summaryrefslogtreecommitdiffstats
path: root/block
diff options
context:
space:
mode:
Diffstat (limited to 'block')
-rw-r--r--block/bfq-iosched.c223
-rw-r--r--block/bfq-iosched.h27
-rw-r--r--block/bfq-wf2q.c36
3 files changed, 155 insertions, 131 deletions
diff --git a/block/bfq-iosched.c b/block/bfq-iosched.c
index 1a1b80dfd69d..6075100f03a5 100644
--- a/block/bfq-iosched.c
+++ b/block/bfq-iosched.c
@@ -624,12 +624,13 @@ void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
}
/*
- * Tell whether there are active queues or groups with differentiated weights.
+ * Tell whether there are active queues with different weights or
+ * active groups.
*/
-static bool bfq_differentiated_weights(struct bfq_data *bfqd)
+static bool bfq_varied_queue_weights_or_active_groups(struct bfq_data *bfqd)
{
/*
- * For weights to differ, at least one of the trees must contain
+ * For queue weights to differ, queue_weights_tree must contain
* at least two nodes.
*/
return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
@@ -637,9 +638,7 @@ static bool bfq_differentiated_weights(struct bfq_data *bfqd)
bfqd->queue_weights_tree.rb_node->rb_right)
#ifdef CONFIG_BFQ_GROUP_IOSCHED
) ||
- (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
- (bfqd->group_weights_tree.rb_node->rb_left ||
- bfqd->group_weights_tree.rb_node->rb_right)
+ (bfqd->num_active_groups > 0
#endif
);
}
@@ -657,26 +656,25 @@ static bool bfq_differentiated_weights(struct bfq_data *bfqd)
* 3) all active groups at the same level in the groups tree have the same
* number of children.
*
- * Unfortunately, keeping the necessary state for evaluating exactly the
- * above symmetry conditions would be quite complex and time-consuming.
- * Therefore this function evaluates, instead, the following stronger
- * sub-conditions, for which it is much easier to maintain the needed
- * state:
+ * Unfortunately, keeping the necessary state for evaluating exactly
+ * the last two symmetry sub-conditions above would be quite complex
+ * and time consuming. Therefore this function evaluates, instead,
+ * only the following stronger two sub-conditions, for which it is
+ * much easier to maintain the needed state:
* 1) all active queues have the same weight,
- * 2) all active groups have the same weight,
- * 3) all active groups have at most one active child each.
- * In particular, the last two conditions are always true if hierarchical
- * support and the cgroups interface are not enabled, thus no state needs
- * to be maintained in this case.
+ * 2) there are no active groups.
+ * In particular, the last condition is always true if hierarchical
+ * support or the cgroups interface are not enabled, thus no state
+ * needs to be maintained in this case.
*/
static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
{
- return !bfq_differentiated_weights(bfqd);
+ return !bfq_varied_queue_weights_or_active_groups(bfqd);
}
/*
* If the weight-counter tree passed as input contains no counter for
- * the weight of the input entity, then add that counter; otherwise just
+ * the weight of the input queue, then add that counter; otherwise just
* increment the existing counter.
*
* Note that weight-counter trees contain few nodes in mostly symmetric
@@ -687,25 +685,25 @@ static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
* In most scenarios, the rate at which nodes are created/destroyed
* should be low too.
*/
-void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
+void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
struct rb_root *root)
{
+ struct bfq_entity *entity = &bfqq->entity;
struct rb_node **new = &(root->rb_node), *parent = NULL;
/*
- * Do not insert if the entity is already associated with a
+ * Do not insert if the queue is already associated with a
* counter, which happens if:
- * 1) the entity is associated with a queue,
- * 2) a request arrival has caused the queue to become both
+ * 1) a request arrival has caused the queue to become both
* non-weight-raised, and hence change its weight, and
* backlogged; in this respect, each of the two events
* causes an invocation of this function,
- * 3) this is the invocation of this function caused by the
+ * 2) this is the invocation of this function caused by the
* second event. This second invocation is actually useless,
* and we handle this fact by exiting immediately. More
* efficient or clearer solutions might possibly be adopted.
*/
- if (entity->weight_counter)
+ if (bfqq->weight_counter)
return;
while (*new) {
@@ -715,7 +713,7 @@ void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
parent = *new;
if (entity->weight == __counter->weight) {
- entity->weight_counter = __counter;
+ bfqq->weight_counter = __counter;
goto inc_counter;
}
if (entity->weight < __counter->weight)
@@ -724,66 +722,67 @@ void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
new = &((*new)->rb_right);
}
- entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
- GFP_ATOMIC);
+ bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
+ GFP_ATOMIC);
/*
* In the unlucky event of an allocation failure, we just
- * exit. This will cause the weight of entity to not be
- * considered in bfq_differentiated_weights, which, in its
- * turn, causes the scenario to be deemed wrongly symmetric in
- * case entity's weight would have been the only weight making
- * the scenario asymmetric. On the bright side, no unbalance
- * will however occur when entity becomes inactive again (the
- * invocation of this function is triggered by an activation
- * of entity). In fact, bfq_weights_tree_remove does nothing
- * if !entity->weight_counter.
+ * exit. This will cause the weight of queue to not be
+ * considered in bfq_varied_queue_weights_or_active_groups,
+ * which, in its turn, causes the scenario to be deemed
+ * wrongly symmetric in case bfqq's weight would have been
+ * the only weight making the scenario asymmetric. On the
+ * bright side, no unbalance will however occur when bfqq
+ * becomes inactive again (the invocation of this function
+ * is triggered by an activation of queue). In fact,
+ * bfq_weights_tree_remove does nothing if
+ * !bfqq->weight_counter.
*/
- if (unlikely(!entity->weight_counter))
+ if (unlikely(!bfqq->weight_counter))
return;
- entity->weight_counter->weight = entity->weight;
- rb_link_node(&entity->weight_counter->weights_node, parent, new);
- rb_insert_color(&entity->weight_counter->weights_node, root);
+ bfqq->weight_counter->weight = entity->weight;
+ rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
+ rb_insert_color(&bfqq->weight_counter->weights_node, root);
inc_counter:
- entity->weight_counter->num_active++;
+ bfqq->weight_counter->num_active++;
}
/*
- * Decrement the weight counter associated with the entity, and, if the
+ * Decrement the weight counter associated with the queue, and, if the
* counter reaches 0, remove the counter from the tree.
* See the comments to the function bfq_weights_tree_add() for considerations
* about overhead.
*/
void __bfq_weights_tree_remove(struct bfq_data *bfqd,
- struct bfq_entity *entity,
+ struct bfq_queue *bfqq,
struct rb_root *root)
{
- if (!entity->weight_counter)
+ if (!bfqq->weight_counter)
return;
- entity->weight_counter->num_active--;
- if (entity->weight_counter->num_active > 0)
+ bfqq->weight_counter->num_active--;
+ if (bfqq->weight_counter->num_active > 0)
goto reset_entity_pointer;
- rb_erase(&entity->weight_counter->weights_node, root);
- kfree(entity->weight_counter);
+ rb_erase(&bfqq->weight_counter->weights_node, root);
+ kfree(bfqq->weight_counter);
reset_entity_pointer:
- entity->weight_counter = NULL;
+ bfqq->weight_counter = NULL;
}
/*
- * Invoke __bfq_weights_tree_remove on bfqq and all its inactive
- * parent entities.
+ * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
+ * of active groups for each queue's inactive parent entity.
*/
void bfq_weights_tree_remove(struct bfq_data *bfqd,
struct bfq_queue *bfqq)
{
struct bfq_entity *entity = bfqq->entity.parent;
- __bfq_weights_tree_remove(bfqd, &bfqq->entity,
+ __bfq_weights_tree_remove(bfqd, bfqq,
&bfqd->queue_weights_tree);
for_each_entity(entity) {
@@ -797,17 +796,13 @@ void bfq_weights_tree_remove(struct bfq_data *bfqd,
* next_in_service for details on why
* in_service_entity must be checked too).
*
- * As a consequence, the weight of entity is
- * not to be removed. In addition, if entity
- * is active, then its parent entities are
- * active as well, and thus their weights are
- * not to be removed either. In the end, this
- * loop must stop here.
+ * As a consequence, its parent entities are
+ * active as well, and thus this loop must
+ * stop here.
*/
break;
}
- __bfq_weights_tree_remove(bfqd, entity,
- &bfqd->group_weights_tree);
+ bfqd->num_active_groups--;
}
}
@@ -3506,9 +3501,11 @@ static bool bfq_better_to_idle(struct bfq_queue *bfqq)
* symmetric scenario where:
* (i) each of these processes must get the same throughput as
* the others;
- * (ii) all these processes have the same I/O pattern
- (either sequential or random).
- * In fact, in such a scenario, the drive will tend to treat
+ * (ii) the I/O of each process has the same properties, in
+ * terms of locality (sequential or random), direction
+ * (reads or writes), request sizes, greediness
+ * (from I/O-bound to sporadic), and so on.
+ * In fact, in such a scenario, the drive tends to treat
* the requests of each of these processes in about the same
* way as the requests of the others, and thus to provide
* each of these processes with about the same throughput
@@ -3517,18 +3514,50 @@ static bool bfq_better_to_idle(struct bfq_queue *bfqq)
* certainly needed to guarantee that bfqq receives its
* assigned fraction of the device throughput (see [1] for
* details).
+ * The problem is that idling may significantly reduce
+ * throughput with certain combinations of types of I/O and
+ * devices. An important example is sync random I/O, on flash
+ * storage with command queueing. So, unless bfqq falls in the
+ * above cases where idling also boosts throughput, it would
+ * be important to check conditions (i) and (ii) accurately,
+ * so as to avoid idling when not strictly needed for service
+ * guarantees.
+ *
+ * Unfortunately, it is extremely difficult to thoroughly
+ * check condition (ii). And, in case there are active groups,
+ * it becomes very difficult to check condition (i) too. In
+ * fact, if there are active groups, then, for condition (i)
+ * to become false, it is enough that an active group contains
+ * more active processes or sub-groups than some other active
+ * group. We address this issue with the following bi-modal
+ * behavior, implemented in the function
+ * bfq_symmetric_scenario().
*
- * We address this issue by controlling, actually, only the
- * symmetry sub-condition (i), i.e., provided that
- * sub-condition (i) holds, idling is not performed,
- * regardless of whether sub-condition (ii) holds. In other
- * words, only if sub-condition (i) holds, then idling is
+ * If there are active groups, then the scenario is tagged as
+ * asymmetric, conservatively, without checking any of the
+ * conditions (i) and (ii). So the device is idled for bfqq.
+ * This behavior matches also the fact that groups are created
+ * exactly if controlling I/O (to preserve bandwidth and
+ * latency guarantees) is a primary concern.
+ *
+ * On the opposite end, if there are no active groups, then
+ * only condition (i) is actually controlled, i.e., provided
+ * that condition (i) holds, idling is not performed,
+ * regardless of whether condition (ii) holds. In other words,
+ * only if condition (i) does not hold, then idling is
* allowed, and the device tends to be prevented from queueing
- * many requests, possibly of several processes. The reason
- * for not controlling also sub-condition (ii) is that we
- * exploit preemption to preserve guarantees in case of
- * symmetric scenarios, even if (ii) does not hold, as
- * explained in the next two paragraphs.
+ * many requests, possibly of several processes. Since there
+ * are no active groups, then, to control condition (i) it is
+ * enough to check whether all active queues have the same
+ * weight.
+ *
+ * Not checking condition (ii) evidently exposes bfqq to the
+ * risk of getting less throughput than its fair share.
+ * However, for queues with the same weight, a further
+ * mechanism, preemption, mitigates or even eliminates this
+ * problem. And it does so without consequences on overall
+ * throughput. This mechanism and its benefits are explained
+ * in the next three paragraphs.
*
* Even if a queue, say Q, is expired when it remains idle, Q
* can still preempt the new in-service queue if the next
@@ -3542,11 +3571,7 @@ static bool bfq_better_to_idle(struct bfq_queue *bfqq)
* idling allows the internal queues of the device to contain
* many requests, and thus to reorder requests, we can rather
* safely assume that the internal scheduler still preserves a
- * minimum of mid-term fairness. The motivation for using
- * preemption instead of idling is that, by not idling,
- * service guarantees are preserved without minimally
- * sacrificing throughput. In other words, both a high
- * throughput and its desired distribution are obtained.
+ * minimum of mid-term fairness.
*
* More precisely, this preemption-based, idleless approach
* provides fairness in terms of IOPS, and not sectors per
@@ -3565,27 +3590,27 @@ static bool bfq_better_to_idle(struct bfq_queue *bfqq)
* 1024/8 times as high as the service received by the other
* queue.
*
- * On the other hand, device idling is performed, and thus
- * pure sector-domain guarantees are provided, for the
- * following queues, which are likely to need stronger
- * throughput guarantees: weight-raised queues, and queues
- * with a higher weight than other queues. When such queues
- * are active, sub-condition (i) is false, which triggers
- * device idling.
+ * The motivation for using preemption instead of idling (for
+ * queues with the same weight) is that, by not idling,
+ * service guarantees are preserved (completely or at least in
+ * part) without minimally sacrificing throughput. And, if
+ * there is no active group, then the primary expectation for
+ * this device is probably a high throughput.
*
- * According to the above considerations, the next variable is
- * true (only) if sub-condition (i) holds. To compute the
- * value of this variable, we not only use the return value of
- * the function bfq_symmetric_scenario(), but also check
- * whether bfqq is being weight-raised, because
- * bfq_symmetric_scenario() does not take into account also
- * weight-raised queues (see comments on
- * bfq_weights_tree_add()). In particular, if bfqq is being
- * weight-raised, it is important to idle only if there are
- * other, non-weight-raised queues that may steal throughput
- * to bfqq. Actually, we should be even more precise, and
- * differentiate between interactive weight raising and
- * soft real-time weight raising.
+ * We are now left only with explaining the additional
+ * compound condition that is checked below for deciding
+ * whether the scenario is asymmetric. To explain this
+ * compound condition, we need to add that the function
+ * bfq_symmetric_scenario checks the weights of only
+ * non-weight-raised queues, for efficiency reasons (see
+ * comments on bfq_weights_tree_add()). Then the fact that
+ * bfqq is weight-raised is checked explicitly here. More
+ * precisely, the compound condition below takes into account
+ * also the fact that, even if bfqq is being weight-raised,
+ * the scenario is still symmetric if all active queues happen
+ * to be weight-raised. Actually, we should be even more
+ * precise here, and differentiate between interactive weight
+ * raising and soft real-time weight raising.
*
* As a side note, it is worth considering that the above
* device-idling countermeasures may however fail in the
@@ -5392,7 +5417,7 @@ static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
bfqd->queue_weights_tree = RB_ROOT;
- bfqd->group_weights_tree = RB_ROOT;
+ bfqd->num_active_groups = 0;
INIT_LIST_HEAD(&bfqd->active_list);
INIT_LIST_HEAD(&bfqd->idle_list);
diff --git a/block/bfq-iosched.h b/block/bfq-iosched.h
index 37d627afdc2e..77651d817ecd 100644
--- a/block/bfq-iosched.h
+++ b/block/bfq-iosched.h
@@ -108,15 +108,14 @@ struct bfq_sched_data {
};
/**
- * struct bfq_weight_counter - counter of the number of all active entities
+ * struct bfq_weight_counter - counter of the number of all active queues
* with a given weight.
*/
struct bfq_weight_counter {
- unsigned int weight; /* weight of the entities this counter refers to */
- unsigned int num_active; /* nr of active entities with this weight */
+ unsigned int weight; /* weight of the queues this counter refers to */
+ unsigned int num_active; /* nr of active queues with this weight */
/*
- * Weights tree member (see bfq_data's @queue_weights_tree and
- * @group_weights_tree)
+ * Weights tree member (see bfq_data's @queue_weights_tree)
*/
struct rb_node weights_node;
};
@@ -151,8 +150,6 @@ struct bfq_weight_counter {
struct bfq_entity {
/* service_tree member */
struct rb_node rb_node;
- /* pointer to the weight counter associated with this entity */
- struct bfq_weight_counter *weight_counter;
/*
* Flag, true if the entity is on a tree (either the active or
@@ -266,6 +263,9 @@ struct bfq_queue {
/* entity representing this queue in the scheduler */
struct bfq_entity entity;
+ /* pointer to the weight counter associated with this entity */
+ struct bfq_weight_counter *weight_counter;
+
/* maximum budget allowed from the feedback mechanism */
int max_budget;
/* budget expiration (in jiffies) */
@@ -449,14 +449,9 @@ struct bfq_data {
*/
struct rb_root queue_weights_tree;
/*
- * rbtree of non-queue @bfq_entity weight counters, sorted by
- * weight. Used to keep track of whether all @bfq_groups have
- * the same weight. The tree contains one counter for each
- * distinct weight associated to some active @bfq_group (see
- * the comments to the functions bfq_weights_tree_[add|remove]
- * for further details).
+ * number of groups with requests still waiting for completion
*/
- struct rb_root group_weights_tree;
+ unsigned int num_active_groups;
/*
* Number of bfq_queues containing requests (including the
@@ -851,10 +846,10 @@ struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync);
void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync);
struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic);
void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq);
-void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
+void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
struct rb_root *root);
void __bfq_weights_tree_remove(struct bfq_data *bfqd,
- struct bfq_entity *entity,
+ struct bfq_queue *bfqq,
struct rb_root *root);
void bfq_weights_tree_remove(struct bfq_data *bfqd,
struct bfq_queue *bfqq);
diff --git a/block/bfq-wf2q.c b/block/bfq-wf2q.c
index ff7c2d470bb8..476b5a90a5a4 100644
--- a/block/bfq-wf2q.c
+++ b/block/bfq-wf2q.c
@@ -788,25 +788,29 @@ __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
new_weight = entity->orig_weight *
(bfqq ? bfqq->wr_coeff : 1);
/*
- * If the weight of the entity changes, remove the entity
- * from its old weight counter (if there is a counter
- * associated with the entity), and add it to the counter
- * associated with its new weight.
+ * If the weight of the entity changes, and the entity is a
+ * queue, remove the entity from its old weight counter (if
+ * there is a counter associated with the entity).
*/
if (prev_weight != new_weight) {
- root = bfqq ? &bfqd->queue_weights_tree :
- &bfqd->group_weights_tree;
- __bfq_weights_tree_remove(bfqd, entity, root);
+ if (bfqq) {
+ root = &bfqd->queue_weights_tree;
+ __bfq_weights_tree_remove(bfqd, bfqq, root);
+ } else
+ bfqd->num_active_groups--;
}
entity->weight = new_weight;
/*
- * Add the entity to its weights tree only if it is
- * not associated with a weight-raised queue.
+ * Add the entity, if it is not a weight-raised queue,
+ * to the counter associated with its new weight.
*/
- if (prev_weight != new_weight &&
- (bfqq ? bfqq->wr_coeff == 1 : 1))
- /* If we get here, root has been initialized. */
- bfq_weights_tree_add(bfqd, entity, root);
+ if (prev_weight != new_weight) {
+ if (bfqq && bfqq->wr_coeff == 1) {
+ /* If we get here, root has been initialized. */
+ bfq_weights_tree_add(bfqd, bfqq, root);
+ } else
+ bfqd->num_active_groups++;
+ }
new_st->wsum += entity->weight;
@@ -1012,9 +1016,9 @@ static void __bfq_activate_entity(struct bfq_entity *entity,
if (!bfq_entity_to_bfqq(entity)) { /* bfq_group */
struct bfq_group *bfqg =
container_of(entity, struct bfq_group, entity);
+ struct bfq_data *bfqd = bfqg->bfqd;
- bfq_weights_tree_add(bfqg->bfqd, entity,
- &bfqd->group_weights_tree);
+ bfqd->num_active_groups++;
}
#endif
@@ -1692,7 +1696,7 @@ void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
if (!bfqq->dispatched)
if (bfqq->wr_coeff == 1)
- bfq_weights_tree_add(bfqd, &bfqq->entity,
+ bfq_weights_tree_add(bfqd, bfqq,
&bfqd->queue_weights_tree);
if (bfqq->wr_coeff > 1)