summaryrefslogtreecommitdiffstats
path: root/arch/tile/lib
diff options
context:
space:
mode:
Diffstat (limited to 'arch/tile/lib')
-rw-r--r--arch/tile/lib/Makefile2
-rw-r--r--arch/tile/lib/atomic_32.c90
-rw-r--r--arch/tile/lib/memcpy_32.S61
-rw-r--r--arch/tile/lib/memcpy_tile64.c280
-rw-r--r--arch/tile/lib/memset_32.c105
5 files changed, 1 insertions, 537 deletions
diff --git a/arch/tile/lib/Makefile b/arch/tile/lib/Makefile
index 9adfd76fbdd8..c4211cbb2021 100644
--- a/arch/tile/lib/Makefile
+++ b/arch/tile/lib/Makefile
@@ -7,7 +7,7 @@ lib-y = cacheflush.o checksum.o cpumask.o delay.o uaccess.o \
strchr_$(BITS).o strlen_$(BITS).o strnlen_$(BITS).o
lib-$(CONFIG_TILEGX) += memcpy_user_64.o
-lib-$(CONFIG_TILEPRO) += atomic_32.o atomic_asm_32.o memcpy_tile64.o
+lib-$(CONFIG_TILEPRO) += atomic_32.o atomic_asm_32.o
lib-$(CONFIG_SMP) += spinlock_$(BITS).o usercopy_$(BITS).o
obj-$(CONFIG_MODULES) += exports.o
diff --git a/arch/tile/lib/atomic_32.c b/arch/tile/lib/atomic_32.c
index 42eacb1f737a..5d91d1860640 100644
--- a/arch/tile/lib/atomic_32.c
+++ b/arch/tile/lib/atomic_32.c
@@ -20,50 +20,12 @@
#include <linux/atomic.h>
#include <arch/chip.h>
-/* See <asm/atomic_32.h> */
-#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
-
-/*
- * A block of memory containing locks for atomic ops. Each instance of this
- * struct will be homed on a different CPU.
- */
-struct atomic_locks_on_cpu {
- int lock[ATOMIC_HASH_L2_SIZE];
-} __attribute__((aligned(ATOMIC_HASH_L2_SIZE * 4)));
-
-static DEFINE_PER_CPU(struct atomic_locks_on_cpu, atomic_lock_pool);
-
-/* The locks we'll use until __init_atomic_per_cpu is called. */
-static struct atomic_locks_on_cpu __initdata initial_atomic_locks;
-
-/* Hash into this vector to get a pointer to lock for the given atomic. */
-struct atomic_locks_on_cpu *atomic_lock_ptr[ATOMIC_HASH_L1_SIZE]
- __write_once = {
- [0 ... ATOMIC_HASH_L1_SIZE-1] (&initial_atomic_locks)
-};
-
-#else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
-
/* This page is remapped on startup to be hash-for-home. */
int atomic_locks[PAGE_SIZE / sizeof(int)] __page_aligned_bss;
-#endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
-
int *__atomic_hashed_lock(volatile void *v)
{
/* NOTE: this code must match "sys_cmpxchg" in kernel/intvec_32.S */
-#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
- unsigned long i =
- (unsigned long) v & ((PAGE_SIZE-1) & -sizeof(long long));
- unsigned long n = __insn_crc32_32(0, i);
-
- /* Grab high bits for L1 index. */
- unsigned long l1_index = n >> ((sizeof(n) * 8) - ATOMIC_HASH_L1_SHIFT);
- /* Grab low bits for L2 index. */
- unsigned long l2_index = n & (ATOMIC_HASH_L2_SIZE - 1);
-
- return &atomic_lock_ptr[l1_index]->lock[l2_index];
-#else
/*
* Use bits [3, 3 + ATOMIC_HASH_SHIFT) as the lock index.
* Using mm works here because atomic_locks is page aligned.
@@ -72,26 +34,13 @@ int *__atomic_hashed_lock(volatile void *v)
(unsigned long)atomic_locks,
2, (ATOMIC_HASH_SHIFT + 2) - 1);
return (int *)ptr;
-#endif
}
#ifdef CONFIG_SMP
/* Return whether the passed pointer is a valid atomic lock pointer. */
static int is_atomic_lock(int *p)
{
-#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
- int i;
- for (i = 0; i < ATOMIC_HASH_L1_SIZE; ++i) {
-
- if (p >= &atomic_lock_ptr[i]->lock[0] &&
- p < &atomic_lock_ptr[i]->lock[ATOMIC_HASH_L2_SIZE]) {
- return 1;
- }
- }
- return 0;
-#else
return p >= &atomic_locks[0] && p < &atomic_locks[ATOMIC_HASH_SIZE];
-#endif
}
void __atomic_fault_unlock(int *irqlock_word)
@@ -210,43 +159,6 @@ struct __get_user __atomic_bad_address(int __user *addr)
void __init __init_atomic_per_cpu(void)
{
-#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
-
- unsigned int i;
- int actual_cpu;
-
- /*
- * Before this is called from setup, we just have one lock for
- * all atomic objects/operations. Here we replace the
- * elements of atomic_lock_ptr so that they point at per_cpu
- * integers. This seemingly over-complex approach stems from
- * the fact that DEFINE_PER_CPU defines an entry for each cpu
- * in the grid, not each cpu from 0..ATOMIC_HASH_SIZE-1. But
- * for efficient hashing of atomics to their locks we want a
- * compile time constant power of 2 for the size of this
- * table, so we use ATOMIC_HASH_SIZE.
- *
- * Here we populate atomic_lock_ptr from the per cpu
- * atomic_lock_pool, interspersing by actual cpu so that
- * subsequent elements are homed on consecutive cpus.
- */
-
- actual_cpu = cpumask_first(cpu_possible_mask);
-
- for (i = 0; i < ATOMIC_HASH_L1_SIZE; ++i) {
- /*
- * Preincrement to slightly bias against using cpu 0,
- * which has plenty of stuff homed on it already.
- */
- actual_cpu = cpumask_next(actual_cpu, cpu_possible_mask);
- if (actual_cpu >= nr_cpu_ids)
- actual_cpu = cpumask_first(cpu_possible_mask);
-
- atomic_lock_ptr[i] = &per_cpu(atomic_lock_pool, actual_cpu);
- }
-
-#else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
-
/* Validate power-of-two and "bigger than cpus" assumption */
BUILD_BUG_ON(ATOMIC_HASH_SIZE & (ATOMIC_HASH_SIZE-1));
BUG_ON(ATOMIC_HASH_SIZE < nr_cpu_ids);
@@ -270,6 +182,4 @@ void __init __init_atomic_per_cpu(void)
* That should not produce more indices than ATOMIC_HASH_SIZE.
*/
BUILD_BUG_ON((PAGE_SIZE >> 3) > ATOMIC_HASH_SIZE);
-
-#endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
}
diff --git a/arch/tile/lib/memcpy_32.S b/arch/tile/lib/memcpy_32.S
index 8ba7626cfeb1..a2771ae5da53 100644
--- a/arch/tile/lib/memcpy_32.S
+++ b/arch/tile/lib/memcpy_32.S
@@ -22,14 +22,6 @@
#include <linux/linkage.h>
-/* On TILE64, we wrap these functions via arch/tile/lib/memcpy_tile64.c */
-#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
-#define memcpy __memcpy_asm
-#define __copy_to_user_inatomic __copy_to_user_inatomic_asm
-#define __copy_from_user_inatomic __copy_from_user_inatomic_asm
-#define __copy_from_user_zeroing __copy_from_user_zeroing_asm
-#endif
-
#define IS_MEMCPY 0
#define IS_COPY_FROM_USER 1
#define IS_COPY_FROM_USER_ZEROING 2
@@ -159,12 +151,9 @@ EX: { sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
{ addi r3, r1, 60; andi r9, r9, -64 }
-#if CHIP_HAS_WH64()
/* No need to prefetch dst, we'll just do the wh64
* right before we copy a line.
*/
-#endif
-
EX: { lw r5, r3; addi r3, r3, 64; movei r4, 1 }
/* Intentionally stall for a few cycles to leave L2 cache alone. */
{ bnzt zero, .; move r27, lr }
@@ -172,21 +161,6 @@ EX: { lw r6, r3; addi r3, r3, 64 }
/* Intentionally stall for a few cycles to leave L2 cache alone. */
{ bnzt zero, . }
EX: { lw r7, r3; addi r3, r3, 64 }
-#if !CHIP_HAS_WH64()
- /* Prefetch the dest */
- /* Intentionally stall for a few cycles to leave L2 cache alone. */
- { bnzt zero, . }
- /* Use a real load to cause a TLB miss if necessary. We aren't using
- * r28, so this should be fine.
- */
-EX: { lw r28, r9; addi r9, r9, 64 }
- /* Intentionally stall for a few cycles to leave L2 cache alone. */
- { bnzt zero, . }
- { prefetch r9; addi r9, r9, 64 }
- /* Intentionally stall for a few cycles to leave L2 cache alone. */
- { bnzt zero, . }
- { prefetch r9; addi r9, r9, 64 }
-#endif
/* Intentionally stall for a few cycles to leave L2 cache alone. */
{ bz zero, .Lbig_loop2 }
@@ -287,13 +261,8 @@ EX: { lw r7, r3; addi r3, r3, 64 }
/* Fill second L1D line. */
EX: { lw r17, r17; addi r1, r1, 48; mvz r3, r13, r1 } /* r17 = WORD_4 */
-#if CHIP_HAS_WH64()
/* Prepare destination line for writing. */
EX: { wh64 r9; addi r9, r9, 64 }
-#else
- /* Prefetch dest line */
- { prefetch r9; addi r9, r9, 64 }
-#endif
/* Load seven words that are L1D hits to cover wh64 L2 usage. */
/* Load the three remaining words from the last L1D line, which
@@ -331,16 +300,7 @@ EX: { lw r18, r1; addi r1, r1, 4 } /* r18 = WORD_8 */
EX: { sw r0, r16; addi r0, r0, 4; add r16, r0, r2 } /* store(WORD_0) */
EX: { sw r0, r13; addi r0, r0, 4; andi r16, r16, -64 } /* store(WORD_1) */
EX: { sw r0, r14; addi r0, r0, 4; slt_u r16, r9, r16 } /* store(WORD_2) */
-#if CHIP_HAS_WH64()
EX: { sw r0, r15; addi r0, r0, 4; addi r13, sp, -64 } /* store(WORD_3) */
-#else
- /* Back up the r9 to a cache line we are already storing to
- * if it gets past the end of the dest vector. Strictly speaking,
- * we don't need to back up to the start of a cache line, but it's free
- * and tidy, so why not?
- */
-EX: { sw r0, r15; addi r0, r0, 4; andi r13, r0, -64 } /* store(WORD_3) */
-#endif
/* Store second L1D line. */
EX: { sw r0, r17; addi r0, r0, 4; mvz r9, r16, r13 }/* store(WORD_4) */
EX: { sw r0, r19; addi r0, r0, 4 } /* store(WORD_5) */
@@ -404,7 +364,6 @@ EX: { sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
.Ldest_is_word_aligned:
-#if CHIP_HAS_DWORD_ALIGN()
EX: { andi r8, r0, 63; lwadd_na r6, r1, 4}
{ slti_u r9, r2, 64; bz r8, .Ldest_is_L2_line_aligned }
@@ -512,26 +471,6 @@ EX: { swadd r0, r13, 4; addi r2, r2, -32 }
/* Move r1 back to the point where it corresponds to r0. */
{ addi r1, r1, -4 }
-#else /* !CHIP_HAS_DWORD_ALIGN() */
-
- /* Compute right/left shift counts and load initial source words. */
- { andi r5, r1, -4; andi r3, r1, 3 }
-EX: { lw r6, r5; addi r5, r5, 4; shli r3, r3, 3 }
-EX: { lw r7, r5; addi r5, r5, 4; sub r4, zero, r3 }
-
- /* Load and store one word at a time, using shifts and ORs
- * to correct for the misaligned src.
- */
-.Lcopy_unaligned_src_loop:
- { shr r6, r6, r3; shl r8, r7, r4 }
-EX: { lw r7, r5; or r8, r8, r6; move r6, r7 }
-EX: { sw r0, r8; addi r0, r0, 4; addi r2, r2, -4 }
- { addi r5, r5, 4; slti_u r8, r2, 8 }
- { bzt r8, .Lcopy_unaligned_src_loop; addi r1, r1, 4 }
-
- { bz r2, .Lcopy_unaligned_done }
-#endif /* !CHIP_HAS_DWORD_ALIGN() */
-
/* Fall through */
/*
diff --git a/arch/tile/lib/memcpy_tile64.c b/arch/tile/lib/memcpy_tile64.c
deleted file mode 100644
index 0290c222847b..000000000000
--- a/arch/tile/lib/memcpy_tile64.c
+++ /dev/null
@@ -1,280 +0,0 @@
-/*
- * Copyright 2010 Tilera Corporation. All Rights Reserved.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation, version 2.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
- * NON INFRINGEMENT. See the GNU General Public License for
- * more details.
- */
-
-#include <linux/string.h>
-#include <linux/smp.h>
-#include <linux/module.h>
-#include <linux/uaccess.h>
-#include <asm/fixmap.h>
-#include <asm/kmap_types.h>
-#include <asm/tlbflush.h>
-#include <hv/hypervisor.h>
-#include <arch/chip.h>
-
-
-#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
-
-/* Defined in memcpy.S */
-extern unsigned long __memcpy_asm(void *to, const void *from, unsigned long n);
-extern unsigned long __copy_to_user_inatomic_asm(
- void __user *to, const void *from, unsigned long n);
-extern unsigned long __copy_from_user_inatomic_asm(
- void *to, const void __user *from, unsigned long n);
-extern unsigned long __copy_from_user_zeroing_asm(
- void *to, const void __user *from, unsigned long n);
-
-typedef unsigned long (*memcpy_t)(void *, const void *, unsigned long);
-
-/* Size above which to consider TLB games for performance */
-#define LARGE_COPY_CUTOFF 2048
-
-/* Communicate to the simulator what we are trying to do. */
-#define sim_allow_multiple_caching(b) \
- __insn_mtspr(SPR_SIM_CONTROL, \
- SIM_CONTROL_ALLOW_MULTIPLE_CACHING | ((b) << _SIM_CONTROL_OPERATOR_BITS))
-
-/*
- * Copy memory by briefly enabling incoherent cacheline-at-a-time mode.
- *
- * We set up our own source and destination PTEs that we fully control.
- * This is the only way to guarantee that we don't race with another
- * thread that is modifying the PTE; we can't afford to try the
- * copy_{to,from}_user() technique of catching the interrupt, since
- * we must run with interrupts disabled to avoid the risk of some
- * other code seeing the incoherent data in our cache. (Recall that
- * our cache is indexed by PA, so even if the other code doesn't use
- * our kmap_atomic virtual addresses, they'll still hit in cache using
- * the normal VAs that aren't supposed to hit in cache.)
- */
-static void memcpy_multicache(void *dest, const void *source,
- pte_t dst_pte, pte_t src_pte, int len)
-{
- int idx;
- unsigned long flags, newsrc, newdst;
- pmd_t *pmdp;
- pte_t *ptep;
- int type0, type1;
- int cpu = smp_processor_id();
-
- /*
- * Disable interrupts so that we don't recurse into memcpy()
- * in an interrupt handler, nor accidentally reference
- * the PA of the source from an interrupt routine. Also
- * notify the simulator that we're playing games so we don't
- * generate spurious coherency warnings.
- */
- local_irq_save(flags);
- sim_allow_multiple_caching(1);
-
- /* Set up the new dest mapping */
- type0 = kmap_atomic_idx_push();
- idx = FIX_KMAP_BEGIN + (KM_TYPE_NR * cpu) + type0;
- newdst = __fix_to_virt(idx) + ((unsigned long)dest & (PAGE_SIZE-1));
- pmdp = pmd_offset(pud_offset(pgd_offset_k(newdst), newdst), newdst);
- ptep = pte_offset_kernel(pmdp, newdst);
- if (pte_val(*ptep) != pte_val(dst_pte)) {
- set_pte(ptep, dst_pte);
- local_flush_tlb_page(NULL, newdst, PAGE_SIZE);
- }
-
- /* Set up the new source mapping */
- type1 = kmap_atomic_idx_push();
- idx += (type0 - type1);
- src_pte = hv_pte_set_nc(src_pte);
- src_pte = hv_pte_clear_writable(src_pte); /* be paranoid */
- newsrc = __fix_to_virt(idx) + ((unsigned long)source & (PAGE_SIZE-1));
- pmdp = pmd_offset(pud_offset(pgd_offset_k(newsrc), newsrc), newsrc);
- ptep = pte_offset_kernel(pmdp, newsrc);
- __set_pte(ptep, src_pte); /* set_pte() would be confused by this */
- local_flush_tlb_page(NULL, newsrc, PAGE_SIZE);
-
- /* Actually move the data. */
- __memcpy_asm((void *)newdst, (const void *)newsrc, len);
-
- /*
- * Remap the source as locally-cached and not OLOC'ed so that
- * we can inval without also invaling the remote cpu's cache.
- * This also avoids known errata with inv'ing cacheable oloc data.
- */
- src_pte = hv_pte_set_mode(src_pte, HV_PTE_MODE_CACHE_NO_L3);
- src_pte = hv_pte_set_writable(src_pte); /* need write access for inv */
- __set_pte(ptep, src_pte); /* set_pte() would be confused by this */
- local_flush_tlb_page(NULL, newsrc, PAGE_SIZE);
-
- /*
- * Do the actual invalidation, covering the full L2 cache line
- * at the end since __memcpy_asm() is somewhat aggressive.
- */
- __inv_buffer((void *)newsrc, len);
-
- /*
- * We're done: notify the simulator that all is back to normal,
- * and re-enable interrupts and pre-emption.
- */
- kmap_atomic_idx_pop();
- kmap_atomic_idx_pop();
- sim_allow_multiple_caching(0);
- local_irq_restore(flags);
-}
-
-/*
- * Identify large copies from remotely-cached memory, and copy them
- * via memcpy_multicache() if they look good, otherwise fall back
- * to the particular kind of copying passed as the memcpy_t function.
- */
-static unsigned long fast_copy(void *dest, const void *source, int len,
- memcpy_t func)
-{
- int cpu = get_cpu();
- unsigned long retval;
-
- /*
- * Check if it's big enough to bother with. We may end up doing a
- * small copy via TLB manipulation if we're near a page boundary,
- * but presumably we'll make it up when we hit the second page.
- */
- while (len >= LARGE_COPY_CUTOFF) {
- int copy_size, bytes_left_on_page;
- pte_t *src_ptep, *dst_ptep;
- pte_t src_pte, dst_pte;
- struct page *src_page, *dst_page;
-
- /* Is the source page oloc'ed to a remote cpu? */
-retry_source:
- src_ptep = virt_to_pte(current->mm, (unsigned long)source);
- if (src_ptep == NULL)
- break;
- src_pte = *src_ptep;
- if (!hv_pte_get_present(src_pte) ||
- !hv_pte_get_readable(src_pte) ||
- hv_pte_get_mode(src_pte) != HV_PTE_MODE_CACHE_TILE_L3)
- break;
- if (get_remote_cache_cpu(src_pte) == cpu)
- break;
- src_page = pfn_to_page(pte_pfn(src_pte));
- get_page(src_page);
- if (pte_val(src_pte) != pte_val(*src_ptep)) {
- put_page(src_page);
- goto retry_source;
- }
- if (pte_huge(src_pte)) {
- /* Adjust the PTE to correspond to a small page */
- int pfn = pte_pfn(src_pte);
- pfn += (((unsigned long)source & (HPAGE_SIZE-1))
- >> PAGE_SHIFT);
- src_pte = pfn_pte(pfn, src_pte);
- src_pte = pte_mksmall(src_pte);
- }
-
- /* Is the destination page writable? */
-retry_dest:
- dst_ptep = virt_to_pte(current->mm, (unsigned long)dest);
- if (dst_ptep == NULL) {
- put_page(src_page);
- break;
- }
- dst_pte = *dst_ptep;
- if (!hv_pte_get_present(dst_pte) ||
- !hv_pte_get_writable(dst_pte)) {
- put_page(src_page);
- break;
- }
- dst_page = pfn_to_page(pte_pfn(dst_pte));
- if (dst_page == src_page) {
- /*
- * Source and dest are on the same page; this
- * potentially exposes us to incoherence if any
- * part of src and dest overlap on a cache line.
- * Just give up rather than trying to be precise.
- */
- put_page(src_page);
- break;
- }
- get_page(dst_page);
- if (pte_val(dst_pte) != pte_val(*dst_ptep)) {
- put_page(dst_page);
- goto retry_dest;
- }
- if (pte_huge(dst_pte)) {
- /* Adjust the PTE to correspond to a small page */
- int pfn = pte_pfn(dst_pte);
- pfn += (((unsigned long)dest & (HPAGE_SIZE-1))
- >> PAGE_SHIFT);
- dst_pte = pfn_pte(pfn, dst_pte);
- dst_pte = pte_mksmall(dst_pte);
- }
-
- /* All looks good: create a cachable PTE and copy from it */
- copy_size = len;
- bytes_left_on_page =
- PAGE_SIZE - (((int)source) & (PAGE_SIZE-1));
- if (copy_size > bytes_left_on_page)
- copy_size = bytes_left_on_page;
- bytes_left_on_page =
- PAGE_SIZE - (((int)dest) & (PAGE_SIZE-1));
- if (copy_size > bytes_left_on_page)
- copy_size = bytes_left_on_page;
- memcpy_multicache(dest, source, dst_pte, src_pte, copy_size);
-
- /* Release the pages */
- put_page(dst_page);
- put_page(src_page);
-
- /* Continue on the next page */
- dest += copy_size;
- source += copy_size;
- len -= copy_size;
- }
-
- retval = func(dest, source, len);
- put_cpu();
- return retval;
-}
-
-void *memcpy(void *to, const void *from, __kernel_size_t n)
-{
- if (n < LARGE_COPY_CUTOFF)
- return (void *)__memcpy_asm(to, from, n);
- else
- return (void *)fast_copy(to, from, n, __memcpy_asm);
-}
-
-unsigned long __copy_to_user_inatomic(void __user *to, const void *from,
- unsigned long n)
-{
- if (n < LARGE_COPY_CUTOFF)
- return __copy_to_user_inatomic_asm(to, from, n);
- else
- return fast_copy(to, from, n, __copy_to_user_inatomic_asm);
-}
-
-unsigned long __copy_from_user_inatomic(void *to, const void __user *from,
- unsigned long n)
-{
- if (n < LARGE_COPY_CUTOFF)
- return __copy_from_user_inatomic_asm(to, from, n);
- else
- return fast_copy(to, from, n, __copy_from_user_inatomic_asm);
-}
-
-unsigned long __copy_from_user_zeroing(void *to, const void __user *from,
- unsigned long n)
-{
- if (n < LARGE_COPY_CUTOFF)
- return __copy_from_user_zeroing_asm(to, from, n);
- else
- return fast_copy(to, from, n, __copy_from_user_zeroing_asm);
-}
-
-#endif /* !CHIP_HAS_COHERENT_LOCAL_CACHE() */
diff --git a/arch/tile/lib/memset_32.c b/arch/tile/lib/memset_32.c
index 9a7837d11f7d..2042bfe6595f 100644
--- a/arch/tile/lib/memset_32.c
+++ b/arch/tile/lib/memset_32.c
@@ -23,11 +23,7 @@ void *memset(void *s, int c, size_t n)
int n32;
uint32_t v16, v32;
uint8_t *out8 = s;
-#if !CHIP_HAS_WH64()
- int ahead32;
-#else
int to_align32;
-#endif
/* Experimentation shows that a trivial tight loop is a win up until
* around a size of 20, where writing a word at a time starts to win.
@@ -58,21 +54,6 @@ void *memset(void *s, int c, size_t n)
return s;
}
-#if !CHIP_HAS_WH64()
- /* Use a spare issue slot to start prefetching the first cache
- * line early. This instruction is free as the store can be buried
- * in otherwise idle issue slots doing ALU ops.
- */
- __insn_prefetch(out8);
-
- /* We prefetch the end so that a short memset that spans two cache
- * lines gets some prefetching benefit. Again we believe this is free
- * to issue.
- */
- __insn_prefetch(&out8[n - 1]);
-#endif /* !CHIP_HAS_WH64() */
-
-
/* Align 'out8'. We know n >= 3 so this won't write past the end. */
while (((uintptr_t) out8 & 3) != 0) {
*out8++ = c;
@@ -93,90 +74,6 @@ void *memset(void *s, int c, size_t n)
/* This must be at least 8 or the following loop doesn't work. */
#define CACHE_LINE_SIZE_IN_WORDS (CHIP_L2_LINE_SIZE() / 4)
-#if !CHIP_HAS_WH64()
-
- ahead32 = CACHE_LINE_SIZE_IN_WORDS;
-
- /* We already prefetched the first and last cache lines, so
- * we only need to do more prefetching if we are storing
- * to more than two cache lines.
- */
- if (n32 > CACHE_LINE_SIZE_IN_WORDS * 2) {
- int i;
-
- /* Prefetch the next several cache lines.
- * This is the setup code for the software-pipelined
- * loop below.
- */
-#define MAX_PREFETCH 5
- ahead32 = n32 & -CACHE_LINE_SIZE_IN_WORDS;
- if (ahead32 > MAX_PREFETCH * CACHE_LINE_SIZE_IN_WORDS)
- ahead32 = MAX_PREFETCH * CACHE_LINE_SIZE_IN_WORDS;
-
- for (i = CACHE_LINE_SIZE_IN_WORDS;
- i < ahead32; i += CACHE_LINE_SIZE_IN_WORDS)
- __insn_prefetch(&out32[i]);
- }
-
- if (n32 > ahead32) {
- while (1) {
- int j;
-
- /* Prefetch by reading one word several cache lines
- * ahead. Since loads are non-blocking this will
- * cause the full cache line to be read while we are
- * finishing earlier cache lines. Using a store
- * here causes microarchitectural performance
- * problems where a victimizing store miss goes to
- * the head of the retry FIFO and locks the pipe for
- * a few cycles. So a few subsequent stores in this
- * loop go into the retry FIFO, and then later
- * stores see other stores to the same cache line
- * are already in the retry FIFO and themselves go
- * into the retry FIFO, filling it up and grinding
- * to a halt waiting for the original miss to be
- * satisfied.
- */
- __insn_prefetch(&out32[ahead32]);
-
-#if CACHE_LINE_SIZE_IN_WORDS % 4 != 0
-#error "Unhandled CACHE_LINE_SIZE_IN_WORDS"
-#endif
-
- n32 -= CACHE_LINE_SIZE_IN_WORDS;
-
- /* Save icache space by only partially unrolling
- * this loop.
- */
- for (j = CACHE_LINE_SIZE_IN_WORDS / 4; j > 0; j--) {
- *out32++ = v32;
- *out32++ = v32;
- *out32++ = v32;
- *out32++ = v32;
- }
-
- /* To save compiled code size, reuse this loop even
- * when we run out of prefetching to do by dropping
- * ahead32 down.
- */
- if (n32 <= ahead32) {
- /* Not even a full cache line left,
- * so stop now.
- */
- if (n32 < CACHE_LINE_SIZE_IN_WORDS)
- break;
-
- /* Choose a small enough value that we don't
- * prefetch past the end. There's no sense
- * in touching cache lines we don't have to.
- */
- ahead32 = CACHE_LINE_SIZE_IN_WORDS - 1;
- }
- }
- }
-
-#else /* CHIP_HAS_WH64() */
-
/* Determine how many words we need to emit before the 'out32'
* pointer becomes aligned modulo the cache line size.
*/
@@ -233,8 +130,6 @@ void *memset(void *s, int c, size_t n)
n32 &= CACHE_LINE_SIZE_IN_WORDS - 1;
}
-#endif /* CHIP_HAS_WH64() */
-
/* Now handle any leftover values. */
if (n32 != 0) {
do {