diff options
Diffstat (limited to 'crypto')
-rw-r--r-- | crypto/Kconfig | 11 | ||||
-rw-r--r-- | crypto/Makefile | 8 | ||||
-rw-r--r-- | crypto/asymmetric_keys/x509_cert_parser.c | 26 | ||||
-rw-r--r-- | crypto/ecc.c | 392 | ||||
-rw-r--r-- | crypto/ecc.h | 54 | ||||
-rw-r--r-- | crypto/ecrdsa.c | 296 | ||||
-rw-r--r-- | crypto/ecrdsa_defs.h | 225 | ||||
-rw-r--r-- | crypto/ecrdsa_params.asn1 | 4 | ||||
-rw-r--r-- | crypto/ecrdsa_pub_key.asn1 | 1 |
9 files changed, 1004 insertions, 13 deletions
diff --git a/crypto/Kconfig b/crypto/Kconfig index ecb697b4151f..4446833f6eca 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -259,6 +259,17 @@ config CRYPTO_ECDH help Generic implementation of the ECDH algorithm +config CRYPTO_ECRDSA + tristate "EC-RDSA (GOST 34.10) algorithm" + select CRYPTO_ECC + select CRYPTO_AKCIPHER + select CRYPTO_STREEBOG + help + Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, + RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic + standard algorithms (called GOST algorithms). Only signature verification + is implemented. + comment "Authenticated Encryption with Associated Data" config CRYPTO_CCM diff --git a/crypto/Makefile b/crypto/Makefile index b5685a01ad31..266a4cdbb9e2 100644 --- a/crypto/Makefile +++ b/crypto/Makefile @@ -153,6 +153,14 @@ ecdh_generic-y += ecdh.o ecdh_generic-y += ecdh_helper.o obj-$(CONFIG_CRYPTO_ECDH) += ecdh_generic.o +$(obj)/ecrdsa_params.asn1.o: $(obj)/ecrdsa_params.asn1.c $(obj)/ecrdsa_params.asn1.h +$(obj)/ecrdsa_pub_key.asn1.o: $(obj)/ecrdsa_pub_key.asn1.c $(obj)/ecrdsa_pub_key.asn1.h +$(obj)/ecrdsa.o: $(obj)/ecrdsa_params.asn1.h $(obj)/ecrdsa_pub_key.asn1.h +ecrdsa_generic-y += ecrdsa.o +ecrdsa_generic-y += ecrdsa_params.asn1.o +ecrdsa_generic-y += ecrdsa_pub_key.asn1.o +obj-$(CONFIG_CRYPTO_ECRDSA) += ecrdsa_generic.o + # # generic algorithms and the async_tx api # diff --git a/crypto/asymmetric_keys/x509_cert_parser.c b/crypto/asymmetric_keys/x509_cert_parser.c index b2cdf2db1987..5b7bfd95c334 100644 --- a/crypto/asymmetric_keys/x509_cert_parser.c +++ b/crypto/asymmetric_keys/x509_cert_parser.c @@ -230,6 +230,14 @@ int x509_note_pkey_algo(void *context, size_t hdrlen, case OID_sha224WithRSAEncryption: ctx->cert->sig->hash_algo = "sha224"; goto rsa_pkcs1; + + case OID_gost2012Signature256: + ctx->cert->sig->hash_algo = "streebog256"; + goto ecrdsa; + + case OID_gost2012Signature512: + ctx->cert->sig->hash_algo = "streebog512"; + goto ecrdsa; } rsa_pkcs1: @@ -237,6 +245,11 @@ rsa_pkcs1: ctx->cert->sig->encoding = "pkcs1"; ctx->algo_oid = ctx->last_oid; return 0; +ecrdsa: + ctx->cert->sig->pkey_algo = "ecrdsa"; + ctx->cert->sig->encoding = "raw"; + ctx->algo_oid = ctx->last_oid; + return 0; } /* @@ -256,7 +269,8 @@ int x509_note_signature(void *context, size_t hdrlen, return -EINVAL; } - if (strcmp(ctx->cert->sig->pkey_algo, "rsa") == 0) { + if (strcmp(ctx->cert->sig->pkey_algo, "rsa") == 0 || + strcmp(ctx->cert->sig->pkey_algo, "ecrdsa") == 0) { /* Discard the BIT STRING metadata */ if (vlen < 1 || *(const u8 *)value != 0) return -EBADMSG; @@ -440,11 +454,15 @@ int x509_extract_key_data(void *context, size_t hdrlen, { struct x509_parse_context *ctx = context; - if (ctx->last_oid != OID_rsaEncryption) + ctx->key_algo = ctx->last_oid; + if (ctx->last_oid == OID_rsaEncryption) + ctx->cert->pub->pkey_algo = "rsa"; + else if (ctx->last_oid == OID_gost2012PKey256 || + ctx->last_oid == OID_gost2012PKey512) + ctx->cert->pub->pkey_algo = "ecrdsa"; + else return -ENOPKG; - ctx->cert->pub->pkey_algo = "rsa"; - /* Discard the BIT STRING metadata */ if (vlen < 1 || *(const u8 *)value != 0) return -EBADMSG; diff --git a/crypto/ecc.c b/crypto/ecc.c index 5f36792d143d..dfe114bc0c4a 100644 --- a/crypto/ecc.c +++ b/crypto/ecc.c @@ -1,6 +1,6 @@ /* - * Copyright (c) 2013, Kenneth MacKay - * All rights reserved. + * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved. + * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org> * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are @@ -31,6 +31,8 @@ #include <linux/fips.h> #include <crypto/ecdh.h> #include <crypto/rng.h> +#include <asm/unaligned.h> +#include <linux/ratelimit.h> #include "ecc.h" #include "ecc_curve_defs.h" @@ -132,6 +134,11 @@ static u64 vli_test_bit(const u64 *vli, unsigned int bit) return (vli[bit / 64] & ((u64)1 << (bit % 64))); } +static bool vli_is_negative(const u64 *vli, unsigned int ndigits) +{ + return vli_test_bit(vli, ndigits * 64 - 1); +} + /* Counts the number of 64-bit "digits" in vli. */ static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits) { @@ -163,6 +170,27 @@ static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits) return ((num_digits - 1) * 64 + i); } +/* Set dest from unaligned bit string src. */ +void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits) +{ + int i; + const u64 *from = src; + + for (i = 0; i < ndigits; i++) + dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]); +} +EXPORT_SYMBOL(vli_from_be64); + +void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits) +{ + int i; + const u64 *from = src; + + for (i = 0; i < ndigits; i++) + dest[i] = get_unaligned_le64(&from[i]); +} +EXPORT_SYMBOL(vli_from_le64); + /* Sets dest = src. */ static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits) { @@ -242,6 +270,28 @@ static u64 vli_add(u64 *result, const u64 *left, const u64 *right, return carry; } +/* Computes result = left + right, returning carry. Can modify in place. */ +static u64 vli_uadd(u64 *result, const u64 *left, u64 right, + unsigned int ndigits) +{ + u64 carry = right; + int i; + + for (i = 0; i < ndigits; i++) { + u64 sum; + + sum = left[i] + carry; + if (sum != left[i]) + carry = (sum < left[i]); + else + carry = !!carry; + + result[i] = sum; + } + + return carry; +} + /* Computes result = left - right, returning borrow. Can modify in place. */ u64 vli_sub(u64 *result, const u64 *left, const u64 *right, unsigned int ndigits) @@ -263,8 +313,35 @@ u64 vli_sub(u64 *result, const u64 *left, const u64 *right, } EXPORT_SYMBOL(vli_sub); +/* Computes result = left - right, returning borrow. Can modify in place. */ +static u64 vli_usub(u64 *result, const u64 *left, u64 right, + unsigned int ndigits) +{ + u64 borrow = right; + int i; + + for (i = 0; i < ndigits; i++) { + u64 diff; + + diff = left[i] - borrow; + if (diff != left[i]) + borrow = (diff > left[i]); + + result[i] = diff; + } + + return borrow; +} + static uint128_t mul_64_64(u64 left, u64 right) { + uint128_t result; +#if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__) + unsigned __int128 m = (unsigned __int128)left * right; + + result.m_low = m; + result.m_high = m >> 64; +#else u64 a0 = left & 0xffffffffull; u64 a1 = left >> 32; u64 b0 = right & 0xffffffffull; @@ -273,7 +350,6 @@ static uint128_t mul_64_64(u64 left, u64 right) u64 m1 = a0 * b1; u64 m2 = a1 * b0; u64 m3 = a1 * b1; - uint128_t result; m2 += (m0 >> 32); m2 += m1; @@ -284,7 +360,7 @@ static uint128_t mul_64_64(u64 left, u64 right) result.m_low = (m0 & 0xffffffffull) | (m2 << 32); result.m_high = m3 + (m2 >> 32); - +#endif return result; } @@ -334,6 +410,28 @@ static void vli_mult(u64 *result, const u64 *left, const u64 *right, result[ndigits * 2 - 1] = r01.m_low; } +/* Compute product = left * right, for a small right value. */ +static void vli_umult(u64 *result, const u64 *left, u32 right, + unsigned int ndigits) +{ + uint128_t r01 = { 0 }; + unsigned int k; + + for (k = 0; k < ndigits; k++) { + uint128_t product; + + product = mul_64_64(left[k], right); + r01 = add_128_128(r01, product); + /* no carry */ + result[k] = r01.m_low; + r01.m_low = r01.m_high; + r01.m_high = 0; + } + result[k] = r01.m_low; + for (++k; k < ndigits * 2; k++) + result[k] = 0; +} + static void vli_square(u64 *result, const u64 *left, unsigned int ndigits) { uint128_t r01 = { 0, 0 }; @@ -406,6 +504,170 @@ static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right, vli_add(result, result, mod, ndigits); } +/* + * Computes result = product % mod + * for special form moduli: p = 2^k-c, for small c (note the minus sign) + * + * References: + * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective. + * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form + * Algorithm 9.2.13 (Fast mod operation for special-form moduli). + */ +static void vli_mmod_special(u64 *result, const u64 *product, + const u64 *mod, unsigned int ndigits) +{ + u64 c = -mod[0]; + u64 t[ECC_MAX_DIGITS * 2]; + u64 r[ECC_MAX_DIGITS * 2]; + + vli_set(r, product, ndigits * 2); + while (!vli_is_zero(r + ndigits, ndigits)) { + vli_umult(t, r + ndigits, c, ndigits); + vli_clear(r + ndigits, ndigits); + vli_add(r, r, t, ndigits * 2); + } + vli_set(t, mod, ndigits); + vli_clear(t + ndigits, ndigits); + while (vli_cmp(r, t, ndigits * 2) >= 0) + vli_sub(r, r, t, ndigits * 2); + vli_set(result, r, ndigits); +} + +/* + * Computes result = product % mod + * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign) + * where k-1 does not fit into qword boundary by -1 bit (such as 255). + + * References (loosely based on): + * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography. + * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47. + * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf + * + * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren. + * Handbook of Elliptic and Hyperelliptic Curve Cryptography. + * Algorithm 10.25 Fast reduction for special form moduli + */ +static void vli_mmod_special2(u64 *result, const u64 *product, + const u64 *mod, unsigned int ndigits) +{ + u64 c2 = mod[0] * 2; + u64 q[ECC_MAX_DIGITS]; + u64 r[ECC_MAX_DIGITS * 2]; + u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */ + int carry; /* last bit that doesn't fit into q */ + int i; + + vli_set(m, mod, ndigits); + vli_clear(m + ndigits, ndigits); + + vli_set(r, product, ndigits); + /* q and carry are top bits */ + vli_set(q, product + ndigits, ndigits); + vli_clear(r + ndigits, ndigits); + carry = vli_is_negative(r, ndigits); + if (carry) + r[ndigits - 1] &= (1ull << 63) - 1; + for (i = 1; carry || !vli_is_zero(q, ndigits); i++) { + u64 qc[ECC_MAX_DIGITS * 2]; + + vli_umult(qc, q, c2, ndigits); + if (carry) + vli_uadd(qc, qc, mod[0], ndigits * 2); + vli_set(q, qc + ndigits, ndigits); + vli_clear(qc + ndigits, ndigits); + carry = vli_is_negative(qc, ndigits); + if (carry) + qc[ndigits - 1] &= (1ull << 63) - 1; + if (i & 1) + vli_sub(r, r, qc, ndigits * 2); + else + vli_add(r, r, qc, ndigits * 2); + } + while (vli_is_negative(r, ndigits * 2)) + vli_add(r, r, m, ndigits * 2); + while (vli_cmp(r, m, ndigits * 2) >= 0) + vli_sub(r, r, m, ndigits * 2); + + vli_set(result, r, ndigits); +} + +/* + * Computes result = product % mod, where product is 2N words long. + * Reference: Ken MacKay's micro-ecc. + * Currently only designed to work for curve_p or curve_n. + */ +static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod, + unsigned int ndigits) +{ + u64 mod_m[2 * ECC_MAX_DIGITS]; + u64 tmp[2 * ECC_MAX_DIGITS]; + u64 *v[2] = { tmp, product }; + u64 carry = 0; + unsigned int i; + /* Shift mod so its highest set bit is at the maximum position. */ + int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits); + int word_shift = shift / 64; + int bit_shift = shift % 64; + + vli_clear(mod_m, word_shift); + if (bit_shift > 0) { + for (i = 0; i < ndigits; ++i) { + mod_m[word_shift + i] = (mod[i] << bit_shift) | carry; + carry = mod[i] >> (64 - bit_shift); + } + } else + vli_set(mod_m + word_shift, mod, ndigits); + + for (i = 1; shift >= 0; --shift) { + u64 borrow = 0; + unsigned int j; + + for (j = 0; j < ndigits * 2; ++j) { + u64 diff = v[i][j] - mod_m[j] - borrow; + + if (diff != v[i][j]) + borrow = (diff > v[i][j]); + v[1 - i][j] = diff; + } + i = !(i ^ borrow); /* Swap the index if there was no borrow */ + vli_rshift1(mod_m, ndigits); + mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1); + vli_rshift1(mod_m + ndigits, ndigits); + } + vli_set(result, v[i], ndigits); +} + +/* Computes result = product % mod using Barrett's reduction with precomputed + * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have + * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits + * boundary. + * + * Reference: + * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010. + * 2.4.1 Barrett's algorithm. Algorithm 2.5. + */ +static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod, + unsigned int ndigits) +{ + u64 q[ECC_MAX_DIGITS * 2]; + u64 r[ECC_MAX_DIGITS * 2]; + const u64 *mu = mod + ndigits; + + vli_mult(q, product + ndigits, mu, ndigits); + if (mu[ndigits]) + vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits); + vli_mult(r, mod, q + ndigits, ndigits); + vli_sub(r, product, r, ndigits * 2); + while (!vli_is_zero(r + ndigits, ndigits) || + vli_cmp(r, mod, ndigits) != -1) { + u64 carry; + + carry = vli_sub(r, r, mod, ndigits); + vli_usub(r + ndigits, r + ndigits, carry, ndigits); + } + vli_set(result, r, ndigits); +} + /* Computes p_result = p_product % curve_p. * See algorithm 5 and 6 from * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf @@ -513,14 +775,33 @@ static void vli_mmod_fast_256(u64 *result, const u64 *product, } } -/* Computes result = product % curve_prime - * from http://www.nsa.gov/ia/_files/nist-routines.pdf -*/ +/* Computes result = product % curve_prime for different curve_primes. + * + * Note that curve_primes are distinguished just by heuristic check and + * not by complete conformance check. + */ static bool vli_mmod_fast(u64 *result, u64 *product, const u64 *curve_prime, unsigned int ndigits) { u64 tmp[2 * ECC_MAX_DIGITS]; + /* Currently, both NIST primes have -1 in lowest qword. */ + if (curve_prime[0] != -1ull) { + /* Try to handle Pseudo-Marsenne primes. */ + if (curve_prime[ndigits - 1] == -1ull) { + vli_mmod_special(result, product, curve_prime, + ndigits); + return true; + } else if (curve_prime[ndigits - 1] == 1ull << 63 && + curve_prime[ndigits - 2] == 0) { + vli_mmod_special2(result, product, curve_prime, + ndigits); + return true; + } + vli_mmod_barrett(result, product, curve_prime, ndigits); + return true; + } + switch (ndigits) { case 3: vli_mmod_fast_192(result, product, curve_prime, tmp); @@ -529,13 +810,26 @@ static bool vli_mmod_fast(u64 *result, u64 *product, vli_mmod_fast_256(result, product, curve_prime, tmp); break; default: - pr_err("unsupports digits size!\n"); + pr_err_ratelimited("ecc: unsupported digits size!\n"); return false; } return true; } +/* Computes result = (left * right) % mod. + * Assumes that mod is big enough curve order. + */ +void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right, + const u64 *mod, unsigned int ndigits) +{ + u64 product[ECC_MAX_DIGITS * 2]; + + vli_mult(product, left, right, ndigits); + vli_mmod_slow(result, product, mod, ndigits); +} +EXPORT_SYMBOL(vli_mod_mult_slow); + /* Computes result = (left * right) % curve_prime. */ static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right, const u64 *curve_prime, unsigned int ndigits) @@ -908,6 +1202,85 @@ static void ecc_point_mult(struct ecc_point *result, vli_set(result->y, ry[0], ndigits); } +/* Computes R = P + Q mod p */ +static void ecc_point_add(const struct ecc_point *result, + const struct ecc_point *p, const struct ecc_point *q, + const struct ecc_curve *curve) +{ + u64 z[ECC_MAX_DIGITS]; + u64 px[ECC_MAX_DIGITS]; + u64 py[ECC_MAX_DIGITS]; + unsigned int ndigits = curve->g.ndigits; + + vli_set(result->x, q->x, ndigits); + vli_set(result->y, q->y, ndigits); + vli_mod_sub(z, result->x, p->x, curve->p, ndigits); + vli_set(px, p->x, ndigits); + vli_set(py, p->y, ndigits); + xycz_add(px, py, result->x, result->y, curve->p, ndigits); + vli_mod_inv(z, z, curve->p, ndigits); + apply_z(result->x, result->y, z, curve->p, ndigits); +} + +/* Computes R = u1P + u2Q mod p using Shamir's trick. + * Based on: Kenneth MacKay's micro-ecc (2014). + */ +void ecc_point_mult_shamir(const struct ecc_point *result, + const u64 *u1, const struct ecc_point *p, + const u64 *u2, const struct ecc_point *q, + const struct ecc_curve *curve) +{ + u64 z[ECC_MAX_DIGITS]; + u64 sump[2][ECC_MAX_DIGITS]; + u64 *rx = result->x; + u64 *ry = result->y; + unsigned int ndigits = curve->g.ndigits; + unsigned int num_bits; + struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits); + const struct ecc_point *points[4]; + const struct ecc_point *point; + unsigned int idx; + int i; + + ecc_point_add(&sum, p, q, curve); + points[0] = NULL; + points[1] = p; + points[2] = q; + points[3] = ∑ + + num_bits = max(vli_num_bits(u1, ndigits), + vli_num_bits(u2, ndigits)); + i = num_bits - 1; + idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1); + point = points[idx]; + + vli_set(rx, point->x, ndigits); + vli_set(ry, point->y, ndigits); + vli_clear(z + 1, ndigits - 1); + z[0] = 1; + + for (--i; i >= 0; i--) { + ecc_point_double_jacobian(rx, ry, z, curve->p, ndigits); + idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1); + point = points[idx]; + if (point) { + u64 tx[ECC_MAX_DIGITS]; + u64 ty[ECC_MAX_DIGITS]; + u64 tz[ECC_MAX_DIGITS]; + + vli_set(tx, point->x, ndigits); + vli_set(ty, point->y, ndigits); + apply_z(tx, ty, z, curve->p, ndigits); + vli_mod_sub(tz, rx, tx, curve->p, ndigits); + xycz_add(tx, ty, rx, ry, curve->p, ndigits); + vli_mod_mult_fast(z, z, tz, curve->p, ndigits); + } + } + vli_mod_inv(z, z, curve->p, ndigits); + apply_z(rx, ry, z, curve->p, ndigits); +} +EXPORT_SYMBOL(ecc_point_mult_shamir); + static inline void ecc_swap_digits(const u64 *in, u64 *out, unsigned int ndigits) { @@ -1051,6 +1424,9 @@ int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve, { u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS]; + if (WARN_ON(pk->ndigits != curve->g.ndigits)) + return -EINVAL; + /* Check 1: Verify key is not the zero point. */ if (ecc_point_is_zero(pk)) return -EINVAL; diff --git a/crypto/ecc.h b/crypto/ecc.h index 3809dbeb699a..ab0eb70b9c09 100644 --- a/crypto/ecc.h +++ b/crypto/ecc.h @@ -26,9 +26,10 @@ #ifndef _CRYPTO_ECC_H #define _CRYPTO_ECC_H +/* One digit is u64 qword. */ #define ECC_CURVE_NIST_P192_DIGITS 3 #define ECC_CURVE_NIST_P256_DIGITS 4 -#define ECC_MAX_DIGITS ECC_CURVE_NIST_P256_DIGITS +#define ECC_MAX_DIGITS (512 / 64) #define ECC_DIGITS_TO_BYTES_SHIFT 3 @@ -45,6 +46,8 @@ struct ecc_point { u8 ndigits; }; +#define ECC_POINT_INIT(x, y, ndigits) (struct ecc_point) { x, y, ndigits } + /** * struct ecc_curve - definition of elliptic curve * @@ -180,6 +183,24 @@ u64 vli_sub(u64 *result, const u64 *left, const u64 *right, unsigned int ndigits); /** + * vli_from_be64() - Load vli from big-endian u64 array + * + * @dest: destination vli + * @src: source array of u64 BE values + * @ndigits: length of both vli and array + */ +void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits); + +/** + * vli_from_le64() - Load vli from little-endian u64 array + * + * @dest: destination vli + * @src: source array of u64 LE values + * @ndigits: length of both vli and array + */ +void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits); + +/** * vli_mod_inv() - Modular inversion * * @result: where to write vli number @@ -190,4 +211,35 @@ u64 vli_sub(u64 *result, const u64 *left, const u64 *right, void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod, unsigned int ndigits); +/** + * vli_mod_mult_slow() - Modular multiplication + * + * @result: where to write result value + * @left: vli number to multiply with @right + * @right: vli number to multiply with @left + * @mod: modulus + * @ndigits: length of all vlis + * + * Note: Assumes that mod is big enough curve order. + */ +void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right, + const u64 *mod, unsigned int ndigits); + +/** + * ecc_point_mult_shamir() - Add two points multiplied by scalars + * + * @result: resulting point + * @x: scalar to multiply with @p + * @p: point to multiply with @x + * @y: scalar to multiply with @q + * @q: point to multiply with @y + * @curve: curve + * + * Returns result = x * p + x * q over the curve. + * This works faster than two multiplications and addition. + */ +void ecc_point_mult_shamir(const struct ecc_point *result, + const u64 *x, const struct ecc_point *p, + const u64 *y, const struct ecc_point *q, + const struct ecc_curve *curve); #endif diff --git a/crypto/ecrdsa.c b/crypto/ecrdsa.c new file mode 100644 index 000000000000..887ec21aee49 --- /dev/null +++ b/crypto/ecrdsa.c @@ -0,0 +1,296 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Elliptic Curve (Russian) Digital Signature Algorithm for Cryptographic API + * + * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org> + * + * References: + * GOST 34.10-2018, GOST R 34.10-2012, RFC 7091, ISO/IEC 14888-3:2018. + * + * Historical references: + * GOST R 34.10-2001, RFC 4357, ISO/IEC 14888-3:2006/Amd 1:2010. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the Free + * Software Foundation; either version 2 of the License, or (at your option) + * any later version. + */ + +#include <linux/module.h> +#include <linux/crypto.h> +#include <crypto/streebog.h> +#include <crypto/internal/akcipher.h> +#include <crypto/akcipher.h> +#include <linux/oid_registry.h> +#include "ecrdsa_params.asn1.h" +#include "ecrdsa_pub_key.asn1.h" +#include "ecc.h" +#include "ecrdsa_defs.h" + +#define ECRDSA_MAX_SIG_SIZE (2 * 512 / 8) +#define ECRDSA_MAX_DIGITS (512 / 64) + +struct ecrdsa_ctx { + enum OID algo_oid; /* overall public key oid */ + enum OID curve_oid; /* parameter */ + enum OID digest_oid; /* parameter */ + const struct ecc_curve *curve; /* curve from oid */ + unsigned int digest_len; /* parameter (bytes) */ + const char *digest; /* digest name from oid */ + unsigned int key_len; /* @key length (bytes) */ + const char *key; /* raw public key */ + struct ecc_point pub_key; + u64 _pubp[2][ECRDSA_MAX_DIGITS]; /* point storage for @pub_key */ +}; + +static const struct ecc_curve *get_curve_by_oid(enum OID oid) +{ + switch (oid) { + case OID_gostCPSignA: + case OID_gostTC26Sign256B: + return &gost_cp256a; + case OID_gostCPSignB: + case OID_gostTC26Sign256C: + return &gost_cp256b; + case OID_gostCPSignC: + case OID_gostTC26Sign256D: + return &gost_cp256c; + case OID_gostTC26Sign512A: + return &gost_tc512a; + case OID_gostTC26Sign512B: + return &gost_tc512b; + /* The following two aren't implemented: */ + case OID_gostTC26Sign256A: + case OID_gostTC26Sign512C: + default: + return NULL; + } +} + +static int ecrdsa_verify(struct akcipher_request *req) +{ + struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); + struct ecrdsa_ctx *ctx = akcipher_tfm_ctx(tfm); + unsigned char sig[ECRDSA_MAX_SIG_SIZE]; + unsigned char digest[STREEBOG512_DIGEST_SIZE]; + unsigned int ndigits = req->dst_len / sizeof(u64); + u64 r[ECRDSA_MAX_DIGITS]; /* witness (r) */ + u64 _r[ECRDSA_MAX_DIGITS]; /* -r */ + u64 s[ECRDSA_MAX_DIGITS]; /* second part of sig (s) */ + u64 e[ECRDSA_MAX_DIGITS]; /* h \mod q */ + u64 *v = e; /* e^{-1} \mod q */ + u64 z1[ECRDSA_MAX_DIGITS]; + u64 *z2 = _r; + struct ecc_point cc = ECC_POINT_INIT(s, e, ndigits); /* reuse s, e */ + + /* + * Digest value, digest algorithm, and curve (modulus) should have the + * same length (256 or 512 bits), public key and signature should be + * twice bigger. + */ + if (!ctx->curve || + !ctx->digest || + !req->src || + !ctx->pub_key.x || + req->dst_len != ctx->digest_len || + req->dst_len != ctx->curve->g.ndigits * sizeof(u64) || + ctx->pub_key.ndigits != ctx->curve->g.ndigits || + req->dst_len * 2 != req->src_len || + WARN_ON(req->src_len > sizeof(sig)) || + WARN_ON(req->dst_len > sizeof(digest))) + return -EBADMSG; + + sg_copy_to_buffer(req->src, sg_nents_for_len(req->src, req->src_len), + sig, req->src_len); + sg_pcopy_to_buffer(req->src, + sg_nents_for_len(req->src, + req->src_len + req->dst_len), + digest, req->dst_len, req->src_len); + + vli_from_be64(s, sig, ndigits); + vli_from_be64(r, sig + ndigits * sizeof(u64), ndigits); + + /* Step 1: verify that 0 < r < q, 0 < s < q */ + if (vli_is_zero(r, ndigits) || + vli_cmp(r, ctx->curve->n, ndigits) == 1 || + vli_is_zero(s, ndigits) || + vli_cmp(s, ctx->curve->n, ndigits) == 1) + return -EKEYREJECTED; + + /* Step 2: calculate hash (h) of the message (passed as input) */ + /* Step 3: calculate e = h \mod q */ + vli_from_le64(e, digest, ndigits); + if (vli_cmp(e, ctx->curve->n, ndigits) == 1) + vli_sub(e, e, ctx->curve->n, ndigits); + if (vli_is_zero(e, ndigits)) + e[0] = 1; + + /* Step 4: calculate v = e^{-1} \mod q */ + vli_mod_inv(v, e, ctx->curve->n, ndigits); + + /* Step 5: calculate z_1 = sv \mod q, z_2 = -rv \mod q */ + vli_mod_mult_slow(z1, s, v, ctx->curve->n, ndigits); + vli_sub(_r, ctx->curve->n, r, ndigits); + vli_mod_mult_slow(z2, _r, v, ctx->curve->n, ndigits); + + /* Step 6: calculate point C = z_1P + z_2Q, and R = x_c \mod q */ + ecc_point_mult_shamir(&cc, z1, &ctx->curve->g, z2, &ctx->pub_key, + ctx->curve); + if (vli_cmp(cc.x, ctx->curve->n, ndigits) == 1) + vli_sub(cc.x, cc.x, ctx->curve->n, ndigits); + + /* Step 7: if R == r signature is valid */ + if (!vli_cmp(cc.x, r, ndigits)) + return 0; + else + return -EKEYREJECTED; +} + +int ecrdsa_param_curve(void *context, size_t hdrlen, unsigned char tag, + const void *value, size_t vlen) +{ + struct ecrdsa_ctx *ctx = context; + + ctx->curve_oid = look_up_OID(value, vlen); + if (!ctx->curve_oid) + return -EINVAL; + ctx->curve = get_curve_by_oid(ctx->curve_oid); + return 0; +} + +/* Optional. If present should match expected digest algo OID. */ +int ecrdsa_param_digest(void *context, size_t hdrlen, unsigned char tag, + const void *value, size_t vlen) +{ + struct ecrdsa_ctx *ctx = context; + int digest_oid = look_up_OID(value, vlen); + + if (digest_oid != ctx->digest_oid) + return -EINVAL; + return 0; +} + +int ecrdsa_parse_pub_key(void *context, size_t hdrlen, unsigned char tag, + const void *value, size_t vlen) +{ + struct ecrdsa_ctx *ctx = context; + + ctx->key = value; + ctx->key_len = vlen; + return 0; +} + +static u8 *ecrdsa_unpack_u32(u32 *dst, void *src) +{ + memcpy(dst, src, sizeof(u32)); + return src + sizeof(u32); +} + +/* Parse BER encoded subjectPublicKey. */ +static int ecrdsa_set_pub_key(struct crypto_akcipher *tfm, const void *key, + unsigned int keylen) +{ + struct ecrdsa_ctx *ctx = akcipher_tfm_ctx(tfm); + unsigned int ndigits; + u32 algo, paramlen; + u8 *params; + int err; + + err = asn1_ber_decoder(&ecrdsa_pub_key_decoder, ctx, key, keylen); + if (err < 0) + return err; + + /* Key parameters is in the key after keylen. */ + params = ecrdsa_unpack_u32(¶mlen, + ecrdsa_unpack_u32(&algo, (u8 *)key + keylen)); + + if (algo == OID_gost2012PKey256) { + ctx->digest = "streebog256"; + ctx->digest_oid = OID_gost2012Digest256; + ctx->digest_len = 256 / 8; + } else if (algo == OID_gost2012PKey512) { + ctx->digest = "streebog512"; + ctx->digest_oid = OID_gost2012Digest512; + ctx->digest_len = 512 / 8; + } else + return -ENOPKG; + ctx->algo_oid = algo; + + /* Parse SubjectPublicKeyInfo.AlgorithmIdentifier.parameters. */ + err = asn1_ber_decoder(&ecrdsa_params_decoder, ctx, params, paramlen); + if (err < 0) + return err; + /* + * Sizes of algo (set in digest_len) and curve should match + * each other. + */ + if (!ctx->curve || + ctx->curve->g.ndigits * sizeof(u64) != ctx->digest_len) + return -ENOPKG; + /* + * Key is two 256- or 512-bit coordinates which should match + * curve size. + */ + if ((ctx->key_len != (2 * 256 / 8) && + ctx->key_len != (2 * 512 / 8)) || + ctx->key_len != ctx->curve->g.ndigits * sizeof(u64) * 2) + return -ENOPKG; + + ndigits = ctx->key_len / sizeof(u64) / 2; + ctx->pub_key = ECC_POINT_INIT(ctx->_pubp[0], ctx->_pubp[1], ndigits); + vli_from_le64(ctx->pub_key.x, ctx->key, ndigits); + vli_from_le64(ctx->pub_key.y, ctx->key + ndigits * sizeof(u64), + ndigits); + + if (ecc_is_pubkey_valid_partial(ctx->curve, &ctx->pub_key)) + return -EKEYREJECTED; + + return 0; +} + +static unsigned int ecrdsa_max_size(struct crypto_akcipher *tfm) +{ + struct ecrdsa_ctx *ctx = akcipher_tfm_ctx(tfm); + + /* + * Verify doesn't need any output, so it's just informational + * for keyctl to determine the key bit size. + */ + return ctx->pub_key.ndigits * sizeof(u64); +} + +static void ecrdsa_exit_tfm(struct crypto_akcipher *tfm) +{ +} + +static struct akcipher_alg ecrdsa_alg = { + .verify = ecrdsa_verify, + .set_pub_key = ecrdsa_set_pub_key, + .max_size = ecrdsa_max_size, + .exit = ecrdsa_exit_tfm, + .base = { + .cra_name = "ecrdsa", + .cra_driver_name = "ecrdsa-generic", + .cra_priority = 100, + .cra_module = THIS_MODULE, + .cra_ctxsize = sizeof(struct ecrdsa_ctx), + }, +}; + +static int __init ecrdsa_mod_init(void) +{ + return crypto_register_akcipher(&ecrdsa_alg); +} + +static void __exit ecrdsa_mod_fini(void) +{ + crypto_unregister_akcipher(&ecrdsa_alg); +} + +module_init(ecrdsa_mod_init); +module_exit(ecrdsa_mod_fini); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Vitaly Chikunov <vt@altlinux.org>"); +MODULE_DESCRIPTION("EC-RDSA generic algorithm"); +MODULE_ALIAS_CRYPTO("ecrdsa-generic"); diff --git a/crypto/ecrdsa_defs.h b/crypto/ecrdsa_defs.h new file mode 100644 index 000000000000..170baf039007 --- /dev/null +++ b/crypto/ecrdsa_defs.h @@ -0,0 +1,225 @@ +/* SPDX-License-Identifier: GPL-2.0+ */ +/* + * Definitions of EC-RDSA Curve Parameters + * + * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org> + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the Free + * Software Foundation; either version 2 of the License, or (at your option) + * any later version. + */ + +#ifndef _CRYTO_ECRDSA_DEFS_H +#define _CRYTO_ECRDSA_DEFS_H + +#include "ecc.h" + +#define ECRDSA_MAX_SIG_SIZE (2 * 512 / 8) +#define ECRDSA_MAX_DIGITS (512 / 64) + +/* + * EC-RDSA uses its own set of curves. + * + * cp256{a,b,c} curves first defined for GOST R 34.10-2001 in RFC 4357 (as + * 256-bit {A,B,C}-ParamSet), but inherited for GOST R 34.10-2012 and + * proposed for use in R 50.1.114-2016 and RFC 7836 as the 256-bit curves. + */ +/* OID_gostCPSignA 1.2.643.2.2.35.1 */ +static u64 cp256a_g_x[] = { + 0x0000000000000001ull, 0x0000000000000000ull, + 0x0000000000000000ull, 0x0000000000000000ull, }; +static u64 cp256a_g_y[] = { + 0x22ACC99C9E9F1E14ull, 0x35294F2DDF23E3B1ull, + 0x27DF505A453F2B76ull, 0x8D91E471E0989CDAull, }; +static u64 cp256a_p[] = { /* p = 2^256 - 617 */ + 0xFFFFFFFFFFFFFD97ull, 0xFFFFFFFFFFFFFFFFull, + 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull }; +static u64 cp256a_n[] = { + 0x45841B09B761B893ull, 0x6C611070995AD100ull, + 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull }; +static u64 cp256a_a[] = { /* a = p - 3 */ + 0xFFFFFFFFFFFFFD94ull, 0xFFFFFFFFFFFFFFFFull, + 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull }; +static u64 cp256a_b[] = { + 0x00000000000000a6ull, 0x0000000000000000ull, + 0x0000000000000000ull, 0x0000000000000000ull }; + +static struct ecc_curve gost_cp256a = { + .name = "cp256a", + .g = { + .x = cp256a_g_x, + .y = cp256a_g_y, + .ndigits = 256 / 64, + }, + .p = cp256a_p, + .n = cp256a_n, + .a = cp256a_a, + .b = cp256a_b +}; + +/* OID_gostCPSignB 1.2.643.2.2.35.2 */ +static u64 cp256b_g_x[] = { + 0x0000000000000001ull, 0x0000000000000000ull, + 0x0000000000000000ull, 0x0000000000000000ull, }; +static u64 cp256b_g_y[] = { + 0x744BF8D717717EFCull, 0xC545C9858D03ECFBull, + 0xB83D1C3EB2C070E5ull, 0x3FA8124359F96680ull, }; +static u64 cp256b_p[] = { /* p = 2^255 + 3225 */ + 0x0000000000000C99ull, 0x0000000000000000ull, + 0x0000000000000000ull, 0x8000000000000000ull, }; +static u64 cp256b_n[] = { + 0xE497161BCC8A198Full, 0x5F700CFFF1A624E5ull, + 0x0000000000000001ull, 0x8000000000000000ull, }; +static u64 cp256b_a[] = { /* a = p - 3 */ + 0x0000000000000C96ull, 0x0000000000000000ull, + 0x0000000000000000ull, 0x8000000000000000ull, }; +static u64 cp256b_b[] = { + 0x2F49D4CE7E1BBC8Bull, 0xE979259373FF2B18ull, + 0x66A7D3C25C3DF80Aull, 0x3E1AF419A269A5F8ull, }; + +static struct ecc_curve gost_cp256b = { + .name = "cp256b", + .g = { + .x = cp256b_g_x, + .y = cp256b_g_y, + .ndigits = 256 / 64, + }, + .p = cp256b_p, + .n = cp256b_n, + .a = cp256b_a, + .b = cp256b_b +}; + +/* OID_gostCPSignC 1.2.643.2.2.35.3 */ +static u64 cp256c_g_x[] = { + 0x0000000000000000ull, 0x0000000000000000ull, + 0x0000000000000000ull, 0x0000000000000000ull, }; +static u64 cp256c_g_y[] = { + 0x366E550DFDB3BB67ull, 0x4D4DC440D4641A8Full, + 0x3CBF3783CD08C0EEull, 0x41ECE55743711A8Cull, }; +static u64 cp256c_p[] = { + 0x7998F7B9022D759Bull, 0xCF846E86789051D3ull, + 0xAB1EC85E6B41C8AAull, 0x9B9F605F5A858107ull, + /* pre-computed value for Barrett's reduction */ + 0xedc283cdd217b5a2ull, 0xbac48fc06398ae59ull, + 0x405384d55f9f3b73ull, 0xa51f176161f1d734ull, + 0x0000000000000001ull, }; +static u64 cp256c_n[] = { + 0xF02F3A6598980BB9ull, 0x582CA3511EDDFB74ull, + 0xAB1EC85E6B41C8AAull, 0x9B9F605F5A858107ull, }; +static u64 cp256c_a[] = { /* a = p - 3 */ + 0x7998F7B9022D7598ull, 0xCF846E86789051D3ull, + 0xAB1EC85E6B41C8AAull, 0x9B9F605F5A858107ull, }; +static u64 cp256c_b[] = { + 0x000000000000805aull, 0x0000000000000000ull, + 0x0000000000000000ull, 0x0000000000000000ull, }; + +static struct ecc_curve gost_cp256c = { + .name = "cp256c", + .g = { + .x = cp256c_g_x, + .y = cp256c_g_y, + .ndigits = 256 / 64, + }, + .p = cp256c_p, + .n = cp256c_n, + .a = cp256c_a, + .b = cp256c_b +}; + +/* tc512{a,b} curves first recommended in 2013 and then standardized in + * R 50.1.114-2016 and RFC 7836 for use with GOST R 34.10-2012 (as TC26 + * 512-bit ParamSet{A,B}). + */ +/* OID_gostTC26Sign512A 1.2.643.7.1.2.1.2.1 */ +static u64 tc512a_g_x[] = { + 0x0000000000000003ull, 0x0000000000000000ull, + 0x0000000000000000ull, 0x0000000000000000ull, + 0x0000000000000000ull, 0x0000000000000000ull, + 0x0000000000000000ull, 0x0000000000000000ull, }; +static u64 tc512a_g_y[] = { + 0x89A589CB5215F2A4ull, 0x8028FE5FC235F5B8ull, + 0x3D75E6A50E3A41E9ull, 0xDF1626BE4FD036E9ull, + 0x778064FDCBEFA921ull, 0xCE5E1C93ACF1ABC1ull, + 0xA61B8816E25450E6ull, 0x7503CFE87A836AE3ull, }; +static u64 tc512a_p[] = { /* p = 2^512 - 569 */ + 0xFFFFFFFFFFFFFDC7ull, 0xFFFFFFFFFFFFFFFFull, + 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull, + 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull, + 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull, }; +static u64 tc512a_n[] = { + 0xCACDB1411F10B275ull, 0x9B4B38ABFAD2B85Dull, + 0x6FF22B8D4E056060ull, 0x27E69532F48D8911ull, + 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull, + 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull, }; +static u64 tc512a_a[] = { /* a = p - 3 */ + 0xFFFFFFFFFFFFFDC4ull, 0xFFFFFFFFFFFFFFFFull, + 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull, + 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull, + 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFFull, }; +static u64 tc512a_b[] = { + 0x503190785A71C760ull, 0x862EF9D4EBEE4761ull, + 0x4CB4574010DA90DDull, 0xEE3CB090F30D2761ull, + 0x79BD081CFD0B6265ull, 0x34B82574761CB0E8ull, + 0xC1BD0B2B6667F1DAull, 0xE8C2505DEDFC86DDull, }; + +static struct ecc_curve gost_tc512a = { + .name = "tc512a", + .g = { + .x = tc512a_g_x, + .y = tc512a_g_y, + .ndigits = 512 / 64, + }, + .p = tc512a_p, + .n = tc512a_n, + .a = tc512a_a, + .b = tc512a_b +}; + +/* OID_gostTC26Sign512B 1.2.643.7.1.2.1.2.2 */ +static u64 tc512b_g_x[] = { + 0x0000000000000002ull, 0x0000000000000000ull, + 0x0000000000000000ull, 0x0000000000000000ull, + 0x0000000000000000ull, 0x0000000000000000ull, + 0x0000000000000000ull, 0x0000000000000000ull, }; +static u64 tc512b_g_y[] = { + 0x7E21340780FE41BDull, 0x28041055F94CEEECull, + 0x152CBCAAF8C03988ull, 0xDCB228FD1EDF4A39ull, + 0xBE6DD9E6C8EC7335ull, 0x3C123B697578C213ull, + 0x2C071E3647A8940Full, 0x1A8F7EDA389B094Cull, }; +static u64 tc512b_p[] = { /* p = 2^511 + 111 */ + 0x000000000000006Full, 0x0000000000000000ull, + 0x0000000000000000ull, 0x0000000000000000ull, + 0x0000000000000000ull, 0x0000000000000000ull, + 0x0000000000000000ull, 0x8000000000000000ull, }; +static u64 tc512b_n[] = { + 0xC6346C54374F25BDull, 0x8B996712101BEA0Eull, + 0xACFDB77BD9D40CFAull, 0x49A1EC142565A545ull, + 0x0000000000000001ull, 0x0000000000000000ull, + 0x0000000000000000ull, 0x8000000000000000ull, }; +static u64 tc512b_a[] = { /* a = p - 3 */ + 0x000000000000006Cull, 0x0000000000000000ull, + 0x0000000000000000ull, 0x0000000000000000ull, + 0x0000000000000000ull, 0x0000000000000000ull, + 0x0000000000000000ull, 0x8000000000000000ull, }; +static u64 tc512b_b[] = { + 0xFB8CCBC7C5140116ull, 0x50F78BEE1FA3106Eull, + 0x7F8B276FAD1AB69Cull, 0x3E965D2DB1416D21ull, + 0xBF85DC806C4B289Full, 0xB97C7D614AF138BCull, + 0x7E3E06CF6F5E2517ull, 0x687D1B459DC84145ull, }; + +static struct ecc_curve gost_tc512b = { + .name = "tc512b", + .g = { + .x = tc512b_g_x, + .y = tc512b_g_y, + .ndigits = 512 / 64, + }, + .p = tc512b_p, + .n = tc512b_n, + .a = tc512b_a, + .b = tc512b_b +}; + +#endif diff --git a/crypto/ecrdsa_params.asn1 b/crypto/ecrdsa_params.asn1 new file mode 100644 index 000000000000..aba99c3763cf --- /dev/null +++ b/crypto/ecrdsa_params.asn1 @@ -0,0 +1,4 @@ +EcrdsaParams ::= SEQUENCE { + curve OBJECT IDENTIFIER ({ ecrdsa_param_curve }), + digest OBJECT IDENTIFIER OPTIONAL ({ ecrdsa_param_digest }) +} diff --git a/crypto/ecrdsa_pub_key.asn1 b/crypto/ecrdsa_pub_key.asn1 new file mode 100644 index 000000000000..048cb646bce4 --- /dev/null +++ b/crypto/ecrdsa_pub_key.asn1 @@ -0,0 +1 @@ +EcrdsaPubKey ::= OCTET STRING ({ ecrdsa_parse_pub_key }) |