summaryrefslogtreecommitdiffstats
path: root/drivers/crypto
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/crypto')
-rw-r--r--drivers/crypto/Kconfig14
-rw-r--r--drivers/crypto/padlock-aes.c320
2 files changed, 33 insertions, 301 deletions
diff --git a/drivers/crypto/Kconfig b/drivers/crypto/Kconfig
index 6d2f0c8d419a..43b71b69daa5 100644
--- a/drivers/crypto/Kconfig
+++ b/drivers/crypto/Kconfig
@@ -27,6 +27,7 @@ config CRYPTO_DEV_PADLOCK_AES
tristate "PadLock driver for AES algorithm"
depends on CRYPTO_DEV_PADLOCK
select CRYPTO_BLKCIPHER
+ select CRYPTO_AES
help
Use VIA PadLock for AES algorithm.
@@ -101,6 +102,19 @@ config CRYPTO_SHA256_S390
This version of SHA implements a 256 bit hash with 128 bits of
security against collision attacks.
+config CRYPTO_SHA512_S390
+ tristate "SHA384 and SHA512 digest algorithm"
+ depends on S390
+ select CRYPTO_ALGAPI
+ help
+ This is the s390 hardware accelerated implementation of the
+ SHA512 secure hash standard.
+
+ This version of SHA implements a 512 bit hash with 256 bits of
+ security against collision attacks. The code also includes SHA-384,
+ a 384 bit hash with 192 bits of security against collision attacks.
+
+
config CRYPTO_DES_S390
tristate "DES and Triple DES cipher algorithms"
depends on S390
diff --git a/drivers/crypto/padlock-aes.c b/drivers/crypto/padlock-aes.c
index 2f3ad3f7dfea..bb30eb9b93ef 100644
--- a/drivers/crypto/padlock-aes.c
+++ b/drivers/crypto/padlock-aes.c
@@ -5,42 +5,6 @@
*
* Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
*
- * Key expansion routine taken from crypto/aes_generic.c
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * ---------------------------------------------------------------------------
- * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
- * All rights reserved.
- *
- * LICENSE TERMS
- *
- * The free distribution and use of this software in both source and binary
- * form is allowed (with or without changes) provided that:
- *
- * 1. distributions of this source code include the above copyright
- * notice, this list of conditions and the following disclaimer;
- *
- * 2. distributions in binary form include the above copyright
- * notice, this list of conditions and the following disclaimer
- * in the documentation and/or other associated materials;
- *
- * 3. the copyright holder's name is not used to endorse products
- * built using this software without specific written permission.
- *
- * ALTERNATIVELY, provided that this notice is retained in full, this product
- * may be distributed under the terms of the GNU General Public License (GPL),
- * in which case the provisions of the GPL apply INSTEAD OF those given above.
- *
- * DISCLAIMER
- *
- * This software is provided 'as is' with no explicit or implied warranties
- * in respect of its properties, including, but not limited to, correctness
- * and/or fitness for purpose.
- * ---------------------------------------------------------------------------
*/
#include <crypto/algapi.h>
@@ -54,9 +18,6 @@
#include <asm/byteorder.h>
#include "padlock.h"
-#define AES_EXTENDED_KEY_SIZE 64 /* in uint32_t units */
-#define AES_EXTENDED_KEY_SIZE_B (AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))
-
/* Control word. */
struct cword {
unsigned int __attribute__ ((__packed__))
@@ -70,218 +31,23 @@ struct cword {
/* Whenever making any changes to the following
* structure *make sure* you keep E, d_data
- * and cword aligned on 16 Bytes boundaries!!! */
+ * and cword aligned on 16 Bytes boundaries and
+ * the Hardware can access 16 * 16 bytes of E and d_data
+ * (only the first 15 * 16 bytes matter but the HW reads
+ * more).
+ */
struct aes_ctx {
+ u32 E[AES_MAX_KEYLENGTH_U32]
+ __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
+ u32 d_data[AES_MAX_KEYLENGTH_U32]
+ __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
struct {
struct cword encrypt;
struct cword decrypt;
} cword;
u32 *D;
- int key_length;
- u32 E[AES_EXTENDED_KEY_SIZE]
- __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
- u32 d_data[AES_EXTENDED_KEY_SIZE]
- __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
};
-/* ====== Key management routines ====== */
-
-static inline uint32_t
-generic_rotr32 (const uint32_t x, const unsigned bits)
-{
- const unsigned n = bits % 32;
- return (x >> n) | (x << (32 - n));
-}
-
-static inline uint32_t
-generic_rotl32 (const uint32_t x, const unsigned bits)
-{
- const unsigned n = bits % 32;
- return (x << n) | (x >> (32 - n));
-}
-
-#define rotl generic_rotl32
-#define rotr generic_rotr32
-
-/*
- * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
- */
-static inline uint8_t
-byte(const uint32_t x, const unsigned n)
-{
- return x >> (n << 3);
-}
-
-#define E_KEY ctx->E
-#define D_KEY ctx->D
-
-static uint8_t pow_tab[256];
-static uint8_t log_tab[256];
-static uint8_t sbx_tab[256];
-static uint8_t isb_tab[256];
-static uint32_t rco_tab[10];
-static uint32_t ft_tab[4][256];
-static uint32_t it_tab[4][256];
-
-static uint32_t fl_tab[4][256];
-static uint32_t il_tab[4][256];
-
-static inline uint8_t
-f_mult (uint8_t a, uint8_t b)
-{
- uint8_t aa = log_tab[a], cc = aa + log_tab[b];
-
- return pow_tab[cc + (cc < aa ? 1 : 0)];
-}
-
-#define ff_mult(a,b) (a && b ? f_mult(a, b) : 0)
-
-#define f_rn(bo, bi, n, k) \
- bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
- ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
- ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
- ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
-
-#define i_rn(bo, bi, n, k) \
- bo[n] = it_tab[0][byte(bi[n],0)] ^ \
- it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
- it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
- it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
-
-#define ls_box(x) \
- ( fl_tab[0][byte(x, 0)] ^ \
- fl_tab[1][byte(x, 1)] ^ \
- fl_tab[2][byte(x, 2)] ^ \
- fl_tab[3][byte(x, 3)] )
-
-#define f_rl(bo, bi, n, k) \
- bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
- fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
- fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
- fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
-
-#define i_rl(bo, bi, n, k) \
- bo[n] = il_tab[0][byte(bi[n],0)] ^ \
- il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
- il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
- il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
-
-static void
-gen_tabs (void)
-{
- uint32_t i, t;
- uint8_t p, q;
-
- /* log and power tables for GF(2**8) finite field with
- 0x011b as modular polynomial - the simplest prmitive
- root is 0x03, used here to generate the tables */
-
- for (i = 0, p = 1; i < 256; ++i) {
- pow_tab[i] = (uint8_t) p;
- log_tab[p] = (uint8_t) i;
-
- p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
- }
-
- log_tab[1] = 0;
-
- for (i = 0, p = 1; i < 10; ++i) {
- rco_tab[i] = p;
-
- p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
- }
-
- for (i = 0; i < 256; ++i) {
- p = (i ? pow_tab[255 - log_tab[i]] : 0);
- q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
- p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
- sbx_tab[i] = p;
- isb_tab[p] = (uint8_t) i;
- }
-
- for (i = 0; i < 256; ++i) {
- p = sbx_tab[i];
-
- t = p;
- fl_tab[0][i] = t;
- fl_tab[1][i] = rotl (t, 8);
- fl_tab[2][i] = rotl (t, 16);
- fl_tab[3][i] = rotl (t, 24);
-
- t = ((uint32_t) ff_mult (2, p)) |
- ((uint32_t) p << 8) |
- ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);
-
- ft_tab[0][i] = t;
- ft_tab[1][i] = rotl (t, 8);
- ft_tab[2][i] = rotl (t, 16);
- ft_tab[3][i] = rotl (t, 24);
-
- p = isb_tab[i];
-
- t = p;
- il_tab[0][i] = t;
- il_tab[1][i] = rotl (t, 8);
- il_tab[2][i] = rotl (t, 16);
- il_tab[3][i] = rotl (t, 24);
-
- t = ((uint32_t) ff_mult (14, p)) |
- ((uint32_t) ff_mult (9, p) << 8) |
- ((uint32_t) ff_mult (13, p) << 16) |
- ((uint32_t) ff_mult (11, p) << 24);
-
- it_tab[0][i] = t;
- it_tab[1][i] = rotl (t, 8);
- it_tab[2][i] = rotl (t, 16);
- it_tab[3][i] = rotl (t, 24);
- }
-}
-
-#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
-
-#define imix_col(y,x) \
- u = star_x(x); \
- v = star_x(u); \
- w = star_x(v); \
- t = w ^ (x); \
- (y) = u ^ v ^ w; \
- (y) ^= rotr(u ^ t, 8) ^ \
- rotr(v ^ t, 16) ^ \
- rotr(t,24)
-
-/* initialise the key schedule from the user supplied key */
-
-#define loop4(i) \
-{ t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
- t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
- t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
- t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
- t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
-}
-
-#define loop6(i) \
-{ t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
- t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \
- t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \
- t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \
- t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \
- t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \
- t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \
-}
-
-#define loop8(i) \
-{ t = rotr(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \
- t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \
- t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \
- t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \
- t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
- t = E_KEY[8 * i + 4] ^ ls_box(t); \
- E_KEY[8 * i + 12] = t; \
- t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \
- t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \
- t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \
-}
-
/* Tells whether the ACE is capable to generate
the extended key for a given key_len. */
static inline int
@@ -321,17 +87,13 @@ static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
struct aes_ctx *ctx = aes_ctx(tfm);
const __le32 *key = (const __le32 *)in_key;
u32 *flags = &tfm->crt_flags;
- uint32_t i, t, u, v, w;
- uint32_t P[AES_EXTENDED_KEY_SIZE];
- uint32_t rounds;
+ struct crypto_aes_ctx gen_aes;
if (key_len % 8) {
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
- ctx->key_length = key_len;
-
/*
* If the hardware is capable of generating the extended key
* itself we must supply the plain key for both encryption
@@ -339,10 +101,10 @@ static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
*/
ctx->D = ctx->E;
- E_KEY[0] = le32_to_cpu(key[0]);
- E_KEY[1] = le32_to_cpu(key[1]);
- E_KEY[2] = le32_to_cpu(key[2]);
- E_KEY[3] = le32_to_cpu(key[3]);
+ ctx->E[0] = le32_to_cpu(key[0]);
+ ctx->E[1] = le32_to_cpu(key[1]);
+ ctx->E[2] = le32_to_cpu(key[2]);
+ ctx->E[3] = le32_to_cpu(key[3]);
/* Prepare control words. */
memset(&ctx->cword, 0, sizeof(ctx->cword));
@@ -361,56 +123,13 @@ static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
ctx->cword.encrypt.keygen = 1;
ctx->cword.decrypt.keygen = 1;
- switch (key_len) {
- case 16:
- t = E_KEY[3];
- for (i = 0; i < 10; ++i)
- loop4 (i);
- break;
-
- case 24:
- E_KEY[4] = le32_to_cpu(key[4]);
- t = E_KEY[5] = le32_to_cpu(key[5]);
- for (i = 0; i < 8; ++i)
- loop6 (i);
- break;
-
- case 32:
- E_KEY[4] = le32_to_cpu(key[4]);
- E_KEY[5] = le32_to_cpu(key[5]);
- E_KEY[6] = le32_to_cpu(key[6]);
- t = E_KEY[7] = le32_to_cpu(key[7]);
- for (i = 0; i < 7; ++i)
- loop8 (i);
- break;
- }
-
- D_KEY[0] = E_KEY[0];
- D_KEY[1] = E_KEY[1];
- D_KEY[2] = E_KEY[2];
- D_KEY[3] = E_KEY[3];
-
- for (i = 4; i < key_len + 24; ++i) {
- imix_col (D_KEY[i], E_KEY[i]);
- }
-
- /* PadLock needs a different format of the decryption key. */
- rounds = 10 + (key_len - 16) / 4;
-
- for (i = 0; i < rounds; i++) {
- P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
- P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
- P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
- P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
+ if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) {
+ *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
+ return -EINVAL;
}
- P[0] = E_KEY[(rounds * 4) + 0];
- P[1] = E_KEY[(rounds * 4) + 1];
- P[2] = E_KEY[(rounds * 4) + 2];
- P[3] = E_KEY[(rounds * 4) + 3];
-
- memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);
-
+ memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
+ memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
return 0;
}
@@ -675,7 +394,6 @@ static int __init padlock_init(void)
return -ENODEV;
}
- gen_tabs();
if ((ret = crypto_register_alg(&aes_alg)))
goto aes_err;