diff options
Diffstat (limited to 'arch/tile/mm/pgtable.c')
-rw-r--r-- | arch/tile/mm/pgtable.c | 550 |
1 files changed, 0 insertions, 550 deletions
diff --git a/arch/tile/mm/pgtable.c b/arch/tile/mm/pgtable.c deleted file mode 100644 index ec5576fd3a86..000000000000 --- a/arch/tile/mm/pgtable.c +++ /dev/null @@ -1,550 +0,0 @@ -/* - * Copyright 2010 Tilera Corporation. All Rights Reserved. - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License - * as published by the Free Software Foundation, version 2. - * - * This program is distributed in the hope that it will be useful, but - * WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or - * NON INFRINGEMENT. See the GNU General Public License for - * more details. - */ - -#include <linux/sched.h> -#include <linux/kernel.h> -#include <linux/errno.h> -#include <linux/mm.h> -#include <linux/swap.h> -#include <linux/highmem.h> -#include <linux/slab.h> -#include <linux/pagemap.h> -#include <linux/spinlock.h> -#include <linux/cpumask.h> -#include <linux/module.h> -#include <linux/io.h> -#include <linux/vmalloc.h> -#include <linux/smp.h> - -#include <asm/pgtable.h> -#include <asm/pgalloc.h> -#include <asm/fixmap.h> -#include <asm/tlb.h> -#include <asm/tlbflush.h> -#include <asm/homecache.h> - -#define K(x) ((x) << (PAGE_SHIFT-10)) - -/** - * shatter_huge_page() - ensure a given address is mapped by a small page. - * - * This function converts a huge PTE mapping kernel LOWMEM into a bunch - * of small PTEs with the same caching. No cache flush required, but we - * must do a global TLB flush. - * - * Any caller that wishes to modify a kernel mapping that might - * have been made with a huge page should call this function, - * since doing so properly avoids race conditions with installing the - * newly-shattered page and then flushing all the TLB entries. - * - * @addr: Address at which to shatter any existing huge page. - */ -void shatter_huge_page(unsigned long addr) -{ - pgd_t *pgd; - pud_t *pud; - pmd_t *pmd; - unsigned long flags = 0; /* happy compiler */ -#ifdef __PAGETABLE_PMD_FOLDED - struct list_head *pos; -#endif - - /* Get a pointer to the pmd entry that we need to change. */ - addr &= HPAGE_MASK; - BUG_ON(pgd_addr_invalid(addr)); - BUG_ON(addr < PAGE_OFFSET); /* only for kernel LOWMEM */ - pgd = swapper_pg_dir + pgd_index(addr); - pud = pud_offset(pgd, addr); - BUG_ON(!pud_present(*pud)); - pmd = pmd_offset(pud, addr); - BUG_ON(!pmd_present(*pmd)); - if (!pmd_huge_page(*pmd)) - return; - - spin_lock_irqsave(&init_mm.page_table_lock, flags); - if (!pmd_huge_page(*pmd)) { - /* Lost the race to convert the huge page. */ - spin_unlock_irqrestore(&init_mm.page_table_lock, flags); - return; - } - - /* Shatter the huge page into the preallocated L2 page table. */ - pmd_populate_kernel(&init_mm, pmd, get_prealloc_pte(pmd_pfn(*pmd))); - -#ifdef __PAGETABLE_PMD_FOLDED - /* Walk every pgd on the system and update the pmd there. */ - spin_lock(&pgd_lock); - list_for_each(pos, &pgd_list) { - pmd_t *copy_pmd; - pgd = list_to_pgd(pos) + pgd_index(addr); - pud = pud_offset(pgd, addr); - copy_pmd = pmd_offset(pud, addr); - __set_pmd(copy_pmd, *pmd); - } - spin_unlock(&pgd_lock); -#endif - - /* Tell every cpu to notice the change. */ - flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE, - cpu_possible_mask, NULL, 0); - - /* Hold the lock until the TLB flush is finished to avoid races. */ - spin_unlock_irqrestore(&init_mm.page_table_lock, flags); -} - -/* - * List of all pgd's needed so it can invalidate entries in both cached - * and uncached pgd's. This is essentially codepath-based locking - * against pageattr.c; it is the unique case in which a valid change - * of kernel pagetables can't be lazily synchronized by vmalloc faults. - * vmalloc faults work because attached pagetables are never freed. - * - * The lock is always taken with interrupts disabled, unlike on x86 - * and other platforms, because we need to take the lock in - * shatter_huge_page(), which may be called from an interrupt context. - * We are not at risk from the tlbflush IPI deadlock that was seen on - * x86, since we use the flush_remote() API to have the hypervisor do - * the TLB flushes regardless of irq disabling. - */ -DEFINE_SPINLOCK(pgd_lock); -LIST_HEAD(pgd_list); - -static inline void pgd_list_add(pgd_t *pgd) -{ - list_add(pgd_to_list(pgd), &pgd_list); -} - -static inline void pgd_list_del(pgd_t *pgd) -{ - list_del(pgd_to_list(pgd)); -} - -#define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET) -#define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START) - -static void pgd_ctor(pgd_t *pgd) -{ - unsigned long flags; - - memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t)); - spin_lock_irqsave(&pgd_lock, flags); - -#ifndef __tilegx__ - /* - * Check that the user interrupt vector has no L2. - * It never should for the swapper, and new page tables - * should always start with an empty user interrupt vector. - */ - BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0); -#endif - - memcpy(pgd + KERNEL_PGD_INDEX_START, - swapper_pg_dir + KERNEL_PGD_INDEX_START, - KERNEL_PGD_PTRS * sizeof(pgd_t)); - - pgd_list_add(pgd); - spin_unlock_irqrestore(&pgd_lock, flags); -} - -static void pgd_dtor(pgd_t *pgd) -{ - unsigned long flags; /* can be called from interrupt context */ - - spin_lock_irqsave(&pgd_lock, flags); - pgd_list_del(pgd); - spin_unlock_irqrestore(&pgd_lock, flags); -} - -pgd_t *pgd_alloc(struct mm_struct *mm) -{ - pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL); - if (pgd) - pgd_ctor(pgd); - return pgd; -} - -void pgd_free(struct mm_struct *mm, pgd_t *pgd) -{ - pgd_dtor(pgd); - kmem_cache_free(pgd_cache, pgd); -} - - -#define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER) - -struct page *pgtable_alloc_one(struct mm_struct *mm, unsigned long address, - int order) -{ - gfp_t flags = GFP_KERNEL|__GFP_ZERO; - struct page *p; - int i; - - p = alloc_pages(flags, L2_USER_PGTABLE_ORDER); - if (p == NULL) - return NULL; - - if (!pgtable_page_ctor(p)) { - __free_pages(p, L2_USER_PGTABLE_ORDER); - return NULL; - } - - /* - * Make every page have a page_count() of one, not just the first. - * We don't use __GFP_COMP since it doesn't look like it works - * correctly with tlb_remove_page(). - */ - for (i = 1; i < order; ++i) { - init_page_count(p+i); - inc_zone_page_state(p+i, NR_PAGETABLE); - } - - return p; -} - -/* - * Free page immediately (used in __pte_alloc if we raced with another - * process). We have to correct whatever pte_alloc_one() did before - * returning the pages to the allocator. - */ -void pgtable_free(struct mm_struct *mm, struct page *p, int order) -{ - int i; - - pgtable_page_dtor(p); - __free_page(p); - - for (i = 1; i < order; ++i) { - __free_page(p+i); - dec_zone_page_state(p+i, NR_PAGETABLE); - } -} - -void __pgtable_free_tlb(struct mmu_gather *tlb, struct page *pte, - unsigned long address, int order) -{ - int i; - - pgtable_page_dtor(pte); - tlb_remove_page(tlb, pte); - - for (i = 1; i < order; ++i) { - tlb_remove_page(tlb, pte + i); - dec_zone_page_state(pte + i, NR_PAGETABLE); - } -} - -#ifndef __tilegx__ - -/* - * FIXME: needs to be atomic vs hypervisor writes. For now we make the - * window of vulnerability a bit smaller by doing an unlocked 8-bit update. - */ -int ptep_test_and_clear_young(struct vm_area_struct *vma, - unsigned long addr, pte_t *ptep) -{ -#if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16 -# error Code assumes HV_PTE "accessed" bit in second byte -#endif - u8 *tmp = (u8 *)ptep; - u8 second_byte = tmp[1]; - if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8)))) - return 0; - tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8)); - return 1; -} - -/* - * This implementation is atomic vs hypervisor writes, since the hypervisor - * always writes the low word (where "accessed" and "dirty" are) and this - * routine only writes the high word. - */ -void ptep_set_wrprotect(struct mm_struct *mm, - unsigned long addr, pte_t *ptep) -{ -#if HV_PTE_INDEX_WRITABLE < 32 -# error Code assumes HV_PTE "writable" bit in high word -#endif - u32 *tmp = (u32 *)ptep; - tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32)); -} - -#endif - -/* - * Return a pointer to the PTE that corresponds to the given - * address in the given page table. A NULL page table just uses - * the standard kernel page table; the preferred API in this case - * is virt_to_kpte(). - * - * The returned pointer can point to a huge page in other levels - * of the page table than the bottom, if the huge page is present - * in the page table. For bottom-level PTEs, the returned pointer - * can point to a PTE that is either present or not. - */ -pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr) -{ - pgd_t *pgd; - pud_t *pud; - pmd_t *pmd; - - if (pgd_addr_invalid(addr)) - return NULL; - - pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr); - pud = pud_offset(pgd, addr); - if (!pud_present(*pud)) - return NULL; - if (pud_huge_page(*pud)) - return (pte_t *)pud; - pmd = pmd_offset(pud, addr); - if (!pmd_present(*pmd)) - return NULL; - if (pmd_huge_page(*pmd)) - return (pte_t *)pmd; - return pte_offset_kernel(pmd, addr); -} -EXPORT_SYMBOL(virt_to_pte); - -pte_t *virt_to_kpte(unsigned long kaddr) -{ - BUG_ON(kaddr < PAGE_OFFSET); - return virt_to_pte(NULL, kaddr); -} -EXPORT_SYMBOL(virt_to_kpte); - -pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu) -{ - unsigned int width = smp_width; - int x = cpu % width; - int y = cpu / width; - BUG_ON(y >= smp_height); - BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3); - BUG_ON(cpu < 0 || cpu >= NR_CPUS); - BUG_ON(!cpu_is_valid_lotar(cpu)); - return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y)); -} - -int get_remote_cache_cpu(pgprot_t prot) -{ - HV_LOTAR lotar = hv_pte_get_lotar(prot); - int x = HV_LOTAR_X(lotar); - int y = HV_LOTAR_Y(lotar); - BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3); - return x + y * smp_width; -} - -/* - * Convert a kernel VA to a PA and homing information. - */ -int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte) -{ - struct page *page = virt_to_page(va); - pte_t null_pte = { 0 }; - - *cpa = __pa(va); - - /* Note that this is not writing a page table, just returning a pte. */ - *pte = pte_set_home(null_pte, page_home(page)); - - return 0; /* return non-zero if not hfh? */ -} -EXPORT_SYMBOL(va_to_cpa_and_pte); - -void __set_pte(pte_t *ptep, pte_t pte) -{ -#ifdef __tilegx__ - *ptep = pte; -#else -# if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32 -# error Must write the present and migrating bits last -# endif - if (pte_present(pte)) { - ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32); - barrier(); - ((u32 *)ptep)[0] = (u32)(pte_val(pte)); - } else { - ((u32 *)ptep)[0] = (u32)(pte_val(pte)); - barrier(); - ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32); - } -#endif /* __tilegx__ */ -} - -void set_pte(pte_t *ptep, pte_t pte) -{ - if (pte_present(pte) && - (!CHIP_HAS_MMIO() || hv_pte_get_mode(pte) != HV_PTE_MODE_MMIO)) { - /* The PTE actually references physical memory. */ - unsigned long pfn = pte_pfn(pte); - if (pfn_valid(pfn)) { - /* Update the home of the PTE from the struct page. */ - pte = pte_set_home(pte, page_home(pfn_to_page(pfn))); - } else if (hv_pte_get_mode(pte) == 0) { - /* remap_pfn_range(), etc, must supply PTE mode. */ - panic("set_pte(): out-of-range PFN and mode 0\n"); - } - } - - __set_pte(ptep, pte); -} - -/* Can this mm load a PTE with cached_priority set? */ -static inline int mm_is_priority_cached(struct mm_struct *mm) -{ - return mm->context.priority_cached != 0; -} - -/* - * Add a priority mapping to an mm_context and - * notify the hypervisor if this is the first one. - */ -void start_mm_caching(struct mm_struct *mm) -{ - if (!mm_is_priority_cached(mm)) { - mm->context.priority_cached = -1UL; - hv_set_caching(-1UL); - } -} - -/* - * Validate and return the priority_cached flag. We know if it's zero - * that we don't need to scan, since we immediately set it non-zero - * when we first consider a MAP_CACHE_PRIORITY mapping. - * - * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it, - * since we're in an interrupt context (servicing switch_mm) we don't - * worry about it and don't unset the "priority_cached" field. - * Presumably we'll come back later and have more luck and clear - * the value then; for now we'll just keep the cache marked for priority. - */ -static unsigned long update_priority_cached(struct mm_struct *mm) -{ - if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) { - struct vm_area_struct *vm; - for (vm = mm->mmap; vm; vm = vm->vm_next) { - if (hv_pte_get_cached_priority(vm->vm_page_prot)) - break; - } - if (vm == NULL) - mm->context.priority_cached = 0; - up_write(&mm->mmap_sem); - } - return mm->context.priority_cached; -} - -/* Set caching correctly for an mm that we are switching to. */ -void check_mm_caching(struct mm_struct *prev, struct mm_struct *next) -{ - if (!mm_is_priority_cached(next)) { - /* - * If the new mm doesn't use priority caching, just see if we - * need the hv_set_caching(), or can assume it's already zero. - */ - if (mm_is_priority_cached(prev)) - hv_set_caching(0); - } else { - hv_set_caching(update_priority_cached(next)); - } -} - -#if CHIP_HAS_MMIO() - -/* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */ -void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, - pgprot_t home) -{ - void *addr; - struct vm_struct *area; - unsigned long offset, last_addr; - pgprot_t pgprot; - - /* Don't allow wraparound or zero size */ - last_addr = phys_addr + size - 1; - if (!size || last_addr < phys_addr) - return NULL; - - /* Create a read/write, MMIO VA mapping homed at the requested shim. */ - pgprot = PAGE_KERNEL; - pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO); - pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home)); - - /* - * Mappings have to be page-aligned - */ - offset = phys_addr & ~PAGE_MASK; - phys_addr &= PAGE_MASK; - size = PAGE_ALIGN(last_addr+1) - phys_addr; - - /* - * Ok, go for it.. - */ - area = get_vm_area(size, VM_IOREMAP /* | other flags? */); - if (!area) - return NULL; - area->phys_addr = phys_addr; - addr = area->addr; - if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size, - phys_addr, pgprot)) { - free_vm_area(area); - return NULL; - } - return (__force void __iomem *) (offset + (char *)addr); -} -EXPORT_SYMBOL(ioremap_prot); - -#if !defined(CONFIG_PCI) || !defined(CONFIG_TILEGX) -/* ioremap is conditionally declared in pci_gx.c */ - -void __iomem *ioremap(resource_size_t phys_addr, unsigned long size) -{ - return NULL; -} -EXPORT_SYMBOL(ioremap); - -#endif - -/* Unmap an MMIO VA mapping. */ -void iounmap(volatile void __iomem *addr_in) -{ - volatile void __iomem *addr = (volatile void __iomem *) - (PAGE_MASK & (unsigned long __force)addr_in); -#if 1 - vunmap((void * __force)addr); -#else - /* x86 uses this complicated flow instead of vunmap(). Is - * there any particular reason we should do the same? */ - struct vm_struct *p, *o; - - /* Use the vm area unlocked, assuming the caller - ensures there isn't another iounmap for the same address - in parallel. Reuse of the virtual address is prevented by - leaving it in the global lists until we're done with it. - cpa takes care of the direct mappings. */ - p = find_vm_area((void *)addr); - - if (!p) { - pr_err("iounmap: bad address %p\n", addr); - dump_stack(); - return; - } - - /* Finally remove it */ - o = remove_vm_area((void *)addr); - BUG_ON(p != o || o == NULL); - kfree(p); -#endif -} -EXPORT_SYMBOL(iounmap); - -#endif /* CHIP_HAS_MMIO() */ |