diff options
Diffstat (limited to 'drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h')
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h | 612 |
1 files changed, 612 insertions, 0 deletions
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h b/drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h new file mode 100644 index 000000000000..b7429a527828 --- /dev/null +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h @@ -0,0 +1,612 @@ +/* + * Copyright 2015 Advanced Micro Devices, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + * + */ +#include <asm/div64.h> + +#define SHIFT_AMOUNT 16 /* We multiply all original integers with 2^SHIFT_AMOUNT to get the fInt representation */ + +#define PRECISION 5 /* Change this value to change the number of decimal places in the final output - 5 is a good default */ + +#define SHIFTED_2 (2 << SHIFT_AMOUNT) +#define MAX (1 << (SHIFT_AMOUNT - 1)) - 1 /* 32767 - Might change in the future */ + +/* ------------------------------------------------------------------------------- + * NEW TYPE - fINT + * ------------------------------------------------------------------------------- + * A variable of type fInt can be accessed in 3 ways using the dot (.) operator + * fInt A; + * A.full => The full number as it is. Generally not easy to read + * A.partial.real => Only the integer portion + * A.partial.decimal => Only the fractional portion + */ +typedef union _fInt { + int full; + struct _partial { + unsigned int decimal: SHIFT_AMOUNT; /*Needs to always be unsigned*/ + int real: 32 - SHIFT_AMOUNT; + } partial; +} fInt; + +/* ------------------------------------------------------------------------------- + * Function Declarations + * ------------------------------------------------------------------------------- + */ +fInt ConvertToFraction(int); /* Use this to convert an INT to a FINT */ +fInt Convert_ULONG_ToFraction(uint32_t); /* Use this to convert an uint32_t to a FINT */ +fInt GetScaledFraction(int, int); /* Use this to convert an INT to a FINT after scaling it by a factor */ +int ConvertBackToInteger(fInt); /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */ + +fInt fNegate(fInt); /* Returns -1 * input fInt value */ +fInt fAdd (fInt, fInt); /* Returns the sum of two fInt numbers */ +fInt fSubtract (fInt A, fInt B); /* Returns A-B - Sometimes easier than Adding negative numbers */ +fInt fMultiply (fInt, fInt); /* Returns the product of two fInt numbers */ +fInt fDivide (fInt A, fInt B); /* Returns A/B */ +fInt fGetSquare(fInt); /* Returns the square of a fInt number */ +fInt fSqrt(fInt); /* Returns the Square Root of a fInt number */ + +int uAbs(int); /* Returns the Absolute value of the Int */ +fInt fAbs(fInt); /* Returns the Absolute value of the fInt */ +int uPow(int base, int exponent); /* Returns base^exponent an INT */ + +void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */ +bool Equal(fInt, fInt); /* Returns true if two fInts are equal to each other */ +bool GreaterThan(fInt A, fInt B); /* Returns true if A > B */ + +fInt fExponential(fInt exponent); /* Can be used to calculate e^exponent */ +fInt fNaturalLog(fInt value); /* Can be used to calculate ln(value) */ + +/* Fuse decoding functions + * ------------------------------------------------------------------------------------- + */ +fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength); +fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength); +fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength); + +/* Internal Support Functions - Use these ONLY for testing or adding to internal functions + * ------------------------------------------------------------------------------------- + * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons. + */ +fInt Add (int, int); /* Add two INTs and return Sum as FINT */ +fInt Multiply (int, int); /* Multiply two INTs and return Product as FINT */ +fInt Divide (int, int); /* You get the idea... */ +fInt fNegate(fInt); + +int uGetScaledDecimal (fInt); /* Internal function */ +int GetReal (fInt A); /* Internal function */ + +/* Future Additions and Incomplete Functions + * ------------------------------------------------------------------------------------- + */ +int GetRoundedValue(fInt); /* Incomplete function - Useful only when Precision is lacking */ + /* Let us say we have 2.126 but can only handle 2 decimal points. We could */ + /* either chop of 6 and keep 2.12 or use this function to get 2.13, which is more accurate */ + +/* ------------------------------------------------------------------------------------- + * TROUBLESHOOTING INFORMATION + * ------------------------------------------------------------------------------------- + * 1) ConvertToFraction - InputOutOfRangeException: Only accepts numbers smaller than MAX (default: 32767) + * 2) fAdd - OutputOutOfRangeException: Output bigger than MAX (default: 32767) + * 3) fMultiply - OutputOutOfRangeException: + * 4) fGetSquare - OutputOutOfRangeException: + * 5) fDivide - DivideByZeroException + * 6) fSqrt - NegativeSquareRootException: Input cannot be a negative number + */ + +/* ------------------------------------------------------------------------------------- + * START OF CODE + * ------------------------------------------------------------------------------------- + */ +fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/ +{ + uint32_t i; + bool bNegated = false; + + fInt fPositiveOne = ConvertToFraction(1); + fInt fZERO = ConvertToFraction(0); + + fInt lower_bound = Divide(78, 10000); + fInt solution = fPositiveOne; /*Starting off with baseline of 1 */ + fInt error_term; + + uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78}; + uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078}; + + if (GreaterThan(fZERO, exponent)) { + exponent = fNegate(exponent); + bNegated = true; + } + + while (GreaterThan(exponent, lower_bound)) { + for (i = 0; i < 11; i++) { + if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) { + exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000)); + solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000)); + } + } + } + + error_term = fAdd(fPositiveOne, exponent); + + solution = fMultiply(solution, error_term); + + if (bNegated) + solution = fDivide(fPositiveOne, solution); + + return solution; +} + +fInt fNaturalLog(fInt value) +{ + uint32_t i; + fInt upper_bound = Divide(8, 1000); + fInt fNegativeOne = ConvertToFraction(-1); + fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */ + fInt error_term; + + uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078}; + uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78}; + + while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) { + for (i = 0; i < 10; i++) { + if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) { + value = fDivide(value, GetScaledFraction(k_array[i], 10000)); + solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000)); + } + } + } + + error_term = fAdd(fNegativeOne, value); + + return (fAdd(solution, error_term)); +} + +fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength) +{ + fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value); + fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); + + fInt f_decoded_value; + + f_decoded_value = fDivide(f_fuse_value, f_bit_max_value); + f_decoded_value = fMultiply(f_decoded_value, f_range); + f_decoded_value = fAdd(f_decoded_value, f_min); + + return f_decoded_value; +} + + +fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength) +{ + fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value); + fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); + + fInt f_CONSTANT_NEG13 = ConvertToFraction(-13); + fInt f_CONSTANT1 = ConvertToFraction(1); + + fInt f_decoded_value; + + f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1); + f_decoded_value = fNaturalLog(f_decoded_value); + f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13)); + f_decoded_value = fAdd(f_decoded_value, f_average); + + return f_decoded_value; +} + +fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength) +{ + fInt fLeakage; + fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); + + fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse)); + fLeakage = fDivide(fLeakage, f_bit_max_value); + fLeakage = fExponential(fLeakage); + fLeakage = fMultiply(fLeakage, f_min); + + return fLeakage; +} + +fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */ +{ + fInt temp; + + if (X <= MAX) + temp.full = (X << SHIFT_AMOUNT); + else + temp.full = 0; + + return temp; +} + +fInt fNegate(fInt X) +{ + fInt CONSTANT_NEGONE = ConvertToFraction(-1); + return (fMultiply(X, CONSTANT_NEGONE)); +} + +fInt Convert_ULONG_ToFraction(uint32_t X) +{ + fInt temp; + + if (X <= MAX) + temp.full = (X << SHIFT_AMOUNT); + else + temp.full = 0; + + return temp; +} + +fInt GetScaledFraction(int X, int factor) +{ + int times_shifted, factor_shifted; + bool bNEGATED; + fInt fValue; + + times_shifted = 0; + factor_shifted = 0; + bNEGATED = false; + + if (X < 0) { + X = -1*X; + bNEGATED = true; + } + + if (factor < 0) { + factor = -1*factor; + bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */ + } + + if ((X > MAX) || factor > MAX) { + if ((X/factor) <= MAX) { + while (X > MAX) { + X = X >> 1; + times_shifted++; + } + + while (factor > MAX) { + factor = factor >> 1; + factor_shifted++; + } + } else { + fValue.full = 0; + return fValue; + } + } + + if (factor == 1) + return (ConvertToFraction(X)); + + fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor)); + + fValue.full = fValue.full << times_shifted; + fValue.full = fValue.full >> factor_shifted; + + return fValue; +} + +/* Addition using two fInts */ +fInt fAdd (fInt X, fInt Y) +{ + fInt Sum; + + Sum.full = X.full + Y.full; + + return Sum; +} + +/* Addition using two fInts */ +fInt fSubtract (fInt X, fInt Y) +{ + fInt Difference; + + Difference.full = X.full - Y.full; + + return Difference; +} + +bool Equal(fInt A, fInt B) +{ + if (A.full == B.full) + return true; + else + return false; +} + +bool GreaterThan(fInt A, fInt B) +{ + if (A.full > B.full) + return true; + else + return false; +} + +fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */ +{ + fInt Product; + int64_t tempProduct; + bool X_LessThanOne, Y_LessThanOne; + + X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0); + Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0); + + /*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/ + /* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION + + if (X_LessThanOne && Y_LessThanOne) { + Product.full = X.full * Y.full; + return Product + }*/ + + tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */ + tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */ + Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */ + + return Product; +} + +fInt fDivide (fInt X, fInt Y) +{ + fInt fZERO, fQuotient; + int64_t longlongX, longlongY; + + fZERO = ConvertToFraction(0); + + if (Equal(Y, fZERO)) + return fZERO; + + longlongX = (int64_t)X.full; + longlongY = (int64_t)Y.full; + + longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */ + + div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */ + + fQuotient.full = (int)longlongX; + return fQuotient; +} + +int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/ +{ + fInt fullNumber, scaledDecimal, scaledReal; + + scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */ + + scaledDecimal.full = uGetScaledDecimal(A); + + fullNumber = fAdd(scaledDecimal,scaledReal); + + return fullNumber.full; +} + +fInt fGetSquare(fInt A) +{ + return fMultiply(A,A); +} + +/* x_new = x_old - (x_old^2 - C) / (2 * x_old) */ +fInt fSqrt(fInt num) +{ + fInt F_divide_Fprime, Fprime; + fInt test; + fInt twoShifted; + int seed, counter, error; + fInt x_new, x_old, C, y; + + fInt fZERO = ConvertToFraction(0); + + /* (0 > num) is the same as (num < 0), i.e., num is negative */ + + if (GreaterThan(fZERO, num) || Equal(fZERO, num)) + return fZERO; + + C = num; + + if (num.partial.real > 3000) + seed = 60; + else if (num.partial.real > 1000) + seed = 30; + else if (num.partial.real > 100) + seed = 10; + else + seed = 2; + + counter = 0; + + if (Equal(num, fZERO)) /*Square Root of Zero is zero */ + return fZERO; + + twoShifted = ConvertToFraction(2); + x_new = ConvertToFraction(seed); + + do { + counter++; + + x_old.full = x_new.full; + + test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */ + y = fSubtract(test, C); /*y = f(x) = x^2 - C; */ + + Fprime = fMultiply(twoShifted, x_old); + F_divide_Fprime = fDivide(y, Fprime); + + x_new = fSubtract(x_old, F_divide_Fprime); + + error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old); + + if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/ + return x_new; + + } while (uAbs(error) > 0); + + return (x_new); +} + +void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[]) +{ + fInt *pRoots = &Roots[0]; + fInt temp, root_first, root_second; + fInt f_CONSTANT10, f_CONSTANT100; + + f_CONSTANT100 = ConvertToFraction(100); + f_CONSTANT10 = ConvertToFraction(10); + + while(GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) { + A = fDivide(A, f_CONSTANT10); + B = fDivide(B, f_CONSTANT10); + C = fDivide(C, f_CONSTANT10); + } + + temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */ + temp = fMultiply(temp, C); /* root = 4*A*C */ + temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */ + temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */ + + root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */ + root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */ + + root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */ + root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */ + + root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */ + root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */ + + *(pRoots + 0) = root_first; + *(pRoots + 1) = root_second; +} + +/* ----------------------------------------------------------------------------- + * SUPPORT FUNCTIONS + * ----------------------------------------------------------------------------- + */ + +/* Addition using two normal ints - Temporary - Use only for testing purposes?. */ +fInt Add (int X, int Y) +{ + fInt A, B, Sum; + + A.full = (X << SHIFT_AMOUNT); + B.full = (Y << SHIFT_AMOUNT); + + Sum.full = A.full + B.full; + + return Sum; +} + +/* Conversion Functions */ +int GetReal (fInt A) +{ + return (A.full >> SHIFT_AMOUNT); +} + +/* Temporarily Disabled */ +int GetRoundedValue(fInt A) /*For now, round the 3rd decimal place */ +{ + /* ROUNDING TEMPORARLY DISABLED + int temp = A.full; + int decimal_cutoff, decimal_mask = 0x000001FF; + decimal_cutoff = temp & decimal_mask; + if (decimal_cutoff > 0x147) { + temp += 673; + }*/ + + return ConvertBackToInteger(A)/10000; /*Temporary - in case this was used somewhere else */ +} + +fInt Multiply (int X, int Y) +{ + fInt A, B, Product; + + A.full = X << SHIFT_AMOUNT; + B.full = Y << SHIFT_AMOUNT; + + Product = fMultiply(A, B); + + return Product; +} + +fInt Divide (int X, int Y) +{ + fInt A, B, Quotient; + + A.full = X << SHIFT_AMOUNT; + B.full = Y << SHIFT_AMOUNT; + + Quotient = fDivide(A, B); + + return Quotient; +} + +int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */ +{ + int dec[PRECISION]; + int i, scaledDecimal = 0, tmp = A.partial.decimal; + + for (i = 0; i < PRECISION; i++) { + dec[i] = tmp / (1 << SHIFT_AMOUNT); + tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]); + tmp *= 10; + scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 -i); + } + + return scaledDecimal; +} + +int uPow(int base, int power) +{ + if (power == 0) + return 1; + else + return (base)*uPow(base, power - 1); +} + +fInt fAbs(fInt A) +{ + if (A.partial.real < 0) + return (fMultiply(A, ConvertToFraction(-1))); + else + return A; +} + +int uAbs(int X) +{ + if (X < 0) + return (X * -1); + else + return X; +} + +fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term) +{ + fInt solution; + + solution = fDivide(A, fStepSize); + solution.partial.decimal = 0; /*All fractional digits changes to 0 */ + + if (error_term) + solution.partial.real += 1; /*Error term of 1 added */ + + solution = fMultiply(solution, fStepSize); + solution = fAdd(solution, fStepSize); + + return solution; +} + |