX_FLOORS; floor++) {
+ ret = 1;
+ numchips[floor] = 0;
+ for (chip = 0; chip < maxchips && ret != 0; chip++) {
+
+ ret = DoC_IdentChip(this, floor, chip);
+ if (ret) {
+ numchips[floor]++;
+ this->numchips++;
+ }
+ }
+ }
+
+ /* If there are none at all that we recognise, bail */
+ if (!this->numchips) {
+ printk(KERN_NOTICE "No flash chips recognised.\n");
+ return;
+ }
+
+ /* Allocate an array to hold the information for each chip */
+ this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL);
+ if (!this->chips) {
+ printk(KERN_NOTICE "No memory for allocating chip info structures\n");
+ return;
+ }
+
+ ret = 0;
+
+ /* Fill out the chip array with {floor, chipno} for each
+ * detected chip in the device. */
+ for (floor = 0; floor < MAX_FLOORS; floor++) {
+ for (chip = 0; chip < numchips[floor]; chip++) {
+ this->chips[ret].floor = floor;
+ this->chips[ret].chip = chip;
+ this->chips[ret].curadr = 0;
+ this->chips[ret].curmode = 0x50;
+ ret++;
+ }
+ }
+
+ /* Calculate and print the total size of the device */
+ this->totlen = this->numchips * (1 << this->chipshift);
+
+ printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n",
+ this->numchips, this->totlen >> 20);
+}
+
+static int DoC2k_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2)
+{
+ int tmp1, tmp2, retval;
+ if (doc1->physadr == doc2->physadr)
+ return 1;
+
+ /* Use the alias resolution register which was set aside for this
+ * purpose. If it's value is the same on both chips, they might
+ * be the same chip, and we write to one and check for a change in
+ * the other. It's unclear if this register is usuable in the
+ * DoC 2000 (it's in the Millennium docs), but it seems to work. */
+ tmp1 = ReadDOC(doc1->virtadr, AliasResolution);
+ tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
+ if (tmp1 != tmp2)
+ return 0;
+
+ WriteDOC((tmp1 + 1) % 0xff, doc1->virtadr, AliasResolution);
+ tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
+ if (tmp2 == (tmp1 + 1) % 0xff)
+ retval = 1;
+ else
+ retval = 0;
+
+ /* Restore register contents. May not be necessary, but do it just to
+ * be safe. */
+ WriteDOC(tmp1, doc1->virtadr, AliasResolution);
+
+ return retval;
+}
+
+static const char im_name[] = "DoC2k_init";
+
+/* This routine is made available to other mtd code via
+ * inter_module_register. It must only be accessed through
+ * inter_module_get which will bump the use count of this module. The
+ * addresses passed back in mtd are valid as long as the use count of
+ * this module is non-zero, i.e. between inter_module_get and
+ * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
+ */
+static void DoC2k_init(struct mtd_info *mtd)
+{
+ struct DiskOnChip *this = mtd->priv;
+ struct DiskOnChip *old = NULL;
+ int maxchips;
+
+ /* We must avoid being called twice for the same device. */
+
+ if (doc2klist)
+ old = doc2klist->priv;
+
+ while (old) {
+ if (DoC2k_is_alias(old, this)) {
+ printk(KERN_NOTICE
+ "Ignoring DiskOnChip 2000 at 0x%lX - already configured\n",
+ this->physadr);
+ iounmap(this->virtadr);
+ kfree(mtd);
+ return;
+ }
+ if (old->nextdoc)
+ old = old->nextdoc->priv;
+ else
+ old = NULL;
+ }
+
+
+ switch (this->ChipID) {
+ case DOC_ChipID_Doc2kTSOP:
+ mtd->name = "DiskOnChip 2000 TSOP";
+ this->ioreg = DoC_Mil_CDSN_IO;
+ /* Pretend it's a Millennium */
+ this->ChipID = DOC_ChipID_DocMil;
+ maxchips = MAX_CHIPS;
+ break;
+ case DOC_ChipID_Doc2k:
+ mtd->name = "DiskOnChip 2000";
+ this->ioreg = DoC_2k_CDSN_IO;
+ maxchips = MAX_CHIPS;
+ break;
+ case DOC_ChipID_DocMil:
+ mtd->name = "DiskOnChip Millennium";
+ this->ioreg = DoC_Mil_CDSN_IO;
+ maxchips = MAX_CHIPS_MIL;
+ break;
+ default:
+ printk("Unknown ChipID 0x%02x\n", this->ChipID);
+ kfree(mtd);
+ iounmap(this->virtadr);
+ return;
+ }
+
+ printk(KERN_NOTICE "%s found at address 0x%lX\n", mtd->name,
+ this->physadr);
+
+ mtd->type = MTD_NANDFLASH;
+ mtd->flags = MTD_CAP_NANDFLASH;
+ mtd->ecctype = MTD_ECC_RS_DiskOnChip;
+ mtd->size = 0;
+ mtd->erasesize = 0;
+ mtd->oobblock = 512;
+ mtd->oobsize = 16;
+ mtd->owner = THIS_MODULE;
+ mtd->erase = doc_erase;
+ mtd->point = NULL;
+ mtd->unpoint = NULL;
+ mtd->read = doc_read;
+ mtd->write = doc_write;
+ mtd->read_ecc = doc_read_ecc;
+ mtd->write_ecc = doc_write_ecc;
+ mtd->writev_ecc = doc_writev_ecc;
+ mtd->read_oob = doc_read_oob;
+ mtd->write_oob = doc_write_oob;
+ mtd->sync = NULL;
+
+ this->totlen = 0;
+ this->numchips = 0;
+
+ this->curfloor = -1;
+ this->curchip = -1;
+ init_MUTEX(&this->lock);
+
+ /* Ident all the chips present. */
+ DoC_ScanChips(this, maxchips);
+
+ if (!this->totlen) {
+ kfree(mtd);
+ iounmap(this->virtadr);
+ } else {
+ this->nextdoc = doc2klist;
+ doc2klist = mtd;
+ mtd->size = this->totlen;
+ mtd->erasesize = this->erasesize;
+ add_mtd_device(mtd);
+ return;
+ }
+}
+
+static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t * retlen, u_char * buf)
+{
+ /* Just a special case of doc_read_ecc */
+ return doc_read_ecc(mtd, from, len, retlen, buf, NULL, NULL);
+}
+
+static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
+{
+ struct DiskOnChip *this = mtd->priv;
+ void __iomem *docptr = this->virtadr;
+ struct Nand *mychip;
+ unsigned char syndrome[6];
+ volatile char dummy;
+ int i, len256 = 0, ret=0;
+ size_t left = len;
+
+ /* Don't allow read past end of device */
+ if (from >= this->totlen)
+ return -EINVAL;
+
+ down(&this->lock);
+
+ *retlen = 0;
+ while (left) {
+ len = left;
+
+ /* Don't allow a single read to cross a 512-byte block boundary */
+ if (from + len > ((from | 0x1ff) + 1))
+ len = ((from | 0x1ff) + 1) - from;
+
+ /* The ECC will not be calculated correctly if less than 512 is read */
+ if (len != 0x200 && eccbuf)
+ printk(KERN_WARNING
+ "ECC needs a full sector read (adr: %lx size %lx)\n",
+ (long) from, (long) len);
+
+ /* printk("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); */
+
+
+ /* Find the chip which is to be used and select it */
+ mychip = &this->chips[from >> (this->chipshift)];
+
+ if (this->curfloor != mychip->floor) {
+ DoC_SelectFloor(this, mychip->floor);
+ DoC_SelectChip(this, mychip->chip);
+ } else if (this->curchip != mychip->chip) {
+ DoC_SelectChip(this, mychip->chip);
+ }
+
+ this->curfloor = mychip->floor;
+ this->curchip = mychip->chip;
+
+ DoC_Command(this,
+ (!this->page256
+ && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
+ CDSN_CTRL_WP);
+ DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP,
+ CDSN_CTRL_ECC_IO);
+
+ if (eccbuf) {
+ /* Prime the ECC engine */
+ WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
+ WriteDOC(DOC_ECC_EN, docptr, ECCConf);
+ } else {
+ /* disable the ECC engine */
+ WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
+ WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
+ }
+
+ /* treat crossing 256-byte sector for 2M x 8bits devices */
+ if (this->page256 && from + len > (from | 0xff) + 1) {
+ len256 = (from | 0xff) + 1 - from;
+ DoC_ReadBuf(this, buf, len256);
+
+ DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP);
+ DoC_Address(this, ADDR_COLUMN_PAGE, from + len256,
+ CDSN_CTRL_WP, CDSN_CTRL_ECC_IO);
+ }
+
+ DoC_ReadBuf(this, &buf[len256], len - len256);
+
+ /* Let the caller know we completed it */
+ *retlen += len;
+
+ if (eccbuf) {
+ /* Read the ECC data through the DiskOnChip ECC logic */
+ /* Note: this will work even with 2M x 8bit devices as */
+ /* they have 8 bytes of OOB per 256 page. mf. */
+ DoC_ReadBuf(this, eccbuf, 6);
+
+ /* Flush the pipeline */
+ if (DoC_is_Millennium(this)) {
+ dummy = ReadDOC(docptr, ECCConf);
+ dummy = ReadDOC(docptr, ECCConf);
+ i = ReadDOC(docptr, ECCConf);
+ } else {
+ dummy = ReadDOC(docptr, 2k_ECCStatus);
+ dummy = ReadDOC(docptr, 2k_ECCStatus);
+ i = ReadDOC(docptr, 2k_ECCStatus);
+ }
+
+ /* Check the ECC Status */
+ if (i & 0x80) {
+ int nb_errors;
+ /* There was an ECC error */
+#ifdef ECC_DEBUG
+ printk(KERN_ERR "DiskOnChip ECC Error: Read at %lx\n", (long)from);
+#endif
+ /* Read the ECC syndrom through the DiskOnChip ECC logic.
+ These syndrome will be all ZERO when there is no error */
+ for (i = 0; i < 6; i++) {
+ syndrome[i] =
+ ReadDOC(docptr, ECCSyndrome0 + i);
+ }
+ nb_errors = doc_decode_ecc(buf, syndrome);
+
+#ifdef ECC_DEBUG
+ printk(KERN_ERR "Errors corrected: %x\n", nb_errors);
+#endif
+ if (nb_errors < 0) {
+ /* We return error, but have actually done the read. Not that
+ this can be told to user-space, via sys_read(), but at least
+ MTD-aware stuff can know about it by checking *retlen */
+ ret = -EIO;
+ }
+ }
+
+#ifdef PSYCHO_DEBUG
+ printk(KERN_DEBUG "ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
+ (long)from, eccbuf[0], eccbuf[1], eccbuf[2],
+ eccbuf[3], eccbuf[4], eccbuf[5]);
+#endif
+
+ /* disable the ECC engine */
+ WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
+ }
+
+ /* according to 11.4.1, we need to wait for the busy line
+ * drop if we read to the end of the page. */
+ if(0 == ((from + len) & 0x1ff))
+ {
+ DoC_WaitReady(this);
+ }
+
+ from += len;
+ left -= len;
+ buf += len;
+ }
+
+ up(&this->lock);
+
+ return ret;
+}
+
+static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t * retlen, const u_char * buf)
+{
+ char eccbuf[6];
+ return doc_write_ecc(mtd, to, len, retlen, buf, eccbuf, NULL);
+}
+
+static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t * retlen, const u_char * buf,
+ u_char * eccbuf, struct nand_oobinfo *oobsel)
+{
+ struct DiskOnChip *this = mtd->priv;
+ int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */
+ void __iomem *docptr = this->virtadr;
+ volatile char dummy;
+ int len256 = 0;
+ struct Nand *mychip;
+ size_t left = len;
+ int status;
+
+ /* Don't allow write past end of device */
+ if (to >= this->totlen)
+ return -EINVAL;
+
+ down(&this->lock);
+
+ *retlen = 0;
+ while (left) {
+ len = left;
+
+ /* Don't allow a single write to cross a 512-byte block boundary */
+ if (to + len > ((to | 0x1ff) + 1))
+ len = ((to | 0x1ff) + 1) - to;
+
+ /* The ECC will not be calculated correctly if less than 512 is written */
+/* DBB-
+ if (len != 0x200 && eccbuf)
+ printk(KERN_WARNING
+ "ECC needs a full sector write (adr: %lx size %lx)\n",
+ (long) to, (long) len);
+ -DBB */
+
+ /* printk("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */
+
+ /* Find the chip which is to be used and select it */
+ mychip = &this->chips[to >> (this->chipshift)];
+
+ if (this->curfloor != mychip->floor) {
+ DoC_SelectFloor(this, mychip->floor);
+ DoC_SelectChip(this, mychip->chip);
+ } else if (this->curchip != mychip->chip) {
+ DoC_SelectChip(this, mychip->chip);
+ }
+
+ this->curfloor = mychip->floor;
+ this->curchip = mychip->chip;
+
+ /* Set device to main plane of flash */
+ DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
+ DoC_Command(this,
+ (!this->page256
+ && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
+ CDSN_CTRL_WP);
+
+ DoC_Command(this, NAND_CMD_SEQIN, 0);
+ DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO);
+
+ if (eccbuf) {
+ /* Prime the ECC engine */
+ WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
+ WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
+ } else {
+ /* disable the ECC engine */
+ WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
+ WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
+ }
+
+ /* treat crossing 256-byte sector for 2M x 8bits devices */
+ if (this->page256 && to + len > (to | 0xff) + 1) {
+ len256 = (to | 0xff) + 1 - to;
+ DoC_WriteBuf(this, buf, len256);
+
+ DoC_Command(this, NAND_CMD_PAGEPROG, 0);
+
+ DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
+ /* There's an implicit DoC_WaitReady() in DoC_Command */
+
+ dummy = ReadDOC(docptr, CDSNSlowIO);
+ DoC_Delay(this, 2);
+
+ if (ReadDOC_(docptr, this->ioreg) & 1) {
+ printk(KERN_ERR "Error programming flash\n");
+ /* Error in programming */
+ *retlen = 0;
+ up(&this->lock);
+ return -EIO;
+ }
+
+ DoC_Command(this, NAND_CMD_SEQIN, 0);
+ DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0,
+ CDSN_CTRL_ECC_IO);
+ }
+
+ DoC_WriteBuf(this, &buf[len256], len - len256);
+
+ if (eccbuf) {
+ WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr,
+ CDSNControl);
+
+ if (DoC_is_Millennium(this)) {
+ WriteDOC(0, docptr, NOP);
+ WriteDOC(0, docptr, NOP);
+ WriteDOC(0, docptr, NOP);
+ } else {
+ WriteDOC_(0, docptr, this->ioreg);
+ WriteDOC_(0, docptr, this->ioreg);
+ WriteDOC_(0, docptr, this->ioreg);
+ }
+
+ WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_FLASH_IO | CDSN_CTRL_CE, docptr,
+ CDSNControl);
+
+ /* Read the ECC data through the DiskOnChip ECC logic */
+ for (di = 0; di < 6; di++) {
+ eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di);
+ }
+
+ /* Reset the ECC engine */
+ WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
+
+#ifdef PSYCHO_DEBUG
+ printk
+ ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
+ (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
+ eccbuf[4], eccbuf[5]);
+#endif
+ }
+
+ DoC_Command(this, NAND_CMD_PAGEPROG, 0);
+
+ DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
+ /* There's an implicit DoC_WaitReady() in DoC_Command */
+
+ if (DoC_is_Millennium(this)) {
+ ReadDOC(docptr, ReadPipeInit);
+ status = ReadDOC(docptr, LastDataRead);
+ } else {
+ dummy = ReadDOC(docptr, CDSNSlowIO);
+ DoC_Delay(this, 2);
+ status = ReadDOC_(docptr, this->ioreg);
+ }
+
+ if (status & 1) {
+ printk(KERN_ERR "Error programming flash\n");
+ /* Error in programming */
+ *retlen = 0;
+ up(&this->lock);
+ return -EIO;
+ }
+
+ /* Let the caller know we completed it */
+ *retlen += len;
+
+ if (eccbuf) {
+ unsigned char x[8];
+ size_t dummy;
+ int ret;
+
+ /* Write the ECC data to flash */
+ for (di=0; di<6; di++)
+ x[di] = eccbuf[di];
+
+ x[6]=0x55;
+ x[7]=0x55;
+
+ ret = doc_write_oob_nolock(mtd, to, 8, &dummy, x);
+ if (ret) {
+ up(&this->lock);
+ return ret;
+ }
+ }
+
+ to += len;
+ left -= len;
+ buf += len;
+ }
+
+ up(&this->lock);
+ return 0;
+}
+
+static int doc_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs,
+ unsigned long count, loff_t to, size_t *retlen,
+ u_char *eccbuf, struct nand_oobinfo *oobsel)
+{
+ static char static_buf[512];
+ static DECLARE_MUTEX(writev_buf_sem);
+
+ size_t totretlen = 0;
+ size_t thisvecofs = 0;
+ int ret= 0;
+
+ down(&writev_buf_sem);
+
+ while(count) {
+ size_t thislen, thisretlen;
+ unsigned char *buf;
+
+ buf = vecs->iov_base + thisvecofs;
+ thislen = vecs->iov_len - thisvecofs;
+
+
+ if (thislen >= 512) {
+ thislen = thislen & ~(512-1);
+ thisvecofs += thislen;
+ } else {
+ /* Not enough to fill a page. Copy into buf */
+ memcpy(static_buf, buf, thislen);
+ buf = &static_buf[thislen];
+
+ while(count && thislen < 512) {
+ vecs++;
+ count--;
+ thisvecofs = min((512-thislen), vecs->iov_len);
+ memcpy(buf, vecs->iov_base, thisvecofs);
+ thislen += thisvecofs;
+ buf += thisvecofs;
+ }
+ buf = static_buf;
+ }
+ if (count && thisvecofs == vecs->iov_len) {
+ thisvecofs = 0;
+ vecs++;
+ count--;
+ }
+ ret = doc_write_ecc(mtd, to, thislen, &thisretlen, buf, eccbuf, oobsel);
+
+ totretlen += thisretlen;
+
+ if (ret || thisretlen != thislen)
+ break;
+
+ to += thislen;
+ }
+
+ up(&writev_buf_sem);
+ *retlen = totretlen;
+ return ret;
+}
+
+
+static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
+ size_t * retlen, u_char * buf)
+{
+ struct DiskOnChip *this = mtd->priv;
+ int len256 = 0, ret;
+ struct Nand *mychip;
+
+ down(&this->lock);
+
+ mychip = &this->chips[ofs >> this->chipshift];
+
+ if (this->curfloor != mychip->floor) {
+ DoC_SelectFloor(this, mychip->floor);
+ DoC_SelectChip(this, mychip->chip);
+ } else if (this->curchip != mychip->chip) {
+ DoC_SelectChip(this, mychip->chip);
+ }
+ this->curfloor = mychip->floor;
+ this->curchip = mychip->chip;
+
+ /* update address for 2M x 8bit devices. OOB starts on the second */
+ /* page to maintain compatibility with doc_read_ecc. */
+ if (this->page256) {
+ if (!(ofs & 0x8))
+ ofs += 0x100;
+ else
+ ofs -= 0x8;
+ }
+
+ DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
+ DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0);
+
+ /* treat crossing 8-byte OOB data for 2M x 8bit devices */
+ /* Note: datasheet says it should automaticaly wrap to the */
+ /* next OOB block, but it didn't work here. mf. */
+ if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
+ len256 = (ofs | 0x7) + 1 - ofs;
+ DoC_ReadBuf(this, buf, len256);
+
+ DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
+ DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff),
+ CDSN_CTRL_WP, 0);
+ }
+
+ DoC_ReadBuf(this, &buf[len256], len - len256);
+
+ *retlen = len;
+ /* Reading the full OOB data drops us off of the end of the page,
+ * causing the flash device to go into busy mode, so we need
+ * to wait until ready 11.4.1 and Toshiba TC58256FT docs */
+
+ ret = DoC_WaitReady(this);
+
+ up(&this->lock);
+ return ret;
+
+}
+
+static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
+ size_t * retlen, const u_char * buf)
+{
+ struct DiskOnChip *this = mtd->priv;
+ int len256 = 0;
+ void __iomem *docptr = this->virtadr;
+ struct Nand *mychip = &this->chips[ofs >> this->chipshift];
+ volatile int dummy;
+ int status;
+
+ // printk("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",(long)ofs, len,
+ // buf[0], buf[1], buf[2], buf[3], buf[8], buf[9], buf[14],buf[15]);
+
+ /* Find the chip which is to be used and select it */
+ if (this->curfloor != mychip->floor) {
+ DoC_SelectFloor(this, mychip->floor);
+ DoC_SelectChip(this, mychip->chip);
+ } else if (this->curchip != mychip->chip) {
+ DoC_SelectChip(this, mychip->chip);
+ }
+ this->curfloor = mychip->floor;
+ this->curchip = mychip->chip;
+
+ /* disable the ECC engine */
+ WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
+ WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
+
+ /* Reset the chip, see Software Requirement 11.4 item 1. */
+ DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
+
+ /* issue the Read2 command to set the pointer to the Spare Data Area. */
+ DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
+
+ /* update address for 2M x 8bit devices. OOB starts on the second */
+ /* page to maintain compatibility with doc_read_ecc. */
+ if (this->page256) {
+ if (!(ofs & 0x8))
+ ofs += 0x100;
+ else
+ ofs -= 0x8;
+ }
+
+ /* issue the Serial Data In command to initial the Page Program process */
+ DoC_Command(this, NAND_CMD_SEQIN, 0);
+ DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0);
+
+ /* treat crossing 8-byte OOB data for 2M x 8bit devices */
+ /* Note: datasheet says it should automaticaly wrap to the */
+ /* next OOB block, but it didn't work here. mf. */
+ if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
+ len256 = (ofs | 0x7) + 1 - ofs;
+ DoC_WriteBuf(this, buf, len256);
+
+ DoC_Command(this, NAND_CMD_PAGEPROG, 0);
+ DoC_Command(this, NAND_CMD_STATUS, 0);
+ /* DoC_WaitReady() is implicit in DoC_Command */
+
+ if (DoC_is_Millennium(this)) {
+ ReadDOC(docptr, ReadPipeInit);
+ status = ReadDOC(docptr, LastDataRead);
+ } else {
+ dummy = ReadDOC(docptr, CDSNSlowIO);
+ DoC_Delay(this, 2);
+ status = ReadDOC_(docptr, this->ioreg);
+ }
+
+ if (status & 1) {
+ printk(KERN_ERR "Error programming oob data\n");
+ /* There was an error */
+ *retlen = 0;
+ return -EIO;
+ }
+ DoC_Command(this, NAND_CMD_SEQIN, 0);
+ DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0);
+ }
+
+ DoC_WriteBuf(this, &buf[len256], len - len256);
+
+ DoC_Command(this, NAND_CMD_PAGEPROG, 0);
+ DoC_Command(this, NAND_CMD_STATUS, 0);
+ /* DoC_WaitReady() is implicit in DoC_Command */
+
+ if (DoC_is_Millennium(this)) {
+ ReadDOC(docptr, ReadPipeInit);
+ status = ReadDOC(docptr, LastDataRead);
+ } else {
+ dummy = ReadDOC(docptr, CDSNSlowIO);
+ DoC_Delay(this, 2);
+ status = ReadDOC_(docptr, this->ioreg);
+ }
+
+ if (status & 1) {
+ printk(KERN_ERR "Error programming oob data\n");
+ /* There was an error */
+ *retlen = 0;
+ return -EIO;
+ }
+
+ *retlen = len;
+ return 0;
+
+}
+
+static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
+ size_t * retlen, const u_char * buf)
+{
+ struct DiskOnChip *this = mtd->priv;
+ int ret;
+
+ down(&this->lock);
+ ret = doc_write_oob_nolock(mtd, ofs, len, retlen, buf);
+
+ up(&this->lock);
+ return ret;
+}
+
+static int doc_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+ struct DiskOnChip *this = mtd->priv;
+ __u32 ofs = instr->addr;
+ __u32 len = instr->len;
+ volatile int dummy;
+ void __iomem *docptr = this->virtadr;
+ struct Nand *mychip;
+ int status;
+
+ down(&this->lock);
+
+ if (ofs & (mtd->erasesize-1) || len & (mtd->erasesize-1)) {
+ up(&this->lock);
+ return -EINVAL;
+ }
+
+ instr->state = MTD_ERASING;
+
+ /* FIXME: Do this in the background. Use timers or schedule_task() */
+ while(len) {
+ mychip = &this->chips[ofs >> this->chipshift];
+
+ if (this->curfloor != mychip->floor) {
+ DoC_SelectFloor(this, mychip->floor);
+ DoC_SelectChip(this, mychip->chip);
+ } else if (this->curchip != mychip->chip) {
+ DoC_SelectChip(this, mychip->chip);
+ }
+ this->curfloor = mychip->floor;
+ this->curchip = mychip->chip;
+
+ DoC_Command(this, NAND_CMD_ERASE1, 0);
+ DoC_Address(this, ADDR_PAGE, ofs, 0, 0);
+ DoC_Command(this, NAND_CMD_ERASE2, 0);
+
+ DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
+
+ if (DoC_is_Millennium(this)) {
+ ReadDOC(docptr, ReadPipeInit);
+ status = ReadDOC(docptr, LastDataRead);
+ } else {
+ dummy = ReadDOC(docptr, CDSNSlowIO);
+ DoC_Delay(this, 2);
+ status = ReadDOC_(docptr, this->ioreg);
+ }
+
+ if (status & 1) {
+ printk(KERN_ERR "Error erasing at 0x%x\n", ofs);
+ /* There was an error */
+ instr->state = MTD_ERASE_FAILED;
+ goto callback;
+ }
+ ofs += mtd->erasesize;
+ len -= mtd->erasesize;
+ }
+ instr->state = MTD_ERASE_DONE;
+
+ callback:
+ mtd_erase_callback(instr);
+
+ up(&this->lock);
+ return 0;
+}
+
+
+/****************************************************************************
+ *
+ * Module stuff
+ *
+ ****************************************************************************/
+
+static int __init init_doc2000(void)
+{
+ inter_module_register(im_name, THIS_MODULE, &DoC2k_init);
+ return 0;
+}
+
+static void __exit cleanup_doc2000(void)
+{
+ struct mtd_info *mtd;
+ struct DiskOnChip *this;
+
+ while ((mtd = doc2klist)) {
+ this = mtd->priv;
+ doc2klist = this->nextdoc;
+
+ del_mtd_device(mtd);
+
+ iounmap(this->virtadr);
+ kfree(this->chips);
+ kfree(mtd);
+ }
+ inter_module_unregister(im_name);
+}
+
+module_exit(cleanup_doc2000);
+module_init(init_doc2000);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
+MODULE_DESCRIPTION("MTD driver for DiskOnChip 2000 and Millennium");
+
diff --git a/drivers/mtd/devices/doc2001.c b/drivers/mtd/devices/doc2001.c
new file mode 100644
index 000000000000..1e704915ef08
--- /dev/null
+++ b/drivers/mtd/devices/doc2001.c
@@ -0,0 +1,888 @@
+
+/*
+ * Linux driver for Disk-On-Chip Millennium
+ * (c) 1999 Machine Vision Holdings, Inc.
+ * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
+ *
+ * $Id: doc2001.c,v 1.48 2005/01/05 18:05:12 dwmw2 Exp $
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <asm/errno.h>
+#include <asm/io.h>
+#include <asm/uaccess.h>
+#include <linux/miscdevice.h>
+#include <linux/pci.h>
+#include <linux/delay.h>
+#include <linux/slab.h>
+#include <linux/sched.h>
+#include <linux/init.h>
+#include <linux/types.h>
+#include <linux/bitops.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/doc2000.h>
+
+/* #define ECC_DEBUG */
+
+/* I have no idea why some DoC chips can not use memcop_form|to_io().
+ * This may be due to the different revisions of the ASIC controller built-in or
+ * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment
+ * this:*/
+#undef USE_MEMCPY
+
+static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf);
+static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf);
+static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf, u_char *eccbuf,
+ struct nand_oobinfo *oobsel);
+static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf, u_char *eccbuf,
+ struct nand_oobinfo *oobsel);
+static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
+ size_t *retlen, u_char *buf);
+static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
+ size_t *retlen, const u_char *buf);
+static int doc_erase (struct mtd_info *mtd, struct erase_info *instr);
+
+static struct mtd_info *docmillist = NULL;
+
+/* Perform the required delay cycles by reading from the NOP register */
+static void DoC_Delay(void __iomem * docptr, unsigned short cycles)
+{
+ volatile char dummy;
+ int i;
+
+ for (i = 0; i < cycles; i++)
+ dummy = ReadDOC(docptr, NOP);
+}
+
+/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
+static int _DoC_WaitReady(void __iomem * docptr)
+{
+ unsigned short c = 0xffff;
+
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "_DoC_WaitReady called for out-of-line wait\n");
+
+ /* Out-of-line routine to wait for chip response */
+ while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B) && --c)
+ ;
+
+ if (c == 0)
+ DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n");
+
+ return (c == 0);
+}
+
+static inline int DoC_WaitReady(void __iomem * docptr)
+{
+ /* This is inline, to optimise the common case, where it's ready instantly */
+ int ret = 0;
+
+ /* 4 read form NOP register should be issued in prior to the read from CDSNControl
+ see Software Requirement 11.4 item 2. */
+ DoC_Delay(docptr, 4);
+
+ if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
+ /* Call the out-of-line routine to wait */
+ ret = _DoC_WaitReady(docptr);
+
+ /* issue 2 read from NOP register after reading from CDSNControl register
+ see Software Requirement 11.4 item 2. */
+ DoC_Delay(docptr, 2);
+
+ return ret;
+}
+
+/* DoC_Command: Send a flash command to the flash chip through the CDSN IO register
+ with the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
+ required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
+
+static inline void DoC_Command(void __iomem * docptr, unsigned char command,
+ unsigned char xtraflags)
+{
+ /* Assert the CLE (Command Latch Enable) line to the flash chip */
+ WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
+ DoC_Delay(docptr, 4);
+
+ /* Send the command */
+ WriteDOC(command, docptr, Mil_CDSN_IO);
+ WriteDOC(0x00, docptr, WritePipeTerm);
+
+ /* Lower the CLE line */
+ WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
+ DoC_Delay(docptr, 4);
+}
+
+/* DoC_Address: Set the current address for the flash chip through the CDSN IO register
+ with the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
+ required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
+
+static inline void DoC_Address(void __iomem * docptr, int numbytes, unsigned long ofs,
+ unsigned char xtraflags1, unsigned char xtraflags2)
+{
+ /* Assert the ALE (Address Latch Enable) line to the flash chip */
+ WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
+ DoC_Delay(docptr, 4);
+
+ /* Send the address */
+ switch (numbytes)
+ {
+ case 1:
+ /* Send single byte, bits 0-7. */
+ WriteDOC(ofs & 0xff, docptr, Mil_CDSN_IO);
+ WriteDOC(0x00, docptr, WritePipeTerm);
+ break;
+ case 2:
+ /* Send bits 9-16 followed by 17-23 */
+ WriteDOC((ofs >> 9) & 0xff, docptr, Mil_CDSN_IO);
+ WriteDOC((ofs >> 17) & 0xff, docptr, Mil_CDSN_IO);
+ WriteDOC(0x00, docptr, WritePipeTerm);
+ break;
+ case 3:
+ /* Send 0-7, 9-16, then 17-23 */
+ WriteDOC(ofs & 0xff, docptr, Mil_CDSN_IO);
+ WriteDOC((ofs >> 9) & 0xff, docptr, Mil_CDSN_IO);
+ WriteDOC((ofs >> 17) & 0xff, docptr, Mil_CDSN_IO);
+ WriteDOC(0x00, docptr, WritePipeTerm);
+ break;
+ default:
+ return;
+ }
+
+ /* Lower the ALE line */
+ WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, CDSNControl);
+ DoC_Delay(docptr, 4);
+}
+
+/* DoC_SelectChip: Select a given flash chip within the current floor */
+static int DoC_SelectChip(void __iomem * docptr, int chip)
+{
+ /* Select the individual flash chip requested */
+ WriteDOC(chip, docptr, CDSNDeviceSelect);
+ DoC_Delay(docptr, 4);
+
+ /* Wait for it to be ready */
+ return DoC_WaitReady(docptr);
+}
+
+/* DoC_SelectFloor: Select a given floor (bank of flash chips) */
+static int DoC_SelectFloor(void __iomem * docptr, int floor)
+{
+ /* Select the floor (bank) of chips required */
+ WriteDOC(floor, docptr, FloorSelect);
+
+ /* Wait for the chip to be ready */
+ return DoC_WaitReady(docptr);
+}
+
+/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
+static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
+{
+ int mfr, id, i, j;
+ volatile char dummy;
+
+ /* Page in the required floor/chip
+ FIXME: is this supported by Millennium ?? */
+ DoC_SelectFloor(doc->virtadr, floor);
+ DoC_SelectChip(doc->virtadr, chip);
+
+ /* Reset the chip, see Software Requirement 11.4 item 1. */
+ DoC_Command(doc->virtadr, NAND_CMD_RESET, CDSN_CTRL_WP);
+ DoC_WaitReady(doc->virtadr);
+
+ /* Read the NAND chip ID: 1. Send ReadID command */
+ DoC_Command(doc->virtadr, NAND_CMD_READID, CDSN_CTRL_WP);
+
+ /* Read the NAND chip ID: 2. Send address byte zero */
+ DoC_Address(doc->virtadr, 1, 0x00, CDSN_CTRL_WP, 0x00);
+
+ /* Read the manufacturer and device id codes of the flash device through
+ CDSN IO register see Software Requirement 11.4 item 5.*/
+ dummy = ReadDOC(doc->virtadr, ReadPipeInit);
+ DoC_Delay(doc->virtadr, 2);
+ mfr = ReadDOC(doc->virtadr, Mil_CDSN_IO);
+
+ DoC_Delay(doc->virtadr, 2);
+ id = ReadDOC(doc->virtadr, Mil_CDSN_IO);
+ dummy = ReadDOC(doc->virtadr, LastDataRead);
+
+ /* No response - return failure */
+ if (mfr == 0xff || mfr == 0)
+ return 0;
+
+ /* FIXME: to deal with multi-flash on multi-Millennium case more carefully */
+ for (i = 0; nand_flash_ids[i].name != NULL; i++) {
+ if ( id == nand_flash_ids[i].id) {
+ /* Try to identify manufacturer */
+ for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
+ if (nand_manuf_ids[j].id == mfr)
+ break;
+ }
+ printk(KERN_INFO "Flash chip found: Manufacturer ID: %2.2X, "
+ "Chip ID: %2.2X (%s:%s)\n",
+ mfr, id, nand_manuf_ids[j].name, nand_flash_ids[i].name);
+ doc->mfr = mfr;
+ doc->id = id;
+ doc->chipshift = ffs((nand_flash_ids[i].chipsize << 20)) - 1;
+ break;
+ }
+ }
+
+ if (nand_flash_ids[i].name == NULL)
+ return 0;
+ else
+ return 1;
+}
+
+/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
+static void DoC_ScanChips(struct DiskOnChip *this)
+{
+ int floor, chip;
+ int numchips[MAX_FLOORS_MIL];
+ int ret;
+
+ this->numchips = 0;
+ this->mfr = 0;
+ this->id = 0;
+
+ /* For each floor, find the number of valid chips it contains */
+ for (floor = 0,ret = 1; floor < MAX_FLOORS_MIL; floor++) {
+ numchips[floor] = 0;
+ for (chip = 0; chip < MAX_CHIPS_MIL && ret != 0; chip++) {
+ ret = DoC_IdentChip(this, floor, chip);
+ if (ret) {
+ numchips[floor]++;
+ this->numchips++;
+ }
+ }
+ }
+ /* If there are none at all that we recognise, bail */
+ if (!this->numchips) {
+ printk("No flash chips recognised.\n");
+ return;
+ }
+
+ /* Allocate an array to hold the information for each chip */
+ this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL);
+ if (!this->chips){
+ printk("No memory for allocating chip info structures\n");
+ return;
+ }
+
+ /* Fill out the chip array with {floor, chipno} for each
+ * detected chip in the device. */
+ for (floor = 0, ret = 0; floor < MAX_FLOORS_MIL; floor++) {
+ for (chip = 0 ; chip < numchips[floor] ; chip++) {
+ this->chips[ret].floor = floor;
+ this->chips[ret].chip = chip;
+ this->chips[ret].curadr = 0;
+ this->chips[ret].curmode = 0x50;
+ ret++;
+ }
+ }
+
+ /* Calculate and print the total size of the device */
+ this->totlen = this->numchips * (1 << this->chipshift);
+ printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n",
+ this->numchips ,this->totlen >> 20);
+}
+
+static int DoCMil_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2)
+{
+ int tmp1, tmp2, retval;
+
+ if (doc1->physadr == doc2->physadr)
+ return 1;
+
+ /* Use the alias resolution register which was set aside for this
+ * purpose. If it's value is the same on both chips, they might
+ * be the same chip, and we write to one and check for a change in
+ * the other. It's unclear if this register is usuable in the
+ * DoC 2000 (it's in the Millenium docs), but it seems to work. */
+ tmp1 = ReadDOC(doc1->virtadr, AliasResolution);
+ tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
+ if (tmp1 != tmp2)
+ return 0;
+
+ WriteDOC((tmp1+1) % 0xff, doc1->virtadr, AliasResolution);
+ tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
+ if (tmp2 == (tmp1+1) % 0xff)
+ retval = 1;
+ else
+ retval = 0;
+
+ /* Restore register contents. May not be necessary, but do it just to
+ * be safe. */
+ WriteDOC(tmp1, doc1->virtadr, AliasResolution);
+
+ return retval;
+}
+
+static const char im_name[] = "DoCMil_init";
+
+/* This routine is made available to other mtd code via
+ * inter_module_register. It must only be accessed through
+ * inter_module_get which will bump the use count of this module. The
+ * addresses passed back in mtd are valid as long as the use count of
+ * this module is non-zero, i.e. between inter_module_get and
+ * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
+ */
+static void DoCMil_init(struct mtd_info *mtd)
+{
+ struct DiskOnChip *this = mtd->priv;
+ struct DiskOnChip *old = NULL;
+
+ /* We must avoid being called twice for the same device. */
+ if (docmillist)
+ old = docmillist->priv;
+
+ while (old) {
+ if (DoCMil_is_alias(this, old)) {
+ printk(KERN_NOTICE "Ignoring DiskOnChip Millennium at "
+ "0x%lX - already configured\n", this->physadr);
+ iounmap(this->virtadr);
+ kfree(mtd);
+ return;
+ }
+ if (old->nextdoc)
+ old = old->nextdoc->priv;
+ else
+ old = NULL;
+ }
+
+ mtd->name = "DiskOnChip Millennium";
+ printk(KERN_NOTICE "DiskOnChip Millennium found at address 0x%lX\n",
+ this->physadr);
+
+ mtd->type = MTD_NANDFLASH;
+ mtd->flags = MTD_CAP_NANDFLASH;
+ mtd->ecctype = MTD_ECC_RS_DiskOnChip;
+ mtd->size = 0;
+
+ /* FIXME: erase size is not always 8KiB */
+ mtd->erasesize = 0x2000;
+
+ mtd->oobblock = 512;
+ mtd->oobsize = 16;
+ mtd->owner = THIS_MODULE;
+ mtd->erase = doc_erase;
+ mtd->point = NULL;
+ mtd->unpoint = NULL;
+ mtd->read = doc_read;
+ mtd->write = doc_write;
+ mtd->read_ecc = doc_read_ecc;
+ mtd->write_ecc = doc_write_ecc;
+ mtd->read_oob = doc_read_oob;
+ mtd->write_oob = doc_write_oob;
+ mtd->sync = NULL;
+
+ this->totlen = 0;
+ this->numchips = 0;
+ this->curfloor = -1;
+ this->curchip = -1;
+
+ /* Ident all the chips present. */
+ DoC_ScanChips(this);
+
+ if (!this->totlen) {
+ kfree(mtd);
+ iounmap(this->virtadr);
+ } else {
+ this->nextdoc = docmillist;
+ docmillist = mtd;
+ mtd->size = this->totlen;
+ add_mtd_device(mtd);
+ return;
+ }
+}
+
+static int doc_read (struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ /* Just a special case of doc_read_ecc */
+ return doc_read_ecc(mtd, from, len, retlen, buf, NULL, NULL);
+}
+
+static int doc_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf, u_char *eccbuf,
+ struct nand_oobinfo *oobsel)
+{
+ int i, ret;
+ volatile char dummy;
+ unsigned char syndrome[6];
+ struct DiskOnChip *this = mtd->priv;
+ void __iomem *docptr = this->virtadr;
+ struct Nand *mychip = &this->chips[from >> (this->chipshift)];
+
+ /* Don't allow read past end of device */
+ if (from >= this->totlen)
+ return -EINVAL;
+
+ /* Don't allow a single read to cross a 512-byte block boundary */
+ if (from + len > ((from | 0x1ff) + 1))
+ len = ((from | 0x1ff) + 1) - from;
+
+ /* Find the chip which is to be used and select it */
+ if (this->curfloor != mychip->floor) {
+ DoC_SelectFloor(docptr, mychip->floor);
+ DoC_SelectChip(docptr, mychip->chip);
+ } else if (this->curchip != mychip->chip) {
+ DoC_SelectChip(docptr, mychip->chip);
+ }
+ this->curfloor = mychip->floor;
+ this->curchip = mychip->chip;
+
+ /* issue the Read0 or Read1 command depend on which half of the page
+ we are accessing. Polling the Flash Ready bit after issue 3 bytes
+ address in Sequence Read Mode, see Software Requirement 11.4 item 1.*/
+ DoC_Command(docptr, (from >> 8) & 1, CDSN_CTRL_WP);
+ DoC_Address(docptr, 3, from, CDSN_CTRL_WP, 0x00);
+ DoC_WaitReady(docptr);
+
+ if (eccbuf) {
+ /* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/
+ WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
+ WriteDOC (DOC_ECC_EN, docptr, ECCConf);
+ } else {
+ /* disable the ECC engine */
+ WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
+ WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
+ }
+
+ /* Read the data via the internal pipeline through CDSN IO register,
+ see Pipelined Read Operations 11.3 */
+ dummy = ReadDOC(docptr, ReadPipeInit);
+#ifndef USE_MEMCPY
+ for (i = 0; i < len-1; i++) {
+ /* N.B. you have to increase the source address in this way or the
+ ECC logic will not work properly */
+ buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
+ }
+#else
+ memcpy_fromio(buf, docptr + DoC_Mil_CDSN_IO, len - 1);
+#endif
+ buf[len - 1] = ReadDOC(docptr, LastDataRead);
+
+ /* Let the caller know we completed it */
+ *retlen = len;
+ ret = 0;
+
+ if (eccbuf) {
+ /* Read the ECC data from Spare Data Area,
+ see Reed-Solomon EDC/ECC 11.1 */
+ dummy = ReadDOC(docptr, ReadPipeInit);
+#ifndef USE_MEMCPY
+ for (i = 0; i < 5; i++) {
+ /* N.B. you have to increase the source address in this way or the
+ ECC logic will not work properly */
+ eccbuf[i] = ReadDOC(docptr, Mil_CDSN_IO + i);
+ }
+#else
+ memcpy_fromio(eccbuf, docptr + DoC_Mil_CDSN_IO, 5);
+#endif
+ eccbuf[5] = ReadDOC(docptr, LastDataRead);
+
+ /* Flush the pipeline */
+ dummy = ReadDOC(docptr, ECCConf);
+ dummy = ReadDOC(docptr, ECCConf);
+
+ /* Check the ECC Status */
+ if (ReadDOC(docptr, ECCConf) & 0x80) {
+ int nb_errors;
+ /* There was an ECC error */
+#ifdef ECC_DEBUG
+ printk("DiskOnChip ECC Error: Read at %lx\n", (long)from);
+#endif
+ /* Read the ECC syndrom through the DiskOnChip ECC logic.
+ These syndrome will be all ZERO when there is no error */
+ for (i = 0; i < 6; i++) {
+ syndrome[i] = ReadDOC(docptr, ECCSyndrome0 + i);
+ }
+ nb_errors = doc_decode_ecc(buf, syndrome);
+#ifdef ECC_DEBUG
+ printk("ECC Errors corrected: %x\n", nb_errors);
+#endif
+ if (nb_errors < 0) {
+ /* We return error, but have actually done the read. Not that
+ this can be told to user-space, via sys_read(), but at least
+ MTD-aware stuff can know about it by checking *retlen */
+ ret = -EIO;
+ }
+ }
+
+#ifdef PSYCHO_DEBUG
+ printk("ECC DATA at %lx: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
+ (long)from, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
+ eccbuf[4], eccbuf[5]);
+#endif
+
+ /* disable the ECC engine */
+ WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
+ }
+
+ return ret;
+}
+
+static int doc_write (struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf)
+{
+ char eccbuf[6];
+ return doc_write_ecc(mtd, to, len, retlen, buf, eccbuf, NULL);
+}
+
+static int doc_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf, u_char *eccbuf,
+ struct nand_oobinfo *oobsel)
+{
+ int i,ret = 0;
+ volatile char dummy;
+ struct DiskOnChip *this = mtd->priv;
+ void __iomem *docptr = this->virtadr;
+ struct Nand *mychip = &this->chips[to >> (this->chipshift)];
+
+ /* Don't allow write past end of device */
+ if (to >= this->totlen)
+ return -EINVAL;
+
+#if 0
+ /* Don't allow a single write to cross a 512-byte block boundary */
+ if (to + len > ( (to | 0x1ff) + 1))
+ len = ((to | 0x1ff) + 1) - to;
+#else
+ /* Don't allow writes which aren't exactly one block */
+ if (to & 0x1ff || len != 0x200)
+ return -EINVAL;
+#endif
+
+ /* Find the chip which is to be used and select it */
+ if (this->curfloor != mychip->floor) {
+ DoC_SelectFloor(docptr, mychip->floor);
+ DoC_SelectChip(docptr, mychip->chip);
+ } else if (this->curchip != mychip->chip) {
+ DoC_SelectChip(docptr, mychip->chip);
+ }
+ this->curfloor = mychip->floor;
+ this->curchip = mychip->chip;
+
+ /* Reset the chip, see Software Requirement 11.4 item 1. */
+ DoC_Command(docptr, NAND_CMD_RESET, 0x00);
+ DoC_WaitReady(docptr);
+ /* Set device to main plane of flash */
+ DoC_Command(docptr, NAND_CMD_READ0, 0x00);
+
+ /* issue the Serial Data In command to initial the Page Program process */
+ DoC_Command(docptr, NAND_CMD_SEQIN, 0x00);
+ DoC_Address(docptr, 3, to, 0x00, 0x00);
+ DoC_WaitReady(docptr);
+
+ if (eccbuf) {
+ /* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/
+ WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
+ WriteDOC (DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
+ } else {
+ /* disable the ECC engine */
+ WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
+ WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
+ }
+
+ /* Write the data via the internal pipeline through CDSN IO register,
+ see Pipelined Write Operations 11.2 */
+#ifndef USE_MEMCPY
+ for (i = 0; i < len; i++) {
+ /* N.B. you have to increase the source address in this way or the
+ ECC logic will not work properly */
+ WriteDOC(buf[i], docptr, Mil_CDSN_IO + i);
+ }
+#else
+ memcpy_toio(docptr + DoC_Mil_CDSN_IO, buf, len);
+#endif
+ WriteDOC(0x00, docptr, WritePipeTerm);
+
+ if (eccbuf) {
+ /* Write ECC data to flash, the ECC info is generated by the DiskOnChip ECC logic
+ see Reed-Solomon EDC/ECC 11.1 */
+ WriteDOC(0, docptr, NOP);
+ WriteDOC(0, docptr, NOP);
+ WriteDOC(0, docptr, NOP);
+
+ /* Read the ECC data through the DiskOnChip ECC logic */
+ for (i = 0; i < 6; i++) {
+ eccbuf[i] = ReadDOC(docptr, ECCSyndrome0 + i);
+ }
+
+ /* ignore the ECC engine */
+ WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
+
+#ifndef USE_MEMCPY
+ /* Write the ECC data to flash */
+ for (i = 0; i < 6; i++) {
+ /* N.B. you have to increase the source address in this way or the
+ ECC logic will not work properly */
+ WriteDOC(eccbuf[i], docptr, Mil_CDSN_IO + i);
+ }
+#else
+ memcpy_toio(docptr + DoC_Mil_CDSN_IO, eccbuf, 6);
+#endif
+
+ /* write the block status BLOCK_USED (0x5555) at the end of ECC data
+ FIXME: this is only a hack for programming the IPL area for LinuxBIOS
+ and should be replace with proper codes in user space utilities */
+ WriteDOC(0x55, docptr, Mil_CDSN_IO);
+ WriteDOC(0x55, docptr, Mil_CDSN_IO + 1);
+
+ WriteDOC(0x00, docptr, WritePipeTerm);
+
+#ifdef PSYCHO_DEBUG
+ printk("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
+ (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
+ eccbuf[4], eccbuf[5]);
+#endif
+ }
+
+ /* Commit the Page Program command and wait for ready
+ see Software Requirement 11.4 item 1.*/
+ DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00);
+ DoC_WaitReady(docptr);
+
+ /* Read the status of the flash device through CDSN IO register
+ see Software Requirement 11.4 item 5.*/
+ DoC_Command(docptr, NAND_CMD_STATUS, CDSN_CTRL_WP);
+ dummy = ReadDOC(docptr, ReadPipeInit);
+ DoC_Delay(docptr, 2);
+ if (ReadDOC(docptr, Mil_CDSN_IO) & 1) {
+ printk("Error programming flash\n");
+ /* Error in programming
+ FIXME: implement Bad Block Replacement (in nftl.c ??) */
+ *retlen = 0;
+ ret = -EIO;
+ }
+ dummy = ReadDOC(docptr, LastDataRead);
+
+ /* Let the caller know we completed it */
+ *retlen = len;
+
+ return ret;
+}
+
+static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
+ size_t *retlen, u_char *buf)
+{
+#ifndef USE_MEMCPY
+ int i;
+#endif
+ volatile char dummy;
+ struct DiskOnChip *this = mtd->priv;
+ void __iomem *docptr = this->virtadr;
+ struct Nand *mychip = &this->chips[ofs >> this->chipshift];
+
+ /* Find the chip which is to be used and select it */
+ if (this->curfloor != mychip->floor) {
+ DoC_SelectFloor(docptr, mychip->floor);
+ DoC_SelectChip(docptr, mychip->chip);
+ } else if (this->curchip != mychip->chip) {
+ DoC_SelectChip(docptr, mychip->chip);
+ }
+ this->curfloor = mychip->floor;
+ this->curchip = mychip->chip;
+
+ /* disable the ECC engine */
+ WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
+ WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
+
+ /* issue the Read2 command to set the pointer to the Spare Data Area.
+ Polling the Flash Ready bit after issue 3 bytes address in
+ Sequence Read Mode, see Software Requirement 11.4 item 1.*/
+ DoC_Command(docptr, NAND_CMD_READOOB, CDSN_CTRL_WP);
+ DoC_Address(docptr, 3, ofs, CDSN_CTRL_WP, 0x00);
+ DoC_WaitReady(docptr);
+
+ /* Read the data out via the internal pipeline through CDSN IO register,
+ see Pipelined Read Operations 11.3 */
+ dummy = ReadDOC(docptr, ReadPipeInit);
+#ifndef USE_MEMCPY
+ for (i = 0; i < len-1; i++) {
+ /* N.B. you have to increase the source address in this way or the
+ ECC logic will not work properly */
+ buf[i] = ReadDOC(docptr, Mil_CDSN_IO + i);
+ }
+#else
+ memcpy_fromio(buf, docptr + DoC_Mil_CDSN_IO, len - 1);
+#endif
+ buf[len - 1] = ReadDOC(docptr, LastDataRead);
+
+ *retlen = len;
+
+ return 0;
+}
+
+static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
+ size_t *retlen, const u_char *buf)
+{
+#ifndef USE_MEMCPY
+ int i;
+#endif
+ volatile char dummy;
+ int ret = 0;
+ struct DiskOnChip *this = mtd->priv;
+ void __iomem *docptr = this->virtadr;
+ struct Nand *mychip = &this->chips[ofs >> this->chipshift];
+
+ /* Find the chip which is to be used and select it */
+ if (this->curfloor != mychip->floor) {
+ DoC_SelectFloor(docptr, mychip->floor);
+ DoC_SelectChip(docptr, mychip->chip);
+ } else if (this->curchip != mychip->chip) {
+ DoC_SelectChip(docptr, mychip->chip);
+ }
+ this->curfloor = mychip->floor;
+ this->curchip = mychip->chip;
+
+ /* disable the ECC engine */
+ WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
+ WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
+
+ /* Reset the chip, see Software Requirement 11.4 item 1. */
+ DoC_Command(docptr, NAND_CMD_RESET, CDSN_CTRL_WP);
+ DoC_WaitReady(docptr);
+ /* issue the Read2 command to set the pointer to the Spare Data Area. */
+ DoC_Command(docptr, NAND_CMD_READOOB, CDSN_CTRL_WP);
+
+ /* issue the Serial Data In command to initial the Page Program process */
+ DoC_Command(docptr, NAND_CMD_SEQIN, 0x00);
+ DoC_Address(docptr, 3, ofs, 0x00, 0x00);
+
+ /* Write the data via the internal pipeline through CDSN IO register,
+ see Pipelined Write Operations 11.2 */
+#ifndef USE_MEMCPY
+ for (i = 0; i < len; i++) {
+ /* N.B. you have to increase the source address in this way or the
+ ECC logic will not work properly */
+ WriteDOC(buf[i], docptr, Mil_CDSN_IO + i);
+ }
+#else
+ memcpy_toio(docptr + DoC_Mil_CDSN_IO, buf, len);
+#endif
+ WriteDOC(0x00, docptr, WritePipeTerm);
+
+ /* Commit the Page Program command and wait for ready
+ see Software Requirement 11.4 item 1.*/
+ DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00);
+ DoC_WaitReady(docptr);
+
+ /* Read the status of the flash device through CDSN IO register
+ see Software Requirement 11.4 item 5.*/
+ DoC_Command(docptr, NAND_CMD_STATUS, 0x00);
+ dummy = ReadDOC(docptr, ReadPipeInit);
+ DoC_Delay(docptr, 2);
+ if (ReadDOC(docptr, Mil_CDSN_IO) & 1) {
+ printk("Error programming oob data\n");
+ /* FIXME: implement Bad Block Replacement (in nftl.c ??) */
+ *retlen = 0;
+ ret = -EIO;
+ }
+ dummy = ReadDOC(docptr, LastDataRead);
+
+ *retlen = len;
+
+ return ret;
+}
+
+int doc_erase (struct mtd_info *mtd, struct erase_info *instr)
+{
+ volatile char dummy;
+ struct DiskOnChip *this = mtd->priv;
+ __u32 ofs = instr->addr;
+ __u32 len = instr->len;
+ void __iomem *docptr = this->virtadr;
+ struct Nand *mychip = &this->chips[ofs >> this->chipshift];
+
+ if (len != mtd->erasesize)
+ printk(KERN_WARNING "Erase not right size (%x != %x)n",
+ len, mtd->erasesize);
+
+ /* Find the chip which is to be used and select it */
+ if (this->curfloor != mychip->floor) {
+ DoC_SelectFloor(docptr, mychip->floor);
+ DoC_SelectChip(docptr, mychip->chip);
+ } else if (this->curchip != mychip->chip) {
+ DoC_SelectChip(docptr, mychip->chip);
+ }
+ this->curfloor = mychip->floor;
+ this->curchip = mychip->chip;
+
+ instr->state = MTD_ERASE_PENDING;
+
+ /* issue the Erase Setup command */
+ DoC_Command(docptr, NAND_CMD_ERASE1, 0x00);
+ DoC_Address(docptr, 2, ofs, 0x00, 0x00);
+
+ /* Commit the Erase Start command and wait for ready
+ see Software Requirement 11.4 item 1.*/
+ DoC_Command(docptr, NAND_CMD_ERASE2, 0x00);
+ DoC_WaitReady(docptr);
+
+ instr->state = MTD_ERASING;
+
+ /* Read the status of the flash device through CDSN IO register
+ see Software Requirement 11.4 item 5.
+ FIXME: it seems that we are not wait long enough, some blocks are not
+ erased fully */
+ DoC_Command(docptr, NAND_CMD_STATUS, CDSN_CTRL_WP);
+ dummy = ReadDOC(docptr, ReadPipeInit);
+ DoC_Delay(docptr, 2);
+ if (ReadDOC(docptr, Mil_CDSN_IO) & 1) {
+ printk("Error Erasing at 0x%x\n", ofs);
+ /* There was an error
+ FIXME: implement Bad Block Replacement (in nftl.c ??) */
+ instr->state = MTD_ERASE_FAILED;
+ } else
+ instr->state = MTD_ERASE_DONE;
+ dummy = ReadDOC(docptr, LastDataRead);
+
+ mtd_erase_callback(instr);
+
+ return 0;
+}
+
+/****************************************************************************
+ *
+ * Module stuff
+ *
+ ****************************************************************************/
+
+static int __init init_doc2001(void)
+{
+ inter_module_register(im_name, THIS_MODULE, &DoCMil_init);
+ return 0;
+}
+
+static void __exit cleanup_doc2001(void)
+{
+ struct mtd_info *mtd;
+ struct DiskOnChip *this;
+
+ while ((mtd=docmillist)) {
+ this = mtd->priv;
+ docmillist = this->nextdoc;
+
+ del_mtd_device(mtd);
+
+ iounmap(this->virtadr);
+ kfree(this->chips);
+ kfree(mtd);
+ }
+ inter_module_unregister(im_name);
+}
+
+module_exit(cleanup_doc2001);
+module_init(init_doc2001);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
+MODULE_DESCRIPTION("Alternative driver for DiskOnChip Millennium");
diff --git a/drivers/mtd/devices/doc2001plus.c b/drivers/mtd/devices/doc2001plus.c
new file mode 100644
index 000000000000..ed47bafb2ce2
--- /dev/null
+++ b/drivers/mtd/devices/doc2001plus.c
@@ -0,0 +1,1154 @@
+/*
+ * Linux driver for Disk-On-Chip Millennium Plus
+ *
+ * (c) 2002-2003 Greg Ungerer <gerg@snapgear.com>
+ * (c) 2002-2003 SnapGear Inc
+ * (c) 1999 Machine Vision Holdings, Inc.
+ * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
+ *
+ * $Id: doc2001plus.c,v 1.13 2005/01/05 18:05:12 dwmw2 Exp $
+ *
+ * Released under GPL
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <asm/errno.h>
+#include <asm/io.h>
+#include <asm/uaccess.h>
+#include <linux/miscdevice.h>
+#include <linux/pci.h>
+#include <linux/delay.h>
+#include <linux/slab.h>
+#include <linux/sched.h>
+#include <linux/init.h>
+#include <linux/types.h>
+#include <linux/bitops.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/doc2000.h>
+
+/* #define ECC_DEBUG */
+
+/* I have no idea why some DoC chips can not use memcop_form|to_io().
+ * This may be due to the different revisions of the ASIC controller built-in or
+ * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment
+ * this:*/
+#undef USE_MEMCPY
+
+static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf);
+static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf);
+static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf, u_char *eccbuf,
+ struct nand_oobinfo *oobsel);
+static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf, u_char *eccbuf,
+ struct nand_oobinfo *oobsel);
+static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
+ size_t *retlen, u_char *buf);
+static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
+ size_t *retlen, const u_char *buf);
+static int doc_erase (struct mtd_info *mtd, struct erase_info *instr);
+
+static struct mtd_info *docmilpluslist = NULL;
+
+
+/* Perform the required delay cycles by writing to the NOP register */
+static void DoC_Delay(void __iomem * docptr, int cycles)
+{
+ int i;
+
+ for (i = 0; (i < cycles); i++)
+ WriteDOC(0, docptr, Mplus_NOP);
+}
+
+#define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
+
+/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
+static int _DoC_WaitReady(void __iomem * docptr)
+{
+ unsigned int c = 0xffff;
+
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "_DoC_WaitReady called for out-of-line wait\n");
+
+ /* Out-of-line routine to wait for chip response */
+ while (((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) && --c)
+ ;
+
+ if (c == 0)
+ DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n");
+
+ return (c == 0);
+}
+
+static inline int DoC_WaitReady(void __iomem * docptr)
+{
+ /* This is inline, to optimise the common case, where it's ready instantly */
+ int ret = 0;
+
+ /* read form NOP register should be issued prior to the read from CDSNControl
+ see Software Requirement 11.4 item 2. */
+ DoC_Delay(docptr, 4);
+
+ if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
+ /* Call the out-of-line routine to wait */
+ ret = _DoC_WaitReady(docptr);
+
+ return ret;
+}
+
+/* For some reason the Millennium Plus seems to occassionally put itself
+ * into reset mode. For me this happens randomly, with no pattern that I
+ * can detect. M-systems suggest always check this on any block level
+ * operation and setting to normal mode if in reset mode.
+ */
+static inline void DoC_CheckASIC(void __iomem * docptr)
+{
+ /* Make sure the DoC is in normal mode */
+ if ((ReadDOC(docptr, Mplus_DOCControl) & DOC_MODE_NORMAL) == 0) {
+ WriteDOC((DOC_MODE_NORMAL | DOC_MODE_MDWREN), docptr, Mplus_DOCControl);
+ WriteDOC(~(DOC_MODE_NORMAL | DOC_MODE_MDWREN), docptr, Mplus_CtrlConfirm);
+ }
+}
+
+/* DoC_Command: Send a flash command to the flash chip through the Flash
+ * command register. Need 2 Write Pipeline Terminates to complete send.
+ */
+static inline void DoC_Command(void __iomem * docptr, unsigned char command,
+ unsigned char xtraflags)
+{
+ WriteDOC(command, docptr, Mplus_FlashCmd);
+ WriteDOC(command, docptr, Mplus_WritePipeTerm);
+ WriteDOC(command, docptr, Mplus_WritePipeTerm);
+}
+
+/* DoC_Address: Set the current address for the flash chip through the Flash
+ * Address register. Need 2 Write Pipeline Terminates to complete send.
+ */
+static inline void DoC_Address(struct DiskOnChip *doc, int numbytes,
+ unsigned long ofs, unsigned char xtraflags1,
+ unsigned char xtraflags2)
+{
+ void __iomem * docptr = doc->virtadr;
+
+ /* Allow for possible Mill Plus internal flash interleaving */
+ ofs >>= doc->interleave;
+
+ switch (numbytes) {
+ case 1:
+ /* Send single byte, bits 0-7. */
+ WriteDOC(ofs & 0xff, docptr, Mplus_FlashAddress);
+ break;
+ case 2:
+ /* Send bits 9-16 followed by 17-23 */
+ WriteDOC((ofs >> 9) & 0xff, docptr, Mplus_FlashAddress);
+ WriteDOC((ofs >> 17) & 0xff, docptr, Mplus_FlashAddress);
+ break;
+ case 3:
+ /* Send 0-7, 9-16, then 17-23 */
+ WriteDOC(ofs & 0xff, docptr, Mplus_FlashAddress);
+ WriteDOC((ofs >> 9) & 0xff, docptr, Mplus_FlashAddress);
+ WriteDOC((ofs >> 17) & 0xff, docptr, Mplus_FlashAddress);
+ break;
+ default:
+ return;
+ }
+
+ WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
+ WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
+}
+
+/* DoC_SelectChip: Select a given flash chip within the current floor */
+static int DoC_SelectChip(void __iomem * docptr, int chip)
+{
+ /* No choice for flash chip on Millennium Plus */
+ return 0;
+}
+
+/* DoC_SelectFloor: Select a given floor (bank of flash chips) */
+static int DoC_SelectFloor(void __iomem * docptr, int floor)
+{
+ WriteDOC((floor & 0x3), docptr, Mplus_DeviceSelect);
+ return 0;
+}
+
+/*
+ * Translate the given offset into the appropriate command and offset.
+ * This does the mapping using the 16bit interleave layout defined by
+ * M-Systems, and looks like this for a sector pair:
+ * +-----------+-------+-------+-------+--------------+---------+-----------+
+ * | 0 --- 511 |512-517|518-519|520-521| 522 --- 1033 |1034-1039|1040 - 1055|
+ * +-----------+-------+-------+-------+--------------+---------+-----------+
+ * | Data 0 | ECC 0 |Flags0 |Flags1 | Data 1 |ECC 1 | OOB 1 + 2 |
+ * +-----------+-------+-------+-------+--------------+---------+-----------+
+ */
+/* FIXME: This lives in INFTL not here. Other users of flash devices
+ may not want it */
+static unsigned int DoC_GetDataOffset(struct mtd_info *mtd, loff_t *from)
+{
+ struct DiskOnChip *this = mtd->priv;
+
+ if (this->interleave) {
+ unsigned int ofs = *from & 0x3ff;
+ unsigned int cmd;
+
+ if (ofs < 512) {
+ cmd = NAND_CMD_READ0;
+ ofs &= 0x1ff;
+ } else if (ofs < 1014) {
+ cmd = NAND_CMD_READ1;
+ ofs = (ofs & 0x1ff) + 10;
+ } else {
+ cmd = NAND_CMD_READOOB;
+ ofs = ofs - 1014;
+ }
+
+ *from = (*from & ~0x3ff) | ofs;
+ return cmd;
+ } else {
+ /* No interleave */
+ if ((*from) & 0x100)
+ return NAND_CMD_READ1;
+ return NAND_CMD_READ0;
+ }
+}
+
+static unsigned int DoC_GetECCOffset(struct mtd_info *mtd, loff_t *from)
+{
+ unsigned int ofs, cmd;
+
+ if (*from & 0x200) {
+ cmd = NAND_CMD_READOOB;
+ ofs = 10 + (*from & 0xf);
+ } else {
+ cmd = NAND_CMD_READ1;
+ ofs = (*from & 0xf);
+ }
+
+ *from = (*from & ~0x3ff) | ofs;
+ return cmd;
+}
+
+static unsigned int DoC_GetFlagsOffset(struct mtd_info *mtd, loff_t *from)
+{
+ unsigned int ofs, cmd;
+
+ cmd = NAND_CMD_READ1;
+ ofs = (*from & 0x200) ? 8 : 6;
+ *from = (*from & ~0x3ff) | ofs;
+ return cmd;
+}
+
+static unsigned int DoC_GetHdrOffset(struct mtd_info *mtd, loff_t *from)
+{
+ unsigned int ofs, cmd;
+
+ cmd = NAND_CMD_READOOB;
+ ofs = (*from & 0x200) ? 24 : 16;
+ *from = (*from & ~0x3ff) | ofs;
+ return cmd;
+}
+
+static inline void MemReadDOC(void __iomem * docptr, unsigned char *buf, int len)
+{
+#ifndef USE_MEMCPY
+ int i;
+ for (i = 0; i < len; i++)
+ buf[i] = ReadDOC(docptr, Mil_CDSN_IO + i);
+#else
+ memcpy_fromio(buf, docptr + DoC_Mil_CDSN_IO, len);
+#endif
+}
+
+static inline void MemWriteDOC(void __iomem * docptr, unsigned char *buf, int len)
+{
+#ifndef USE_MEMCPY
+ int i;
+ for (i = 0; i < len; i++)
+ WriteDOC(buf[i], docptr, Mil_CDSN_IO + i);
+#else
+ memcpy_toio(docptr + DoC_Mil_CDSN_IO, buf, len);
+#endif
+}
+
+/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
+static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
+{
+ int mfr, id, i, j;
+ volatile char dummy;
+ void __iomem * docptr = doc->virtadr;
+
+ /* Page in the required floor/chip */
+ DoC_SelectFloor(docptr, floor);
+ DoC_SelectChip(docptr, chip);
+
+ /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */
+ WriteDOC((DOC_FLASH_CE | DOC_FLASH_WP), docptr, Mplus_FlashSelect);
+
+ /* Reset the chip, see Software Requirement 11.4 item 1. */
+ DoC_Command(docptr, NAND_CMD_RESET, 0);
+ DoC_WaitReady(docptr);
+
+ /* Read the NAND chip ID: 1. Send ReadID command */
+ DoC_Command(docptr, NAND_CMD_READID, 0);
+
+ /* Read the NAND chip ID: 2. Send address byte zero */
+ DoC_Address(doc, 1, 0x00, 0, 0x00);
+
+ WriteDOC(0, docptr, Mplus_FlashControl);
+ DoC_WaitReady(docptr);
+
+ /* Read the manufacturer and device id codes of the flash device through
+ CDSN IO register see Software Requirement 11.4 item 5.*/
+ dummy = ReadDOC(docptr, Mplus_ReadPipeInit);
+ dummy = ReadDOC(docptr, Mplus_ReadPipeInit);
+
+ mfr = ReadDOC(docptr, Mil_CDSN_IO);
+ if (doc->interleave)
+ dummy = ReadDOC(docptr, Mil_CDSN_IO); /* 2 way interleave */
+
+ id = ReadDOC(docptr, Mil_CDSN_IO);
+ if (doc->interleave)
+ dummy = ReadDOC(docptr, Mil_CDSN_IO); /* 2 way interleave */
+
+ dummy = ReadDOC(docptr, Mplus_LastDataRead);
+ dummy = ReadDOC(docptr, Mplus_LastDataRead);
+
+ /* Disable flash internally */
+ WriteDOC(0, docptr, Mplus_FlashSelect);
+
+ /* No response - return failure */
+ if (mfr == 0xff || mfr == 0)
+ return 0;
+
+ for (i = 0; nand_flash_ids[i].name != NULL; i++) {
+ if (id == nand_flash_ids[i].id) {
+ /* Try to identify manufacturer */
+ for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
+ if (nand_manuf_ids[j].id == mfr)
+ break;
+ }
+ printk(KERN_INFO "Flash chip found: Manufacturer ID: %2.2X, "
+ "Chip ID: %2.2X (%s:%s)\n", mfr, id,
+ nand_manuf_ids[j].name, nand_flash_ids[i].name);
+ doc->mfr = mfr;
+ doc->id = id;
+ doc->chipshift = ffs((nand_flash_ids[i].chipsize << 20)) - 1;
+ doc->erasesize = nand_flash_ids[i].erasesize << doc->interleave;
+ break;
+ }
+ }
+
+ if (nand_flash_ids[i].name == NULL)
+ return 0;
+ return 1;
+}
+
+/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
+static void DoC_ScanChips(struct DiskOnChip *this)
+{
+ int floor, chip;
+ int numchips[MAX_FLOORS_MPLUS];
+ int ret;
+
+ this->numchips = 0;
+ this->mfr = 0;
+ this->id = 0;
+
+ /* Work out the intended interleave setting */
+ this->interleave = 0;
+ if (this->ChipID == DOC_ChipID_DocMilPlus32)
+ this->interleave = 1;
+
+ /* Check the ASIC agrees */
+ if ( (this->interleave << 2) !=
+ (ReadDOC(this->virtadr, Mplus_Configuration) & 4)) {
+ u_char conf = ReadDOC(this->virtadr, Mplus_Configuration);
+ printk(KERN_NOTICE "Setting DiskOnChip Millennium Plus interleave to %s\n",
+ this->interleave?"on (16-bit)":"off (8-bit)");
+ conf ^= 4;
+ WriteDOC(conf, this->virtadr, Mplus_Configuration);
+ }
+
+ /* For each floor, find the number of valid chips it contains */
+ for (floor = 0,ret = 1; floor < MAX_FLOORS_MPLUS; floor++) {
+ numchips[floor] = 0;
+ for (chip = 0; chip < MAX_CHIPS_MPLUS && ret != 0; chip++) {
+ ret = DoC_IdentChip(this, floor, chip);
+ if (ret) {
+ numchips[floor]++;
+ this->numchips++;
+ }
+ }
+ }
+ /* If there are none at all that we recognise, bail */
+ if (!this->numchips) {
+ printk("No flash chips recognised.\n");
+ return;
+ }
+
+ /* Allocate an array to hold the information for each chip */
+ this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL);
+ if (!this->chips){
+ printk("MTD: No memory for allocating chip info structures\n");
+ return;
+ }
+
+ /* Fill out the chip array with {floor, chipno} for each
+ * detected chip in the device. */
+ for (floor = 0, ret = 0; floor < MAX_FLOORS_MPLUS; floor++) {
+ for (chip = 0 ; chip < numchips[floor] ; chip++) {
+ this->chips[ret].floor = floor;
+ this->chips[ret].chip = chip;
+ this->chips[ret].curadr = 0;
+ this->chips[ret].curmode = 0x50;
+ ret++;
+ }
+ }
+
+ /* Calculate and print the total size of the device */
+ this->totlen = this->numchips * (1 << this->chipshift);
+ printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n",
+ this->numchips ,this->totlen >> 20);
+}
+
+static int DoCMilPlus_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2)
+{
+ int tmp1, tmp2, retval;
+
+ if (doc1->physadr == doc2->physadr)
+ return 1;
+
+ /* Use the alias resolution register which was set aside for this
+ * purpose. If it's value is the same on both chips, they might
+ * be the same chip, and we write to one and check for a change in
+ * the other. It's unclear if this register is usuable in the
+ * DoC 2000 (it's in the Millennium docs), but it seems to work. */
+ tmp1 = ReadDOC(doc1->virtadr, Mplus_AliasResolution);
+ tmp2 = ReadDOC(doc2->virtadr, Mplus_AliasResolution);
+ if (tmp1 != tmp2)
+ return 0;
+
+ WriteDOC((tmp1+1) % 0xff, doc1->virtadr, Mplus_AliasResolution);
+ tmp2 = ReadDOC(doc2->virtadr, Mplus_AliasResolution);
+ if (tmp2 == (tmp1+1) % 0xff)
+ retval = 1;
+ else
+ retval = 0;
+
+ /* Restore register contents. May not be necessary, but do it just to
+ * be safe. */
+ WriteDOC(tmp1, doc1->virtadr, Mplus_AliasResolution);
+
+ return retval;
+}
+
+static const char im_name[] = "DoCMilPlus_init";
+
+/* This routine is made available to other mtd code via
+ * inter_module_register. It must only be accessed through
+ * inter_module_get which will bump the use count of this module. The
+ * addresses passed back in mtd are valid as long as the use count of
+ * this module is non-zero, i.e. between inter_module_get and
+ * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
+ */
+static void DoCMilPlus_init(struct mtd_info *mtd)
+{
+ struct DiskOnChip *this = mtd->priv;
+ struct DiskOnChip *old = NULL;
+
+ /* We must avoid being called twice for the same device. */
+ if (docmilpluslist)
+ old = docmilpluslist->priv;
+
+ while (old) {
+ if (DoCMilPlus_is_alias(this, old)) {
+ printk(KERN_NOTICE "Ignoring DiskOnChip Millennium "
+ "Plus at 0x%lX - already configured\n",
+ this->physadr);
+ iounmap(this->virtadr);
+ kfree(mtd);
+ return;
+ }
+ if (old->nextdoc)
+ old = old->nextdoc->priv;
+ else
+ old = NULL;
+ }
+
+ mtd->name = "DiskOnChip Millennium Plus";
+ printk(KERN_NOTICE "DiskOnChip Millennium Plus found at "
+ "address 0x%lX\n", this->physadr);
+
+ mtd->type = MTD_NANDFLASH;
+ mtd->flags = MTD_CAP_NANDFLASH;
+ mtd->ecctype = MTD_ECC_RS_DiskOnChip;
+ mtd->size = 0;
+
+ mtd->erasesize = 0;
+ mtd->oobblock = 512;
+ mtd->oobsize = 16;
+ mtd->owner = THIS_MODULE;
+ mtd->erase = doc_erase;
+ mtd->point = NULL;
+ mtd->unpoint = NULL;
+ mtd->read = doc_read;
+ mtd->write = doc_write;
+ mtd->read_ecc = doc_read_ecc;
+ mtd->write_ecc = doc_write_ecc;
+ mtd->read_oob = doc_read_oob;
+ mtd->write_oob = doc_write_oob;
+ mtd->sync = NULL;
+
+ this->totlen = 0;
+ this->numchips = 0;
+ this->curfloor = -1;
+ this->curchip = -1;
+
+ /* Ident all the chips present. */
+ DoC_ScanChips(this);
+
+ if (!this->totlen) {
+ kfree(mtd);
+ iounmap(this->virtadr);
+ } else {
+ this->nextdoc = docmilpluslist;
+ docmilpluslist = mtd;
+ mtd->size = this->totlen;
+ mtd->erasesize = this->erasesize;
+ add_mtd_device(mtd);
+ return;
+ }
+}
+
+#if 0
+static int doc_dumpblk(struct mtd_info *mtd, loff_t from)
+{
+ int i;
+ loff_t fofs;
+ struct DiskOnChip *this = mtd->priv;
+ void __iomem * docptr = this->virtadr;
+ struct Nand *mychip = &this->chips[from >> (this->chipshift)];
+ unsigned char *bp, buf[1056];
+ char c[32];
+
+ from &= ~0x3ff;
+
+ /* Don't allow read past end of device */
+ if (from >= this->totlen)
+ return -EINVAL;
+
+ DoC_CheckASIC(docptr);
+
+ /* Find the chip which is to be used and select it */
+ if (this->curfloor != mychip->floor) {
+ DoC_SelectFloor(docptr, mychip->floor);
+ DoC_SelectChip(docptr, mychip->chip);
+ } else if (this->curchip != mychip->chip) {
+ DoC_SelectChip(docptr, mychip->chip);
+ }
+ this->curfloor = mychip->floor;
+ this->curchip = mychip->chip;
+
+ /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */
+ WriteDOC((DOC_FLASH_CE | DOC_FLASH_WP), docptr, Mplus_FlashSelect);
+
+ /* Reset the chip, see Software Requirement 11.4 item 1. */
+ DoC_Command(docptr, NAND_CMD_RESET, 0);
+ DoC_WaitReady(docptr);
+
+ fofs = from;
+ DoC_Command(docptr, DoC_GetDataOffset(mtd, &fofs), 0);
+ DoC_Address(this, 3, fofs, 0, 0x00);
+ WriteDOC(0, docptr, Mplus_FlashControl);
+ DoC_WaitReady(docptr);
+
+ /* disable the ECC engine */
+ WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
+
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+
+ /* Read the data via the internal pipeline through CDSN IO
+ register, see Pipelined Read Operations 11.3 */
+ MemReadDOC(docptr, buf, 1054);
+ buf[1054] = ReadDOC(docptr, Mplus_LastDataRead);
+ buf[1055] = ReadDOC(docptr, Mplus_LastDataRead);
+
+ memset(&c[0], 0, sizeof(c));
+ printk("DUMP OFFSET=%x:\n", (int)from);
+
+ for (i = 0, bp = &buf[0]; (i < 1056); i++) {
+ if ((i % 16) == 0)
+ printk("%08x: ", i);
+ printk(" %02x", *bp);
+ c[(i & 0xf)] = ((*bp >= 0x20) && (*bp <= 0x7f)) ? *bp : '.';
+ bp++;
+ if (((i + 1) % 16) == 0)
+ printk(" %s\n", c);
+ }
+ printk("\n");
+
+ /* Disable flash internally */
+ WriteDOC(0, docptr, Mplus_FlashSelect);
+
+ return 0;
+}
+#endif
+
+static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ /* Just a special case of doc_read_ecc */
+ return doc_read_ecc(mtd, from, len, retlen, buf, NULL, NULL);
+}
+
+static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf, u_char *eccbuf,
+ struct nand_oobinfo *oobsel)
+{
+ int ret, i;
+ volatile char dummy;
+ loff_t fofs;
+ unsigned char syndrome[6];
+ struct DiskOnChip *this = mtd->priv;
+ void __iomem * docptr = this->virtadr;
+ struct Nand *mychip = &this->chips[from >> (this->chipshift)];
+
+ /* Don't allow read past end of device */
+ if (from >= this->totlen)
+ return -EINVAL;
+
+ /* Don't allow a single read to cross a 512-byte block boundary */
+ if (from + len > ((from | 0x1ff) + 1))
+ len = ((from | 0x1ff) + 1) - from;
+
+ DoC_CheckASIC(docptr);
+
+ /* Find the chip which is to be used and select it */
+ if (this->curfloor != mychip->floor) {
+ DoC_SelectFloor(docptr, mychip->floor);
+ DoC_SelectChip(docptr, mychip->chip);
+ } else if (this->curchip != mychip->chip) {
+ DoC_SelectChip(docptr, mychip->chip);
+ }
+ this->curfloor = mychip->floor;
+ this->curchip = mychip->chip;
+
+ /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */
+ WriteDOC((DOC_FLASH_CE | DOC_FLASH_WP), docptr, Mplus_FlashSelect);
+
+ /* Reset the chip, see Software Requirement 11.4 item 1. */
+ DoC_Command(docptr, NAND_CMD_RESET, 0);
+ DoC_WaitReady(docptr);
+
+ fofs = from;
+ DoC_Command(docptr, DoC_GetDataOffset(mtd, &fofs), 0);
+ DoC_Address(this, 3, fofs, 0, 0x00);
+ WriteDOC(0, docptr, Mplus_FlashControl);
+ DoC_WaitReady(docptr);
+
+ if (eccbuf) {
+ /* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/
+ WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
+ WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
+ } else {
+ /* disable the ECC engine */
+ WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
+ }
+
+ /* Let the caller know we completed it */
+ *retlen = len;
+ ret = 0;
+
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+
+ if (eccbuf) {
+ /* Read the data via the internal pipeline through CDSN IO
+ register, see Pipelined Read Operations 11.3 */
+ MemReadDOC(docptr, buf, len);
+
+ /* Read the ECC data following raw data */
+ MemReadDOC(docptr, eccbuf, 4);
+ eccbuf[4] = ReadDOC(docptr, Mplus_LastDataRead);
+ eccbuf[5] = ReadDOC(docptr, Mplus_LastDataRead);
+
+ /* Flush the pipeline */
+ dummy = ReadDOC(docptr, Mplus_ECCConf);
+ dummy = ReadDOC(docptr, Mplus_ECCConf);
+
+ /* Check the ECC Status */
+ if (ReadDOC(docptr, Mplus_ECCConf) & 0x80) {
+ int nb_errors;
+ /* There was an ECC error */
+#ifdef ECC_DEBUG
+ printk("DiskOnChip ECC Error: Read at %lx\n", (long)from);
+#endif
+ /* Read the ECC syndrom through the DiskOnChip ECC logic.
+ These syndrome will be all ZERO when there is no error */
+ for (i = 0; i < 6; i++)
+ syndrome[i] = ReadDOC(docptr, Mplus_ECCSyndrome0 + i);
+
+ nb_errors = doc_decode_ecc(buf, syndrome);
+#ifdef ECC_DEBUG
+ printk("ECC Errors corrected: %x\n", nb_errors);
+#endif
+ if (nb_errors < 0) {
+ /* We return error, but have actually done the read. Not that
+ this can be told to user-space, via sys_read(), but at least
+ MTD-aware stuff can know about it by checking *retlen */
+#ifdef ECC_DEBUG
+ printk("%s(%d): Millennium Plus ECC error (from=0x%x:\n",
+ __FILE__, __LINE__, (int)from);
+ printk(" syndrome= %02x:%02x:%02x:%02x:%02x:"
+ "%02x\n",
+ syndrome[0], syndrome[1], syndrome[2],
+ syndrome[3], syndrome[4], syndrome[5]);
+ printk(" eccbuf= %02x:%02x:%02x:%02x:%02x:"
+ "%02x\n",
+ eccbuf[0], eccbuf[1], eccbuf[2],
+ eccbuf[3], eccbuf[4], eccbuf[5]);
+#endif
+ ret = -EIO;
+ }
+ }
+
+#ifdef PSYCHO_DEBUG
+ printk("ECC DATA at %lx: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
+ (long)from, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
+ eccbuf[4], eccbuf[5]);
+#endif
+
+ /* disable the ECC engine */
+ WriteDOC(DOC_ECC_DIS, docptr , Mplus_ECCConf);
+ } else {
+ /* Read the data via the internal pipeline through CDSN IO
+ register, see Pipelined Read Operations 11.3 */
+ MemReadDOC(docptr, buf, len-2);
+ buf[len-2] = ReadDOC(docptr, Mplus_LastDataRead);
+ buf[len-1] = ReadDOC(docptr, Mplus_LastDataRead);
+ }
+
+ /* Disable flash internally */
+ WriteDOC(0, docptr, Mplus_FlashSelect);
+
+ return ret;
+}
+
+static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf)
+{
+ char eccbuf[6];
+ return doc_write_ecc(mtd, to, len, retlen, buf, eccbuf, NULL);
+}
+
+static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf, u_char *eccbuf,
+ struct nand_oobinfo *oobsel)
+{
+ int i, before, ret = 0;
+ loff_t fto;
+ volatile char dummy;
+ struct DiskOnChip *this = mtd->priv;
+ void __iomem * docptr = this->virtadr;
+ struct Nand *mychip = &this->chips[to >> (this->chipshift)];
+
+ /* Don't allow write past end of device */
+ if (to >= this->totlen)
+ return -EINVAL;
+
+ /* Don't allow writes which aren't exactly one block (512 bytes) */
+ if ((to & 0x1ff) || (len != 0x200))
+ return -EINVAL;
+
+ /* Determine position of OOB flags, before or after data */
+ before = (this->interleave && (to & 0x200));
+
+ DoC_CheckASIC(docptr);
+
+ /* Find the chip which is to be used and select it */
+ if (this->curfloor != mychip->floor) {
+ DoC_SelectFloor(docptr, mychip->floor);
+ DoC_SelectChip(docptr, mychip->chip);
+ } else if (this->curchip != mychip->chip) {
+ DoC_SelectChip(docptr, mychip->chip);
+ }
+ this->curfloor = mychip->floor;
+ this->curchip = mychip->chip;
+
+ /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */
+ WriteDOC(DOC_FLASH_CE, docptr, Mplus_FlashSelect);
+
+ /* Reset the chip, see Software Requirement 11.4 item 1. */
+ DoC_Command(docptr, NAND_CMD_RESET, 0);
+ DoC_WaitReady(docptr);
+
+ /* Set device to appropriate plane of flash */
+ fto = to;
+ WriteDOC(DoC_GetDataOffset(mtd, &fto), docptr, Mplus_FlashCmd);
+
+ /* On interleaved devices the flags for 2nd half 512 are before data */
+ if (eccbuf && before)
+ fto -= 2;
+
+ /* issue the Serial Data In command to initial the Page Program process */
+ DoC_Command(docptr, NAND_CMD_SEQIN, 0x00);
+ DoC_Address(this, 3, fto, 0x00, 0x00);
+
+ /* Disable the ECC engine */
+ WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
+
+ if (eccbuf) {
+ if (before) {
+ /* Write the block status BLOCK_USED (0x5555) */
+ WriteDOC(0x55, docptr, Mil_CDSN_IO);
+ WriteDOC(0x55, docptr, Mil_CDSN_IO);
+ }
+
+ /* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/
+ WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
+ }
+
+ MemWriteDOC(docptr, (unsigned char *) buf, len);
+
+ if (eccbuf) {
+ /* Write ECC data to flash, the ECC info is generated by
+ the DiskOnChip ECC logic see Reed-Solomon EDC/ECC 11.1 */
+ DoC_Delay(docptr, 3);
+
+ /* Read the ECC data through the DiskOnChip ECC logic */
+ for (i = 0; i < 6; i++)
+ eccbuf[i] = ReadDOC(docptr, Mplus_ECCSyndrome0 + i);
+
+ /* disable the ECC engine */
+ WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
+
+ /* Write the ECC data to flash */
+ MemWriteDOC(docptr, eccbuf, 6);
+
+ if (!before) {
+ /* Write the block status BLOCK_USED (0x5555) */
+ WriteDOC(0x55, docptr, Mil_CDSN_IO+6);
+ WriteDOC(0x55, docptr, Mil_CDSN_IO+7);
+ }
+
+#ifdef PSYCHO_DEBUG
+ printk("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
+ (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
+ eccbuf[4], eccbuf[5]);
+#endif
+ }
+
+ WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
+ WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
+
+ /* Commit the Page Program command and wait for ready
+ see Software Requirement 11.4 item 1.*/
+ DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00);
+ DoC_WaitReady(docptr);
+
+ /* Read the status of the flash device through CDSN IO register
+ see Software Requirement 11.4 item 5.*/
+ DoC_Command(docptr, NAND_CMD_STATUS, 0);
+ dummy = ReadDOC(docptr, Mplus_ReadPipeInit);
+ dummy = ReadDOC(docptr, Mplus_ReadPipeInit);
+ DoC_Delay(docptr, 2);
+ if ((dummy = ReadDOC(docptr, Mplus_LastDataRead)) & 1) {
+ printk("MTD: Error 0x%x programming at 0x%x\n", dummy, (int)to);
+ /* Error in programming
+ FIXME: implement Bad Block Replacement (in nftl.c ??) */
+ *retlen = 0;
+ ret = -EIO;
+ }
+ dummy = ReadDOC(docptr, Mplus_LastDataRead);
+
+ /* Disable flash internally */
+ WriteDOC(0, docptr, Mplus_FlashSelect);
+
+ /* Let the caller know we completed it */
+ *retlen = len;
+
+ return ret;
+}
+
+static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ loff_t fofs, base;
+ struct DiskOnChip *this = mtd->priv;
+ void __iomem * docptr = this->virtadr;
+ struct Nand *mychip = &this->chips[ofs >> this->chipshift];
+ size_t i, size, got, want;
+
+ DoC_CheckASIC(docptr);
+
+ /* Find the chip which is to be used and select it */
+ if (this->curfloor != mychip->floor) {
+ DoC_SelectFloor(docptr, mychip->floor);
+ DoC_SelectChip(docptr, mychip->chip);
+ } else if (this->curchip != mychip->chip) {
+ DoC_SelectChip(docptr, mychip->chip);
+ }
+ this->curfloor = mychip->floor;
+ this->curchip = mychip->chip;
+
+ /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */
+ WriteDOC((DOC_FLASH_CE | DOC_FLASH_WP), docptr, Mplus_FlashSelect);
+
+ /* disable the ECC engine */
+ WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
+ DoC_WaitReady(docptr);
+
+ /* Maximum of 16 bytes in the OOB region, so limit read to that */
+ if (len > 16)
+ len = 16;
+ got = 0;
+ want = len;
+
+ for (i = 0; ((i < 3) && (want > 0)); i++) {
+ /* Figure out which region we are accessing... */
+ fofs = ofs;
+ base = ofs & 0xf;
+ if (!this->interleave) {
+ DoC_Command(docptr, NAND_CMD_READOOB, 0);
+ size = 16 - base;
+ } else if (base < 6) {
+ DoC_Command(docptr, DoC_GetECCOffset(mtd, &fofs), 0);
+ size = 6 - base;
+ } else if (base < 8) {
+ DoC_Command(docptr, DoC_GetFlagsOffset(mtd, &fofs), 0);
+ size = 8 - base;
+ } else {
+ DoC_Command(docptr, DoC_GetHdrOffset(mtd, &fofs), 0);
+ size = 16 - base;
+ }
+ if (size > want)
+ size = want;
+
+ /* Issue read command */
+ DoC_Address(this, 3, fofs, 0, 0x00);
+ WriteDOC(0, docptr, Mplus_FlashControl);
+ DoC_WaitReady(docptr);
+
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+ MemReadDOC(docptr, &buf[got], size - 2);
+ buf[got + size - 2] = ReadDOC(docptr, Mplus_LastDataRead);
+ buf[got + size - 1] = ReadDOC(docptr, Mplus_LastDataRead);
+
+ ofs += size;
+ got += size;
+ want -= size;
+ }
+
+ /* Disable flash internally */
+ WriteDOC(0, docptr, Mplus_FlashSelect);
+
+ *retlen = len;
+ return 0;
+}
+
+static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
+ size_t *retlen, const u_char *buf)
+{
+ volatile char dummy;
+ loff_t fofs, base;
+ struct DiskOnChip *this = mtd->priv;
+ void __iomem * docptr = this->virtadr;
+ struct Nand *mychip = &this->chips[ofs >> this->chipshift];
+ size_t i, size, got, want;
+ int ret = 0;
+
+ DoC_CheckASIC(docptr);
+
+ /* Find the chip which is to be used and select it */
+ if (this->curfloor != mychip->floor) {
+ DoC_SelectFloor(docptr, mychip->floor);
+ DoC_SelectChip(docptr, mychip->chip);
+ } else if (this->curchip != mychip->chip) {
+ DoC_SelectChip(docptr, mychip->chip);
+ }
+ this->curfloor = mychip->floor;
+ this->curchip = mychip->chip;
+
+ /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */
+ WriteDOC(DOC_FLASH_CE, docptr, Mplus_FlashSelect);
+
+
+ /* Maximum of 16 bytes in the OOB region, so limit write to that */
+ if (len > 16)
+ len = 16;
+ got = 0;
+ want = len;
+
+ for (i = 0; ((i < 3) && (want > 0)); i++) {
+ /* Reset the chip, see Software Requirement 11.4 item 1. */
+ DoC_Command(docptr, NAND_CMD_RESET, 0);
+ DoC_WaitReady(docptr);
+
+ /* Figure out which region we are accessing... */
+ fofs = ofs;
+ base = ofs & 0x0f;
+ if (!this->interleave) {
+ WriteDOC(NAND_CMD_READOOB, docptr, Mplus_FlashCmd);
+ size = 16 - base;
+ } else if (base < 6) {
+ WriteDOC(DoC_GetECCOffset(mtd, &fofs), docptr, Mplus_FlashCmd);
+ size = 6 - base;
+ } else if (base < 8) {
+ WriteDOC(DoC_GetFlagsOffset(mtd, &fofs), docptr, Mplus_FlashCmd);
+ size = 8 - base;
+ } else {
+ WriteDOC(DoC_GetHdrOffset(mtd, &fofs), docptr, Mplus_FlashCmd);
+ size = 16 - base;
+ }
+ if (size > want)
+ size = want;
+
+ /* Issue the Serial Data In command to initial the Page Program process */
+ DoC_Command(docptr, NAND_CMD_SEQIN, 0x00);
+ DoC_Address(this, 3, fofs, 0, 0x00);
+
+ /* Disable the ECC engine */
+ WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
+
+ /* Write the data via the internal pipeline through CDSN IO
+ register, see Pipelined Write Operations 11.2 */
+ MemWriteDOC(docptr, (unsigned char *) &buf[got], size);
+ WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
+ WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
+
+ /* Commit the Page Program command and wait for ready
+ see Software Requirement 11.4 item 1.*/
+ DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00);
+ DoC_WaitReady(docptr);
+
+ /* Read the status of the flash device through CDSN IO register
+ see Software Requirement 11.4 item 5.*/
+ DoC_Command(docptr, NAND_CMD_STATUS, 0x00);
+ dummy = ReadDOC(docptr, Mplus_ReadPipeInit);
+ dummy = ReadDOC(docptr, Mplus_ReadPipeInit);
+ DoC_Delay(docptr, 2);
+ if ((dummy = ReadDOC(docptr, Mplus_LastDataRead)) & 1) {
+ printk("MTD: Error 0x%x programming oob at 0x%x\n",
+ dummy, (int)ofs);
+ /* FIXME: implement Bad Block Replacement */
+ *retlen = 0;
+ ret = -EIO;
+ }
+ dummy = ReadDOC(docptr, Mplus_LastDataRead);
+
+ ofs += size;
+ got += size;
+ want -= size;
+ }
+
+ /* Disable flash internally */
+ WriteDOC(0, docptr, Mplus_FlashSelect);
+
+ *retlen = len;
+ return ret;
+}
+
+int doc_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+ volatile char dummy;
+ struct DiskOnChip *this = mtd->priv;
+ __u32 ofs = instr->addr;
+ __u32 len = instr->len;
+ void __iomem * docptr = this->virtadr;
+ struct Nand *mychip = &this->chips[ofs >> this->chipshift];
+
+ DoC_CheckASIC(docptr);
+
+ if (len != mtd->erasesize)
+ printk(KERN_WARNING "MTD: Erase not right size (%x != %x)n",
+ len, mtd->erasesize);
+
+ /* Find the chip which is to be used and select it */
+ if (this->curfloor != mychip->floor) {
+ DoC_SelectFloor(docptr, mychip->floor);
+ DoC_SelectChip(docptr, mychip->chip);
+ } else if (this->curchip != mychip->chip) {
+ DoC_SelectChip(docptr, mychip->chip);
+ }
+ this->curfloor = mychip->floor;
+ this->curchip = mychip->chip;
+
+ instr->state = MTD_ERASE_PENDING;
+
+ /* Millennium Plus bus cycle sequence as per figure 2, section 2.4 */
+ WriteDOC(DOC_FLASH_CE, docptr, Mplus_FlashSelect);
+
+ DoC_Command(docptr, NAND_CMD_RESET, 0x00);
+ DoC_WaitReady(docptr);
+
+ DoC_Command(docptr, NAND_CMD_ERASE1, 0);
+ DoC_Address(this, 2, ofs, 0, 0x00);
+ DoC_Command(docptr, NAND_CMD_ERASE2, 0);
+ DoC_WaitReady(docptr);
+ instr->state = MTD_ERASING;
+
+ /* Read the status of the flash device through CDSN IO register
+ see Software Requirement 11.4 item 5. */
+ DoC_Command(docptr, NAND_CMD_STATUS, 0);
+ dummy = ReadDOC(docptr, Mplus_ReadPipeInit);
+ dummy = ReadDOC(docptr, Mplus_ReadPipeInit);
+ if ((dummy = ReadDOC(docptr, Mplus_LastDataRead)) & 1) {
+ printk("MTD: Error 0x%x erasing at 0x%x\n", dummy, ofs);
+ /* FIXME: implement Bad Block Replacement (in nftl.c ??) */
+ instr->state = MTD_ERASE_FAILED;
+ } else {
+ instr->state = MTD_ERASE_DONE;
+ }
+ dummy = ReadDOC(docptr, Mplus_LastDataRead);
+
+ /* Disable flash internally */
+ WriteDOC(0, docptr, Mplus_FlashSelect);
+
+ mtd_erase_callback(instr);
+
+ return 0;
+}
+
+/****************************************************************************
+ *
+ * Module stuff
+ *
+ ****************************************************************************/
+
+static int __init init_doc2001plus(void)
+{
+ inter_module_register(im_name, THIS_MODULE, &DoCMilPlus_init);
+ return 0;
+}
+
+static void __exit cleanup_doc2001plus(void)
+{
+ struct mtd_info *mtd;
+ struct DiskOnChip *this;
+
+ while ((mtd=docmilpluslist)) {
+ this = mtd->priv;
+ docmilpluslist = this->nextdoc;
+
+ del_mtd_device(mtd);
+
+ iounmap(this->virtadr);
+ kfree(this->chips);
+ kfree(mtd);
+ }
+ inter_module_unregister(im_name);
+}
+
+module_exit(cleanup_doc2001plus);
+module_init(init_doc2001plus);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Greg Ungerer <gerg@snapgear.com> et al.");
+MODULE_DESCRIPTION("Driver for DiskOnChip Millennium Plus");
diff --git a/drivers/mtd/devices/docecc.c b/drivers/mtd/devices/docecc.c
new file mode 100644
index 000000000000..933877ff4d88
--- /dev/null
+++ b/drivers/mtd/devices/docecc.c
@@ -0,0 +1,526 @@
+/*
+ * ECC algorithm for M-systems disk on chip. We use the excellent Reed
+ * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the
+ * GNU GPL License. The rest is simply to convert the disk on chip
+ * syndrom into a standard syndom.
+ *
+ * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
+ * Copyright (C) 2000 Netgem S.A.
+ *
+ * $Id: docecc.c,v 1.5 2003/05/21 15:15:06 dwmw2 Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <asm/errno.h>
+#include <asm/io.h>
+#include <asm/uaccess.h>
+#include <linux/miscdevice.h>
+#include <linux/pci.h>
+#include <linux/delay.h>
+#include <linux/slab.h>
+#include <linux/sched.h>
+#include <linux/init.h>
+#include <linux/types.h>
+
+#include <linux/mtd/compatmac.h> /* for min() in older kernels */
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/doc2000.h>
+
+/* need to undef it (from asm/termbits.h) */
+#undef B0
+
+#define MM 10 /* Symbol size in bits */
+#define KK (1023-4) /* Number of data symbols per block */
+#define B0 510 /* First root of generator polynomial, alpha form */
+#define PRIM 1 /* power of alpha used to generate roots of generator poly */
+#define NN ((1 << MM) - 1)
+
+typedef unsigned short dtype;
+
+/* 1+x^3+x^10 */
+static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
+
+/* This defines the type used to store an element of the Galois Field
+ * used by the code. Make sure this is something larger than a char if
+ * if anything larger than GF(256) is used.
+ *
+ * Note: unsigned char will work up to GF(256) but int seems to run
+ * faster on the Pentium.
+ */
+typedef int gf;
+
+/* No legal value in index form represents zero, so
+ * we need a special value for this purpose
+ */
+#define A0 (NN)
+
+/* Compute x % NN, where NN is 2**MM - 1,
+ * without a slow divide
+ */
+static inline gf
+modnn(int x)
+{
+ while (x >= NN) {
+ x -= NN;
+ x = (x >> MM) + (x & NN);
+ }
+ return x;
+}
+
+#define CLEAR(a,n) {\
+int ci;\
+for(ci=(n)-1;ci >=0;ci--)\
+(a)[ci] = 0;\
+}
+
+#define COPY(a,b,n) {\
+int ci;\
+for(ci=(n)-1;ci >=0;ci--)\
+(a)[ci] = (b)[ci];\
+}
+
+#define COPYDOWN(a,b,n) {\
+int ci;\
+for(ci=(n)-1;ci >=0;ci--)\
+(a)[ci] = (b)[ci];\
+}
+
+#define Ldec 1
+
+/* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m]
+ lookup tables: index->polynomial form alpha_to[] contains j=alpha**i;
+ polynomial form -> index form index_of[j=alpha**i] = i
+ alpha=2 is the primitive element of GF(2**m)
+ HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
+ Let @ represent the primitive element commonly called "alpha" that
+ is the root of the primitive polynomial p(x). Then in GF(2^m), for any
+ 0 <= i <= 2^m-2,
+ @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
+ where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
+ of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
+ example the polynomial representation of @^5 would be given by the binary
+ representation of the integer "alpha_to[5]".
+ Similarily, index_of[] can be used as follows:
+ As above, let @ represent the primitive element of GF(2^m) that is
+ the root of the primitive polynomial p(x). In order to find the power
+ of @ (alpha) that has the polynomial representation
+ a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
+ we consider the integer "i" whose binary representation with a(0) being LSB
+ and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
+ "index_of[i]". Now, @^index_of[i] is that element whose polynomial
+ representation is (a(0),a(1),a(2),...,a(m-1)).
+ NOTE:
+ The element alpha_to[2^m-1] = 0 always signifying that the
+ representation of "@^infinity" = 0 is (0,0,0,...,0).
+ Similarily, the element index_of[0] = A0 always signifying
+ that the power of alpha which has the polynomial representation
+ (0,0,...,0) is "infinity".
+
+*/
+
+static void
+generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1])
+{
+ register int i, mask;
+
+ mask = 1;
+ Alpha_to[MM] = 0;
+ for (i = 0; i < MM; i++) {
+ Alpha_to[i] = mask;
+ Index_of[Alpha_to[i]] = i;
+ /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
+ if (Pp[i] != 0)
+ Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */
+ mask <<= 1; /* single left-shift */
+ }
+ Index_of[Alpha_to[MM]] = MM;
+ /*
+ * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
+ * poly-repr of @^i shifted left one-bit and accounting for any @^MM
+ * term that may occur when poly-repr of @^i is shifted.
+ */
+ mask >>= 1;
+ for (i = MM + 1; i < NN; i++) {
+ if (Alpha_to[i - 1] >= mask)
+ Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
+ else
+ Alpha_to[i] = Alpha_to[i - 1] << 1;
+ Index_of[Alpha_to[i]] = i;
+ }
+ Index_of[0] = A0;
+ Alpha_to[NN] = 0;
+}
+
+/*
+ * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content
+ * of the feedback shift register after having processed the data and
+ * the ECC.
+ *
+ * Return number of symbols corrected, or -1 if codeword is illegal
+ * or uncorrectable. If eras_pos is non-null, the detected error locations
+ * are written back. NOTE! This array must be at least NN-KK elements long.
+ * The corrected data are written in eras_val[]. They must be xor with the data
+ * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] .
+ *
+ * First "no_eras" erasures are declared by the calling program. Then, the
+ * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
+ * If the number of channel errors is not greater than "t_after_eras" the
+ * transmitted codeword will be recovered. Details of algorithm can be found
+ * in R. Blahut's "Theory ... of Error-Correcting Codes".
+
+ * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure
+ * will result. The decoder *could* check for this condition, but it would involve
+ * extra time on every decoding operation.
+ * */
+static int
+eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1],
+ gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK],
+ int no_eras)
+{
+ int deg_lambda, el, deg_omega;
+ int i, j, r,k;
+ gf u,q,tmp,num1,num2,den,discr_r;
+ gf lambda[NN-KK + 1], s[NN-KK + 1]; /* Err+Eras Locator poly
+ * and syndrome poly */
+ gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1];
+ gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK];
+ int syn_error, count;
+
+ syn_error = 0;
+ for(i=0;i<NN-KK;i++)
+ syn_error |= bb[i];
+
+ if (!syn_error) {
+ /* if remainder is zero, data[] is a codeword and there are no
+ * errors to correct. So return data[] unmodified
+ */
+ count = 0;
+ goto finish;
+ }
+
+ for(i=1;i<=NN-KK;i++){
+ s[i] = bb[0];
+ }
+ for(j=1;j<NN-KK;j++){
+ if(bb[j] == 0)
+ continue;
+ tmp = Index_of[bb[j]];
+
+ for(i=1;i<=NN-KK;i++)
+ s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)];
+ }
+
+ /* undo the feedback register implicit multiplication and convert
+ syndromes to index form */
+
+ for(i=1;i<=NN-KK;i++) {
+ tmp = Index_of[s[i]];
+ if (tmp != A0)
+ tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM);
+ s[i] = tmp;
+ }
+
+ CLEAR(&lambda[1],NN-KK);
+ lambda[0] = 1;
+
+ if (no_eras > 0) {
+ /* Init lambda to be the erasure locator polynomial */
+ lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])];
+ for (i = 1; i < no_eras; i++) {
+ u = modnn(PRIM*eras_pos[i]);
+ for (j = i+1; j > 0; j--) {
+ tmp = Index_of[lambda[j - 1]];
+ if(tmp != A0)
+ lambda[j] ^= Alpha_to[modnn(u + tmp)];
+ }
+ }
+#if DEBUG >= 1
+ /* Test code that verifies the erasure locator polynomial just constructed
+ Needed only for decoder debugging. */
+
+ /* find roots of the erasure location polynomial */
+ for(i=1;i<=no_eras;i++)
+ reg[i] = Index_of[lambda[i]];
+ count = 0;
+ for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
+ q = 1;
+ for (j = 1; j <= no_eras; j++)
+ if (reg[j] != A0) {
+ reg[j] = modnn(reg[j] + j);
+ q ^= Alpha_to[reg[j]];
+ }
+ if (q != 0)
+ continue;
+ /* store root and error location number indices */
+ root[count] = i;
+ loc[count] = k;
+ count++;
+ }
+ if (count != no_eras) {
+ printf("\n lambda(x) is WRONG\n");
+ count = -1;
+ goto finish;
+ }
+#if DEBUG >= 2
+ printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
+ for (i = 0; i < count; i++)
+ printf("%d ", loc[i]);
+ printf("\n");
+#endif
+#endif
+ }
+ for(i=0;i<NN-KK+1;i++)
+ b[i] = Index_of[lambda[i]];
+
+ /*
+ * Begin Berlekamp-Massey algorithm to determine error+erasure
+ * locator polynomial
+ */
+ r = no_eras;
+ el = no_eras;
+ while (++r <= NN-KK) { /* r is the step number */
+ /* Compute discrepancy at the r-th step in poly-form */
+ discr_r = 0;
+ for (i = 0; i < r; i++){
+ if ((lambda[i] != 0) && (s[r - i] != A0)) {
+ discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
+ }
+ }
+ discr_r = Index_of[discr_r]; /* Index form */
+ if (discr_r == A0) {
+ /* 2 lines below: B(x) <-- x*B(x) */
+ COPYDOWN(&b[1],b,NN-KK);
+ b[0] = A0;
+ } else {
+ /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
+ t[0] = lambda[0];
+ for (i = 0 ; i < NN-KK; i++) {
+ if(b[i] != A0)
+ t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])];
+ else
+ t[i+1] = lambda[i+1];
+ }
+ if (2 * el <= r + no_eras - 1) {
+ el = r + no_eras - el;
+ /*
+ * 2 lines below: B(x) <-- inv(discr_r) *
+ * lambda(x)
+ */
+ for (i = 0; i <= NN-KK; i++)
+ b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
+ } else {
+ /* 2 lines below: B(x) <-- x*B(x) */
+ COPYDOWN(&b[1],b,NN-KK);
+ b[0] = A0;
+ }
+ COPY(lambda,t,NN-KK+1);
+ }
+ }
+
+ /* Convert lambda to index form and compute deg(lambda(x)) */
+ deg_lambda = 0;
+ for(i=0;i<NN-KK+1;i++){
+ lambda[i] = Index_of[lambda[i]];
+ if(lambda[i] != A0)
+ deg_lambda = i;
+ }
+ /*
+ * Find roots of the error+erasure locator polynomial by Chien
+ * Search
+ */
+ COPY(&reg[1],&lambda[1],NN-KK);
+ count = 0; /* Number of roots of lambda(x) */
+ for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
+ q = 1;
+ for (j = deg_lambda; j > 0; j--){
+ if (reg[j] != A0) {
+ reg[j] = modnn(reg[j] + j);
+ q ^= Alpha_to[reg[j]];
+ }
+ }
+ if (q != 0)
+ continue;
+ /* store root (index-form) and error location number */
+ root[count] = i;
+ loc[count] = k;
+ /* If we've already found max possible roots,
+ * abort the search to save time
+ */
+ if(++count == deg_lambda)
+ break;
+ }
+ if (deg_lambda != count) {
+ /*
+ * deg(lambda) unequal to number of roots => uncorrectable
+ * error detected
+ */
+ count = -1;
+ goto finish;
+ }
+ /*
+ * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
+ * x**(NN-KK)). in index form. Also find deg(omega).
+ */
+ deg_omega = 0;
+ for (i = 0; i < NN-KK;i++){
+ tmp = 0;
+ j = (deg_lambda < i) ? deg_lambda : i;
+ for(;j >= 0; j--){
+ if ((s[i + 1 - j] != A0) && (lambda[j] != A0))
+ tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
+ }
+ if(tmp != 0)
+ deg_omega = i;
+ omega[i] = Index_of[tmp];
+ }
+ omega[NN-KK] = A0;
+
+ /*
+ * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
+ * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
+ */
+ for (j = count-1; j >=0; j--) {
+ num1 = 0;
+ for (i = deg_omega; i >= 0; i--) {
+ if (omega[i] != A0)
+ num1 ^= Alpha_to[modnn(omega[i] + i * root[j])];
+ }
+ num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
+ den = 0;
+
+ /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
+ for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) {
+ if(lambda[i+1] != A0)
+ den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];
+ }
+ if (den == 0) {
+#if DEBUG >= 1
+ printf("\n ERROR: denominator = 0\n");
+#endif
+ /* Convert to dual- basis */
+ count = -1;
+ goto finish;
+ }
+ /* Apply error to data */
+ if (num1 != 0) {
+ eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
+ } else {
+ eras_val[j] = 0;
+ }
+ }
+ finish:
+ for(i=0;i<count;i++)
+ eras_pos[i] = loc[i];
+ return count;
+}
+
+/***************************************************************************/
+/* The DOC specific code begins here */
+
+#define SECTOR_SIZE 512
+/* The sector bytes are packed into NB_DATA MM bits words */
+#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM)
+
+/*
+ * Correct the errors in 'sector[]' by using 'ecc1[]' which is the
+ * content of the feedback shift register applyied to the sector and
+ * the ECC. Return the number of errors corrected (and correct them in
+ * sector), or -1 if error
+ */
+int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6])
+{
+ int parity, i, nb_errors;
+ gf bb[NN - KK + 1];
+ gf error_val[NN-KK];
+ int error_pos[NN-KK], pos, bitpos, index, val;
+ dtype *Alpha_to, *Index_of;
+
+ /* init log and exp tables here to save memory. However, it is slower */
+ Alpha_to = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL);
+ if (!Alpha_to)
+ return -1;
+
+ Index_of = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL);
+ if (!Index_of) {
+ kfree(Alpha_to);
+ return -1;
+ }
+
+ generate_gf(Alpha_to, Index_of);
+
+ parity = ecc1[1];
+
+ bb[0] = (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8);
+ bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6);
+ bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4);
+ bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2);
+
+ nb_errors = eras_dec_rs(Alpha_to, Index_of, bb,
+ error_val, error_pos, 0);
+ if (nb_errors <= 0)
+ goto the_end;
+
+ /* correct the errors */
+ for(i=0;i<nb_errors;i++) {
+ pos = error_pos[i];
+ if (pos >= NB_DATA && pos < KK) {
+ nb_errors = -1;
+ goto the_end;
+ }
+ if (pos < NB_DATA) {
+ /* extract bit position (MSB first) */
+ pos = 10 * (NB_DATA - 1 - pos) - 6;
+ /* now correct the following 10 bits. At most two bytes
+ can be modified since pos is even */
+ index = (pos >> 3) ^ 1;
+ bitpos = pos & 7;
+ if ((index >= 0 && index < SECTOR_SIZE) ||
+ index == (SECTOR_SIZE + 1)) {
+ val = error_val[i] >> (2 + bitpos);
+ parity ^= val;
+ if (index < SECTOR_SIZE)
+ sector[index] ^= val;
+ }
+ index = ((pos >> 3) + 1) ^ 1;
+ bitpos = (bitpos + 10) & 7;
+ if (bitpos == 0)
+ bitpos = 8;
+ if ((index >= 0 && index < SECTOR_SIZE) ||
+ index == (SECTOR_SIZE + 1)) {
+ val = error_val[i] << (8 - bitpos);
+ parity ^= val;
+ if (index < SECTOR_SIZE)
+ sector[index] ^= val;
+ }
+ }
+ }
+
+ /* use parity to test extra errors */
+ if ((parity & 0xff) != 0)
+ nb_errors = -1;
+
+ the_end:
+ kfree(Alpha_to);
+ kfree(Index_of);
+ return nb_errors;
+}
+
+EXPORT_SYMBOL_GPL(doc_decode_ecc);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Fabrice Bellard <fabrice.bellard@netgem.com>");
+MODULE_DESCRIPTION("ECC code for correcting errors detected by DiskOnChip 2000 and Millennium ECC hardware");
diff --git a/drivers/mtd/devices/docprobe.c b/drivers/mtd/devices/docprobe.c
new file mode 100644
index 000000000000..197d67045e1e
--- /dev/null
+++ b/drivers/mtd/devices/docprobe.c
@@ -0,0 +1,355 @@
+
+/* Linux driver for Disk-On-Chip devices */
+/* Probe routines common to all DoC devices */
+/* (C) 1999 Machine Vision Holdings, Inc. */
+/* (C) 1999-2003 David Woodhouse <dwmw2@infradead.org> */
+
+/* $Id: docprobe.c,v 1.44 2005/01/05 12:40:36 dwmw2 Exp $ */
+
+
+
+/* DOC_PASSIVE_PROBE:
+ In order to ensure that the BIOS checksum is correct at boot time, and
+ hence that the onboard BIOS extension gets executed, the DiskOnChip
+ goes into reset mode when it is read sequentially: all registers
+ return 0xff until the chip is woken up again by writing to the
+ DOCControl register.
+
+ Unfortunately, this means that the probe for the DiskOnChip is unsafe,
+ because one of the first things it does is write to where it thinks
+ the DOCControl register should be - which may well be shared memory
+ for another device. I've had machines which lock up when this is
+ attempted. Hence the possibility to do a passive probe, which will fail
+ to detect a chip in reset mode, but is at least guaranteed not to lock
+ the machine.
+
+ If you have this problem, uncomment the following line:
+#define DOC_PASSIVE_PROBE
+*/
+
+
+/* DOC_SINGLE_DRIVER:
+ Millennium driver has been merged into DOC2000 driver.
+
+ The old Millennium-only driver has been retained just in case there
+ are problems with the new code. If the combined driver doesn't work
+ for you, you can try the old one by undefining DOC_SINGLE_DRIVER
+ below and also enabling it in your configuration. If this fixes the
+ problems, please send a report to the MTD mailing list at
+ <linux-mtd@lists.infradead.org>.
+*/
+#define DOC_SINGLE_DRIVER
+
+#include <linux/config.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <asm/errno.h>
+#include <asm/io.h>
+#include <linux/delay.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/types.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/doc2000.h>
+#include <linux/mtd/compatmac.h>
+
+/* Where to look for the devices? */
+#ifndef CONFIG_MTD_DOCPROBE_ADDRESS
+#define CONFIG_MTD_DOCPROBE_ADDRESS 0
+#endif
+
+
+static unsigned long doc_config_location = CONFIG_MTD_DOCPROBE_ADDRESS;
+module_param(doc_config_location, ulong, 0);
+MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
+
+static unsigned long __initdata doc_locations[] = {
+#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
+#ifdef CONFIG_MTD_DOCPROBE_HIGH
+ 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
+ 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
+ 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
+ 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
+ 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
+#else /* CONFIG_MTD_DOCPROBE_HIGH */
+ 0xc8000, 0xca000, 0xcc000, 0xce000,
+ 0xd0000, 0xd2000, 0xd4000, 0xd6000,
+ 0xd8000, 0xda000, 0xdc000, 0xde000,
+ 0xe0000, 0xe2000, 0xe4000, 0xe6000,
+ 0xe8000, 0xea000, 0xec000, 0xee000,
+#endif /* CONFIG_MTD_DOCPROBE_HIGH */
+#elif defined(__PPC__)
+ 0xe4000000,
+#elif defined(CONFIG_MOMENCO_OCELOT)
+ 0x2f000000,
+ 0xff000000,
+#elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
+ 0xff000000,
+##else
+#warning Unknown architecture for DiskOnChip. No default probe locations defined
+#endif
+ 0xffffffff };
+
+/* doccheck: Probe a given memory window to see if there's a DiskOnChip present */
+
+static inline int __init doccheck(void __iomem *potential, unsigned long physadr)
+{
+ void __iomem *window=potential;
+ unsigned char tmp, tmpb, tmpc, ChipID;
+#ifndef DOC_PASSIVE_PROBE
+ unsigned char tmp2;
+#endif
+
+ /* Routine copied from the Linux DOC driver */
+
+#ifdef CONFIG_MTD_DOCPROBE_55AA
+ /* Check for 0x55 0xAA signature at beginning of window,
+ this is no longer true once we remove the IPL (for Millennium */
+ if (ReadDOC(window, Sig1) != 0x55 || ReadDOC(window, Sig2) != 0xaa)
+ return 0;
+#endif /* CONFIG_MTD_DOCPROBE_55AA */
+
+#ifndef DOC_PASSIVE_PROBE
+ /* It's not possible to cleanly detect the DiskOnChip - the
+ * bootup procedure will put the device into reset mode, and
+ * it's not possible to talk to it without actually writing
+ * to the DOCControl register. So we store the current contents
+ * of the DOCControl register's location, in case we later decide
+ * that it's not a DiskOnChip, and want to put it back how we
+ * found it.
+ */
+ tmp2 = ReadDOC(window, DOCControl);
+
+ /* Reset the DiskOnChip ASIC */
+ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
+ window, DOCControl);
+ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
+ window, DOCControl);
+
+ /* Enable the DiskOnChip ASIC */
+ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
+ window, DOCControl);
+ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
+ window, DOCControl);
+#endif /* !DOC_PASSIVE_PROBE */
+
+ /* We need to read the ChipID register four times. For some
+ newer DiskOnChip 2000 units, the first three reads will
+ return the DiskOnChip Millennium ident. Don't ask. */
+ ChipID = ReadDOC(window, ChipID);
+
+ switch (ChipID) {
+ case DOC_ChipID_Doc2k:
+ /* Check the TOGGLE bit in the ECC register */
+ tmp = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT;
+ tmpb = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT;
+ tmpc = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT;
+ if (tmp != tmpb && tmp == tmpc)
+ return ChipID;
+ break;
+
+ case DOC_ChipID_DocMil:
+ /* Check for the new 2000 with Millennium ASIC */
+ ReadDOC(window, ChipID);
+ ReadDOC(window, ChipID);
+ if (ReadDOC(window, ChipID) != DOC_ChipID_DocMil)
+ ChipID = DOC_ChipID_Doc2kTSOP;
+
+ /* Check the TOGGLE bit in the ECC register */
+ tmp = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT;
+ tmpb = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT;
+ tmpc = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT;
+ if (tmp != tmpb && tmp == tmpc)
+ return ChipID;
+ break;
+
+ case DOC_ChipID_DocMilPlus16:
+ case DOC_ChipID_DocMilPlus32:
+ case 0:
+ /* Possible Millennium+, need to do more checks */
+#ifndef DOC_PASSIVE_PROBE
+ /* Possibly release from power down mode */
+ for (tmp = 0; (tmp < 4); tmp++)
+ ReadDOC(window, Mplus_Power);
+
+ /* Reset the DiskOnChip ASIC */
+ tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
+ DOC_MODE_BDECT;
+ WriteDOC(tmp, window, Mplus_DOCControl);
+ WriteDOC(~tmp, window, Mplus_CtrlConfirm);
+
+ mdelay(1);
+ /* Enable the DiskOnChip ASIC */
+ tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
+ DOC_MODE_BDECT;
+ WriteDOC(tmp, window, Mplus_DOCControl);
+ WriteDOC(~tmp, window, Mplus_CtrlConfirm);
+ mdelay(1);
+#endif /* !DOC_PASSIVE_PROBE */
+
+ ChipID = ReadDOC(window, ChipID);
+
+ switch (ChipID) {
+ case DOC_ChipID_DocMilPlus16:
+ case DOC_ChipID_DocMilPlus32:
+ /* Check the TOGGLE bit in the toggle register */
+ tmp = ReadDOC(window, Mplus_Toggle) & DOC_TOGGLE_BIT;
+ tmpb = ReadDOC(window, Mplus_Toggle) & DOC_TOGGLE_BIT;
+ tmpc = ReadDOC(window, Mplus_Toggle) & DOC_TOGGLE_BIT;
+ if (tmp != tmpb && tmp == tmpc)
+ return ChipID;
+ default:
+ break;
+ }
+ /* FALL TRHU */
+
+ default:
+
+#ifdef CONFIG_MTD_DOCPROBE_55AA
+ printk(KERN_DEBUG "Possible DiskOnChip with unknown ChipID %2.2X found at 0x%lx\n",
+ ChipID, physadr);
+#endif
+#ifndef DOC_PASSIVE_PROBE
+ /* Put back the contents of the DOCControl register, in case it's not
+ * actually a DiskOnChip.
+ */
+ WriteDOC(tmp2, window, DOCControl);
+#endif
+ return 0;
+ }
+
+ printk(KERN_WARNING "DiskOnChip failed TOGGLE test, dropping.\n");
+
+#ifndef DOC_PASSIVE_PROBE
+ /* Put back the contents of the DOCControl register: it's not a DiskOnChip */
+ WriteDOC(tmp2, window, DOCControl);
+#endif
+ return 0;
+}
+
+static int docfound;
+
+static void __init DoC_Probe(unsigned long physadr)
+{
+ void __iomem *docptr;
+ struct DiskOnChip *this;
+ struct mtd_info *mtd;
+ int ChipID;
+ char namebuf[15];
+ char *name = namebuf;
+ char *im_funcname = NULL;
+ char *im_modname = NULL;
+ void (*initroutine)(struct mtd_info *) = NULL;
+
+ docptr = ioremap(physadr, DOC_IOREMAP_LEN);
+
+ if (!docptr)
+ return;
+
+ if ((ChipID = doccheck(docptr, physadr))) {
+ if (ChipID == DOC_ChipID_Doc2kTSOP) {
+ /* Remove this at your own peril. The hardware driver works but nothing prevents you from erasing bad blocks */
+ printk(KERN_NOTICE "Refusing to drive DiskOnChip 2000 TSOP until Bad Block Table is correctly supported by INFTL\n");
+ iounmap(docptr);
+ return;
+ }
+ docfound = 1;
+ mtd = kmalloc(sizeof(struct DiskOnChip) + sizeof(struct mtd_info), GFP_KERNEL);
+
+ if (!mtd) {
+ printk(KERN_WARNING "Cannot allocate memory for data structures. Dropping.\n");
+ iounmap(docptr);
+ return;
+ }
+
+ this = (struct DiskOnChip *)(&mtd[1]);
+
+ memset((char *)mtd,0, sizeof(struct mtd_info));
+ memset((char *)this, 0, sizeof(struct DiskOnChip));
+
+ mtd->priv = this;
+ this->virtadr = docptr;
+ this->physadr = physadr;
+ this->ChipID = ChipID;
+ sprintf(namebuf, "with ChipID %2.2X", ChipID);
+
+ switch(ChipID) {
+ case DOC_ChipID_Doc2kTSOP:
+ name="2000 TSOP";
+ im_funcname = "DoC2k_init";
+ im_modname = "doc2000";
+ break;
+
+ case DOC_ChipID_Doc2k:
+ name="2000";
+ im_funcname = "DoC2k_init";
+ im_modname = "doc2000";
+ break;
+
+ case DOC_ChipID_DocMil:
+ name="Millennium";
+#ifdef DOC_SINGLE_DRIVER
+ im_funcname = "DoC2k_init";
+ im_modname = "doc2000";
+#else
+ im_funcname = "DoCMil_init";
+ im_modname = "doc2001";
+#endif /* DOC_SINGLE_DRIVER */
+ break;
+
+ case DOC_ChipID_DocMilPlus16:
+ case DOC_ChipID_DocMilPlus32:
+ name="MillenniumPlus";
+ im_funcname = "DoCMilPlus_init";
+ im_modname = "doc2001plus";
+ break;
+ }
+
+ if (im_funcname)
+ initroutine = inter_module_get_request(im_funcname, im_modname);
+
+ if (initroutine) {
+ (*initroutine)(mtd);
+ inter_module_put(im_funcname);
+ return;
+ }
+ printk(KERN_NOTICE "Cannot find driver for DiskOnChip %s at 0x%lX\n", name, physadr);
+ kfree(mtd);
+ }
+ iounmap(docptr);
+}
+
+
+/****************************************************************************
+ *
+ * Module stuff
+ *
+ ****************************************************************************/
+
+static int __init init_doc(void)
+{
+ int i;
+
+ if (doc_config_location) {
+ printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
+ DoC_Probe(doc_config_location);
+ } else {
+ for (i=0; (doc_locations[i] != 0xffffffff); i++) {
+ DoC_Probe(doc_locations[i]);
+ }
+ }
+ /* No banner message any more. Print a message if no DiskOnChip
+ found, so the user knows we at least tried. */
+ if (!docfound)
+ printk(KERN_INFO "No recognised DiskOnChip devices found\n");
+ return -EAGAIN;
+}
+
+module_init(init_doc);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
+MODULE_DESCRIPTION("Probe code for DiskOnChip 2000 and Millennium devices");
+
diff --git a/drivers/mtd/devices/lart.c b/drivers/mtd/devices/lart.c
new file mode 100644
index 000000000000..dfd335e4a2a8
--- /dev/null
+++ b/drivers/mtd/devices/lart.c
@@ -0,0 +1,711 @@
+
+/*
+ * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART.
+ *
+ * $Id: lart.c,v 1.7 2004/08/09 13:19:44 dwmw2 Exp $
+ *
+ * Author: Abraham vd Merwe <abraham@2d3d.co.za>
+ *
+ * Copyright (c) 2001, 2d3D, Inc.
+ *
+ * This code is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * References:
+ *
+ * [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet
+ * - Order Number: 290644-005
+ * - January 2000
+ *
+ * [2] MTD internal API documentation
+ * - http://www.linux-mtd.infradead.org/tech/
+ *
+ * Limitations:
+ *
+ * Even though this driver is written for 3 Volt Fast Boot
+ * Block Flash Memory, it is rather specific to LART. With
+ * Minor modifications, notably the without data/address line
+ * mangling and different bus settings, etc. it should be
+ * trivial to adapt to other platforms.
+ *
+ * If somebody would sponsor me a different board, I'll
+ * adapt the driver (:
+ */
+
+/* debugging */
+//#define LART_DEBUG
+
+/* partition support */
+#define HAVE_PARTITIONS
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/init.h>
+#include <linux/errno.h>
+#include <linux/mtd/mtd.h>
+#ifdef HAVE_PARTITIONS
+#include <linux/mtd/partitions.h>
+#endif
+
+#ifndef CONFIG_SA1100_LART
+#error This is for LART architecture only
+#endif
+
+static char module_name[] = "lart";
+
+/*
+ * These values is specific to 28Fxxxx3 flash memory.
+ * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
+ */
+#define FLASH_BLOCKSIZE_PARAM (4096 * BUSWIDTH)
+#define FLASH_NUMBLOCKS_16m_PARAM 8
+#define FLASH_NUMBLOCKS_8m_PARAM 8
+
+/*
+ * These values is specific to 28Fxxxx3 flash memory.
+ * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
+ */
+#define FLASH_BLOCKSIZE_MAIN (32768 * BUSWIDTH)
+#define FLASH_NUMBLOCKS_16m_MAIN 31
+#define FLASH_NUMBLOCKS_8m_MAIN 15
+
+/*
+ * These values are specific to LART
+ */
+
+/* general */
+#define BUSWIDTH 4 /* don't change this - a lot of the code _will_ break if you change this */
+#define FLASH_OFFSET 0xe8000000 /* see linux/arch/arm/mach-sa1100/lart.c */
+
+/* blob */
+#define NUM_BLOB_BLOCKS FLASH_NUMBLOCKS_16m_PARAM
+#define BLOB_START 0x00000000
+#define BLOB_LEN (NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM)
+
+/* kernel */
+#define NUM_KERNEL_BLOCKS 7
+#define KERNEL_START (BLOB_START + BLOB_LEN)
+#define KERNEL_LEN (NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN)
+
+/* initial ramdisk */
+#define NUM_INITRD_BLOCKS 24
+#define INITRD_START (KERNEL_START + KERNEL_LEN)
+#define INITRD_LEN (NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN)
+
+/*
+ * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
+ */
+#define READ_ARRAY 0x00FF00FF /* Read Array/Reset */
+#define READ_ID_CODES 0x00900090 /* Read Identifier Codes */
+#define ERASE_SETUP 0x00200020 /* Block Erase */
+#define ERASE_CONFIRM 0x00D000D0 /* Block Erase and Program Resume */
+#define PGM_SETUP 0x00400040 /* Program */
+#define STATUS_READ 0x00700070 /* Read Status Register */
+#define STATUS_CLEAR 0x00500050 /* Clear Status Register */
+#define STATUS_BUSY 0x00800080 /* Write State Machine Status (WSMS) */
+#define STATUS_ERASE_ERR 0x00200020 /* Erase Status (ES) */
+#define STATUS_PGM_ERR 0x00100010 /* Program Status (PS) */
+
+/*
+ * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
+ */
+#define FLASH_MANUFACTURER 0x00890089
+#define FLASH_DEVICE_8mbit_TOP 0x88f188f1
+#define FLASH_DEVICE_8mbit_BOTTOM 0x88f288f2
+#define FLASH_DEVICE_16mbit_TOP 0x88f388f3
+#define FLASH_DEVICE_16mbit_BOTTOM 0x88f488f4
+
+/***************************************************************************************************/
+
+/*
+ * The data line mapping on LART is as follows:
+ *
+ * U2 CPU | U3 CPU
+ * -------------------
+ * 0 20 | 0 12
+ * 1 22 | 1 14
+ * 2 19 | 2 11
+ * 3 17 | 3 9
+ * 4 24 | 4 0
+ * 5 26 | 5 2
+ * 6 31 | 6 7
+ * 7 29 | 7 5
+ * 8 21 | 8 13
+ * 9 23 | 9 15
+ * 10 18 | 10 10
+ * 11 16 | 11 8
+ * 12 25 | 12 1
+ * 13 27 | 13 3
+ * 14 30 | 14 6
+ * 15 28 | 15 4
+ */
+
+/* Mangle data (x) */
+#define DATA_TO_FLASH(x) \
+ ( \
+ (((x) & 0x08009000) >> 11) + \
+ (((x) & 0x00002000) >> 10) + \
+ (((x) & 0x04004000) >> 8) + \
+ (((x) & 0x00000010) >> 4) + \
+ (((x) & 0x91000820) >> 3) + \
+ (((x) & 0x22080080) >> 2) + \
+ ((x) & 0x40000400) + \
+ (((x) & 0x00040040) << 1) + \
+ (((x) & 0x00110000) << 4) + \
+ (((x) & 0x00220100) << 5) + \
+ (((x) & 0x00800208) << 6) + \
+ (((x) & 0x00400004) << 9) + \
+ (((x) & 0x00000001) << 12) + \
+ (((x) & 0x00000002) << 13) \
+ )
+
+/* Unmangle data (x) */
+#define FLASH_TO_DATA(x) \
+ ( \
+ (((x) & 0x00010012) << 11) + \
+ (((x) & 0x00000008) << 10) + \
+ (((x) & 0x00040040) << 8) + \
+ (((x) & 0x00000001) << 4) + \
+ (((x) & 0x12200104) << 3) + \
+ (((x) & 0x08820020) << 2) + \
+ ((x) & 0x40000400) + \
+ (((x) & 0x00080080) >> 1) + \
+ (((x) & 0x01100000) >> 4) + \
+ (((x) & 0x04402000) >> 5) + \
+ (((x) & 0x20008200) >> 6) + \
+ (((x) & 0x80000800) >> 9) + \
+ (((x) & 0x00001000) >> 12) + \
+ (((x) & 0x00004000) >> 13) \
+ )
+
+/*
+ * The address line mapping on LART is as follows:
+ *
+ * U3 CPU | U2 CPU
+ * -------------------
+ * 0 2 | 0 2
+ * 1 3 | 1 3
+ * 2 9 | 2 9
+ * 3 13 | 3 8
+ * 4 8 | 4 7
+ * 5 12 | 5 6
+ * 6 11 | 6 5
+ * 7 10 | 7 4
+ * 8 4 | 8 10
+ * 9 5 | 9 11
+ * 10 6 | 10 12
+ * 11 7 | 11 13
+ *
+ * BOOT BLOCK BOUNDARY
+ *
+ * 12 15 | 12 15
+ * 13 14 | 13 14
+ * 14 16 | 14 16
+ *
+ * MAIN BLOCK BOUNDARY
+ *
+ * 15 17 | 15 18
+ * 16 18 | 16 17
+ * 17 20 | 17 20
+ * 18 19 | 18 19
+ * 19 21 | 19 21
+ *
+ * As we can see from above, the addresses aren't mangled across
+ * block boundaries, so we don't need to worry about address
+ * translations except for sending/reading commands during
+ * initialization
+ */
+
+/* Mangle address (x) on chip U2 */
+#define ADDR_TO_FLASH_U2(x) \
+ ( \
+ (((x) & 0x00000f00) >> 4) + \
+ (((x) & 0x00042000) << 1) + \
+ (((x) & 0x0009c003) << 2) + \
+ (((x) & 0x00021080) << 3) + \
+ (((x) & 0x00000010) << 4) + \
+ (((x) & 0x00000040) << 5) + \
+ (((x) & 0x00000024) << 7) + \
+ (((x) & 0x00000008) << 10) \
+ )
+
+/* Unmangle address (x) on chip U2 */
+#define FLASH_U2_TO_ADDR(x) \
+ ( \
+ (((x) << 4) & 0x00000f00) + \
+ (((x) >> 1) & 0x00042000) + \
+ (((x) >> 2) & 0x0009c003) + \
+ (((x) >> 3) & 0x00021080) + \
+ (((x) >> 4) & 0x00000010) + \
+ (((x) >> 5) & 0x00000040) + \
+ (((x) >> 7) & 0x00000024) + \
+ (((x) >> 10) & 0x00000008) \
+ )
+
+/* Mangle address (x) on chip U3 */
+#define ADDR_TO_FLASH_U3(x) \
+ ( \
+ (((x) & 0x00000080) >> 3) + \
+ (((x) & 0x00000040) >> 1) + \
+ (((x) & 0x00052020) << 1) + \
+ (((x) & 0x00084f03) << 2) + \
+ (((x) & 0x00029010) << 3) + \
+ (((x) & 0x00000008) << 5) + \
+ (((x) & 0x00000004) << 7) \
+ )
+
+/* Unmangle address (x) on chip U3 */
+#define FLASH_U3_TO_ADDR(x) \
+ ( \
+ (((x) << 3) & 0x00000080) + \
+ (((x) << 1) & 0x00000040) + \
+ (((x) >> 1) & 0x00052020) + \
+ (((x) >> 2) & 0x00084f03) + \
+ (((x) >> 3) & 0x00029010) + \
+ (((x) >> 5) & 0x00000008) + \
+ (((x) >> 7) & 0x00000004) \
+ )
+
+/***************************************************************************************************/
+
+static __u8 read8 (__u32 offset)
+{
+ volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset);
+#ifdef LART_DEBUG
+ printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n",__FUNCTION__,offset,*data);
+#endif
+ return (*data);
+}
+
+static __u32 read32 (__u32 offset)
+{
+ volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
+#ifdef LART_DEBUG
+ printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n",__FUNCTION__,offset,*data);
+#endif
+ return (*data);
+}
+
+static void write32 (__u32 x,__u32 offset)
+{
+ volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
+ *data = x;
+#ifdef LART_DEBUG
+ printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n",__FUNCTION__,offset,*data);
+#endif
+}
+
+/***************************************************************************************************/
+
+/*
+ * Probe for 16mbit flash memory on a LART board without doing
+ * too much damage. Since we need to write 1 dword to memory,
+ * we're f**cked if this happens to be DRAM since we can't
+ * restore the memory (otherwise we might exit Read Array mode).
+ *
+ * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise.
+ */
+static int flash_probe (void)
+{
+ __u32 manufacturer,devtype;
+
+ /* setup "Read Identifier Codes" mode */
+ write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000);
+
+ /* probe U2. U2/U3 returns the same data since the first 3
+ * address lines is mangled in the same way */
+ manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000)));
+ devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001)));
+
+ /* put the flash back into command mode */
+ write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000);
+
+ return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || FLASH_DEVICE_16mbit_BOTTOM));
+}
+
+/*
+ * Erase one block of flash memory at offset ``offset'' which is any
+ * address within the block which should be erased.
+ *
+ * Returns 1 if successful, 0 otherwise.
+ */
+static inline int erase_block (__u32 offset)
+{
+ __u32 status;
+
+#ifdef LART_DEBUG
+ printk (KERN_DEBUG "%s(): 0x%.8x\n",__FUNCTION__,offset);
+#endif
+
+ /* erase and confirm */
+ write32 (DATA_TO_FLASH (ERASE_SETUP),offset);
+ write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset);
+
+ /* wait for block erase to finish */
+ do
+ {
+ write32 (DATA_TO_FLASH (STATUS_READ),offset);
+ status = FLASH_TO_DATA (read32 (offset));
+ }
+ while ((~status & STATUS_BUSY) != 0);
+
+ /* put the flash back into command mode */
+ write32 (DATA_TO_FLASH (READ_ARRAY),offset);
+
+ /* was the erase successfull? */
+ if ((status & STATUS_ERASE_ERR))
+ {
+ printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset);
+ return (0);
+ }
+
+ return (1);
+}
+
+static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
+{
+ __u32 addr,len;
+ int i,first;
+
+#ifdef LART_DEBUG
+ printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n",__FUNCTION__,instr->addr,instr->len);
+#endif
+
+ /* sanity checks */
+ if (instr->addr + instr->len > mtd->size) return (-EINVAL);
+
+ /*
+ * check that both start and end of the requested erase are
+ * aligned with the erasesize at the appropriate addresses.
+ *
+ * skip all erase regions which are ended before the start of
+ * the requested erase. Actually, to save on the calculations,
+ * we skip to the first erase region which starts after the
+ * start of the requested erase, and then go back one.
+ */
+ for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ;
+ i--;
+
+ /*
+ * ok, now i is pointing at the erase region in which this
+ * erase request starts. Check the start of the requested
+ * erase range is aligned with the erase size which is in
+ * effect here.
+ */
+ if (instr->addr & (mtd->eraseregions[i].erasesize - 1)) return (-EINVAL);
+
+ /* Remember the erase region we start on */
+ first = i;
+
+ /*
+ * next, check that the end of the requested erase is aligned
+ * with the erase region at that address.
+ *
+ * as before, drop back one to point at the region in which
+ * the address actually falls
+ */
+ for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ;
+ i--;
+
+ /* is the end aligned on a block boundary? */
+ if ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1)) return (-EINVAL);
+
+ addr = instr->addr;
+ len = instr->len;
+
+ i = first;
+
+ /* now erase those blocks */
+ while (len)
+ {
+ if (!erase_block (addr))
+ {
+ instr->state = MTD_ERASE_FAILED;
+ return (-EIO);
+ }
+
+ addr += mtd->eraseregions[i].erasesize;
+ len -= mtd->eraseregions[i].erasesize;
+
+ if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++;
+ }
+
+ instr->state = MTD_ERASE_DONE;
+ mtd_erase_callback(instr);
+
+ return (0);
+}
+
+static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf)
+{
+#ifdef LART_DEBUG
+ printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n",__FUNCTION__,(__u32) from,len);
+#endif
+
+ /* sanity checks */
+ if (!len) return (0);
+ if (from + len > mtd->size) return (-EINVAL);
+
+ /* we always read len bytes */
+ *retlen = len;
+
+ /* first, we read bytes until we reach a dword boundary */
+ if (from & (BUSWIDTH - 1))
+ {
+ int gap = BUSWIDTH - (from & (BUSWIDTH - 1));
+
+ while (len && gap--) *buf++ = read8 (from++), len--;
+ }
+
+ /* now we read dwords until we reach a non-dword boundary */
+ while (len >= BUSWIDTH)
+ {
+ *((__u32 *) buf) = read32 (from);
+
+ buf += BUSWIDTH;
+ from += BUSWIDTH;
+ len -= BUSWIDTH;
+ }
+
+ /* top up the last unaligned bytes */
+ if (len & (BUSWIDTH - 1))
+ while (len--) *buf++ = read8 (from++);
+
+ return (0);
+}
+
+/*
+ * Write one dword ``x'' to flash memory at offset ``offset''. ``offset''
+ * must be 32 bits, i.e. it must be on a dword boundary.
+ *
+ * Returns 1 if successful, 0 otherwise.
+ */
+static inline int write_dword (__u32 offset,__u32 x)
+{
+ __u32 status;
+
+#ifdef LART_DEBUG
+ printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n",__FUNCTION__,offset,x);
+#endif
+
+ /* setup writing */
+ write32 (DATA_TO_FLASH (PGM_SETUP),offset);
+
+ /* write the data */
+ write32 (x,offset);
+
+ /* wait for the write to finish */
+ do
+ {
+ write32 (DATA_TO_FLASH (STATUS_READ),offset);
+ status = FLASH_TO_DATA (read32 (offset));
+ }
+ while ((~status & STATUS_BUSY) != 0);
+
+ /* put the flash back into command mode */
+ write32 (DATA_TO_FLASH (READ_ARRAY),offset);
+
+ /* was the write successfull? */
+ if ((status & STATUS_PGM_ERR) || read32 (offset) != x)
+ {
+ printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset);
+ return (0);
+ }
+
+ return (1);
+}
+
+static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
+{
+ __u8 tmp[4];
+ int i,n;
+
+#ifdef LART_DEBUG
+ printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n",__FUNCTION__,(__u32) to,len);
+#endif
+
+ *retlen = 0;
+
+ /* sanity checks */
+ if (!len) return (0);
+ if (to + len > mtd->size) return (-EINVAL);
+
+ /* first, we write a 0xFF.... padded byte until we reach a dword boundary */
+ if (to & (BUSWIDTH - 1))
+ {
+ __u32 aligned = to & ~(BUSWIDTH - 1);
+ int gap = to - aligned;
+
+ i = n = 0;
+
+ while (gap--) tmp[i++] = 0xFF;
+ while (len && i < BUSWIDTH) tmp[i++] = buf[n++], len--;
+ while (i < BUSWIDTH) tmp[i++] = 0xFF;
+
+ if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO);
+
+ to += n;
+ buf += n;
+ *retlen += n;
+ }
+
+ /* now we write dwords until we reach a non-dword boundary */
+ while (len >= BUSWIDTH)
+ {
+ if (!write_dword (to,*((__u32 *) buf))) return (-EIO);
+
+ to += BUSWIDTH;
+ buf += BUSWIDTH;
+ *retlen += BUSWIDTH;
+ len -= BUSWIDTH;
+ }
+
+ /* top up the last unaligned bytes, padded with 0xFF.... */
+ if (len & (BUSWIDTH - 1))
+ {
+ i = n = 0;
+
+ while (len--) tmp[i++] = buf[n++];
+ while (i < BUSWIDTH) tmp[i++] = 0xFF;
+
+ if (!write_dword (to,*((__u32 *) tmp))) return (-EIO);
+
+ *retlen += n;
+ }
+
+ return (0);
+}
+
+/***************************************************************************************************/
+
+#define NB_OF(x) (sizeof (x) / sizeof (x[0]))
+
+static struct mtd_info mtd;
+
+static struct mtd_erase_region_info erase_regions[] = {
+ /* parameter blocks */
+ {
+ .offset = 0x00000000,
+ .erasesize = FLASH_BLOCKSIZE_PARAM,
+ .numblocks = FLASH_NUMBLOCKS_16m_PARAM,
+ },
+ /* main blocks */
+ {
+ .offset = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM,
+ .erasesize = FLASH_BLOCKSIZE_MAIN,
+ .numblocks = FLASH_NUMBLOCKS_16m_MAIN,
+ }
+};
+
+#ifdef HAVE_PARTITIONS
+static struct mtd_partition lart_partitions[] = {
+ /* blob */
+ {
+ .name = "blob",
+ .offset = BLOB_START,
+ .size = BLOB_LEN,
+ },
+ /* kernel */
+ {
+ .name = "kernel",
+ .offset = KERNEL_START, /* MTDPART_OFS_APPEND */
+ .size = KERNEL_LEN,
+ },
+ /* initial ramdisk / file system */
+ {
+ .name = "file system",
+ .offset = INITRD_START, /* MTDPART_OFS_APPEND */
+ .size = INITRD_LEN, /* MTDPART_SIZ_FULL */
+ }
+};
+#endif
+
+int __init lart_flash_init (void)
+{
+ int result;
+ memset (&mtd,0,sizeof (mtd));
+ printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n");
+ printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name);
+ if (!flash_probe ())
+ {
+ printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name);
+ return (-ENXIO);
+ }
+ printk ("%s: This looks like a LART board to me.\n",module_name);
+ mtd.name = module_name;
+ mtd.type = MTD_NORFLASH;
+ mtd.flags = MTD_CAP_NORFLASH;
+ mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN;
+ mtd.erasesize = FLASH_BLOCKSIZE_MAIN;
+ mtd.numeraseregions = NB_OF (erase_regions);
+ mtd.eraseregions = erase_regions;
+ mtd.erase = flash_erase;
+ mtd.read = flash_read;
+ mtd.write = flash_write;
+ mtd.owner = THIS_MODULE;
+
+#ifdef LART_DEBUG
+ printk (KERN_DEBUG
+ "mtd.name = %s\n"
+ "mtd.size = 0x%.8x (%uM)\n"
+ "mtd.erasesize = 0x%.8x (%uK)\n"
+ "mtd.numeraseregions = %d\n",
+ mtd.name,
+ mtd.size,mtd.size / (1024*1024),
+ mtd.erasesize,mtd.erasesize / 1024,
+ mtd.numeraseregions);
+
+ if (mtd.numeraseregions)
+ for (result = 0; result < mtd.numeraseregions; result++)
+ printk (KERN_DEBUG
+ "\n\n"
+ "mtd.eraseregions[%d].offset = 0x%.8x\n"
+ "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
+ "mtd.eraseregions[%d].numblocks = %d\n",
+ result,mtd.eraseregions[result].offset,
+ result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024,
+ result,mtd.eraseregions[result].numblocks);
+
+#ifdef HAVE_PARTITIONS
+ printk ("\npartitions = %d\n",NB_OF (lart_partitions));
+
+ for (result = 0; result < NB_OF (lart_partitions); result++)
+ printk (KERN_DEBUG
+ "\n\n"
+ "lart_partitions[%d].name = %s\n"
+ "lart_partitions[%d].offset = 0x%.8x\n"
+ "lart_partitions[%d].size = 0x%.8x (%uK)\n",
+ result,lart_partitions[result].name,
+ result,lart_partitions[result].offset,
+ result,lart_partitions[result].size,lart_partitions[result].size / 1024);
+#endif
+#endif
+
+#ifndef HAVE_PARTITIONS
+ result = add_mtd_device (&mtd);
+#else
+ result = add_mtd_partitions (&mtd,lart_partitions,NB_OF (lart_partitions));
+#endif
+
+ return (result);
+}
+
+void __exit lart_flash_exit (void)
+{
+#ifndef HAVE_PARTITIONS
+ del_mtd_device (&mtd);
+#else
+ del_mtd_partitions (&mtd);
+#endif
+}
+
+module_init (lart_flash_init);
+module_exit (lart_flash_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>");
+MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");
+
+
diff --git a/drivers/mtd/devices/ms02-nv.c b/drivers/mtd/devices/ms02-nv.c
new file mode 100644
index 000000000000..380ff08d29e4
--- /dev/null
+++ b/drivers/mtd/devices/ms02-nv.c
@@ -0,0 +1,326 @@
+/*
+ * Copyright (c) 2001 Maciej W. Rozycki
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ *
+ * $Id: ms02-nv.c,v 1.8 2005/01/05 18:05:12 dwmw2 Exp $
+ */
+
+#include <linux/init.h>
+#include <linux/ioport.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+
+#include <asm/addrspace.h>
+#include <asm/bootinfo.h>
+#include <asm/dec/ioasic_addrs.h>
+#include <asm/dec/kn02.h>
+#include <asm/dec/kn03.h>
+#include <asm/io.h>
+#include <asm/paccess.h>
+
+#include "ms02-nv.h"
+
+
+static char version[] __initdata =
+ "ms02-nv.c: v.1.0.0 13 Aug 2001 Maciej W. Rozycki.\n";
+
+MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
+MODULE_DESCRIPTION("DEC MS02-NV NVRAM module driver");
+MODULE_LICENSE("GPL");
+
+
+/*
+ * Addresses we probe for an MS02-NV at. Modules may be located
+ * at any 8MiB boundary within a 0MiB up to 112MiB range or at any 32MiB
+ * boundary within a 0MiB up to 448MiB range. We don't support a module
+ * at 0MiB, though.
+ */
+static ulong ms02nv_addrs[] __initdata = {
+ 0x07000000, 0x06800000, 0x06000000, 0x05800000, 0x05000000,
+ 0x04800000, 0x04000000, 0x03800000, 0x03000000, 0x02800000,
+ 0x02000000, 0x01800000, 0x01000000, 0x00800000
+};
+
+static const char ms02nv_name[] = "DEC MS02-NV NVRAM";
+static const char ms02nv_res_diag_ram[] = "Diagnostic RAM";
+static const char ms02nv_res_user_ram[] = "General-purpose RAM";
+static const char ms02nv_res_csr[] = "Control and status register";
+
+static struct mtd_info *root_ms02nv_mtd;
+
+
+static int ms02nv_read(struct mtd_info *mtd, loff_t from,
+ size_t len, size_t *retlen, u_char *buf)
+{
+ struct ms02nv_private *mp = mtd->priv;
+
+ if (from + len > mtd->size)
+ return -EINVAL;
+
+ memcpy(buf, mp->uaddr + from, len);
+ *retlen = len;
+
+ return 0;
+}
+
+static int ms02nv_write(struct mtd_info *mtd, loff_t to,
+ size_t len, size_t *retlen, const u_char *buf)
+{
+ struct ms02nv_private *mp = mtd->priv;
+
+ if (to + len > mtd->size)
+ return -EINVAL;
+
+ memcpy(mp->uaddr + to, buf, len);
+ *retlen = len;
+
+ return 0;
+}
+
+
+static inline uint ms02nv_probe_one(ulong addr)
+{
+ ms02nv_uint *ms02nv_diagp;
+ ms02nv_uint *ms02nv_magicp;
+ uint ms02nv_diag;
+ uint ms02nv_magic;
+ size_t size;
+
+ int err;
+
+ /*
+ * The firmware writes MS02NV_ID at MS02NV_MAGIC and also
+ * a diagnostic status at MS02NV_DIAG.
+ */
+ ms02nv_diagp = (ms02nv_uint *)(KSEG1ADDR(addr + MS02NV_DIAG));
+ ms02nv_magicp = (ms02nv_uint *)(KSEG1ADDR(addr + MS02NV_MAGIC));
+ err = get_dbe(ms02nv_magic, ms02nv_magicp);
+ if (err)
+ return 0;
+ if (ms02nv_magic != MS02NV_ID)
+ return 0;
+
+ ms02nv_diag = *ms02nv_diagp;
+ size = (ms02nv_diag & MS02NV_DIAG_SIZE_MASK) << MS02NV_DIAG_SIZE_SHIFT;
+ if (size > MS02NV_CSR)
+ size = MS02NV_CSR;
+
+ return size;
+}
+
+static int __init ms02nv_init_one(ulong addr)
+{
+ struct mtd_info *mtd;
+ struct ms02nv_private *mp;
+ struct resource *mod_res;
+ struct resource *diag_res;
+ struct resource *user_res;
+ struct resource *csr_res;
+ ulong fixaddr;
+ size_t size, fixsize;
+
+ static int version_printed;
+
+ int ret = -ENODEV;
+
+ /* The module decodes 8MiB of address space. */
+ mod_res = kmalloc(sizeof(*mod_res), GFP_KERNEL);
+ if (!mod_res)
+ return -ENOMEM;
+
+ memset(mod_res, 0, sizeof(*mod_res));
+ mod_res->name = ms02nv_name;
+ mod_res->start = addr;
+ mod_res->end = addr + MS02NV_SLOT_SIZE - 1;
+ mod_res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
+ if (request_resource(&iomem_resource, mod_res) < 0)
+ goto err_out_mod_res;
+
+ size = ms02nv_probe_one(addr);
+ if (!size)
+ goto err_out_mod_res_rel;
+
+ if (!version_printed) {
+ printk(KERN_INFO "%s", version);
+ version_printed = 1;
+ }
+
+ ret = -ENOMEM;
+ mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
+ if (!mtd)
+ goto err_out_mod_res_rel;
+ memset(mtd, 0, sizeof(*mtd));
+ mp = kmalloc(sizeof(*mp), GFP_KERNEL);
+ if (!mp)
+ goto err_out_mtd;
+ memset(mp, 0, sizeof(*mp));
+
+ mtd->priv = mp;
+ mp->resource.module = mod_res;
+
+ /* Firmware's diagnostic NVRAM area. */
+ diag_res = kmalloc(sizeof(*diag_res), GFP_KERNEL);
+ if (!diag_res)
+ goto err_out_mp;
+
+ memset(diag_res, 0, sizeof(*diag_res));
+ diag_res->name = ms02nv_res_diag_ram;
+ diag_res->start = addr;
+ diag_res->end = addr + MS02NV_RAM - 1;
+ diag_res->flags = IORESOURCE_BUSY;
+ request_resource(mod_res, diag_res);
+
+ mp->resource.diag_ram = diag_res;
+
+ /* User-available general-purpose NVRAM area. */
+ user_res = kmalloc(sizeof(*user_res), GFP_KERNEL);
+ if (!user_res)
+ goto err_out_diag_res;
+
+ memset(user_res, 0, sizeof(*user_res));
+ user_res->name = ms02nv_res_user_ram;
+ user_res->start = addr + MS02NV_RAM;
+ user_res->end = addr + size - 1;
+ user_res->flags = IORESOURCE_BUSY;
+ request_resource(mod_res, user_res);
+
+ mp->resource.user_ram = user_res;
+
+ /* Control and status register. */
+ csr_res = kmalloc(sizeof(*csr_res), GFP_KERNEL);
+ if (!csr_res)
+ goto err_out_user_res;
+
+ memset(csr_res, 0, sizeof(*csr_res));
+ csr_res->name = ms02nv_res_csr;
+ csr_res->start = addr + MS02NV_CSR;
+ csr_res->end = addr + MS02NV_CSR + 3;
+ csr_res->flags = IORESOURCE_BUSY;
+ request_resource(mod_res, csr_res);
+
+ mp->resource.csr = csr_res;
+
+ mp->addr = phys_to_virt(addr);
+ mp->size = size;
+
+ /*
+ * Hide the firmware's diagnostic area. It may get destroyed
+ * upon a reboot. Take paging into account for mapping support.
+ */
+ fixaddr = (addr + MS02NV_RAM + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
+ fixsize = (size - (fixaddr - addr)) & ~(PAGE_SIZE - 1);
+ mp->uaddr = phys_to_virt(fixaddr);
+
+ mtd->type = MTD_RAM;
+ mtd->flags = MTD_CAP_RAM | MTD_XIP;
+ mtd->size = fixsize;
+ mtd->name = (char *)ms02nv_name;
+ mtd->owner = THIS_MODULE;
+ mtd->read = ms02nv_read;
+ mtd->write = ms02nv_write;
+
+ ret = -EIO;
+ if (add_mtd_device(mtd)) {
+ printk(KERN_ERR
+ "ms02-nv: Unable to register MTD device, aborting!\n");
+ goto err_out_csr_res;
+ }
+
+ printk(KERN_INFO "mtd%d: %s at 0x%08lx, size %uMiB.\n",
+ mtd->index, ms02nv_name, addr, size >> 20);
+
+ mp->next = root_ms02nv_mtd;
+ root_ms02nv_mtd = mtd;
+
+ return 0;
+
+
+err_out_csr_res:
+ release_resource(csr_res);
+ kfree(csr_res);
+err_out_user_res:
+ release_resource(user_res);
+ kfree(user_res);
+err_out_diag_res:
+ release_resource(diag_res);
+ kfree(diag_res);
+err_out_mp:
+ kfree(mp);
+err_out_mtd:
+ kfree(mtd);
+err_out_mod_res_rel:
+ release_resource(mod_res);
+err_out_mod_res:
+ kfree(mod_res);
+ return ret;
+}
+
+static void __exit ms02nv_remove_one(void)
+{
+ struct mtd_info *mtd = root_ms02nv_mtd;
+ struct ms02nv_private *mp = mtd->priv;
+
+ root_ms02nv_mtd = mp->next;
+
+ del_mtd_device(mtd);
+
+ release_resource(mp->resource.csr);
+ kfree(mp->resource.csr);
+ release_resource(mp->resource.user_ram);
+ kfree(mp->resource.user_ram);
+ release_resource(mp->resource.diag_ram);
+ kfree(mp->resource.diag_ram);
+ release_resource(mp->resource.module);
+ kfree(mp->resource.module);
+ kfree(mp);
+ kfree(mtd);
+}
+
+
+static int __init ms02nv_init(void)
+{
+ volatile u32 *csr;
+ uint stride = 0;
+ int count = 0;
+ int i;
+
+ switch (mips_machtype) {
+ case MACH_DS5000_200:
+ csr = (volatile u32 *)KN02_CSR_BASE;
+ if (*csr & KN02_CSR_BNK32M)
+ stride = 2;
+ break;
+ case MACH_DS5000_2X0:
+ case MACH_DS5900:
+ csr = (volatile u32 *)KN03_MCR_BASE;
+ if (*csr & KN03_MCR_BNK32M)
+ stride = 2;
+ break;
+ default:
+ return -ENODEV;
+ break;
+ }
+
+ for (i = 0; i < (sizeof(ms02nv_addrs) / sizeof(*ms02nv_addrs)); i++)
+ if (!ms02nv_init_one(ms02nv_addrs[i] << stride))
+ count++;
+
+ return (count > 0) ? 0 : -ENODEV;
+}
+
+static void __exit ms02nv_cleanup(void)
+{
+ while (root_ms02nv_mtd)
+ ms02nv_remove_one();
+}
+
+
+module_init(ms02nv_init);
+module_exit(ms02nv_cleanup);
diff --git a/drivers/mtd/devices/ms02-nv.h b/drivers/mtd/devices/ms02-nv.h
new file mode 100644
index 000000000000..8a6eef7cfee3
--- /dev/null
+++ b/drivers/mtd/devices/ms02-nv.h
@@ -0,0 +1,107 @@
+/*
+ * Copyright (c) 2001, 2003 Maciej W. Rozycki
+ *
+ * DEC MS02-NV (54-20948-01) battery backed-up NVRAM module for
+ * DECstation/DECsystem 5000/2x0 and DECsystem 5900 and 5900/260
+ * systems.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ *
+ * $Id: ms02-nv.h,v 1.3 2003/08/19 09:25:36 dwmw2 Exp $
+ */
+
+#include <linux/ioport.h>
+#include <linux/mtd/mtd.h>
+
+/*
+ * Addresses are decoded as follows:
+ *
+ * 0x000000 - 0x3fffff SRAM
+ * 0x400000 - 0x7fffff CSR
+ *
+ * Within the SRAM area the following ranges are forced by the system
+ * firmware:
+ *
+ * 0x000000 - 0x0003ff diagnostic area, destroyed upon a reboot
+ * 0x000400 - ENDofRAM storage area, available to operating systems
+ *
+ * but we can't really use the available area right from 0x000400 as
+ * the first word is used by the firmware as a status flag passed
+ * from an operating system. If anything but the valid data magic
+ * ID value is found, the firmware considers the SRAM clean, i.e.
+ * containing no valid data, and disables the battery resulting in
+ * data being erased as soon as power is switched off. So the choice
+ * for the start address of the user-available is 0x001000 which is
+ * nicely page aligned. The area between 0x000404 and 0x000fff may
+ * be used by the driver for own needs.
+ *
+ * The diagnostic area defines two status words to be read by an
+ * operating system, a magic ID to distinguish a MS02-NV board from
+ * anything else and a status information providing results of tests
+ * as well as the size of SRAM available, which can be 1MiB or 2MiB
+ * (that's what the firmware handles; no idea if 2MiB modules ever
+ * existed).
+ *
+ * The firmware only handles the MS02-NV board if installed in the
+ * last (15th) slot, so for any other location the status information
+ * stored in the SRAM cannot be relied upon. But from the hardware
+ * point of view there is no problem using up to 14 such boards in a
+ * system -- only the 1st slot needs to be filled with a DRAM module.
+ * The MS02-NV board is ECC-protected, like other MS02 memory boards.
+ *
+ * The state of the battery as provided by the CSR is reflected on
+ * the two onboard LEDs. When facing the battery side of the board,
+ * with the LEDs at the top left and the battery at the bottom right
+ * (i.e. looking from the back side of the system box), their meaning
+ * is as follows (the system has to be powered on):
+ *
+ * left LED battery disable status: lit = enabled
+ * right LED battery condition status: lit = OK
+ */
+
+/* MS02-NV iomem register offsets. */
+#define MS02NV_CSR 0x400000 /* control & status register */
+
+/* MS02-NV CSR status bits. */
+#define MS02NV_CSR_BATT_OK 0x01 /* battery OK */
+#define MS02NV_CSR_BATT_OFF 0x02 /* battery disabled */
+
+
+/* MS02-NV memory offsets. */
+#define MS02NV_DIAG 0x0003f8 /* diagnostic status */
+#define MS02NV_MAGIC 0x0003fc /* MS02-NV magic ID */
+#define MS02NV_VALID 0x000400 /* valid data magic ID */
+#define MS02NV_RAM 0x001000 /* user-exposed RAM start */
+
+/* MS02-NV diagnostic status bits. */
+#define MS02NV_DIAG_TEST 0x01 /* SRAM test done (?) */
+#define MS02NV_DIAG_RO 0x02 /* SRAM r/o test done */
+#define MS02NV_DIAG_RW 0x04 /* SRAM r/w test done */
+#define MS02NV_DIAG_FAIL 0x08 /* SRAM test failed */
+#define MS02NV_DIAG_SIZE_MASK 0xf0 /* SRAM size mask */
+#define MS02NV_DIAG_SIZE_SHIFT 0x10 /* SRAM size shift (left) */
+
+/* MS02-NV general constants. */
+#define MS02NV_ID 0x03021966 /* MS02-NV magic ID value */
+#define MS02NV_VALID_ID 0xbd100248 /* valid data magic ID value */
+#define MS02NV_SLOT_SIZE 0x800000 /* size of the address space
+ decoded by the module */
+
+
+typedef volatile u32 ms02nv_uint;
+
+struct ms02nv_private {
+ struct mtd_info *next;
+ struct {
+ struct resource *module;
+ struct resource *diag_ram;
+ struct resource *user_ram;
+ struct resource *csr;
+ } resource;
+ u_char *addr;
+ size_t size;
+ u_char *uaddr;
+};
diff --git a/drivers/mtd/devices/mtdram.c b/drivers/mtd/devices/mtdram.c
new file mode 100644
index 000000000000..edac4156d69c
--- /dev/null
+++ b/drivers/mtd/devices/mtdram.c
@@ -0,0 +1,235 @@
+/*
+ * mtdram - a test mtd device
+ * $Id: mtdram.c,v 1.35 2005/01/05 18:05:12 dwmw2 Exp $
+ * Author: Alexander Larsson <alex@cendio.se>
+ *
+ * Copyright (c) 1999 Alexander Larsson <alex@cendio.se>
+ *
+ * This code is GPL
+ *
+ */
+
+#include <linux/config.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/ioport.h>
+#include <linux/vmalloc.h>
+#include <linux/init.h>
+#include <linux/mtd/compatmac.h>
+#include <linux/mtd/mtd.h>
+
+#ifndef CONFIG_MTDRAM_ABS_POS
+ #define CONFIG_MTDRAM_ABS_POS 0
+#endif
+
+#if CONFIG_MTDRAM_ABS_POS > 0
+ #include <asm/io.h>
+#endif
+
+#ifdef MODULE
+static unsigned long total_size = CONFIG_MTDRAM_TOTAL_SIZE;
+static unsigned long erase_size = CONFIG_MTDRAM_ERASE_SIZE;
+module_param(total_size,ulong,0);
+MODULE_PARM_DESC(total_size, "Total device size in KiB");
+module_param(erase_size,ulong,0);
+MODULE_PARM_DESC(erase_size, "Device erase block size in KiB");
+#define MTDRAM_TOTAL_SIZE (total_size * 1024)
+#define MTDRAM_ERASE_SIZE (erase_size * 1024)
+#else
+#define MTDRAM_TOTAL_SIZE (CONFIG_MTDRAM_TOTAL_SIZE * 1024)
+#define MTDRAM_ERASE_SIZE (CONFIG_MTDRAM_ERASE_SIZE * 1024)
+#endif
+
+
+// We could store these in the mtd structure, but we only support 1 device..
+static struct mtd_info *mtd_info;
+
+
+static int
+ram_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+ DEBUG(MTD_DEBUG_LEVEL2, "ram_erase(pos:%ld, len:%ld)\n", (long)instr->addr, (long)instr->len);
+ if (instr->addr + instr->len > mtd->size) {
+ DEBUG(MTD_DEBUG_LEVEL1, "ram_erase() out of bounds (%ld > %ld)\n", (long)(instr->addr + instr->len), (long)mtd->size);
+ return -EINVAL;
+ }
+
+ memset((char *)mtd->priv + instr->addr, 0xff, instr->len);
+
+ instr->state = MTD_ERASE_DONE;
+ mtd_erase_callback(instr);
+
+ return 0;
+}
+
+static int ram_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf)
+{
+ if (from + len > mtd->size)
+ return -EINVAL;
+
+ *mtdbuf = mtd->priv + from;
+ *retlen = len;
+ return 0;
+}
+
+static void ram_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from,
+ size_t len)
+{
+ DEBUG(MTD_DEBUG_LEVEL2, "ram_unpoint\n");
+}
+
+static int ram_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ DEBUG(MTD_DEBUG_LEVEL2, "ram_read(pos:%ld, len:%ld)\n", (long)from, (long)len);
+ if (from + len > mtd->size) {
+ DEBUG(MTD_DEBUG_LEVEL1, "ram_read() out of bounds (%ld > %ld)\n", (long)(from + len), (long)mtd->size);
+ return -EINVAL;
+ }
+
+ memcpy(buf, mtd->priv + from, len);
+
+ *retlen=len;
+ return 0;
+}
+
+static int ram_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf)
+{
+ DEBUG(MTD_DEBUG_LEVEL2, "ram_write(pos:%ld, len:%ld)\n", (long)to, (long)len);
+ if (to + len > mtd->size) {
+ DEBUG(MTD_DEBUG_LEVEL1, "ram_write() out of bounds (%ld > %ld)\n", (long)(to + len), (long)mtd->size);
+ return -EINVAL;
+ }
+
+ memcpy ((char *)mtd->priv + to, buf, len);
+
+ *retlen=len;
+ return 0;
+}
+
+static void __exit cleanup_mtdram(void)
+{
+ if (mtd_info) {
+ del_mtd_device(mtd_info);
+#if CONFIG_MTDRAM_TOTAL_SIZE > 0
+ if (mtd_info->priv)
+#if CONFIG_MTDRAM_ABS_POS > 0
+ iounmap(mtd_info->priv);
+#else
+ vfree(mtd_info->priv);
+#endif
+#endif
+ kfree(mtd_info);
+ }
+}
+
+int mtdram_init_device(struct mtd_info *mtd, void *mapped_address,
+ unsigned long size, char *name)
+{
+ memset(mtd, 0, sizeof(*mtd));
+
+ /* Setup the MTD structure */
+ mtd->name = name;
+ mtd->type = MTD_RAM;
+ mtd->flags = MTD_CAP_RAM;
+ mtd->size = size;
+ mtd->erasesize = MTDRAM_ERASE_SIZE;
+ mtd->priv = mapped_address;
+
+ mtd->owner = THIS_MODULE;
+ mtd->erase = ram_erase;
+ mtd->point = ram_point;
+ mtd->unpoint = ram_unpoint;
+ mtd->read = ram_read;
+ mtd->write = ram_write;
+
+ if (add_mtd_device(mtd)) {
+ return -EIO;
+ }
+
+ return 0;
+}
+
+#if CONFIG_MTDRAM_TOTAL_SIZE > 0
+#if CONFIG_MTDRAM_ABS_POS > 0
+static int __init init_mtdram(void)
+{
+ void *addr;
+ int err;
+ /* Allocate some memory */
+ mtd_info = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
+ if (!mtd_info)
+ return -ENOMEM;
+
+ addr = ioremap(CONFIG_MTDRAM_ABS_POS, MTDRAM_TOTAL_SIZE);
+ if (!addr) {
+ DEBUG(MTD_DEBUG_LEVEL1,
+ "Failed to ioremap) memory region of size %ld at ABS_POS:%ld\n",
+ (long)MTDRAM_TOTAL_SIZE, (long)CONFIG_MTDRAM_ABS_POS);
+ kfree(mtd_info);
+ mtd_info = NULL;
+ return -ENOMEM;
+ }
+ err = mtdram_init_device(mtd_info, addr,
+ MTDRAM_TOTAL_SIZE, "mtdram test device");
+ if (err)
+ {
+ iounmap(addr);
+ kfree(mtd_info);
+ mtd_info = NULL;
+ return err;
+ }
+ memset(mtd_info->priv, 0xff, MTDRAM_TOTAL_SIZE);
+ return err;
+}
+
+#else /* CONFIG_MTDRAM_ABS_POS > 0 */
+
+static int __init init_mtdram(void)
+{
+ void *addr;
+ int err;
+ /* Allocate some memory */
+ mtd_info = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
+ if (!mtd_info)
+ return -ENOMEM;
+
+ addr = vmalloc(MTDRAM_TOTAL_SIZE);
+ if (!addr) {
+ DEBUG(MTD_DEBUG_LEVEL1,
+ "Failed to vmalloc memory region of size %ld\n",
+ (long)MTDRAM_TOTAL_SIZE);
+ kfree(mtd_info);
+ mtd_info = NULL;
+ return -ENOMEM;
+ }
+ err = mtdram_init_device(mtd_info, addr,
+ MTDRAM_TOTAL_SIZE, "mtdram test device");
+ if (err)
+ {
+ vfree(addr);
+ kfree(mtd_info);
+ mtd_info = NULL;
+ return err;
+ }
+ memset(mtd_info->priv, 0xff, MTDRAM_TOTAL_SIZE);
+ return err;
+}
+#endif /* !(CONFIG_MTDRAM_ABS_POS > 0) */
+
+#else /* CONFIG_MTDRAM_TOTAL_SIZE > 0 */
+
+static int __init init_mtdram(void)
+{
+ return 0;
+}
+#endif /* !(CONFIG_MTDRAM_TOTAL_SIZE > 0) */
+
+module_init(init_mtdram);
+module_exit(cleanup_mtdram);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Alexander Larsson <alexl@redhat.com>");
+MODULE_DESCRIPTION("Simulated MTD driver for testing");
+
diff --git a/drivers/mtd/devices/phram.c b/drivers/mtd/devices/phram.c
new file mode 100644
index 000000000000..5f8e164ddb71
--- /dev/null
+++ b/drivers/mtd/devices/phram.c
@@ -0,0 +1,285 @@
+/**
+ * $Id: phram.c,v 1.11 2005/01/05 18:05:13 dwmw2 Exp $
+ *
+ * Copyright (c) ???? Jochen Schäuble <psionic@psionic.de>
+ * Copyright (c) 2003-2004 Jörn Engel <joern@wh.fh-wedel.de>
+ *
+ * Usage:
+ *
+ * one commend line parameter per device, each in the form:
+ * phram=<name>,<start>,<len>
+ * <name> may be up to 63 characters.
+ * <start> and <len> can be octal, decimal or hexadecimal. If followed
+ * by "ki", "Mi" or "Gi", the numbers will be interpreted as kilo, mega or
+ * gigabytes.
+ *
+ * Example:
+ * phram=swap,64Mi,128Mi phram=test,900Mi,1Mi
+ *
+ */
+
+#include <asm/io.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/mtd/mtd.h>
+
+#define ERROR(fmt, args...) printk(KERN_ERR "phram: " fmt , ## args)
+
+struct phram_mtd_list {
+ struct mtd_info mtd;
+ struct list_head list;
+};
+
+static LIST_HEAD(phram_list);
+
+
+
+static int phram_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+ u_char *start = mtd->priv;
+
+ if (instr->addr + instr->len > mtd->size)
+ return -EINVAL;
+
+ memset(start + instr->addr, 0xff, instr->len);
+
+ /* This'll catch a few races. Free the thing before returning :)
+ * I don't feel at all ashamed. This kind of thing is possible anyway
+ * with flash, but unlikely.
+ */
+
+ instr->state = MTD_ERASE_DONE;
+
+ mtd_erase_callback(instr);
+
+ return 0;
+}
+
+static int phram_point(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char **mtdbuf)
+{
+ u_char *start = mtd->priv;
+
+ if (from + len > mtd->size)
+ return -EINVAL;
+
+ *mtdbuf = start + from;
+ *retlen = len;
+ return 0;
+}
+
+static void phram_unpoint(struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
+{
+}
+
+static int phram_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ u_char *start = mtd->priv;
+
+ if (from + len > mtd->size)
+ return -EINVAL;
+
+ memcpy(buf, start + from, len);
+
+ *retlen = len;
+ return 0;
+}
+
+static int phram_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf)
+{
+ u_char *start = mtd->priv;
+
+ if (to + len > mtd->size)
+ return -EINVAL;
+
+ memcpy(start + to, buf, len);
+
+ *retlen = len;
+ return 0;
+}
+
+
+
+static void unregister_devices(void)
+{
+ struct phram_mtd_list *this;
+
+ list_for_each_entry(this, &phram_list, list) {
+ del_mtd_device(&this->mtd);
+ iounmap(this->mtd.priv);
+ kfree(this);
+ }
+}
+
+static int register_device(char *name, unsigned long start, unsigned long len)
+{
+ struct phram_mtd_list *new;
+ int ret = -ENOMEM;
+
+ new = kmalloc(sizeof(*new), GFP_KERNEL);
+ if (!new)
+ goto out0;
+
+ memset(new, 0, sizeof(*new));
+
+ ret = -EIO;
+ new->mtd.priv = ioremap(start, len);
+ if (!new->mtd.priv) {
+ ERROR("ioremap failed\n");
+ goto out1;
+ }
+
+
+ new->mtd.name = name;
+ new->mtd.size = len;
+ new->mtd.flags = MTD_CAP_RAM | MTD_ERASEABLE | MTD_VOLATILE;
+ new->mtd.erase = phram_erase;
+ new->mtd.point = phram_point;
+ new->mtd.unpoint = phram_unpoint;
+ new->mtd.read = phram_read;
+ new->mtd.write = phram_write;
+ new->mtd.owner = THIS_MODULE;
+ new->mtd.type = MTD_RAM;
+ new->mtd.erasesize = 0;
+
+ ret = -EAGAIN;
+ if (add_mtd_device(&new->mtd)) {
+ ERROR("Failed to register new device\n");
+ goto out2;
+ }
+
+ list_add_tail(&new->list, &phram_list);
+ return 0;
+
+out2:
+ iounmap(new->mtd.priv);
+out1:
+ kfree(new);
+out0:
+ return ret;
+}
+
+static int ustrtoul(const char *cp, char **endp, unsigned int base)
+{
+ unsigned long result = simple_strtoul(cp, endp, base);
+
+ switch (**endp) {
+ case 'G':
+ result *= 1024;
+ case 'M':
+ result *= 1024;
+ case 'k':
+ result *= 1024;
+ /* By dwmw2 editorial decree, "ki", "Mi" or "Gi" are to be used. */
+ if ((*endp)[1] == 'i')
+ (*endp) += 2;
+ }
+ return result;
+}
+
+static int parse_num32(uint32_t *num32, const char *token)
+{
+ char *endp;
+ unsigned long n;
+
+ n = ustrtoul(token, &endp, 0);
+ if (*endp)
+ return -EINVAL;
+
+ *num32 = n;
+ return 0;
+}
+
+static int parse_name(char **pname, const char *token)
+{
+ size_t len;
+ char *name;
+
+ len = strlen(token) + 1;
+ if (len > 64)
+ return -ENOSPC;
+
+ name = kmalloc(len, GFP_KERNEL);
+ if (!name)
+ return -ENOMEM;
+
+ strcpy(name, token);
+
+ *pname = name;
+ return 0;
+}
+
+#define parse_err(fmt, args...) do { \
+ ERROR(fmt , ## args); \
+ return 0; \
+} while (0)
+
+static int phram_setup(const char *val, struct kernel_param *kp)
+{
+ char buf[64+12+12], *str = buf;
+ char *token[3];
+ char *name;
+ uint32_t start;
+ uint32_t len;
+ int i, ret;
+
+ if (strnlen(val, sizeof(buf)) >= sizeof(buf))
+ parse_err("parameter too long\n");
+
+ strcpy(str, val);
+
+ for (i=0; i<3; i++)
+ token[i] = strsep(&str, ",");
+
+ if (str)
+ parse_err("too many arguments\n");
+
+ if (!token[2])
+ parse_err("not enough arguments\n");
+
+ ret = parse_name(&name, token[0]);
+ if (ret == -ENOMEM)
+ parse_err("out of memory\n");
+ if (ret == -ENOSPC)
+ parse_err("name too long\n");
+ if (ret)
+ return 0;
+
+ ret = parse_num32(&start, token[1]);
+ if (ret)
+ parse_err("illegal start address\n");
+
+ ret = parse_num32(&len, token[2]);
+ if (ret)
+ parse_err("illegal device length\n");
+
+ register_device(name, start, len);
+
+ return 0;
+}
+
+module_param_call(phram, phram_setup, NULL, NULL, 000);
+MODULE_PARM_DESC(phram,"Memory region to map. \"map=<name>,<start>,<length>\"");
+
+
+static int __init init_phram(void)
+{
+ return 0;
+}
+
+static void __exit cleanup_phram(void)
+{
+ unregister_devices();
+}
+
+module_init(init_phram);
+module_exit(cleanup_phram);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Jörn Engel <joern@wh.fh-wedel.de>");
+MODULE_DESCRIPTION("MTD driver for physical RAM");
diff --git a/drivers/mtd/devices/pmc551.c b/drivers/mtd/devices/pmc551.c
new file mode 100644
index 000000000000..5b3defadf884
--- /dev/null
+++ b/drivers/mtd/devices/pmc551.c
@@ -0,0 +1,843 @@
+/*
+ * $Id: pmc551.c,v 1.30 2005/01/05 18:05:13 dwmw2 Exp $
+ *
+ * PMC551 PCI Mezzanine Ram Device
+ *
+ * Author:
+ * Mark Ferrell <mferrell@mvista.com>
+ * Copyright 1999,2000 Nortel Networks
+ *
+ * License:
+ * As part of this driver was derived from the slram.c driver it
+ * falls under the same license, which is GNU General Public
+ * License v2
+ *
+ * Description:
+ * This driver is intended to support the PMC551 PCI Ram device
+ * from Ramix Inc. The PMC551 is a PMC Mezzanine module for
+ * cPCI embedded systems. The device contains a single SROM
+ * that initially programs the V370PDC chipset onboard the
+ * device, and various banks of DRAM/SDRAM onboard. This driver
+ * implements this PCI Ram device as an MTD (Memory Technology
+ * Device) so that it can be used to hold a file system, or for
+ * added swap space in embedded systems. Since the memory on
+ * this board isn't as fast as main memory we do not try to hook
+ * it into main memory as that would simply reduce performance
+ * on the system. Using it as a block device allows us to use
+ * it as high speed swap or for a high speed disk device of some
+ * sort. Which becomes very useful on diskless systems in the
+ * embedded market I might add.
+ *
+ * Notes:
+ * Due to what I assume is more buggy SROM, the 64M PMC551 I
+ * have available claims that all 4 of it's DRAM banks have 64M
+ * of ram configured (making a grand total of 256M onboard).
+ * This is slightly annoying since the BAR0 size reflects the
+ * aperture size, not the dram size, and the V370PDC supplies no
+ * other method for memory size discovery. This problem is
+ * mostly only relevant when compiled as a module, as the
+ * unloading of the module with an aperture size smaller then
+ * the ram will cause the driver to detect the onboard memory
+ * size to be equal to the aperture size when the module is
+ * reloaded. Soooo, to help, the module supports an msize
+ * option to allow the specification of the onboard memory, and
+ * an asize option, to allow the specification of the aperture
+ * size. The aperture must be equal to or less then the memory
+ * size, the driver will correct this if you screw it up. This
+ * problem is not relevant for compiled in drivers as compiled
+ * in drivers only init once.
+ *
+ * Credits:
+ * Saeed Karamooz <saeed@ramix.com> of Ramix INC. for the
+ * initial example code of how to initialize this device and for
+ * help with questions I had concerning operation of the device.
+ *
+ * Most of the MTD code for this driver was originally written
+ * for the slram.o module in the MTD drivers package which
+ * allows the mapping of system memory into an MTD device.
+ * Since the PMC551 memory module is accessed in the same
+ * fashion as system memory, the slram.c code became a very nice
+ * fit to the needs of this driver. All we added was PCI
+ * detection/initialization to the driver and automatically figure
+ * out the size via the PCI detection.o, later changes by Corey
+ * Minyard set up the card to utilize a 1M sliding apature.
+ *
+ * Corey Minyard <minyard@nortelnetworks.com>
+ * * Modified driver to utilize a sliding aperture instead of
+ * mapping all memory into kernel space which turned out to
+ * be very wasteful.
+ * * Located a bug in the SROM's initialization sequence that
+ * made the memory unusable, added a fix to code to touch up
+ * the DRAM some.
+ *
+ * Bugs/FIXME's:
+ * * MUST fix the init function to not spin on a register
+ * waiting for it to set .. this does not safely handle busted
+ * devices that never reset the register correctly which will
+ * cause the system to hang w/ a reboot being the only chance at
+ * recover. [sort of fixed, could be better]
+ * * Add I2C handling of the SROM so we can read the SROM's information
+ * about the aperture size. This should always accurately reflect the
+ * onboard memory size.
+ * * Comb the init routine. It's still a bit cludgy on a few things.
+ */
+
+#include <linux/version.h>
+#include <linux/config.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <asm/uaccess.h>
+#include <linux/types.h>
+#include <linux/sched.h>
+#include <linux/init.h>
+#include <linux/ptrace.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/timer.h>
+#include <linux/major.h>
+#include <linux/fs.h>
+#include <linux/ioctl.h>
+#include <asm/io.h>
+#include <asm/system.h>
+#include <linux/pci.h>
+
+#ifndef CONFIG_PCI
+#error Enable PCI in your kernel config
+#endif
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/pmc551.h>
+#include <linux/mtd/compatmac.h>
+
+static struct mtd_info *pmc551list;
+
+static int pmc551_erase (struct mtd_info *mtd, struct erase_info *instr)
+{
+ struct mypriv *priv = mtd->priv;
+ u32 soff_hi, soff_lo; /* start address offset hi/lo */
+ u32 eoff_hi, eoff_lo; /* end address offset hi/lo */
+ unsigned long end;
+ u_char *ptr;
+ size_t retlen;
+
+#ifdef CONFIG_MTD_PMC551_DEBUG
+ printk(KERN_DEBUG "pmc551_erase(pos:%ld, len:%ld)\n", (long)instr->addr, (long)instr->len);
+#endif
+
+ end = instr->addr + instr->len - 1;
+
+ /* Is it past the end? */
+ if ( end > mtd->size ) {
+#ifdef CONFIG_MTD_PMC551_DEBUG
+ printk(KERN_DEBUG "pmc551_erase() out of bounds (%ld > %ld)\n", (long)end, (long)mtd->size);
+#endif
+ return -EINVAL;
+ }
+
+ eoff_hi = end & ~(priv->asize - 1);
+ soff_hi = instr->addr & ~(priv->asize - 1);
+ eoff_lo = end & (priv->asize - 1);
+ soff_lo = instr->addr & (priv->asize - 1);
+
+ pmc551_point (mtd, instr->addr, instr->len, &retlen, &ptr);
+
+ if ( soff_hi == eoff_hi || mtd->size == priv->asize) {
+ /* The whole thing fits within one access, so just one shot
+ will do it. */
+ memset(ptr, 0xff, instr->len);
+ } else {
+ /* We have to do multiple writes to get all the data
+ written. */
+ while (soff_hi != eoff_hi) {
+#ifdef CONFIG_MTD_PMC551_DEBUG
+ printk( KERN_DEBUG "pmc551_erase() soff_hi: %ld, eoff_hi: %ld\n", (long)soff_hi, (long)eoff_hi);
+#endif
+ memset(ptr, 0xff, priv->asize);
+ if (soff_hi + priv->asize >= mtd->size) {
+ goto out;
+ }
+ soff_hi += priv->asize;
+ pmc551_point (mtd,(priv->base_map0|soff_hi),
+ priv->asize, &retlen, &ptr);
+ }
+ memset (ptr, 0xff, eoff_lo);
+ }
+
+out:
+ instr->state = MTD_ERASE_DONE;
+#ifdef CONFIG_MTD_PMC551_DEBUG
+ printk(KERN_DEBUG "pmc551_erase() done\n");
+#endif
+
+ mtd_erase_callback(instr);
+ return 0;
+}
+
+
+static int pmc551_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf)
+{
+ struct mypriv *priv = mtd->priv;
+ u32 soff_hi;
+ u32 soff_lo;
+
+#ifdef CONFIG_MTD_PMC551_DEBUG
+ printk(KERN_DEBUG "pmc551_point(%ld, %ld)\n", (long)from, (long)len);
+#endif
+
+ if (from + len > mtd->size) {
+#ifdef CONFIG_MTD_PMC551_DEBUG
+ printk(KERN_DEBUG "pmc551_point() out of bounds (%ld > %ld)\n", (long)from+len, (long)mtd->size);
+#endif
+ return -EINVAL;
+ }
+
+ soff_hi = from & ~(priv->asize - 1);
+ soff_lo = from & (priv->asize - 1);
+
+ /* Cheap hack optimization */
+ if( priv->curr_map0 != from ) {
+ pci_write_config_dword ( priv->dev, PMC551_PCI_MEM_MAP0,
+ (priv->base_map0 | soff_hi) );
+ priv->curr_map0 = soff_hi;
+ }
+
+ *mtdbuf = priv->start + soff_lo;
+ *retlen = len;
+ return 0;
+}
+
+
+static void pmc551_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
+{
+#ifdef CONFIG_MTD_PMC551_DEBUG
+ printk(KERN_DEBUG "pmc551_unpoint()\n");
+#endif
+}
+
+
+static int pmc551_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
+{
+ struct mypriv *priv = mtd->priv;
+ u32 soff_hi, soff_lo; /* start address offset hi/lo */
+ u32 eoff_hi, eoff_lo; /* end address offset hi/lo */
+ unsigned long end;
+ u_char *ptr;
+ u_char *copyto = buf;
+
+#ifdef CONFIG_MTD_PMC551_DEBUG
+ printk(KERN_DEBUG "pmc551_read(pos:%ld, len:%ld) asize: %ld\n", (long)from, (long)len, (long)priv->asize);
+#endif
+
+ end = from + len - 1;
+
+ /* Is it past the end? */
+ if (end > mtd->size) {
+#ifdef CONFIG_MTD_PMC551_DEBUG
+ printk(KERN_DEBUG "pmc551_read() out of bounds (%ld > %ld)\n", (long) end, (long)mtd->size);
+#endif
+ return -EINVAL;
+ }
+
+ soff_hi = from & ~(priv->asize - 1);
+ eoff_hi = end & ~(priv->asize - 1);
+ soff_lo = from & (priv->asize - 1);
+ eoff_lo = end & (priv->asize - 1);
+
+ pmc551_point (mtd, from, len, retlen, &ptr);
+
+ if (soff_hi == eoff_hi) {
+ /* The whole thing fits within one access, so just one shot
+ will do it. */
+ memcpy(copyto, ptr, len);
+ copyto += len;
+ } else {
+ /* We have to do multiple writes to get all the data
+ written. */
+ while (soff_hi != eoff_hi) {
+#ifdef CONFIG_MTD_PMC551_DEBUG
+ printk( KERN_DEBUG "pmc551_read() soff_hi: %ld, eoff_hi: %ld\n", (long)soff_hi, (long)eoff_hi);
+#endif
+ memcpy(copyto, ptr, priv->asize);
+ copyto += priv->asize;
+ if (soff_hi + priv->asize >= mtd->size) {
+ goto out;
+ }
+ soff_hi += priv->asize;
+ pmc551_point (mtd, soff_hi, priv->asize, retlen, &ptr);
+ }
+ memcpy(copyto, ptr, eoff_lo);
+ copyto += eoff_lo;
+ }
+
+out:
+#ifdef CONFIG_MTD_PMC551_DEBUG
+ printk(KERN_DEBUG "pmc551_read() done\n");
+#endif
+ *retlen = copyto - buf;
+ return 0;
+}
+
+static int pmc551_write (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf)
+{
+ struct mypriv *priv = mtd->priv;
+ u32 soff_hi, soff_lo; /* start address offset hi/lo */
+ u32 eoff_hi, eoff_lo; /* end address offset hi/lo */
+ unsigned long end;
+ u_char *ptr;
+ const u_char *copyfrom = buf;
+
+
+#ifdef CONFIG_MTD_PMC551_DEBUG
+ printk(KERN_DEBUG "pmc551_write(pos:%ld, len:%ld) asize:%ld\n", (long)to, (long)len, (long)priv->asize);
+#endif
+
+ end = to + len - 1;
+ /* Is it past the end? or did the u32 wrap? */
+ if (end > mtd->size ) {
+#ifdef CONFIG_MTD_PMC551_DEBUG
+ printk(KERN_DEBUG "pmc551_write() out of bounds (end: %ld, size: %ld, to: %ld)\n", (long) end, (long)mtd->size, (long)to);
+#endif
+ return -EINVAL;
+ }
+
+ soff_hi = to & ~(priv->asize - 1);
+ eoff_hi = end & ~(priv->asize - 1);
+ soff_lo = to & (priv->asize - 1);
+ eoff_lo = end & (priv->asize - 1);
+
+ pmc551_point (mtd, to, len, retlen, &ptr);
+
+ if (soff_hi == eoff_hi) {
+ /* The whole thing fits within one access, so just one shot
+ will do it. */
+ memcpy(ptr, copyfrom, len);
+ copyfrom += len;
+ } else {
+ /* We have to do multiple writes to get all the data
+ written. */
+ while (soff_hi != eoff_hi) {
+#ifdef CONFIG_MTD_PMC551_DEBUG
+ printk( KERN_DEBUG "pmc551_write() soff_hi: %ld, eoff_hi: %ld\n", (long)soff_hi, (long)eoff_hi);
+#endif
+ memcpy(ptr, copyfrom, priv->asize);
+ copyfrom += priv->asize;
+ if (soff_hi >= mtd->size) {
+ goto out;
+ }
+ soff_hi += priv->asize;
+ pmc551_point (mtd, soff_hi, priv->asize, retlen, &ptr);
+ }
+ memcpy(ptr, copyfrom, eoff_lo);
+ copyfrom += eoff_lo;
+ }
+
+out:
+#ifdef CONFIG_MTD_PMC551_DEBUG
+ printk(KERN_DEBUG "pmc551_write() done\n");
+#endif
+ *retlen = copyfrom - buf;
+ return 0;
+}
+
+/*
+ * Fixup routines for the V370PDC
+ * PCI device ID 0x020011b0
+ *
+ * This function basicly kick starts the DRAM oboard the card and gets it
+ * ready to be used. Before this is done the device reads VERY erratic, so
+ * much that it can crash the Linux 2.2.x series kernels when a user cat's
+ * /proc/pci .. though that is mainly a kernel bug in handling the PCI DEVSEL
+ * register. FIXME: stop spinning on registers .. must implement a timeout
+ * mechanism
+ * returns the size of the memory region found.
+ */
+static u32 fixup_pmc551 (struct pci_dev *dev)
+{
+#ifdef CONFIG_MTD_PMC551_BUGFIX
+ u32 dram_data;
+#endif
+ u32 size, dcmd, cfg, dtmp;
+ u16 cmd, tmp, i;
+ u8 bcmd, counter;
+
+ /* Sanity Check */
+ if(!dev) {
+ return -ENODEV;
+ }
+
+ /*
+ * Attempt to reset the card
+ * FIXME: Stop Spinning registers
+ */
+ counter=0;
+ /* unlock registers */
+ pci_write_config_byte(dev, PMC551_SYS_CTRL_REG, 0xA5 );
+ /* read in old data */
+ pci_read_config_byte(dev, PMC551_SYS_CTRL_REG, &bcmd );
+ /* bang the reset line up and down for a few */
+ for(i=0;i<10;i++) {
+ counter=0;
+ bcmd &= ~0x80;
+ while(counter++ < 100) {
+ pci_write_config_byte(dev, PMC551_SYS_CTRL_REG, bcmd);
+ }
+ counter=0;
+ bcmd |= 0x80;
+ while(counter++ < 100) {
+ pci_write_config_byte(dev, PMC551_SYS_CTRL_REG, bcmd);
+ }
+ }
+ bcmd |= (0x40|0x20);
+ pci_write_config_byte(dev, PMC551_SYS_CTRL_REG, bcmd);
+
+ /*
+ * Take care and turn off the memory on the device while we
+ * tweak the configurations
+ */
+ pci_read_config_word(dev, PCI_COMMAND, &cmd);
+ tmp = cmd & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY);
+ pci_write_config_word(dev, PCI_COMMAND, tmp);
+
+ /*
+ * Disable existing aperture before probing memory size
+ */
+ pci_read_config_dword(dev, PMC551_PCI_MEM_MAP0, &dcmd);
+ dtmp=(dcmd|PMC551_PCI_MEM_MAP_ENABLE|PMC551_PCI_MEM_MAP_REG_EN);
+ pci_write_config_dword(dev, PMC551_PCI_MEM_MAP0, dtmp);
+ /*
+ * Grab old BAR0 config so that we can figure out memory size
+ * This is another bit of kludge going on. The reason for the
+ * redundancy is I am hoping to retain the original configuration
+ * previously assigned to the card by the BIOS or some previous
+ * fixup routine in the kernel. So we read the old config into cfg,
+ * then write all 1's to the memory space, read back the result into
+ * "size", and then write back all the old config.
+ */
+ pci_read_config_dword( dev, PCI_BASE_ADDRESS_0, &cfg );
+#ifndef CONFIG_MTD_PMC551_BUGFIX
+ pci_write_config_dword( dev, PCI_BASE_ADDRESS_0, ~0 );
+ pci_read_config_dword( dev, PCI_BASE_ADDRESS_0, &size );
+ size = (size&PCI_BASE_ADDRESS_MEM_MASK);
+ size &= ~(size-1);
+ pci_write_config_dword( dev, PCI_BASE_ADDRESS_0, cfg );
+#else
+ /*
+ * Get the size of the memory by reading all the DRAM size values
+ * and adding them up.
+ *
+ * KLUDGE ALERT: the boards we are using have invalid column and
+ * row mux values. We fix them here, but this will break other
+ * memory configurations.
+ */
+ pci_read_config_dword(dev, PMC551_DRAM_BLK0, &dram_data);
+ size = PMC551_DRAM_BLK_GET_SIZE(dram_data);
+ dram_data = PMC551_DRAM_BLK_SET_COL_MUX(dram_data, 0x5);
+ dram_data = PMC551_DRAM_BLK_SET_ROW_MUX(dram_data, 0x9);
+ pci_write_config_dword(dev, PMC551_DRAM_BLK0, dram_data);
+
+ pci_read_config_dword(dev, PMC551_DRAM_BLK1, &dram_data);
+ size += PMC551_DRAM_BLK_GET_SIZE(dram_data);
+ dram_data = PMC551_DRAM_BLK_SET_COL_MUX(dram_data, 0x5);
+ dram_data = PMC551_DRAM_BLK_SET_ROW_MUX(dram_data, 0x9);
+ pci_write_config_dword(dev, PMC551_DRAM_BLK1, dram_data);
+
+ pci_read_config_dword(dev, PMC551_DRAM_BLK2, &dram_data);
+ size += PMC551_DRAM_BLK_GET_SIZE(dram_data);
+ dram_data = PMC551_DRAM_BLK_SET_COL_MUX(dram_data, 0x5);
+ dram_data = PMC551_DRAM_BLK_SET_ROW_MUX(dram_data, 0x9);
+ pci_write_config_dword(dev, PMC551_DRAM_BLK2, dram_data);
+
+ pci_read_config_dword(dev, PMC551_DRAM_BLK3, &dram_data);
+ size += PMC551_DRAM_BLK_GET_SIZE(dram_data);
+ dram_data = PMC551_DRAM_BLK_SET_COL_MUX(dram_data, 0x5);
+ dram_data = PMC551_DRAM_BLK_SET_ROW_MUX(dram_data, 0x9);
+ pci_write_config_dword(dev, PMC551_DRAM_BLK3, dram_data);
+
+ /*
+ * Oops .. something went wrong
+ */
+ if( (size &= PCI_BASE_ADDRESS_MEM_MASK) == 0) {
+ return -ENODEV;
+ }
+#endif /* CONFIG_MTD_PMC551_BUGFIX */
+
+ if ((cfg&PCI_BASE_ADDRESS_SPACE) != PCI_BASE_ADDRESS_SPACE_MEMORY) {
+ return -ENODEV;
+ }
+
+ /*
+ * Precharge Dram
+ */
+ pci_write_config_word( dev, PMC551_SDRAM_MA, 0x0400 );
+ pci_write_config_word( dev, PMC551_SDRAM_CMD, 0x00bf );
+
+ /*
+ * Wait until command has gone through
+ * FIXME: register spinning issue
+ */
+ do { pci_read_config_word( dev, PMC551_SDRAM_CMD, &cmd );
+ if(counter++ > 100)break;
+ } while ( (PCI_COMMAND_IO) & cmd );
+
+ /*
+ * Turn on auto refresh
+ * The loop is taken directly from Ramix's example code. I assume that
+ * this must be held high for some duration of time, but I can find no
+ * documentation refrencing the reasons why.
+ */
+ for ( i = 1; i<=8 ; i++) {
+ pci_write_config_word (dev, PMC551_SDRAM_CMD, 0x0df);
+
+ /*
+ * Make certain command has gone through
+ * FIXME: register spinning issue
+ */
+ counter=0;
+ do { pci_read_config_word(dev, PMC551_SDRAM_CMD, &cmd);
+ if(counter++ > 100)break;
+ } while ( (PCI_COMMAND_IO) & cmd );
+ }
+
+ pci_write_config_word ( dev, PMC551_SDRAM_MA, 0x0020);
+ pci_write_config_word ( dev, PMC551_SDRAM_CMD, 0x0ff);
+
+ /*
+ * Wait until command completes
+ * FIXME: register spinning issue
+ */
+ counter=0;
+ do { pci_read_config_word ( dev, PMC551_SDRAM_CMD, &cmd);
+ if(counter++ > 100)break;
+ } while ( (PCI_COMMAND_IO) & cmd );
+
+ pci_read_config_dword ( dev, PMC551_DRAM_CFG, &dcmd);
+ dcmd |= 0x02000000;
+ pci_write_config_dword ( dev, PMC551_DRAM_CFG, dcmd);
+
+ /*
+ * Check to make certain fast back-to-back, if not
+ * then set it so
+ */
+ pci_read_config_word( dev, PCI_STATUS, &cmd);
+ if((cmd&PCI_COMMAND_FAST_BACK) == 0) {
+ cmd |= PCI_COMMAND_FAST_BACK;
+ pci_write_config_word( dev, PCI_STATUS, cmd);
+ }
+
+ /*
+ * Check to make certain the DEVSEL is set correctly, this device
+ * has a tendancy to assert DEVSEL and TRDY when a write is performed
+ * to the memory when memory is read-only
+ */
+ if((cmd&PCI_STATUS_DEVSEL_MASK) != 0x0) {
+ cmd &= ~PCI_STATUS_DEVSEL_MASK;
+ pci_write_config_word( dev, PCI_STATUS, cmd );
+ }
+ /*
+ * Set to be prefetchable and put everything back based on old cfg.
+ * it's possible that the reset of the V370PDC nuked the original
+ * setup
+ */
+ /*
+ cfg |= PCI_BASE_ADDRESS_MEM_PREFETCH;
+ pci_write_config_dword( dev, PCI_BASE_ADDRESS_0, cfg );
+ */
+
+ /*
+ * Turn PCI memory and I/O bus access back on
+ */
+ pci_write_config_word( dev, PCI_COMMAND,
+ PCI_COMMAND_MEMORY | PCI_COMMAND_IO );
+#ifdef CONFIG_MTD_PMC551_DEBUG
+ /*
+ * Some screen fun
+ */
+ printk(KERN_DEBUG "pmc551: %d%c (0x%x) of %sprefetchable memory at 0x%lx\n",
+ (size<1024)?size:(size<1048576)?size>>10:size>>20,
+ (size<1024)?'B':(size<1048576)?'K':'M',
+ size, ((dcmd&(0x1<<3)) == 0)?"non-":"",
+ (dev->resource[0].start)&PCI_BASE_ADDRESS_MEM_MASK );
+
+ /*
+ * Check to see the state of the memory
+ */
+ pci_read_config_dword( dev, PMC551_DRAM_BLK0, &dcmd );
+ printk(KERN_DEBUG "pmc551: DRAM_BLK0 Flags: %s,%s\n"
+ "pmc551: DRAM_BLK0 Size: %d at %d\n"
+ "pmc551: DRAM_BLK0 Row MUX: %d, Col MUX: %d\n",
+ (((0x1<<1)&dcmd) == 0)?"RW":"RO",
+ (((0x1<<0)&dcmd) == 0)?"Off":"On",
+ PMC551_DRAM_BLK_GET_SIZE(dcmd),
+ ((dcmd>>20)&0x7FF), ((dcmd>>13)&0x7), ((dcmd>>9)&0xF) );
+
+ pci_read_config_dword( dev, PMC551_DRAM_BLK1, &dcmd );
+ printk(KERN_DEBUG "pmc551: DRAM_BLK1 Flags: %s,%s\n"
+ "pmc551: DRAM_BLK1 Size: %d at %d\n"
+ "pmc551: DRAM_BLK1 Row MUX: %d, Col MUX: %d\n",
+ (((0x1<<1)&dcmd) == 0)?"RW":"RO",
+ (((0x1<<0)&dcmd) == 0)?"Off":"On",
+ PMC551_DRAM_BLK_GET_SIZE(dcmd),
+ ((dcmd>>20)&0x7FF), ((dcmd>>13)&0x7), ((dcmd>>9)&0xF) );
+
+ pci_read_config_dword( dev, PMC551_DRAM_BLK2, &dcmd );
+ printk(KERN_DEBUG "pmc551: DRAM_BLK2 Flags: %s,%s\n"
+ "pmc551: DRAM_BLK2 Size: %d at %d\n"
+ "pmc551: DRAM_BLK2 Row MUX: %d, Col MUX: %d\n",
+ (((0x1<<1)&dcmd) == 0)?"RW":"RO",
+ (((0x1<<0)&dcmd) == 0)?"Off":"On",
+ PMC551_DRAM_BLK_GET_SIZE(dcmd),
+ ((dcmd>>20)&0x7FF), ((dcmd>>13)&0x7), ((dcmd>>9)&0xF) );
+
+ pci_read_config_dword( dev, PMC551_DRAM_BLK3, &dcmd );
+ printk(KERN_DEBUG "pmc551: DRAM_BLK3 Flags: %s,%s\n"
+ "pmc551: DRAM_BLK3 Size: %d at %d\n"
+ "pmc551: DRAM_BLK3 Row MUX: %d, Col MUX: %d\n",
+ (((0x1<<1)&dcmd) == 0)?"RW":"RO",
+ (((0x1<<0)&dcmd) == 0)?"Off":"On",
+ PMC551_DRAM_BLK_GET_SIZE(dcmd),
+ ((dcmd>>20)&0x7FF), ((dcmd>>13)&0x7), ((dcmd>>9)&0xF) );
+
+ pci_read_config_word( dev, PCI_COMMAND, &cmd );
+ printk( KERN_DEBUG "pmc551: Memory Access %s\n",
+ (((0x1<<1)&cmd) == 0)?"off":"on" );
+ printk( KERN_DEBUG "pmc551: I/O Access %s\n",
+ (((0x1<<0)&cmd) == 0)?"off":"on" );
+
+ pci_read_config_word( dev, PCI_STATUS, &cmd );
+ printk( KERN_DEBUG "pmc551: Devsel %s\n",
+ ((PCI_STATUS_DEVSEL_MASK&cmd)==0x000)?"Fast":
+ ((PCI_STATUS_DEVSEL_MASK&cmd)==0x200)?"Medium":
+ ((PCI_STATUS_DEVSEL_MASK&cmd)==0x400)?"Slow":"Invalid" );
+
+ printk( KERN_DEBUG "pmc551: %sFast Back-to-Back\n",
+ ((PCI_COMMAND_FAST_BACK&cmd) == 0)?"Not ":"" );
+
+ pci_read_config_byte(dev, PMC551_SYS_CTRL_REG, &bcmd );
+ printk( KERN_DEBUG "pmc551: EEPROM is under %s control\n"
+ "pmc551: System Control Register is %slocked to PCI access\n"
+ "pmc551: System Control Register is %slocked to EEPROM access\n",
+ (bcmd&0x1)?"software":"hardware",
+ (bcmd&0x20)?"":"un", (bcmd&0x40)?"":"un");
+#endif
+ return size;
+}
+
+/*
+ * Kernel version specific module stuffages
+ */
+
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Mark Ferrell <mferrell@mvista.com>");
+MODULE_DESCRIPTION(PMC551_VERSION);
+
+/*
+ * Stuff these outside the ifdef so as to not bust compiled in driver support
+ */
+static int msize=0;
+#if defined(CONFIG_MTD_PMC551_APERTURE_SIZE)
+static int asize=CONFIG_MTD_PMC551_APERTURE_SIZE
+#else
+static int asize=0;
+#endif
+
+module_param(msize, int, 0);
+MODULE_PARM_DESC(msize, "memory size in Megabytes [1 - 1024]");
+module_param(asize, int, 0);
+MODULE_PARM_DESC(asize, "aperture size, must be <= memsize [1-1024]");
+
+/*
+ * PMC551 Card Initialization
+ */
+static int __init init_pmc551(void)
+{
+ struct pci_dev *PCI_Device = NULL;
+ struct mypriv *priv;
+ int count, found=0;
+ struct mtd_info *mtd;
+ u32 length = 0;
+
+ if(msize) {
+ msize = (1 << (ffs(msize) - 1))<<20;
+ if (msize > (1<<30)) {
+ printk(KERN_NOTICE "pmc551: Invalid memory size [%d]\n", msize);
+ return -EINVAL;
+ }
+ }
+
+ if(asize) {
+ asize = (1 << (ffs(asize) - 1))<<20;
+ if (asize > (1<<30) ) {
+ printk(KERN_NOTICE "pmc551: Invalid aperture size [%d]\n", asize);
+ return -EINVAL;
+ }
+ }
+
+ printk(KERN_INFO PMC551_VERSION);
+
+ /*
+ * PCU-bus chipset probe.
+ */
+ for( count = 0; count < MAX_MTD_DEVICES; count++ ) {
+
+ if ((PCI_Device = pci_find_device(PCI_VENDOR_ID_V3_SEMI,
+ PCI_DEVICE_ID_V3_SEMI_V370PDC,
+ PCI_Device ) ) == NULL) {
+ break;
+ }
+
+ printk(KERN_NOTICE "pmc551: Found PCI V370PDC at 0x%lX\n",
+ PCI_Device->resource[0].start);
+
+ /*
+ * The PMC551 device acts VERY weird if you don't init it
+ * first. i.e. it will not correctly report devsel. If for
+ * some reason the sdram is in a wrote-protected state the
+ * device will DEVSEL when it is written to causing problems
+ * with the oldproc.c driver in
+ * some kernels (2.2.*)
+ */
+ if((length = fixup_pmc551(PCI_Device)) <= 0) {
+ printk(KERN_NOTICE "pmc551: Cannot init SDRAM\n");
+ break;
+ }
+
+ /*
+ * This is needed until the driver is capable of reading the
+ * onboard I2C SROM to discover the "real" memory size.
+ */
+ if(msize) {
+ length = msize;
+ printk(KERN_NOTICE "pmc551: Using specified memory size 0x%x\n", length);
+ } else {
+ msize = length;
+ }
+
+ mtd = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
+ if (!mtd) {
+ printk(KERN_NOTICE "pmc551: Cannot allocate new MTD device.\n");
+ break;
+ }
+
+ memset(mtd, 0, sizeof(struct mtd_info));
+
+ priv = kmalloc (sizeof(struct mypriv), GFP_KERNEL);
+ if (!priv) {
+ printk(KERN_NOTICE "pmc551: Cannot allocate new MTD device.\n");
+ kfree(mtd);
+ break;
+ }
+ memset(priv, 0, sizeof(*priv));
+ mtd->priv = priv;
+ priv->dev = PCI_Device;
+
+ if(asize > length) {
+ printk(KERN_NOTICE "pmc551: reducing aperture size to fit %dM\n",length>>20);
+ priv->asize = asize = length;
+ } else if (asize == 0 || asize == length) {
+ printk(KERN_NOTICE "pmc551: Using existing aperture size %dM\n", length>>20);
+ priv->asize = asize = length;
+ } else {
+ printk(KERN_NOTICE "pmc551: Using specified aperture size %dM\n", asize>>20);
+ priv->asize = asize;
+ }
+ priv->start = ioremap(((PCI_Device->resource[0].start)
+ & PCI_BASE_ADDRESS_MEM_MASK),
+ priv->asize);
+
+ if (!priv->start) {
+ printk(KERN_NOTICE "pmc551: Unable to map IO space\n");
+ kfree(mtd->priv);
+ kfree(mtd);
+ break;
+ }
+
+#ifdef CONFIG_MTD_PMC551_DEBUG
+ printk( KERN_DEBUG "pmc551: setting aperture to %d\n",
+ ffs(priv->asize>>20)-1);
+#endif
+
+ priv->base_map0 = ( PMC551_PCI_MEM_MAP_REG_EN
+ | PMC551_PCI_MEM_MAP_ENABLE
+ | (ffs(priv->asize>>20)-1)<<4 );
+ priv->curr_map0 = priv->base_map0;
+ pci_write_config_dword ( priv->dev, PMC551_PCI_MEM_MAP0,
+ priv->curr_map0 );
+
+#ifdef CONFIG_MTD_PMC551_DEBUG
+ printk( KERN_DEBUG "pmc551: aperture set to %d\n",
+ (priv->base_map0 & 0xF0)>>4 );
+#endif
+
+ mtd->size = msize;
+ mtd->flags = MTD_CAP_RAM;
+ mtd->erase = pmc551_erase;
+ mtd->read = pmc551_read;
+ mtd->write = pmc551_write;
+ mtd->point = pmc551_point;
+ mtd->unpoint = pmc551_unpoint;
+ mtd->type = MTD_RAM;
+ mtd->name = "PMC551 RAM board";
+ mtd->erasesize = 0x10000;
+ mtd->owner = THIS_MODULE;
+
+ if (add_mtd_device(mtd)) {
+ printk(KERN_NOTICE "pmc551: Failed to register new device\n");
+ iounmap(priv->start);
+ kfree(mtd->priv);
+ kfree(mtd);
+ break;
+ }
+ printk(KERN_NOTICE "Registered pmc551 memory device.\n");
+ printk(KERN_NOTICE "Mapped %dM of memory from 0x%p to 0x%p\n",
+ priv->asize>>20,
+ priv->start,
+ priv->start + priv->asize);
+ printk(KERN_NOTICE "Total memory is %d%c\n",
+ (length<1024)?length:
+ (length<1048576)?length>>10:length>>20,
+ (length<1024)?'B':(length<1048576)?'K':'M');
+ priv->nextpmc551 = pmc551list;
+ pmc551list = mtd;
+ found++;
+ }
+
+ if( !pmc551list ) {
+ printk(KERN_NOTICE "pmc551: not detected\n");
+ return -ENODEV;
+ } else {
+ printk(KERN_NOTICE "pmc551: %d pmc551 devices loaded\n", found);
+ return 0;
+ }
+}
+
+/*
+ * PMC551 Card Cleanup
+ */
+static void __exit cleanup_pmc551(void)
+{
+ int found=0;
+ struct mtd_info *mtd;
+ struct mypriv *priv;
+
+ while((mtd=pmc551list)) {
+ priv = mtd->priv;
+ pmc551list = priv->nextpmc551;
+
+ if(priv->start) {
+ printk (KERN_DEBUG "pmc551: unmapping %dM starting at 0x%p\n",
+ priv->asize>>20, priv->start);
+ iounmap (priv->start);
+ }
+
+ kfree (mtd->priv);
+ del_mtd_device (mtd);
+ kfree (mtd);
+ found++;
+ }
+
+ printk(KERN_NOTICE "pmc551: %d pmc551 devices unloaded\n", found);
+}
+
+module_init(init_pmc551);
+module_exit(cleanup_pmc551);
diff --git a/drivers/mtd/devices/slram.c b/drivers/mtd/devices/slram.c
new file mode 100644
index 000000000000..5ab15e643be7
--- /dev/null
+++ b/drivers/mtd/devices/slram.c
@@ -0,0 +1,357 @@
+/*======================================================================
+
+ $Id: slram.c,v 1.33 2005/01/05 18:05:13 dwmw2 Exp $
+
+ This driver provides a method to access memory not used by the kernel
+ itself (i.e. if the kernel commandline mem=xxx is used). To actually
+ use slram at least mtdblock or mtdchar is required (for block or
+ character device access).
+
+ Usage:
+
+ if compiled as loadable module:
+ modprobe slram map=<name>,<start>,<end/offset>
+ if statically linked into the kernel use the following kernel cmd.line
+ slram=<name>,<start>,<end/offset>
+
+ <name>: name of the device that will be listed in /proc/mtd
+ <start>: start of the memory region, decimal or hex (0xabcdef)
+ <end/offset>: end of the memory region. It's possible to use +0x1234
+ to specify the offset instead of the absolute address
+
+ NOTE:
+ With slram it's only possible to map a contigous memory region. Therfore
+ if there's a device mapped somewhere in the region specified slram will
+ fail to load (see kernel log if modprobe fails).
+
+ -
+
+ Jochen Schaeuble <psionic@psionic.de>
+
+======================================================================*/
+
+
+#include <linux/module.h>
+#include <asm/uaccess.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/ptrace.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/timer.h>
+#include <linux/major.h>
+#include <linux/fs.h>
+#include <linux/ioctl.h>
+#include <linux/init.h>
+#include <asm/io.h>
+#include <asm/system.h>
+
+#include <linux/mtd/mtd.h>
+
+#define SLRAM_MAX_DEVICES_PARAMS 6 /* 3 parameters / device */
+
+#define T(fmt, args...) printk(KERN_DEBUG fmt, ## args)
+#define E(fmt, args...) printk(KERN_NOTICE fmt, ## args)
+
+typedef struct slram_priv {
+ u_char *start;
+ u_char *end;
+} slram_priv_t;
+
+typedef struct slram_mtd_list {
+ struct mtd_info *mtdinfo;
+ struct slram_mtd_list *next;
+} slram_mtd_list_t;
+
+#ifdef MODULE
+static char *map[SLRAM_MAX_DEVICES_PARAMS];
+
+module_param_array(map, charp, NULL, 0);
+MODULE_PARM_DESC(map, "List of memory regions to map. \"map=<name>, <start>, <length / end>\"");
+#else
+static char *map;
+#endif
+
+static slram_mtd_list_t *slram_mtdlist = NULL;
+
+static int slram_erase(struct mtd_info *, struct erase_info *);
+static int slram_point(struct mtd_info *, loff_t, size_t, size_t *, u_char **);
+static void slram_unpoint(struct mtd_info *, u_char *, loff_t, size_t);
+static int slram_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *);
+static int slram_write(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
+
+static int slram_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+ slram_priv_t *priv = mtd->priv;
+
+ if (instr->addr + instr->len > mtd->size) {
+ return(-EINVAL);
+ }
+
+ memset(priv->start + instr->addr, 0xff, instr->len);
+
+ /* This'll catch a few races. Free the thing before returning :)
+ * I don't feel at all ashamed. This kind of thing is possible anyway
+ * with flash, but unlikely.
+ */
+
+ instr->state = MTD_ERASE_DONE;
+
+ mtd_erase_callback(instr);
+
+ return(0);
+}
+
+static int slram_point(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char **mtdbuf)
+{
+ slram_priv_t *priv = mtd->priv;
+
+ *mtdbuf = priv->start + from;
+ *retlen = len;
+ return(0);
+}
+
+static void slram_unpoint(struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
+{
+}
+
+static int slram_read(struct mtd_info *mtd, loff_t from, size_t len,
+ size_t *retlen, u_char *buf)
+{
+ slram_priv_t *priv = mtd->priv;
+
+ memcpy(buf, priv->start + from, len);
+
+ *retlen = len;
+ return(0);
+}
+
+static int slram_write(struct mtd_info *mtd, loff_t to, size_t len,
+ size_t *retlen, const u_char *buf)
+{
+ slram_priv_t *priv = mtd->priv;
+
+ memcpy(priv->start + to, buf, len);
+
+ *retlen = len;
+ return(0);
+}
+
+/*====================================================================*/
+
+static int register_device(char *name, unsigned long start, unsigned long length)
+{
+ slram_mtd_list_t **curmtd;
+
+ curmtd = &slram_mtdlist;
+ while (*curmtd) {
+ curmtd = &(*curmtd)->next;
+ }
+
+ *curmtd = kmalloc(sizeof(slram_mtd_list_t), GFP_KERNEL);
+ if (!(*curmtd)) {
+ E("slram: Cannot allocate new MTD device.\n");
+ return(-ENOMEM);
+ }
+ (*curmtd)->mtdinfo = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
+ (*curmtd)->next = NULL;
+
+ if ((*curmtd)->mtdinfo) {
+ memset((char *)(*curmtd)->mtdinfo, 0, sizeof(struct mtd_info));
+ (*curmtd)->mtdinfo->priv =
+ kmalloc(sizeof(slram_priv_t), GFP_KERNEL);
+
+ if (!(*curmtd)->mtdinfo->priv) {
+ kfree((*curmtd)->mtdinfo);
+ (*curmtd)->mtdinfo = NULL;
+ } else {
+ memset((*curmtd)->mtdinfo->priv,0,sizeof(slram_priv_t));
+ }
+ }
+
+ if (!(*curmtd)->mtdinfo) {
+ E("slram: Cannot allocate new MTD device.\n");
+ return(-ENOMEM);
+ }
+
+ if (!(((slram_priv_t *)(*curmtd)->mtdinfo->priv)->start =
+ ioremap(start, length))) {
+ E("slram: ioremap failed\n");
+ return -EIO;
+ }
+ ((slram_priv_t *)(*curmtd)->mtdinfo->priv)->end =
+ ((slram_priv_t *)(*curmtd)->mtdinfo->priv)->start + length;
+
+
+ (*curmtd)->mtdinfo->name = name;
+ (*curmtd)->mtdinfo->size = length;
+ (*curmtd)->mtdinfo->flags = MTD_CLEAR_BITS | MTD_SET_BITS |
+ MTD_WRITEB_WRITEABLE | MTD_VOLATILE;
+ (*curmtd)->mtdinfo->erase = slram_erase;
+ (*curmtd)->mtdinfo->point = slram_point;
+ (*curmtd)->mtdinfo->unpoint = slram_unpoint;
+ (*curmtd)->mtdinfo->read = slram_read;
+ (*curmtd)->mtdinfo->write = slram_write;
+ (*curmtd)->mtdinfo->owner = THIS_MODULE;
+ (*curmtd)->mtdinfo->type = MTD_RAM;
+ (*curmtd)->mtdinfo->erasesize = 0x0;
+
+ if (add_mtd_device((*curmtd)->mtdinfo)) {
+ E("slram: Failed to register new device\n");
+ iounmap(((slram_priv_t *)(*curmtd)->mtdinfo->priv)->start);
+ kfree((*curmtd)->mtdinfo->priv);
+ kfree((*curmtd)->mtdinfo);
+ return(-EAGAIN);
+ }
+ T("slram: Registered device %s from %luKiB to %luKiB\n", name,
+ (start / 1024), ((start + length) / 1024));
+ T("slram: Mapped from 0x%p to 0x%p\n",
+ ((slram_priv_t *)(*curmtd)->mtdinfo->priv)->start,
+ ((slram_priv_t *)(*curmtd)->mtdinfo->priv)->end);
+ return(0);
+}
+
+static void unregister_devices(void)
+{
+ slram_mtd_list_t *nextitem;
+
+ while (slram_mtdlist) {
+ nextitem = slram_mtdlist->next;
+ del_mtd_device(slram_mtdlist->mtdinfo);
+ iounmap(((slram_priv_t *)slram_mtdlist->mtdinfo->priv)->start);
+ kfree(slram_mtdlist->mtdinfo->priv);
+ kfree(slram_mtdlist->mtdinfo);
+ kfree(slram_mtdlist);
+ slram_mtdlist = nextitem;
+ }
+}
+
+static unsigned long handle_unit(unsigned long value, char *unit)
+{
+ if ((*unit == 'M') || (*unit == 'm')) {
+ return(value * 1024 * 1024);
+ } else if ((*unit == 'K') || (*unit == 'k')) {
+ return(value * 1024);
+ }
+ return(value);
+}
+
+static int parse_cmdline(char *devname, char *szstart, char *szlength)
+{
+ char *buffer;
+ unsigned long devstart;
+ unsigned long devlength;
+
+ if ((!devname) || (!szstart) || (!szlength)) {
+ unregister_devices();
+ return(-EINVAL);
+ }
+
+ devstart = simple_strtoul(szstart, &buffer, 0);
+ devstart = handle_unit(devstart, buffer);
+
+ if (*(szlength) != '+') {
+ devlength = simple_strtoul(szlength, &buffer, 0);
+ devlength = handle_unit(devlength, buffer) - devstart;
+ } else {
+ devlength = simple_strtoul(szlength + 1, &buffer, 0);
+ devlength = handle_unit(devlength, buffer);
+ }
+ T("slram: devname=%s, devstart=0x%lx, devlength=0x%lx\n",
+ devname, devstart, devlength);
+ if ((devstart < 0) || (devlength < 0)) {
+ E("slram: Illegal start / length parameter.\n");
+ return(-EINVAL);
+ }
+
+ if ((devstart = register_device(devname, devstart, devlength))){
+ unregister_devices();
+ return((int)devstart);
+ }
+ return(0);
+}
+
+#ifndef MODULE
+
+static int __init mtd_slram_setup(char *str)
+{
+ map = str;
+ return(1);
+}
+
+__setup("slram=", mtd_slram_setup);
+
+#endif
+
+static int init_slram(void)
+{
+ char *devname;
+ int i;
+
+#ifndef MODULE
+ char *devstart;
+ char *devlength;
+
+ i = 0;
+
+ if (!map) {
+ E("slram: not enough parameters.\n");
+ return(-EINVAL);
+ }
+ while (map) {
+ devname = devstart = devlength = NULL;
+
+ if (!(devname = strsep(&map, ","))) {
+ E("slram: No devicename specified.\n");
+ break;
+ }
+ T("slram: devname = %s\n", devname);
+ if ((!map) || (!(devstart = strsep(&map, ",")))) {
+ E("slram: No devicestart specified.\n");
+ }
+ T("slram: devstart = %s\n", devstart);
+ if ((!map) || (!(devlength = strsep(&map, ",")))) {
+ E("slram: No devicelength / -end specified.\n");
+ }
+ T("slram: devlength = %s\n", devlength);
+ if (parse_cmdline(devname, devstart, devlength) != 0) {
+ return(-EINVAL);
+ }
+ }
+#else
+ int count;
+
+ for (count = 0; (map[count]) && (count < SLRAM_MAX_DEVICES_PARAMS);
+ count++) {
+ }
+
+ if ((count % 3 != 0) || (count == 0)) {
+ E("slram: not enough parameters.\n");
+ return(-EINVAL);
+ }
+ for (i = 0; i < (count / 3); i++) {
+ devname = map[i * 3];
+
+ if (parse_cmdline(devname, map[i * 3 + 1], map[i * 3 + 2])!=0) {
+ return(-EINVAL);
+ }
+
+ }
+#endif /* !MODULE */
+
+ return(0);
+}
+
+static void __exit cleanup_slram(void)
+{
+ unregister_devices();
+}
+
+module_init(init_slram);
+module_exit(cleanup_slram);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Jochen Schaeuble <psionic@psionic.de>");
+MODULE_DESCRIPTION("MTD driver for uncached system RAM");