summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h')
-rw-r--r--drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h612
1 files changed, 612 insertions, 0 deletions
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h b/drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h
new file mode 100644
index 000000000000..b7429a527828
--- /dev/null
+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h
@@ -0,0 +1,612 @@
+/*
+ * Copyright 2015 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+#include <asm/div64.h>
+
+#define SHIFT_AMOUNT 16 /* We multiply all original integers with 2^SHIFT_AMOUNT to get the fInt representation */
+
+#define PRECISION 5 /* Change this value to change the number of decimal places in the final output - 5 is a good default */
+
+#define SHIFTED_2 (2 << SHIFT_AMOUNT)
+#define MAX (1 << (SHIFT_AMOUNT - 1)) - 1 /* 32767 - Might change in the future */
+
+/* -------------------------------------------------------------------------------
+ * NEW TYPE - fINT
+ * -------------------------------------------------------------------------------
+ * A variable of type fInt can be accessed in 3 ways using the dot (.) operator
+ * fInt A;
+ * A.full => The full number as it is. Generally not easy to read
+ * A.partial.real => Only the integer portion
+ * A.partial.decimal => Only the fractional portion
+ */
+typedef union _fInt {
+ int full;
+ struct _partial {
+ unsigned int decimal: SHIFT_AMOUNT; /*Needs to always be unsigned*/
+ int real: 32 - SHIFT_AMOUNT;
+ } partial;
+} fInt;
+
+/* -------------------------------------------------------------------------------
+ * Function Declarations
+ * -------------------------------------------------------------------------------
+ */
+fInt ConvertToFraction(int); /* Use this to convert an INT to a FINT */
+fInt Convert_ULONG_ToFraction(uint32_t); /* Use this to convert an uint32_t to a FINT */
+fInt GetScaledFraction(int, int); /* Use this to convert an INT to a FINT after scaling it by a factor */
+int ConvertBackToInteger(fInt); /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */
+
+fInt fNegate(fInt); /* Returns -1 * input fInt value */
+fInt fAdd (fInt, fInt); /* Returns the sum of two fInt numbers */
+fInt fSubtract (fInt A, fInt B); /* Returns A-B - Sometimes easier than Adding negative numbers */
+fInt fMultiply (fInt, fInt); /* Returns the product of two fInt numbers */
+fInt fDivide (fInt A, fInt B); /* Returns A/B */
+fInt fGetSquare(fInt); /* Returns the square of a fInt number */
+fInt fSqrt(fInt); /* Returns the Square Root of a fInt number */
+
+int uAbs(int); /* Returns the Absolute value of the Int */
+fInt fAbs(fInt); /* Returns the Absolute value of the fInt */
+int uPow(int base, int exponent); /* Returns base^exponent an INT */
+
+void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */
+bool Equal(fInt, fInt); /* Returns true if two fInts are equal to each other */
+bool GreaterThan(fInt A, fInt B); /* Returns true if A > B */
+
+fInt fExponential(fInt exponent); /* Can be used to calculate e^exponent */
+fInt fNaturalLog(fInt value); /* Can be used to calculate ln(value) */
+
+/* Fuse decoding functions
+ * -------------------------------------------------------------------------------------
+ */
+fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength);
+fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength);
+fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength);
+
+/* Internal Support Functions - Use these ONLY for testing or adding to internal functions
+ * -------------------------------------------------------------------------------------
+ * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons.
+ */
+fInt Add (int, int); /* Add two INTs and return Sum as FINT */
+fInt Multiply (int, int); /* Multiply two INTs and return Product as FINT */
+fInt Divide (int, int); /* You get the idea... */
+fInt fNegate(fInt);
+
+int uGetScaledDecimal (fInt); /* Internal function */
+int GetReal (fInt A); /* Internal function */
+
+/* Future Additions and Incomplete Functions
+ * -------------------------------------------------------------------------------------
+ */
+int GetRoundedValue(fInt); /* Incomplete function - Useful only when Precision is lacking */
+ /* Let us say we have 2.126 but can only handle 2 decimal points. We could */
+ /* either chop of 6 and keep 2.12 or use this function to get 2.13, which is more accurate */
+
+/* -------------------------------------------------------------------------------------
+ * TROUBLESHOOTING INFORMATION
+ * -------------------------------------------------------------------------------------
+ * 1) ConvertToFraction - InputOutOfRangeException: Only accepts numbers smaller than MAX (default: 32767)
+ * 2) fAdd - OutputOutOfRangeException: Output bigger than MAX (default: 32767)
+ * 3) fMultiply - OutputOutOfRangeException:
+ * 4) fGetSquare - OutputOutOfRangeException:
+ * 5) fDivide - DivideByZeroException
+ * 6) fSqrt - NegativeSquareRootException: Input cannot be a negative number
+ */
+
+/* -------------------------------------------------------------------------------------
+ * START OF CODE
+ * -------------------------------------------------------------------------------------
+ */
+fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/
+{
+ uint32_t i;
+ bool bNegated = false;
+
+ fInt fPositiveOne = ConvertToFraction(1);
+ fInt fZERO = ConvertToFraction(0);
+
+ fInt lower_bound = Divide(78, 10000);
+ fInt solution = fPositiveOne; /*Starting off with baseline of 1 */
+ fInt error_term;
+
+ uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
+ uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
+
+ if (GreaterThan(fZERO, exponent)) {
+ exponent = fNegate(exponent);
+ bNegated = true;
+ }
+
+ while (GreaterThan(exponent, lower_bound)) {
+ for (i = 0; i < 11; i++) {
+ if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) {
+ exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000));
+ solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000));
+ }
+ }
+ }
+
+ error_term = fAdd(fPositiveOne, exponent);
+
+ solution = fMultiply(solution, error_term);
+
+ if (bNegated)
+ solution = fDivide(fPositiveOne, solution);
+
+ return solution;
+}
+
+fInt fNaturalLog(fInt value)
+{
+ uint32_t i;
+ fInt upper_bound = Divide(8, 1000);
+ fInt fNegativeOne = ConvertToFraction(-1);
+ fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */
+ fInt error_term;
+
+ uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
+ uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
+
+ while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) {
+ for (i = 0; i < 10; i++) {
+ if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) {
+ value = fDivide(value, GetScaledFraction(k_array[i], 10000));
+ solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000));
+ }
+ }
+ }
+
+ error_term = fAdd(fNegativeOne, value);
+
+ return (fAdd(solution, error_term));
+}
+
+fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength)
+{
+ fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
+ fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
+
+ fInt f_decoded_value;
+
+ f_decoded_value = fDivide(f_fuse_value, f_bit_max_value);
+ f_decoded_value = fMultiply(f_decoded_value, f_range);
+ f_decoded_value = fAdd(f_decoded_value, f_min);
+
+ return f_decoded_value;
+}
+
+
+fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength)
+{
+ fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
+ fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
+
+ fInt f_CONSTANT_NEG13 = ConvertToFraction(-13);
+ fInt f_CONSTANT1 = ConvertToFraction(1);
+
+ fInt f_decoded_value;
+
+ f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1);
+ f_decoded_value = fNaturalLog(f_decoded_value);
+ f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13));
+ f_decoded_value = fAdd(f_decoded_value, f_average);
+
+ return f_decoded_value;
+}
+
+fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength)
+{
+ fInt fLeakage;
+ fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
+
+ fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse));
+ fLeakage = fDivide(fLeakage, f_bit_max_value);
+ fLeakage = fExponential(fLeakage);
+ fLeakage = fMultiply(fLeakage, f_min);
+
+ return fLeakage;
+}
+
+fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */
+{
+ fInt temp;
+
+ if (X <= MAX)
+ temp.full = (X << SHIFT_AMOUNT);
+ else
+ temp.full = 0;
+
+ return temp;
+}
+
+fInt fNegate(fInt X)
+{
+ fInt CONSTANT_NEGONE = ConvertToFraction(-1);
+ return (fMultiply(X, CONSTANT_NEGONE));
+}
+
+fInt Convert_ULONG_ToFraction(uint32_t X)
+{
+ fInt temp;
+
+ if (X <= MAX)
+ temp.full = (X << SHIFT_AMOUNT);
+ else
+ temp.full = 0;
+
+ return temp;
+}
+
+fInt GetScaledFraction(int X, int factor)
+{
+ int times_shifted, factor_shifted;
+ bool bNEGATED;
+ fInt fValue;
+
+ times_shifted = 0;
+ factor_shifted = 0;
+ bNEGATED = false;
+
+ if (X < 0) {
+ X = -1*X;
+ bNEGATED = true;
+ }
+
+ if (factor < 0) {
+ factor = -1*factor;
+ bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */
+ }
+
+ if ((X > MAX) || factor > MAX) {
+ if ((X/factor) <= MAX) {
+ while (X > MAX) {
+ X = X >> 1;
+ times_shifted++;
+ }
+
+ while (factor > MAX) {
+ factor = factor >> 1;
+ factor_shifted++;
+ }
+ } else {
+ fValue.full = 0;
+ return fValue;
+ }
+ }
+
+ if (factor == 1)
+ return (ConvertToFraction(X));
+
+ fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor));
+
+ fValue.full = fValue.full << times_shifted;
+ fValue.full = fValue.full >> factor_shifted;
+
+ return fValue;
+}
+
+/* Addition using two fInts */
+fInt fAdd (fInt X, fInt Y)
+{
+ fInt Sum;
+
+ Sum.full = X.full + Y.full;
+
+ return Sum;
+}
+
+/* Addition using two fInts */
+fInt fSubtract (fInt X, fInt Y)
+{
+ fInt Difference;
+
+ Difference.full = X.full - Y.full;
+
+ return Difference;
+}
+
+bool Equal(fInt A, fInt B)
+{
+ if (A.full == B.full)
+ return true;
+ else
+ return false;
+}
+
+bool GreaterThan(fInt A, fInt B)
+{
+ if (A.full > B.full)
+ return true;
+ else
+ return false;
+}
+
+fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
+{
+ fInt Product;
+ int64_t tempProduct;
+ bool X_LessThanOne, Y_LessThanOne;
+
+ X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0);
+ Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0);
+
+ /*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/
+ /* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION
+
+ if (X_LessThanOne && Y_LessThanOne) {
+ Product.full = X.full * Y.full;
+ return Product
+ }*/
+
+ tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */
+ tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */
+ Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */
+
+ return Product;
+}
+
+fInt fDivide (fInt X, fInt Y)
+{
+ fInt fZERO, fQuotient;
+ int64_t longlongX, longlongY;
+
+ fZERO = ConvertToFraction(0);
+
+ if (Equal(Y, fZERO))
+ return fZERO;
+
+ longlongX = (int64_t)X.full;
+ longlongY = (int64_t)Y.full;
+
+ longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */
+
+ div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */
+
+ fQuotient.full = (int)longlongX;
+ return fQuotient;
+}
+
+int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/
+{
+ fInt fullNumber, scaledDecimal, scaledReal;
+
+ scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */
+
+ scaledDecimal.full = uGetScaledDecimal(A);
+
+ fullNumber = fAdd(scaledDecimal,scaledReal);
+
+ return fullNumber.full;
+}
+
+fInt fGetSquare(fInt A)
+{
+ return fMultiply(A,A);
+}
+
+/* x_new = x_old - (x_old^2 - C) / (2 * x_old) */
+fInt fSqrt(fInt num)
+{
+ fInt F_divide_Fprime, Fprime;
+ fInt test;
+ fInt twoShifted;
+ int seed, counter, error;
+ fInt x_new, x_old, C, y;
+
+ fInt fZERO = ConvertToFraction(0);
+
+ /* (0 > num) is the same as (num < 0), i.e., num is negative */
+
+ if (GreaterThan(fZERO, num) || Equal(fZERO, num))
+ return fZERO;
+
+ C = num;
+
+ if (num.partial.real > 3000)
+ seed = 60;
+ else if (num.partial.real > 1000)
+ seed = 30;
+ else if (num.partial.real > 100)
+ seed = 10;
+ else
+ seed = 2;
+
+ counter = 0;
+
+ if (Equal(num, fZERO)) /*Square Root of Zero is zero */
+ return fZERO;
+
+ twoShifted = ConvertToFraction(2);
+ x_new = ConvertToFraction(seed);
+
+ do {
+ counter++;
+
+ x_old.full = x_new.full;
+
+ test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */
+ y = fSubtract(test, C); /*y = f(x) = x^2 - C; */
+
+ Fprime = fMultiply(twoShifted, x_old);
+ F_divide_Fprime = fDivide(y, Fprime);
+
+ x_new = fSubtract(x_old, F_divide_Fprime);
+
+ error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old);
+
+ if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/
+ return x_new;
+
+ } while (uAbs(error) > 0);
+
+ return (x_new);
+}
+
+void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
+{
+ fInt *pRoots = &Roots[0];
+ fInt temp, root_first, root_second;
+ fInt f_CONSTANT10, f_CONSTANT100;
+
+ f_CONSTANT100 = ConvertToFraction(100);
+ f_CONSTANT10 = ConvertToFraction(10);
+
+ while(GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) {
+ A = fDivide(A, f_CONSTANT10);
+ B = fDivide(B, f_CONSTANT10);
+ C = fDivide(C, f_CONSTANT10);
+ }
+
+ temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */
+ temp = fMultiply(temp, C); /* root = 4*A*C */
+ temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */
+ temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */
+
+ root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */
+ root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */
+
+ root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
+ root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
+
+ root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
+ root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
+
+ *(pRoots + 0) = root_first;
+ *(pRoots + 1) = root_second;
+}
+
+/* -----------------------------------------------------------------------------
+ * SUPPORT FUNCTIONS
+ * -----------------------------------------------------------------------------
+ */
+
+/* Addition using two normal ints - Temporary - Use only for testing purposes?. */
+fInt Add (int X, int Y)
+{
+ fInt A, B, Sum;
+
+ A.full = (X << SHIFT_AMOUNT);
+ B.full = (Y << SHIFT_AMOUNT);
+
+ Sum.full = A.full + B.full;
+
+ return Sum;
+}
+
+/* Conversion Functions */
+int GetReal (fInt A)
+{
+ return (A.full >> SHIFT_AMOUNT);
+}
+
+/* Temporarily Disabled */
+int GetRoundedValue(fInt A) /*For now, round the 3rd decimal place */
+{
+ /* ROUNDING TEMPORARLY DISABLED
+ int temp = A.full;
+ int decimal_cutoff, decimal_mask = 0x000001FF;
+ decimal_cutoff = temp & decimal_mask;
+ if (decimal_cutoff > 0x147) {
+ temp += 673;
+ }*/
+
+ return ConvertBackToInteger(A)/10000; /*Temporary - in case this was used somewhere else */
+}
+
+fInt Multiply (int X, int Y)
+{
+ fInt A, B, Product;
+
+ A.full = X << SHIFT_AMOUNT;
+ B.full = Y << SHIFT_AMOUNT;
+
+ Product = fMultiply(A, B);
+
+ return Product;
+}
+
+fInt Divide (int X, int Y)
+{
+ fInt A, B, Quotient;
+
+ A.full = X << SHIFT_AMOUNT;
+ B.full = Y << SHIFT_AMOUNT;
+
+ Quotient = fDivide(A, B);
+
+ return Quotient;
+}
+
+int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */
+{
+ int dec[PRECISION];
+ int i, scaledDecimal = 0, tmp = A.partial.decimal;
+
+ for (i = 0; i < PRECISION; i++) {
+ dec[i] = tmp / (1 << SHIFT_AMOUNT);
+ tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]);
+ tmp *= 10;
+ scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 -i);
+ }
+
+ return scaledDecimal;
+}
+
+int uPow(int base, int power)
+{
+ if (power == 0)
+ return 1;
+ else
+ return (base)*uPow(base, power - 1);
+}
+
+fInt fAbs(fInt A)
+{
+ if (A.partial.real < 0)
+ return (fMultiply(A, ConvertToFraction(-1)));
+ else
+ return A;
+}
+
+int uAbs(int X)
+{
+ if (X < 0)
+ return (X * -1);
+ else
+ return X;
+}
+
+fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
+{
+ fInt solution;
+
+ solution = fDivide(A, fStepSize);
+ solution.partial.decimal = 0; /*All fractional digits changes to 0 */
+
+ if (error_term)
+ solution.partial.real += 1; /*Error term of 1 added */
+
+ solution = fMultiply(solution, fStepSize);
+ solution = fAdd(solution, fStepSize);
+
+ return solution;
+}
+