summaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kvm')
-rw-r--r--arch/x86/kvm/cpuid.c3
-rw-r--r--arch/x86/kvm/lapic.c38
-rw-r--r--arch/x86/kvm/mmu.c181
-rw-r--r--arch/x86/kvm/mmu.h2
-rw-r--r--arch/x86/kvm/paging_tmpl.h178
-rw-r--r--arch/x86/kvm/pmu.c25
-rw-r--r--arch/x86/kvm/vmx.c441
-rw-r--r--arch/x86/kvm/x86.c224
8 files changed, 821 insertions, 271 deletions
diff --git a/arch/x86/kvm/cpuid.c b/arch/x86/kvm/cpuid.c
index a20ecb5b6cbf..b110fe6c03d4 100644
--- a/arch/x86/kvm/cpuid.c
+++ b/arch/x86/kvm/cpuid.c
@@ -413,7 +413,8 @@ static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
(1 << KVM_FEATURE_CLOCKSOURCE2) |
(1 << KVM_FEATURE_ASYNC_PF) |
(1 << KVM_FEATURE_PV_EOI) |
- (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
+ (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
+ (1 << KVM_FEATURE_PV_UNHALT);
if (sched_info_on())
entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
diff --git a/arch/x86/kvm/lapic.c b/arch/x86/kvm/lapic.c
index afc11245827c..5439117d5c4c 100644
--- a/arch/x86/kvm/lapic.c
+++ b/arch/x86/kvm/lapic.c
@@ -79,16 +79,6 @@ static inline void apic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
*((u32 *) (apic->regs + reg_off)) = val;
}
-static inline int apic_test_and_set_vector(int vec, void *bitmap)
-{
- return test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
-}
-
-static inline int apic_test_and_clear_vector(int vec, void *bitmap)
-{
- return test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
-}
-
static inline int apic_test_vector(int vec, void *bitmap)
{
return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
@@ -331,10 +321,10 @@ void kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir)
}
EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
-static inline int apic_test_and_set_irr(int vec, struct kvm_lapic *apic)
+static inline void apic_set_irr(int vec, struct kvm_lapic *apic)
{
apic->irr_pending = true;
- return apic_test_and_set_vector(vec, apic->regs + APIC_IRR);
+ apic_set_vector(vec, apic->regs + APIC_IRR);
}
static inline int apic_search_irr(struct kvm_lapic *apic)
@@ -681,32 +671,28 @@ static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
if (unlikely(!apic_enabled(apic)))
break;
+ result = 1;
+
if (dest_map)
__set_bit(vcpu->vcpu_id, dest_map);
- if (kvm_x86_ops->deliver_posted_interrupt) {
- result = 1;
+ if (kvm_x86_ops->deliver_posted_interrupt)
kvm_x86_ops->deliver_posted_interrupt(vcpu, vector);
- } else {
- result = !apic_test_and_set_irr(vector, apic);
-
- if (!result) {
- if (trig_mode)
- apic_debug("level trig mode repeatedly "
- "for vector %d", vector);
- goto out;
- }
+ else {
+ apic_set_irr(vector, apic);
kvm_make_request(KVM_REQ_EVENT, vcpu);
kvm_vcpu_kick(vcpu);
}
-out:
trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
- trig_mode, vector, !result);
+ trig_mode, vector, false);
break;
case APIC_DM_REMRD:
- apic_debug("Ignoring delivery mode 3\n");
+ result = 1;
+ vcpu->arch.pv.pv_unhalted = 1;
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ kvm_vcpu_kick(vcpu);
break;
case APIC_DM_SMI:
diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c
index 9e9285ae9b94..6e2d2c8f230b 100644
--- a/arch/x86/kvm/mmu.c
+++ b/arch/x86/kvm/mmu.c
@@ -132,8 +132,8 @@ module_param(dbg, bool, 0644);
(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
* PT32_LEVEL_BITS))) - 1))
-#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
- | PT64_NX_MASK)
+#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
+ | shadow_x_mask | shadow_nx_mask)
#define ACC_EXEC_MASK 1
#define ACC_WRITE_MASK PT_WRITABLE_MASK
@@ -331,11 +331,6 @@ static int is_large_pte(u64 pte)
return pte & PT_PAGE_SIZE_MASK;
}
-static int is_dirty_gpte(unsigned long pte)
-{
- return pte & PT_DIRTY_MASK;
-}
-
static int is_rmap_spte(u64 pte)
{
return is_shadow_present_pte(pte);
@@ -2052,12 +2047,18 @@ static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
return __shadow_walk_next(iterator, *iterator->sptep);
}
-static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
+static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
{
u64 spte;
+ BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
+ VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
+
spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
- shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
+ shadow_user_mask | shadow_x_mask;
+
+ if (accessed)
+ spte |= shadow_accessed_mask;
mmu_spte_set(sptep, spte);
}
@@ -2574,14 +2575,6 @@ static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
mmu_free_roots(vcpu);
}
-static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
-{
- int bit7;
-
- bit7 = (gpte >> 7) & 1;
- return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
-}
-
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
bool no_dirty_log)
{
@@ -2594,26 +2587,6 @@ static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
return gfn_to_pfn_memslot_atomic(slot, gfn);
}
-static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp, u64 *spte,
- u64 gpte)
-{
- if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
- goto no_present;
-
- if (!is_present_gpte(gpte))
- goto no_present;
-
- if (!(gpte & PT_ACCESSED_MASK))
- goto no_present;
-
- return false;
-
-no_present:
- drop_spte(vcpu->kvm, spte);
- return true;
-}
-
static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp,
u64 *start, u64 *end)
@@ -2710,7 +2683,7 @@ static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
iterator.level - 1,
1, ACC_ALL, iterator.sptep);
- link_shadow_page(iterator.sptep, sp);
+ link_shadow_page(iterator.sptep, sp, true);
}
}
return emulate;
@@ -2808,7 +2781,7 @@ exit:
return ret;
}
-static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
+static bool page_fault_can_be_fast(u32 error_code)
{
/*
* Do not fix the mmio spte with invalid generation number which
@@ -2861,7 +2834,7 @@ static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
bool ret = false;
u64 spte = 0ull;
- if (!page_fault_can_be_fast(vcpu, error_code))
+ if (!page_fault_can_be_fast(error_code))
return false;
walk_shadow_page_lockless_begin(vcpu);
@@ -3209,6 +3182,7 @@ void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
mmu_sync_roots(vcpu);
spin_unlock(&vcpu->kvm->mmu_lock);
}
+EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
u32 access, struct x86_exception *exception)
@@ -3478,6 +3452,7 @@ void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
++vcpu->stat.tlb_flush;
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
}
+EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
static void paging_new_cr3(struct kvm_vcpu *vcpu)
{
@@ -3501,18 +3476,6 @@ static void paging_free(struct kvm_vcpu *vcpu)
nonpaging_free(vcpu);
}
-static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
-{
- unsigned mask;
-
- BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
-
- mask = (unsigned)~ACC_WRITE_MASK;
- /* Allow write access to dirty gptes */
- mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
- *access &= mask;
-}
-
static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
unsigned access, int *nr_present)
{
@@ -3530,16 +3493,6 @@ static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
return false;
}
-static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
-{
- unsigned access;
-
- access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
- access &= ~(gpte >> PT64_NX_SHIFT);
-
- return access;
-}
-
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
unsigned index;
@@ -3549,6 +3502,11 @@ static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gp
return mmu->last_pte_bitmap & (1 << index);
}
+#define PTTYPE_EPT 18 /* arbitrary */
+#define PTTYPE PTTYPE_EPT
+#include "paging_tmpl.h"
+#undef PTTYPE
+
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE
@@ -3563,6 +3521,8 @@ static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
int maxphyaddr = cpuid_maxphyaddr(vcpu);
u64 exb_bit_rsvd = 0;
+ context->bad_mt_xwr = 0;
+
if (!context->nx)
exb_bit_rsvd = rsvd_bits(63, 63);
switch (context->root_level) {
@@ -3618,7 +3578,40 @@ static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
}
}
-static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
+static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *context, bool execonly)
+{
+ int maxphyaddr = cpuid_maxphyaddr(vcpu);
+ int pte;
+
+ context->rsvd_bits_mask[0][3] =
+ rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
+ context->rsvd_bits_mask[0][2] =
+ rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
+ context->rsvd_bits_mask[0][1] =
+ rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
+ context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
+
+ /* large page */
+ context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
+ context->rsvd_bits_mask[1][2] =
+ rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
+ context->rsvd_bits_mask[1][1] =
+ rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
+ context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
+
+ for (pte = 0; pte < 64; pte++) {
+ int rwx_bits = pte & 7;
+ int mt = pte >> 3;
+ if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
+ rwx_bits == 0x2 || rwx_bits == 0x6 ||
+ (rwx_bits == 0x4 && !execonly))
+ context->bad_mt_xwr |= (1ull << pte);
+ }
+}
+
+static void update_permission_bitmask(struct kvm_vcpu *vcpu,
+ struct kvm_mmu *mmu, bool ept)
{
unsigned bit, byte, pfec;
u8 map;
@@ -3636,12 +3629,16 @@ static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu
w = bit & ACC_WRITE_MASK;
u = bit & ACC_USER_MASK;
- /* Not really needed: !nx will cause pte.nx to fault */
- x |= !mmu->nx;
- /* Allow supervisor writes if !cr0.wp */
- w |= !is_write_protection(vcpu) && !uf;
- /* Disallow supervisor fetches of user code if cr4.smep */
- x &= !(smep && u && !uf);
+ if (!ept) {
+ /* Not really needed: !nx will cause pte.nx to fault */
+ x |= !mmu->nx;
+ /* Allow supervisor writes if !cr0.wp */
+ w |= !is_write_protection(vcpu) && !uf;
+ /* Disallow supervisor fetches of user code if cr4.smep */
+ x &= !(smep && u && !uf);
+ } else
+ /* Not really needed: no U/S accesses on ept */
+ u = 1;
fault = (ff && !x) || (uf && !u) || (wf && !w);
map |= fault << bit;
@@ -3676,7 +3673,7 @@ static int paging64_init_context_common(struct kvm_vcpu *vcpu,
context->root_level = level;
reset_rsvds_bits_mask(vcpu, context);
- update_permission_bitmask(vcpu, context);
+ update_permission_bitmask(vcpu, context, false);
update_last_pte_bitmap(vcpu, context);
ASSERT(is_pae(vcpu));
@@ -3706,7 +3703,7 @@ static int paging32_init_context(struct kvm_vcpu *vcpu,
context->root_level = PT32_ROOT_LEVEL;
reset_rsvds_bits_mask(vcpu, context);
- update_permission_bitmask(vcpu, context);
+ update_permission_bitmask(vcpu, context, false);
update_last_pte_bitmap(vcpu, context);
context->new_cr3 = paging_new_cr3;
@@ -3768,7 +3765,7 @@ static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
context->gva_to_gpa = paging32_gva_to_gpa;
}
- update_permission_bitmask(vcpu, context);
+ update_permission_bitmask(vcpu, context, false);
update_last_pte_bitmap(vcpu, context);
return 0;
@@ -3800,6 +3797,33 @@ int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
+int kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
+ bool execonly)
+{
+ ASSERT(vcpu);
+ ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
+
+ context->shadow_root_level = kvm_x86_ops->get_tdp_level();
+
+ context->nx = true;
+ context->new_cr3 = paging_new_cr3;
+ context->page_fault = ept_page_fault;
+ context->gva_to_gpa = ept_gva_to_gpa;
+ context->sync_page = ept_sync_page;
+ context->invlpg = ept_invlpg;
+ context->update_pte = ept_update_pte;
+ context->free = paging_free;
+ context->root_level = context->shadow_root_level;
+ context->root_hpa = INVALID_PAGE;
+ context->direct_map = false;
+
+ update_permission_bitmask(vcpu, context, true);
+ reset_rsvds_bits_mask_ept(vcpu, context, execonly);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
+
static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
{
int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
@@ -3847,7 +3871,7 @@ static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
}
- update_permission_bitmask(vcpu, g_context);
+ update_permission_bitmask(vcpu, g_context, false);
update_last_pte_bitmap(vcpu, g_context);
return 0;
@@ -3923,8 +3947,8 @@ static bool need_remote_flush(u64 old, u64 new)
return true;
if ((old ^ new) & PT64_BASE_ADDR_MASK)
return true;
- old ^= PT64_NX_MASK;
- new ^= PT64_NX_MASK;
+ old ^= shadow_nx_mask;
+ new ^= shadow_nx_mask;
return (old & ~new & PT64_PERM_MASK) != 0;
}
@@ -4182,7 +4206,7 @@ int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
switch (er) {
case EMULATE_DONE:
return 1;
- case EMULATE_DO_MMIO:
+ case EMULATE_USER_EXIT:
++vcpu->stat.mmio_exits;
/* fall through */
case EMULATE_FAIL:
@@ -4390,11 +4414,8 @@ void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
/*
* The very rare case: if the generation-number is round,
* zap all shadow pages.
- *
- * The max value is MMIO_MAX_GEN - 1 since it is not called
- * when mark memslot invalid.
*/
- if (unlikely(kvm_current_mmio_generation(kvm) >= (MMIO_MAX_GEN - 1))) {
+ if (unlikely(kvm_current_mmio_generation(kvm) >= MMIO_MAX_GEN)) {
printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
kvm_mmu_invalidate_zap_all_pages(kvm);
}
diff --git a/arch/x86/kvm/mmu.h b/arch/x86/kvm/mmu.h
index 5b59c573aba7..77e044a0f5f7 100644
--- a/arch/x86/kvm/mmu.h
+++ b/arch/x86/kvm/mmu.h
@@ -71,6 +71,8 @@ enum {
int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct);
int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
+int kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
+ bool execonly);
static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
{
diff --git a/arch/x86/kvm/paging_tmpl.h b/arch/x86/kvm/paging_tmpl.h
index 7769699d48a8..043330159179 100644
--- a/arch/x86/kvm/paging_tmpl.h
+++ b/arch/x86/kvm/paging_tmpl.h
@@ -23,6 +23,13 @@
* so the code in this file is compiled twice, once per pte size.
*/
+/*
+ * This is used to catch non optimized PT_GUEST_(DIRTY|ACCESS)_SHIFT macro
+ * uses for EPT without A/D paging type.
+ */
+extern u64 __pure __using_nonexistent_pte_bit(void)
+ __compiletime_error("wrong use of PT_GUEST_(DIRTY|ACCESS)_SHIFT");
+
#if PTTYPE == 64
#define pt_element_t u64
#define guest_walker guest_walker64
@@ -32,6 +39,10 @@
#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
#define PT_LEVEL_BITS PT64_LEVEL_BITS
+ #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
+ #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
+ #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
+ #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
#ifdef CONFIG_X86_64
#define PT_MAX_FULL_LEVELS 4
#define CMPXCHG cmpxchg
@@ -49,7 +60,26 @@
#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
#define PT_LEVEL_BITS PT32_LEVEL_BITS
#define PT_MAX_FULL_LEVELS 2
+ #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK
+ #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK
+ #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
+ #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
#define CMPXCHG cmpxchg
+#elif PTTYPE == PTTYPE_EPT
+ #define pt_element_t u64
+ #define guest_walker guest_walkerEPT
+ #define FNAME(name) ept_##name
+ #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
+ #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
+ #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
+ #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
+ #define PT_LEVEL_BITS PT64_LEVEL_BITS
+ #define PT_GUEST_ACCESSED_MASK 0
+ #define PT_GUEST_DIRTY_MASK 0
+ #define PT_GUEST_DIRTY_SHIFT __using_nonexistent_pte_bit()
+ #define PT_GUEST_ACCESSED_SHIFT __using_nonexistent_pte_bit()
+ #define CMPXCHG cmpxchg64
+ #define PT_MAX_FULL_LEVELS 4
#else
#error Invalid PTTYPE value
#endif
@@ -80,6 +110,40 @@ static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
}
+static inline void FNAME(protect_clean_gpte)(unsigned *access, unsigned gpte)
+{
+ unsigned mask;
+
+ /* dirty bit is not supported, so no need to track it */
+ if (!PT_GUEST_DIRTY_MASK)
+ return;
+
+ BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
+
+ mask = (unsigned)~ACC_WRITE_MASK;
+ /* Allow write access to dirty gptes */
+ mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
+ PT_WRITABLE_MASK;
+ *access &= mask;
+}
+
+static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
+{
+ int bit7 = (gpte >> 7) & 1, low6 = gpte & 0x3f;
+
+ return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) |
+ ((mmu->bad_mt_xwr & (1ull << low6)) != 0);
+}
+
+static inline int FNAME(is_present_gpte)(unsigned long pte)
+{
+#if PTTYPE != PTTYPE_EPT
+ return is_present_gpte(pte);
+#else
+ return pte & 7;
+#endif
+}
+
static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
pt_element_t __user *ptep_user, unsigned index,
pt_element_t orig_pte, pt_element_t new_pte)
@@ -103,6 +167,42 @@ static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
return (ret != orig_pte);
}
+static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp, u64 *spte,
+ u64 gpte)
+{
+ if (FNAME(is_rsvd_bits_set)(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
+ goto no_present;
+
+ if (!FNAME(is_present_gpte)(gpte))
+ goto no_present;
+
+ /* if accessed bit is not supported prefetch non accessed gpte */
+ if (PT_GUEST_ACCESSED_MASK && !(gpte & PT_GUEST_ACCESSED_MASK))
+ goto no_present;
+
+ return false;
+
+no_present:
+ drop_spte(vcpu->kvm, spte);
+ return true;
+}
+
+static inline unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, u64 gpte)
+{
+ unsigned access;
+#if PTTYPE == PTTYPE_EPT
+ access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
+ ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
+ ACC_USER_MASK;
+#else
+ access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
+ access &= ~(gpte >> PT64_NX_SHIFT);
+#endif
+
+ return access;
+}
+
static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
struct kvm_mmu *mmu,
struct guest_walker *walker,
@@ -114,18 +214,23 @@ static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
gfn_t table_gfn;
int ret;
+ /* dirty/accessed bits are not supported, so no need to update them */
+ if (!PT_GUEST_DIRTY_MASK)
+ return 0;
+
for (level = walker->max_level; level >= walker->level; --level) {
pte = orig_pte = walker->ptes[level - 1];
table_gfn = walker->table_gfn[level - 1];
ptep_user = walker->ptep_user[level - 1];
index = offset_in_page(ptep_user) / sizeof(pt_element_t);
- if (!(pte & PT_ACCESSED_MASK)) {
+ if (!(pte & PT_GUEST_ACCESSED_MASK)) {
trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
- pte |= PT_ACCESSED_MASK;
+ pte |= PT_GUEST_ACCESSED_MASK;
}
- if (level == walker->level && write_fault && !is_dirty_gpte(pte)) {
+ if (level == walker->level && write_fault &&
+ !(pte & PT_GUEST_DIRTY_MASK)) {
trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
- pte |= PT_DIRTY_MASK;
+ pte |= PT_GUEST_DIRTY_MASK;
}
if (pte == orig_pte)
continue;
@@ -170,7 +275,7 @@ retry_walk:
if (walker->level == PT32E_ROOT_LEVEL) {
pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
trace_kvm_mmu_paging_element(pte, walker->level);
- if (!is_present_gpte(pte))
+ if (!FNAME(is_present_gpte)(pte))
goto error;
--walker->level;
}
@@ -179,7 +284,7 @@ retry_walk:
ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
(mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
- accessed_dirty = PT_ACCESSED_MASK;
+ accessed_dirty = PT_GUEST_ACCESSED_MASK;
pt_access = pte_access = ACC_ALL;
++walker->level;
@@ -215,17 +320,17 @@ retry_walk:
trace_kvm_mmu_paging_element(pte, walker->level);
- if (unlikely(!is_present_gpte(pte)))
+ if (unlikely(!FNAME(is_present_gpte)(pte)))
goto error;
- if (unlikely(is_rsvd_bits_set(&vcpu->arch.mmu, pte,
- walker->level))) {
+ if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte,
+ walker->level))) {
errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
goto error;
}
accessed_dirty &= pte;
- pte_access = pt_access & gpte_access(vcpu, pte);
+ pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
walker->ptes[walker->level - 1] = pte;
} while (!is_last_gpte(mmu, walker->level, pte));
@@ -248,13 +353,15 @@ retry_walk:
walker->gfn = real_gpa >> PAGE_SHIFT;
if (!write_fault)
- protect_clean_gpte(&pte_access, pte);
+ FNAME(protect_clean_gpte)(&pte_access, pte);
else
/*
- * On a write fault, fold the dirty bit into accessed_dirty by
- * shifting it one place right.
+ * On a write fault, fold the dirty bit into accessed_dirty.
+ * For modes without A/D bits support accessed_dirty will be
+ * always clear.
*/
- accessed_dirty &= pte >> (PT_DIRTY_SHIFT - PT_ACCESSED_SHIFT);
+ accessed_dirty &= pte >>
+ (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
if (unlikely(!accessed_dirty)) {
ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
@@ -279,6 +386,25 @@ error:
walker->fault.vector = PF_VECTOR;
walker->fault.error_code_valid = true;
walker->fault.error_code = errcode;
+
+#if PTTYPE == PTTYPE_EPT
+ /*
+ * Use PFERR_RSVD_MASK in error_code to to tell if EPT
+ * misconfiguration requires to be injected. The detection is
+ * done by is_rsvd_bits_set() above.
+ *
+ * We set up the value of exit_qualification to inject:
+ * [2:0] - Derive from [2:0] of real exit_qualification at EPT violation
+ * [5:3] - Calculated by the page walk of the guest EPT page tables
+ * [7:8] - Derived from [7:8] of real exit_qualification
+ *
+ * The other bits are set to 0.
+ */
+ if (!(errcode & PFERR_RSVD_MASK)) {
+ vcpu->arch.exit_qualification &= 0x187;
+ vcpu->arch.exit_qualification |= ((pt_access & pte) & 0x7) << 3;
+ }
+#endif
walker->fault.address = addr;
walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
@@ -293,6 +419,7 @@ static int FNAME(walk_addr)(struct guest_walker *walker,
access);
}
+#if PTTYPE != PTTYPE_EPT
static int FNAME(walk_addr_nested)(struct guest_walker *walker,
struct kvm_vcpu *vcpu, gva_t addr,
u32 access)
@@ -300,6 +427,7 @@ static int FNAME(walk_addr_nested)(struct guest_walker *walker,
return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
addr, access);
}
+#endif
static bool
FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
@@ -309,14 +437,14 @@ FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
gfn_t gfn;
pfn_t pfn;
- if (prefetch_invalid_gpte(vcpu, sp, spte, gpte))
+ if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
return false;
pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
gfn = gpte_to_gfn(gpte);
- pte_access = sp->role.access & gpte_access(vcpu, gpte);
- protect_clean_gpte(&pte_access, gpte);
+ pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
+ FNAME(protect_clean_gpte)(&pte_access, gpte);
pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
no_dirty_log && (pte_access & ACC_WRITE_MASK));
if (is_error_pfn(pfn))
@@ -446,7 +574,7 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
goto out_gpte_changed;
if (sp)
- link_shadow_page(it.sptep, sp);
+ link_shadow_page(it.sptep, sp, PT_GUEST_ACCESSED_MASK);
}
for (;
@@ -466,7 +594,7 @@ static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
true, direct_access, it.sptep);
- link_shadow_page(it.sptep, sp);
+ link_shadow_page(it.sptep, sp, PT_GUEST_ACCESSED_MASK);
}
clear_sp_write_flooding_count(it.sptep);
@@ -727,6 +855,7 @@ static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
return gpa;
}
+#if PTTYPE != PTTYPE_EPT
static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
u32 access,
struct x86_exception *exception)
@@ -745,6 +874,7 @@ static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
return gpa;
}
+#endif
/*
* Using the cached information from sp->gfns is safe because:
@@ -785,15 +915,15 @@ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
sizeof(pt_element_t)))
return -EINVAL;
- if (prefetch_invalid_gpte(vcpu, sp, &sp->spt[i], gpte)) {
+ if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
vcpu->kvm->tlbs_dirty++;
continue;
}
gfn = gpte_to_gfn(gpte);
pte_access = sp->role.access;
- pte_access &= gpte_access(vcpu, gpte);
- protect_clean_gpte(&pte_access, gpte);
+ pte_access &= FNAME(gpte_access)(vcpu, gpte);
+ FNAME(protect_clean_gpte)(&pte_access, gpte);
if (sync_mmio_spte(vcpu->kvm, &sp->spt[i], gfn, pte_access,
&nr_present))
@@ -830,3 +960,7 @@ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
#undef gpte_to_gfn
#undef gpte_to_gfn_lvl
#undef CMPXCHG
+#undef PT_GUEST_ACCESSED_MASK
+#undef PT_GUEST_DIRTY_MASK
+#undef PT_GUEST_DIRTY_SHIFT
+#undef PT_GUEST_ACCESSED_SHIFT
diff --git a/arch/x86/kvm/pmu.c b/arch/x86/kvm/pmu.c
index c53e797e7369..5c4f63151b4d 100644
--- a/arch/x86/kvm/pmu.c
+++ b/arch/x86/kvm/pmu.c
@@ -160,7 +160,7 @@ static void stop_counter(struct kvm_pmc *pmc)
static void reprogram_counter(struct kvm_pmc *pmc, u32 type,
unsigned config, bool exclude_user, bool exclude_kernel,
- bool intr)
+ bool intr, bool in_tx, bool in_tx_cp)
{
struct perf_event *event;
struct perf_event_attr attr = {
@@ -173,6 +173,10 @@ static void reprogram_counter(struct kvm_pmc *pmc, u32 type,
.exclude_kernel = exclude_kernel,
.config = config,
};
+ if (in_tx)
+ attr.config |= HSW_IN_TX;
+ if (in_tx_cp)
+ attr.config |= HSW_IN_TX_CHECKPOINTED;
attr.sample_period = (-pmc->counter) & pmc_bitmask(pmc);
@@ -226,7 +230,9 @@ static void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE |
ARCH_PERFMON_EVENTSEL_INV |
- ARCH_PERFMON_EVENTSEL_CMASK))) {
+ ARCH_PERFMON_EVENTSEL_CMASK |
+ HSW_IN_TX |
+ HSW_IN_TX_CHECKPOINTED))) {
config = find_arch_event(&pmc->vcpu->arch.pmu, event_select,
unit_mask);
if (config != PERF_COUNT_HW_MAX)
@@ -239,7 +245,9 @@ static void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
reprogram_counter(pmc, type, config,
!(eventsel & ARCH_PERFMON_EVENTSEL_USR),
!(eventsel & ARCH_PERFMON_EVENTSEL_OS),
- eventsel & ARCH_PERFMON_EVENTSEL_INT);
+ eventsel & ARCH_PERFMON_EVENTSEL_INT,
+ (eventsel & HSW_IN_TX),
+ (eventsel & HSW_IN_TX_CHECKPOINTED));
}
static void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 en_pmi, int idx)
@@ -256,7 +264,7 @@ static void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 en_pmi, int idx)
arch_events[fixed_pmc_events[idx]].event_type,
!(en & 0x2), /* exclude user */
!(en & 0x1), /* exclude kernel */
- pmi);
+ pmi, false, false);
}
static inline u8 fixed_en_pmi(u64 ctrl, int idx)
@@ -408,7 +416,7 @@ int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
} else if ((pmc = get_gp_pmc(pmu, index, MSR_P6_EVNTSEL0))) {
if (data == pmc->eventsel)
return 0;
- if (!(data & 0xffffffff00200000ull)) {
+ if (!(data & pmu->reserved_bits)) {
reprogram_gp_counter(pmc, data);
return 0;
}
@@ -450,6 +458,7 @@ void kvm_pmu_cpuid_update(struct kvm_vcpu *vcpu)
pmu->counter_bitmask[KVM_PMC_GP] = 0;
pmu->counter_bitmask[KVM_PMC_FIXED] = 0;
pmu->version = 0;
+ pmu->reserved_bits = 0xffffffff00200000ull;
entry = kvm_find_cpuid_entry(vcpu, 0xa, 0);
if (!entry)
@@ -478,6 +487,12 @@ void kvm_pmu_cpuid_update(struct kvm_vcpu *vcpu)
pmu->global_ctrl = ((1 << pmu->nr_arch_gp_counters) - 1) |
(((1ull << pmu->nr_arch_fixed_counters) - 1) << INTEL_PMC_IDX_FIXED);
pmu->global_ctrl_mask = ~pmu->global_ctrl;
+
+ entry = kvm_find_cpuid_entry(vcpu, 7, 0);
+ if (entry &&
+ (boot_cpu_has(X86_FEATURE_HLE) || boot_cpu_has(X86_FEATURE_RTM)) &&
+ (entry->ebx & (X86_FEATURE_HLE|X86_FEATURE_RTM)))
+ pmu->reserved_bits ^= HSW_IN_TX|HSW_IN_TX_CHECKPOINTED;
}
void kvm_pmu_init(struct kvm_vcpu *vcpu)
diff --git a/arch/x86/kvm/vmx.c b/arch/x86/kvm/vmx.c
index 064d0be67ecc..1f1da43ff2a2 100644
--- a/arch/x86/kvm/vmx.c
+++ b/arch/x86/kvm/vmx.c
@@ -373,6 +373,7 @@ struct nested_vmx {
* we must keep them pinned while L2 runs.
*/
struct page *apic_access_page;
+ u64 msr_ia32_feature_control;
};
#define POSTED_INTR_ON 0
@@ -711,10 +712,10 @@ static void nested_release_page_clean(struct page *page)
kvm_release_page_clean(page);
}
+static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
static u64 construct_eptp(unsigned long root_hpa);
static void kvm_cpu_vmxon(u64 addr);
static void kvm_cpu_vmxoff(void);
-static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
static void vmx_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg);
@@ -1039,12 +1040,16 @@ static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
(vmcs12->secondary_vm_exec_control & bit);
}
-static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
- struct kvm_vcpu *vcpu)
+static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
{
return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
}
+static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
+}
+
static inline bool is_exception(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
@@ -2155,6 +2160,7 @@ static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
static u32 nested_vmx_misc_low, nested_vmx_misc_high;
+static u32 nested_vmx_ept_caps;
static __init void nested_vmx_setup_ctls_msrs(void)
{
/*
@@ -2190,14 +2196,17 @@ static __init void nested_vmx_setup_ctls_msrs(void)
* If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
* 17 must be 1.
*/
+ rdmsr(MSR_IA32_VMX_EXIT_CTLS,
+ nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
/* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
+ nested_vmx_exit_ctls_high &=
#ifdef CONFIG_X86_64
- nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
-#else
- nested_vmx_exit_ctls_high = 0;
+ VM_EXIT_HOST_ADDR_SPACE_SIZE |
#endif
- nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
+ VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
+ nested_vmx_exit_ctls_high |= (VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
+ VM_EXIT_LOAD_IA32_EFER);
/* entry controls */
rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
@@ -2205,8 +2214,12 @@ static __init void nested_vmx_setup_ctls_msrs(void)
/* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
nested_vmx_entry_ctls_high &=
- VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
- nested_vmx_entry_ctls_high |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
+#ifdef CONFIG_X86_64
+ VM_ENTRY_IA32E_MODE |
+#endif
+ VM_ENTRY_LOAD_IA32_PAT;
+ nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
+ VM_ENTRY_LOAD_IA32_EFER);
/* cpu-based controls */
rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
@@ -2241,6 +2254,22 @@ static __init void nested_vmx_setup_ctls_msrs(void)
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
SECONDARY_EXEC_WBINVD_EXITING;
+ if (enable_ept) {
+ /* nested EPT: emulate EPT also to L1 */
+ nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
+ nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
+ VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
+ nested_vmx_ept_caps &= vmx_capability.ept;
+ /*
+ * Since invept is completely emulated we support both global
+ * and context invalidation independent of what host cpu
+ * supports
+ */
+ nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
+ VMX_EPT_EXTENT_CONTEXT_BIT;
+ } else
+ nested_vmx_ept_caps = 0;
+
/* miscellaneous data */
rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
@@ -2282,8 +2311,11 @@ static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
switch (msr_index) {
case MSR_IA32_FEATURE_CONTROL:
- *pdata = 0;
- break;
+ if (nested_vmx_allowed(vcpu)) {
+ *pdata = to_vmx(vcpu)->nested.msr_ia32_feature_control;
+ break;
+ }
+ return 0;
case MSR_IA32_VMX_BASIC:
/*
* This MSR reports some information about VMX support. We
@@ -2346,8 +2378,8 @@ static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
nested_vmx_secondary_ctls_high);
break;
case MSR_IA32_VMX_EPT_VPID_CAP:
- /* Currently, no nested ept or nested vpid */
- *pdata = 0;
+ /* Currently, no nested vpid support */
+ *pdata = nested_vmx_ept_caps;
break;
default:
return 0;
@@ -2356,14 +2388,24 @@ static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
return 1;
}
-static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
+static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
+ u32 msr_index = msr_info->index;
+ u64 data = msr_info->data;
+ bool host_initialized = msr_info->host_initiated;
+
if (!nested_vmx_allowed(vcpu))
return 0;
- if (msr_index == MSR_IA32_FEATURE_CONTROL)
- /* TODO: the right thing. */
+ if (msr_index == MSR_IA32_FEATURE_CONTROL) {
+ if (!host_initialized &&
+ to_vmx(vcpu)->nested.msr_ia32_feature_control
+ & FEATURE_CONTROL_LOCKED)
+ return 0;
+ to_vmx(vcpu)->nested.msr_ia32_feature_control = data;
return 1;
+ }
+
/*
* No need to treat VMX capability MSRs specially: If we don't handle
* them, handle_wrmsr will #GP(0), which is correct (they are readonly)
@@ -2494,7 +2536,7 @@ static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
return 1;
/* Otherwise falls through */
default:
- if (vmx_set_vmx_msr(vcpu, msr_index, data))
+ if (vmx_set_vmx_msr(vcpu, msr_info))
break;
msr = find_msr_entry(vmx, msr_index);
if (msr) {
@@ -5302,9 +5344,13 @@ static int handle_ept_violation(struct kvm_vcpu *vcpu)
/* It is a write fault? */
error_code = exit_qualification & (1U << 1);
+ /* It is a fetch fault? */
+ error_code |= (exit_qualification & (1U << 2)) << 2;
/* ept page table is present? */
error_code |= (exit_qualification >> 3) & 0x1;
+ vcpu->arch.exit_qualification = exit_qualification;
+
return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
}
@@ -5438,7 +5484,8 @@ static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
- if (err == EMULATE_DO_MMIO) {
+ if (err == EMULATE_USER_EXIT) {
+ ++vcpu->stat.mmio_exits;
ret = 0;
goto out;
}
@@ -5567,8 +5614,47 @@ static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
free_loaded_vmcs(&vmx->vmcs01);
}
+/*
+ * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
+ * set the success or error code of an emulated VMX instruction, as specified
+ * by Vol 2B, VMX Instruction Reference, "Conventions".
+ */
+static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
+{
+ vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
+ & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
+ X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
+}
+
+static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
+{
+ vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
+ & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
+ X86_EFLAGS_SF | X86_EFLAGS_OF))
+ | X86_EFLAGS_CF);
+}
+
static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
- u32 vm_instruction_error);
+ u32 vm_instruction_error)
+{
+ if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
+ /*
+ * failValid writes the error number to the current VMCS, which
+ * can't be done there isn't a current VMCS.
+ */
+ nested_vmx_failInvalid(vcpu);
+ return;
+ }
+ vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
+ & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
+ X86_EFLAGS_SF | X86_EFLAGS_OF))
+ | X86_EFLAGS_ZF);
+ get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
+ /*
+ * We don't need to force a shadow sync because
+ * VM_INSTRUCTION_ERROR is not shadowed
+ */
+}
/*
* Emulate the VMXON instruction.
@@ -5583,6 +5669,8 @@ static int handle_vmon(struct kvm_vcpu *vcpu)
struct kvm_segment cs;
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs *shadow_vmcs;
+ const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
+ | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
/* The Intel VMX Instruction Reference lists a bunch of bits that
* are prerequisite to running VMXON, most notably cr4.VMXE must be
@@ -5611,6 +5699,13 @@ static int handle_vmon(struct kvm_vcpu *vcpu)
skip_emulated_instruction(vcpu);
return 1;
}
+
+ if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
+ != VMXON_NEEDED_FEATURES) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
if (enable_shadow_vmcs) {
shadow_vmcs = alloc_vmcs();
if (!shadow_vmcs)
@@ -5628,6 +5723,7 @@ static int handle_vmon(struct kvm_vcpu *vcpu)
vmx->nested.vmxon = true;
skip_emulated_instruction(vcpu);
+ nested_vmx_succeed(vcpu);
return 1;
}
@@ -5712,6 +5808,7 @@ static int handle_vmoff(struct kvm_vcpu *vcpu)
return 1;
free_nested(to_vmx(vcpu));
skip_emulated_instruction(vcpu);
+ nested_vmx_succeed(vcpu);
return 1;
}
@@ -5768,48 +5865,6 @@ static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
return 0;
}
-/*
- * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
- * set the success or error code of an emulated VMX instruction, as specified
- * by Vol 2B, VMX Instruction Reference, "Conventions".
- */
-static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
-{
- vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
- & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
- X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
-}
-
-static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
-{
- vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
- & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
- X86_EFLAGS_SF | X86_EFLAGS_OF))
- | X86_EFLAGS_CF);
-}
-
-static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
- u32 vm_instruction_error)
-{
- if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
- /*
- * failValid writes the error number to the current VMCS, which
- * can't be done there isn't a current VMCS.
- */
- nested_vmx_failInvalid(vcpu);
- return;
- }
- vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
- & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
- X86_EFLAGS_SF | X86_EFLAGS_OF))
- | X86_EFLAGS_ZF);
- get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
- /*
- * We don't need to force a shadow sync because
- * VM_INSTRUCTION_ERROR is not shadowed
- */
-}
-
/* Emulate the VMCLEAR instruction */
static int handle_vmclear(struct kvm_vcpu *vcpu)
{
@@ -5972,8 +6027,8 @@ static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
unsigned long field;
u64 field_value;
struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
- unsigned long *fields = (unsigned long *)shadow_read_write_fields;
- int num_fields = max_shadow_read_write_fields;
+ const unsigned long *fields = shadow_read_write_fields;
+ const int num_fields = max_shadow_read_write_fields;
vmcs_load(shadow_vmcs);
@@ -6002,12 +6057,11 @@ static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
{
- unsigned long *fields[] = {
- (unsigned long *)shadow_read_write_fields,
- (unsigned long *)shadow_read_only_fields
+ const unsigned long *fields[] = {
+ shadow_read_write_fields,
+ shadow_read_only_fields
};
- int num_lists = ARRAY_SIZE(fields);
- int max_fields[] = {
+ const int max_fields[] = {
max_shadow_read_write_fields,
max_shadow_read_only_fields
};
@@ -6018,7 +6072,7 @@ static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
vmcs_load(shadow_vmcs);
- for (q = 0; q < num_lists; q++) {
+ for (q = 0; q < ARRAY_SIZE(fields); q++) {
for (i = 0; i < max_fields[q]; i++) {
field = fields[q][i];
vmcs12_read_any(&vmx->vcpu, field, &field_value);
@@ -6248,6 +6302,74 @@ static int handle_vmptrst(struct kvm_vcpu *vcpu)
return 1;
}
+/* Emulate the INVEPT instruction */
+static int handle_invept(struct kvm_vcpu *vcpu)
+{
+ u32 vmx_instruction_info, types;
+ unsigned long type;
+ gva_t gva;
+ struct x86_exception e;
+ struct {
+ u64 eptp, gpa;
+ } operand;
+ u64 eptp_mask = ((1ull << 51) - 1) & PAGE_MASK;
+
+ if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
+ !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
+
+ types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
+
+ if (!(types & (1UL << type))) {
+ nested_vmx_failValid(vcpu,
+ VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+ return 1;
+ }
+
+ /* According to the Intel VMX instruction reference, the memory
+ * operand is read even if it isn't needed (e.g., for type==global)
+ */
+ if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+ vmx_instruction_info, &gva))
+ return 1;
+ if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
+ sizeof(operand), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+
+ switch (type) {
+ case VMX_EPT_EXTENT_CONTEXT:
+ if ((operand.eptp & eptp_mask) !=
+ (nested_ept_get_cr3(vcpu) & eptp_mask))
+ break;
+ case VMX_EPT_EXTENT_GLOBAL:
+ kvm_mmu_sync_roots(vcpu);
+ kvm_mmu_flush_tlb(vcpu);
+ nested_vmx_succeed(vcpu);
+ break;
+ default:
+ BUG_ON(1);
+ break;
+ }
+
+ skip_emulated_instruction(vcpu);
+ return 1;
+}
+
/*
* The exit handlers return 1 if the exit was handled fully and guest execution
* may resume. Otherwise they set the kvm_run parameter to indicate what needs
@@ -6292,6 +6414,7 @@ static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
[EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
[EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
[EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
+ [EXIT_REASON_INVEPT] = handle_invept,
};
static const int kvm_vmx_max_exit_handlers =
@@ -6518,6 +6641,7 @@ static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
+ case EXIT_REASON_INVEPT:
/*
* VMX instructions trap unconditionally. This allows L1 to
* emulate them for its L2 guest, i.e., allows 3-level nesting!
@@ -6550,7 +6674,20 @@ static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
return nested_cpu_has2(vmcs12,
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
case EXIT_REASON_EPT_VIOLATION:
+ /*
+ * L0 always deals with the EPT violation. If nested EPT is
+ * used, and the nested mmu code discovers that the address is
+ * missing in the guest EPT table (EPT12), the EPT violation
+ * will be injected with nested_ept_inject_page_fault()
+ */
+ return 0;
case EXIT_REASON_EPT_MISCONFIG:
+ /*
+ * L2 never uses directly L1's EPT, but rather L0's own EPT
+ * table (shadow on EPT) or a merged EPT table that L0 built
+ * (EPT on EPT). So any problems with the structure of the
+ * table is L0's fault.
+ */
return 0;
case EXIT_REASON_PREEMPTION_TIMER:
return vmcs12->pin_based_vm_exec_control &
@@ -6638,7 +6775,7 @@ static int vmx_handle_exit(struct kvm_vcpu *vcpu)
if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
!(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
- get_vmcs12(vcpu), vcpu)))) {
+ get_vmcs12(vcpu))))) {
if (vmx_interrupt_allowed(vcpu)) {
vmx->soft_vnmi_blocked = 0;
} else if (vmx->vnmi_blocked_time > 1000000000LL &&
@@ -7326,6 +7463,48 @@ static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
entry->ecx |= bit(X86_FEATURE_VMX);
}
+static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
+ struct x86_exception *fault)
+{
+ struct vmcs12 *vmcs12;
+ nested_vmx_vmexit(vcpu);
+ vmcs12 = get_vmcs12(vcpu);
+
+ if (fault->error_code & PFERR_RSVD_MASK)
+ vmcs12->vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
+ else
+ vmcs12->vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
+ vmcs12->exit_qualification = vcpu->arch.exit_qualification;
+ vmcs12->guest_physical_address = fault->address;
+}
+
+/* Callbacks for nested_ept_init_mmu_context: */
+
+static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
+{
+ /* return the page table to be shadowed - in our case, EPT12 */
+ return get_vmcs12(vcpu)->ept_pointer;
+}
+
+static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
+{
+ int r = kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
+ nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
+
+ vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
+ vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
+ vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
+
+ vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
+
+ return r;
+}
+
+static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.walk_mmu = &vcpu->arch.mmu;
+}
+
/*
* prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
* L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
@@ -7388,7 +7567,7 @@ static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
vmcs12->guest_interruptibility_info);
vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
- vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
+ vmx_set_rflags(vcpu, vmcs12->guest_rflags);
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
vmcs12->guest_pending_dbg_exceptions);
vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
@@ -7508,15 +7687,24 @@ static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
- /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
- vmcs_write32(VM_EXIT_CONTROLS,
- vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
- vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
+ /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
+ * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
+ * bits are further modified by vmx_set_efer() below.
+ */
+ vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
+
+ /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
+ * emulated by vmx_set_efer(), below.
+ */
+ vmcs_write32(VM_ENTRY_CONTROLS,
+ (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
+ ~VM_ENTRY_IA32E_MODE) |
(vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
- if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
+ if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
- else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
+ vcpu->arch.pat = vmcs12->guest_ia32_pat;
+ } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
@@ -7538,6 +7726,11 @@ static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
vmx_flush_tlb(vcpu);
}
+ if (nested_cpu_has_ept(vmcs12)) {
+ kvm_mmu_unload(vcpu);
+ nested_ept_init_mmu_context(vcpu);
+ }
+
if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
vcpu->arch.efer = vmcs12->guest_ia32_efer;
else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
@@ -7565,6 +7758,16 @@ static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
kvm_set_cr3(vcpu, vmcs12->guest_cr3);
kvm_mmu_reset_context(vcpu);
+ /*
+ * L1 may access the L2's PDPTR, so save them to construct vmcs12
+ */
+ if (enable_ept) {
+ vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
+ vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
+ vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
+ vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
+ }
+
kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
}
@@ -7887,6 +8090,22 @@ static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
vmcs12->guest_pending_dbg_exceptions =
vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
+ /*
+ * In some cases (usually, nested EPT), L2 is allowed to change its
+ * own CR3 without exiting. If it has changed it, we must keep it.
+ * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
+ * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
+ *
+ * Additionally, restore L2's PDPTR to vmcs12.
+ */
+ if (enable_ept) {
+ vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
+ vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
+ vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
+ vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
+ vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
+ }
+
vmcs12->vm_entry_controls =
(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
(vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_IA32E_MODE);
@@ -7948,6 +8167,8 @@ static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
+ struct kvm_segment seg;
+
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
vcpu->arch.efer = vmcs12->host_ia32_efer;
else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
@@ -7982,7 +8203,9 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
kvm_set_cr4(vcpu, vmcs12->host_cr4);
- /* shadow page tables on either EPT or shadow page tables */
+ if (nested_cpu_has_ept(vmcs12))
+ nested_ept_uninit_mmu_context(vcpu);
+
kvm_set_cr3(vcpu, vmcs12->host_cr3);
kvm_mmu_reset_context(vcpu);
@@ -8001,23 +8224,61 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
- vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
- vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
- vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
- vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
- vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
- vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
- vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
- vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
- vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
- vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
-
- if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
+
+ if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
+ vcpu->arch.pat = vmcs12->host_ia32_pat;
+ }
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
vmcs12->host_ia32_perf_global_ctrl);
+ /* Set L1 segment info according to Intel SDM
+ 27.5.2 Loading Host Segment and Descriptor-Table Registers */
+ seg = (struct kvm_segment) {
+ .base = 0,
+ .limit = 0xFFFFFFFF,
+ .selector = vmcs12->host_cs_selector,
+ .type = 11,
+ .present = 1,
+ .s = 1,
+ .g = 1
+ };
+ if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
+ seg.l = 1;
+ else
+ seg.db = 1;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
+ seg = (struct kvm_segment) {
+ .base = 0,
+ .limit = 0xFFFFFFFF,
+ .type = 3,
+ .present = 1,
+ .s = 1,
+ .db = 1,
+ .g = 1
+ };
+ seg.selector = vmcs12->host_ds_selector;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
+ seg.selector = vmcs12->host_es_selector;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
+ seg.selector = vmcs12->host_ss_selector;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
+ seg.selector = vmcs12->host_fs_selector;
+ seg.base = vmcs12->host_fs_base;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
+ seg.selector = vmcs12->host_gs_selector;
+ seg.base = vmcs12->host_gs_base;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
+ seg = (struct kvm_segment) {
+ .base = vmcs12->host_tr_base,
+ .limit = 0x67,
+ .selector = vmcs12->host_tr_selector,
+ .type = 11,
+ .present = 1
+ };
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
+
kvm_set_dr(vcpu, 7, 0x400);
vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
}
diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c
index d21bce505315..e5ca72a5cdb6 100644
--- a/arch/x86/kvm/x86.c
+++ b/arch/x86/kvm/x86.c
@@ -682,17 +682,6 @@ int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
*/
}
- /*
- * Does the new cr3 value map to physical memory? (Note, we
- * catch an invalid cr3 even in real-mode, because it would
- * cause trouble later on when we turn on paging anyway.)
- *
- * A real CPU would silently accept an invalid cr3 and would
- * attempt to use it - with largely undefined (and often hard
- * to debug) behavior on the guest side.
- */
- if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
- return 1;
vcpu->arch.cr3 = cr3;
__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
vcpu->arch.mmu.new_cr3(vcpu);
@@ -850,7 +839,8 @@ static u32 msrs_to_save[] = {
#ifdef CONFIG_X86_64
MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
#endif
- MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
+ MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
+ MSR_IA32_FEATURE_CONTROL
};
static unsigned num_msrs_to_save;
@@ -1457,6 +1447,29 @@ static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
#endif
}
+static void kvm_gen_update_masterclock(struct kvm *kvm)
+{
+#ifdef CONFIG_X86_64
+ int i;
+ struct kvm_vcpu *vcpu;
+ struct kvm_arch *ka = &kvm->arch;
+
+ spin_lock(&ka->pvclock_gtod_sync_lock);
+ kvm_make_mclock_inprogress_request(kvm);
+ /* no guest entries from this point */
+ pvclock_update_vm_gtod_copy(kvm);
+
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
+
+ /* guest entries allowed */
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
+
+ spin_unlock(&ka->pvclock_gtod_sync_lock);
+#endif
+}
+
static int kvm_guest_time_update(struct kvm_vcpu *v)
{
unsigned long flags, this_tsc_khz;
@@ -3806,6 +3819,7 @@ long kvm_arch_vm_ioctl(struct file *filp,
delta = user_ns.clock - now_ns;
local_irq_enable();
kvm->arch.kvmclock_offset = delta;
+ kvm_gen_update_masterclock(kvm);
break;
}
case KVM_GET_CLOCK: {
@@ -4955,6 +4969,97 @@ static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
static int complete_emulated_pio(struct kvm_vcpu *vcpu);
+static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
+ unsigned long *db)
+{
+ u32 dr6 = 0;
+ int i;
+ u32 enable, rwlen;
+
+ enable = dr7;
+ rwlen = dr7 >> 16;
+ for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
+ if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
+ dr6 |= (1 << i);
+ return dr6;
+}
+
+static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
+{
+ struct kvm_run *kvm_run = vcpu->run;
+
+ /*
+ * Use the "raw" value to see if TF was passed to the processor.
+ * Note that the new value of the flags has not been saved yet.
+ *
+ * This is correct even for TF set by the guest, because "the
+ * processor will not generate this exception after the instruction
+ * that sets the TF flag".
+ */
+ unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
+
+ if (unlikely(rflags & X86_EFLAGS_TF)) {
+ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
+ kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
+ kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
+ kvm_run->debug.arch.exception = DB_VECTOR;
+ kvm_run->exit_reason = KVM_EXIT_DEBUG;
+ *r = EMULATE_USER_EXIT;
+ } else {
+ vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
+ /*
+ * "Certain debug exceptions may clear bit 0-3. The
+ * remaining contents of the DR6 register are never
+ * cleared by the processor".
+ */
+ vcpu->arch.dr6 &= ~15;
+ vcpu->arch.dr6 |= DR6_BS;
+ kvm_queue_exception(vcpu, DB_VECTOR);
+ }
+ }
+}
+
+static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
+{
+ struct kvm_run *kvm_run = vcpu->run;
+ unsigned long eip = vcpu->arch.emulate_ctxt.eip;
+ u32 dr6 = 0;
+
+ if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
+ (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
+ dr6 = kvm_vcpu_check_hw_bp(eip, 0,
+ vcpu->arch.guest_debug_dr7,
+ vcpu->arch.eff_db);
+
+ if (dr6 != 0) {
+ kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
+ kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
+ get_segment_base(vcpu, VCPU_SREG_CS);
+
+ kvm_run->debug.arch.exception = DB_VECTOR;
+ kvm_run->exit_reason = KVM_EXIT_DEBUG;
+ *r = EMULATE_USER_EXIT;
+ return true;
+ }
+ }
+
+ if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
+ dr6 = kvm_vcpu_check_hw_bp(eip, 0,
+ vcpu->arch.dr7,
+ vcpu->arch.db);
+
+ if (dr6 != 0) {
+ vcpu->arch.dr6 &= ~15;
+ vcpu->arch.dr6 |= dr6;
+ kvm_queue_exception(vcpu, DB_VECTOR);
+ *r = EMULATE_DONE;
+ return true;
+ }
+ }
+
+ return false;
+}
+
int x86_emulate_instruction(struct kvm_vcpu *vcpu,
unsigned long cr2,
int emulation_type,
@@ -4975,6 +5080,16 @@ int x86_emulate_instruction(struct kvm_vcpu *vcpu,
if (!(emulation_type & EMULTYPE_NO_DECODE)) {
init_emulate_ctxt(vcpu);
+
+ /*
+ * We will reenter on the same instruction since
+ * we do not set complete_userspace_io. This does not
+ * handle watchpoints yet, those would be handled in
+ * the emulate_ops.
+ */
+ if (kvm_vcpu_check_breakpoint(vcpu, &r))
+ return r;
+
ctxt->interruptibility = 0;
ctxt->have_exception = false;
ctxt->perm_ok = false;
@@ -5031,17 +5146,18 @@ restart:
inject_emulated_exception(vcpu);
r = EMULATE_DONE;
} else if (vcpu->arch.pio.count) {
- if (!vcpu->arch.pio.in)
+ if (!vcpu->arch.pio.in) {
+ /* FIXME: return into emulator if single-stepping. */
vcpu->arch.pio.count = 0;
- else {
+ } else {
writeback = false;
vcpu->arch.complete_userspace_io = complete_emulated_pio;
}
- r = EMULATE_DO_MMIO;
+ r = EMULATE_USER_EXIT;
} else if (vcpu->mmio_needed) {
if (!vcpu->mmio_is_write)
writeback = false;
- r = EMULATE_DO_MMIO;
+ r = EMULATE_USER_EXIT;
vcpu->arch.complete_userspace_io = complete_emulated_mmio;
} else if (r == EMULATION_RESTART)
goto restart;
@@ -5050,10 +5166,12 @@ restart:
if (writeback) {
toggle_interruptibility(vcpu, ctxt->interruptibility);
- kvm_set_rflags(vcpu, ctxt->eflags);
kvm_make_request(KVM_REQ_EVENT, vcpu);
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
kvm_rip_write(vcpu, ctxt->eip);
+ if (r == EMULATE_DONE)
+ kvm_vcpu_check_singlestep(vcpu, &r);
+ kvm_set_rflags(vcpu, ctxt->eflags);
} else
vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
@@ -5347,7 +5465,7 @@ static struct notifier_block pvclock_gtod_notifier = {
int kvm_arch_init(void *opaque)
{
int r;
- struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
+ struct kvm_x86_ops *ops = opaque;
if (kvm_x86_ops) {
printk(KERN_ERR "kvm: already loaded the other module\n");
@@ -5495,6 +5613,23 @@ int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
return 1;
}
+/*
+ * kvm_pv_kick_cpu_op: Kick a vcpu.
+ *
+ * @apicid - apicid of vcpu to be kicked.
+ */
+static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
+{
+ struct kvm_lapic_irq lapic_irq;
+
+ lapic_irq.shorthand = 0;
+ lapic_irq.dest_mode = 0;
+ lapic_irq.dest_id = apicid;
+
+ lapic_irq.delivery_mode = APIC_DM_REMRD;
+ kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
+}
+
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
{
unsigned long nr, a0, a1, a2, a3, ret;
@@ -5528,6 +5663,10 @@ int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
case KVM_HC_VAPIC_POLL_IRQ:
ret = 0;
break;
+ case KVM_HC_KICK_CPU:
+ kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
+ ret = 0;
+ break;
default:
ret = -KVM_ENOSYS;
break;
@@ -5689,29 +5828,6 @@ static void process_nmi(struct kvm_vcpu *vcpu)
kvm_make_request(KVM_REQ_EVENT, vcpu);
}
-static void kvm_gen_update_masterclock(struct kvm *kvm)
-{
-#ifdef CONFIG_X86_64
- int i;
- struct kvm_vcpu *vcpu;
- struct kvm_arch *ka = &kvm->arch;
-
- spin_lock(&ka->pvclock_gtod_sync_lock);
- kvm_make_mclock_inprogress_request(kvm);
- /* no guest entries from this point */
- pvclock_update_vm_gtod_copy(kvm);
-
- kvm_for_each_vcpu(i, vcpu, kvm)
- set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
-
- /* guest entries allowed */
- kvm_for_each_vcpu(i, vcpu, kvm)
- clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
-
- spin_unlock(&ka->pvclock_gtod_sync_lock);
-#endif
-}
-
static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
{
u64 eoi_exit_bitmap[4];
@@ -5950,6 +6066,7 @@ static int __vcpu_run(struct kvm_vcpu *vcpu)
kvm_apic_accept_events(vcpu);
switch(vcpu->arch.mp_state) {
case KVM_MP_STATE_HALTED:
+ vcpu->arch.pv.pv_unhalted = false;
vcpu->arch.mp_state =
KVM_MP_STATE_RUNNABLE;
case KVM_MP_STATE_RUNNABLE:
@@ -6061,6 +6178,8 @@ static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
vcpu->mmio_needed = 0;
+
+ /* FIXME: return into emulator if single-stepping. */
if (vcpu->mmio_is_write)
return 1;
vcpu->mmio_read_completed = 1;
@@ -6249,7 +6368,12 @@ int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
kvm_apic_accept_events(vcpu);
- mp_state->mp_state = vcpu->arch.mp_state;
+ if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
+ vcpu->arch.pv.pv_unhalted)
+ mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
+ else
+ mp_state->mp_state = vcpu->arch.mp_state;
+
return 0;
}
@@ -6770,6 +6894,7 @@ int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
BUG_ON(vcpu->kvm == NULL);
kvm = vcpu->kvm;
+ vcpu->arch.pv.pv_unhalted = false;
vcpu->arch.emulate_ctxt.ops = &emulate_ops;
if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
@@ -7019,6 +7144,15 @@ out_free:
return -ENOMEM;
}
+void kvm_arch_memslots_updated(struct kvm *kvm)
+{
+ /*
+ * memslots->generation has been incremented.
+ * mmio generation may have reached its maximum value.
+ */
+ kvm_mmu_invalidate_mmio_sptes(kvm);
+}
+
int kvm_arch_prepare_memory_region(struct kvm *kvm,
struct kvm_memory_slot *memslot,
struct kvm_userspace_memory_region *mem,
@@ -7079,11 +7213,6 @@ void kvm_arch_commit_memory_region(struct kvm *kvm,
*/
if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
kvm_mmu_slot_remove_write_access(kvm, mem->slot);
- /*
- * If memory slot is created, or moved, we need to clear all
- * mmio sptes.
- */
- kvm_mmu_invalidate_mmio_sptes(kvm);
}
void kvm_arch_flush_shadow_all(struct kvm *kvm)
@@ -7103,6 +7232,7 @@ int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
!vcpu->arch.apf.halted)
|| !list_empty_careful(&vcpu->async_pf.done)
|| kvm_apic_has_events(vcpu)
+ || vcpu->arch.pv.pv_unhalted
|| atomic_read(&vcpu->arch.nmi_queued) ||
(kvm_arch_interrupt_allowed(vcpu) &&
kvm_cpu_has_interrupt(vcpu));