summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/math-emu/op-common.h
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/math-emu/op-common.h')
-rw-r--r--arch/powerpc/math-emu/op-common.h688
1 files changed, 688 insertions, 0 deletions
diff --git a/arch/powerpc/math-emu/op-common.h b/arch/powerpc/math-emu/op-common.h
new file mode 100644
index 000000000000..afb82b6498ce
--- /dev/null
+++ b/arch/powerpc/math-emu/op-common.h
@@ -0,0 +1,688 @@
+#define _FP_DECL(wc, X) \
+ _FP_I_TYPE X##_c, X##_s, X##_e; \
+ _FP_FRAC_DECL_##wc(X)
+
+/*
+ * Finish truely unpacking a native fp value by classifying the kind
+ * of fp value and normalizing both the exponent and the fraction.
+ */
+
+#define _FP_UNPACK_CANONICAL(fs, wc, X) \
+do { \
+ switch (X##_e) \
+ { \
+ default: \
+ _FP_FRAC_HIGH_##wc(X) |= _FP_IMPLBIT_##fs; \
+ _FP_FRAC_SLL_##wc(X, _FP_WORKBITS); \
+ X##_e -= _FP_EXPBIAS_##fs; \
+ X##_c = FP_CLS_NORMAL; \
+ break; \
+ \
+ case 0: \
+ if (_FP_FRAC_ZEROP_##wc(X)) \
+ X##_c = FP_CLS_ZERO; \
+ else \
+ { \
+ /* a denormalized number */ \
+ _FP_I_TYPE _shift; \
+ _FP_FRAC_CLZ_##wc(_shift, X); \
+ _shift -= _FP_FRACXBITS_##fs; \
+ _FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS)); \
+ X##_e -= _FP_EXPBIAS_##fs - 1 + _shift; \
+ X##_c = FP_CLS_NORMAL; \
+ } \
+ break; \
+ \
+ case _FP_EXPMAX_##fs: \
+ if (_FP_FRAC_ZEROP_##wc(X)) \
+ X##_c = FP_CLS_INF; \
+ else \
+ /* we don't differentiate between signaling and quiet nans */ \
+ X##_c = FP_CLS_NAN; \
+ break; \
+ } \
+} while (0)
+
+
+/*
+ * Before packing the bits back into the native fp result, take care
+ * of such mundane things as rounding and overflow. Also, for some
+ * kinds of fp values, the original parts may not have been fully
+ * extracted -- but that is ok, we can regenerate them now.
+ */
+
+#define _FP_PACK_CANONICAL(fs, wc, X) \
+({int __ret = 0; \
+ switch (X##_c) \
+ { \
+ case FP_CLS_NORMAL: \
+ X##_e += _FP_EXPBIAS_##fs; \
+ if (X##_e > 0) \
+ { \
+ __ret |= _FP_ROUND(wc, X); \
+ if (_FP_FRAC_OVERP_##wc(fs, X)) \
+ { \
+ _FP_FRAC_SRL_##wc(X, (_FP_WORKBITS+1)); \
+ X##_e++; \
+ } \
+ else \
+ _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
+ if (X##_e >= _FP_EXPMAX_##fs) \
+ { \
+ /* overflow to infinity */ \
+ X##_e = _FP_EXPMAX_##fs; \
+ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
+ __ret |= EFLAG_OVERFLOW; \
+ } \
+ } \
+ else \
+ { \
+ /* we've got a denormalized number */ \
+ X##_e = -X##_e + 1; \
+ if (X##_e <= _FP_WFRACBITS_##fs) \
+ { \
+ _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs); \
+ _FP_FRAC_SLL_##wc(X, 1); \
+ if (_FP_FRAC_OVERP_##wc(fs, X)) \
+ { \
+ X##_e = 1; \
+ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
+ } \
+ else \
+ { \
+ X##_e = 0; \
+ _FP_FRAC_SRL_##wc(X, _FP_WORKBITS+1); \
+ __ret |= EFLAG_UNDERFLOW; \
+ } \
+ } \
+ else \
+ { \
+ /* underflow to zero */ \
+ X##_e = 0; \
+ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
+ __ret |= EFLAG_UNDERFLOW; \
+ } \
+ } \
+ break; \
+ \
+ case FP_CLS_ZERO: \
+ X##_e = 0; \
+ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
+ break; \
+ \
+ case FP_CLS_INF: \
+ X##_e = _FP_EXPMAX_##fs; \
+ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
+ break; \
+ \
+ case FP_CLS_NAN: \
+ X##_e = _FP_EXPMAX_##fs; \
+ if (!_FP_KEEPNANFRACP) \
+ { \
+ _FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs); \
+ X##_s = 0; \
+ } \
+ else \
+ _FP_FRAC_HIGH_##wc(X) |= _FP_QNANBIT_##fs; \
+ break; \
+ } \
+ __ret; \
+})
+
+
+/*
+ * Main addition routine. The input values should be cooked.
+ */
+
+#define _FP_ADD(fs, wc, R, X, Y) \
+do { \
+ switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
+ { \
+ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
+ { \
+ /* shift the smaller number so that its exponent matches the larger */ \
+ _FP_I_TYPE diff = X##_e - Y##_e; \
+ \
+ if (diff < 0) \
+ { \
+ diff = -diff; \
+ if (diff <= _FP_WFRACBITS_##fs) \
+ _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs); \
+ else if (!_FP_FRAC_ZEROP_##wc(X)) \
+ _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
+ else \
+ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
+ R##_e = Y##_e; \
+ } \
+ else \
+ { \
+ if (diff > 0) \
+ { \
+ if (diff <= _FP_WFRACBITS_##fs) \
+ _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs); \
+ else if (!_FP_FRAC_ZEROP_##wc(Y)) \
+ _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc); \
+ else \
+ _FP_FRAC_SET_##wc(Y, _FP_ZEROFRAC_##wc); \
+ } \
+ R##_e = X##_e; \
+ } \
+ \
+ R##_c = FP_CLS_NORMAL; \
+ \
+ if (X##_s == Y##_s) \
+ { \
+ R##_s = X##_s; \
+ _FP_FRAC_ADD_##wc(R, X, Y); \
+ if (_FP_FRAC_OVERP_##wc(fs, R)) \
+ { \
+ _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \
+ R##_e++; \
+ } \
+ } \
+ else \
+ { \
+ R##_s = X##_s; \
+ _FP_FRAC_SUB_##wc(R, X, Y); \
+ if (_FP_FRAC_ZEROP_##wc(R)) \
+ { \
+ /* return an exact zero */ \
+ if (FP_ROUNDMODE == FP_RND_MINF) \
+ R##_s |= Y##_s; \
+ else \
+ R##_s &= Y##_s; \
+ R##_c = FP_CLS_ZERO; \
+ } \
+ else \
+ { \
+ if (_FP_FRAC_NEGP_##wc(R)) \
+ { \
+ _FP_FRAC_SUB_##wc(R, Y, X); \
+ R##_s = Y##_s; \
+ } \
+ \
+ /* renormalize after subtraction */ \
+ _FP_FRAC_CLZ_##wc(diff, R); \
+ diff -= _FP_WFRACXBITS_##fs; \
+ if (diff) \
+ { \
+ R##_e -= diff; \
+ _FP_FRAC_SLL_##wc(R, diff); \
+ } \
+ } \
+ } \
+ break; \
+ } \
+ \
+ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
+ _FP_CHOOSENAN(fs, wc, R, X, Y); \
+ break; \
+ \
+ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
+ R##_e = X##_e; \
+ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
+ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
+ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
+ _FP_FRAC_COPY_##wc(R, X); \
+ R##_s = X##_s; \
+ R##_c = X##_c; \
+ break; \
+ \
+ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
+ R##_e = Y##_e; \
+ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
+ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
+ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
+ _FP_FRAC_COPY_##wc(R, Y); \
+ R##_s = Y##_s; \
+ R##_c = Y##_c; \
+ break; \
+ \
+ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
+ if (X##_s != Y##_s) \
+ { \
+ /* +INF + -INF => NAN */ \
+ _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
+ R##_s = X##_s ^ Y##_s; \
+ R##_c = FP_CLS_NAN; \
+ break; \
+ } \
+ /* FALLTHRU */ \
+ \
+ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
+ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
+ R##_s = X##_s; \
+ R##_c = FP_CLS_INF; \
+ break; \
+ \
+ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
+ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
+ R##_s = Y##_s; \
+ R##_c = FP_CLS_INF; \
+ break; \
+ \
+ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
+ /* make sure the sign is correct */ \
+ if (FP_ROUNDMODE == FP_RND_MINF) \
+ R##_s = X##_s | Y##_s; \
+ else \
+ R##_s = X##_s & Y##_s; \
+ R##_c = FP_CLS_ZERO; \
+ break; \
+ \
+ default: \
+ abort(); \
+ } \
+} while (0)
+
+
+/*
+ * Main negation routine. FIXME -- when we care about setting exception
+ * bits reliably, this will not do. We should examine all of the fp classes.
+ */
+
+#define _FP_NEG(fs, wc, R, X) \
+ do { \
+ _FP_FRAC_COPY_##wc(R, X); \
+ R##_c = X##_c; \
+ R##_e = X##_e; \
+ R##_s = 1 ^ X##_s; \
+ } while (0)
+
+
+/*
+ * Main multiplication routine. The input values should be cooked.
+ */
+
+#define _FP_MUL(fs, wc, R, X, Y) \
+do { \
+ R##_s = X##_s ^ Y##_s; \
+ switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
+ { \
+ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
+ R##_c = FP_CLS_NORMAL; \
+ R##_e = X##_e + Y##_e + 1; \
+ \
+ _FP_MUL_MEAT_##fs(R,X,Y); \
+ \
+ if (_FP_FRAC_OVERP_##wc(fs, R)) \
+ _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \
+ else \
+ R##_e--; \
+ break; \
+ \
+ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
+ _FP_CHOOSENAN(fs, wc, R, X, Y); \
+ break; \
+ \
+ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
+ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
+ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
+ R##_s = X##_s; \
+ \
+ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
+ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
+ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
+ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
+ _FP_FRAC_COPY_##wc(R, X); \
+ R##_c = X##_c; \
+ break; \
+ \
+ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
+ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
+ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
+ R##_s = Y##_s; \
+ \
+ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
+ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
+ _FP_FRAC_COPY_##wc(R, Y); \
+ R##_c = Y##_c; \
+ break; \
+ \
+ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
+ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
+ R##_c = FP_CLS_NAN; \
+ _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
+ break; \
+ \
+ default: \
+ abort(); \
+ } \
+} while (0)
+
+
+/*
+ * Main division routine. The input values should be cooked.
+ */
+
+#define _FP_DIV(fs, wc, R, X, Y) \
+do { \
+ R##_s = X##_s ^ Y##_s; \
+ switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
+ { \
+ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
+ R##_c = FP_CLS_NORMAL; \
+ R##_e = X##_e - Y##_e; \
+ \
+ _FP_DIV_MEAT_##fs(R,X,Y); \
+ break; \
+ \
+ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
+ _FP_CHOOSENAN(fs, wc, R, X, Y); \
+ break; \
+ \
+ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
+ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
+ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
+ R##_s = X##_s; \
+ _FP_FRAC_COPY_##wc(R, X); \
+ R##_c = X##_c; \
+ break; \
+ \
+ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
+ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
+ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
+ R##_s = Y##_s; \
+ _FP_FRAC_COPY_##wc(R, Y); \
+ R##_c = Y##_c; \
+ break; \
+ \
+ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
+ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
+ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
+ R##_c = FP_CLS_ZERO; \
+ break; \
+ \
+ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
+ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
+ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
+ R##_c = FP_CLS_INF; \
+ break; \
+ \
+ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
+ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
+ R##_c = FP_CLS_NAN; \
+ _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
+ break; \
+ \
+ default: \
+ abort(); \
+ } \
+} while (0)
+
+
+/*
+ * Main differential comparison routine. The inputs should be raw not
+ * cooked. The return is -1,0,1 for normal values, 2 otherwise.
+ */
+
+#define _FP_CMP(fs, wc, ret, X, Y, un) \
+ do { \
+ /* NANs are unordered */ \
+ if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \
+ || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \
+ { \
+ ret = un; \
+ } \
+ else \
+ { \
+ int __x_zero = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0; \
+ int __y_zero = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0; \
+ \
+ if (__x_zero && __y_zero) \
+ ret = 0; \
+ else if (__x_zero) \
+ ret = Y##_s ? 1 : -1; \
+ else if (__y_zero) \
+ ret = X##_s ? -1 : 1; \
+ else if (X##_s != Y##_s) \
+ ret = X##_s ? -1 : 1; \
+ else if (X##_e > Y##_e) \
+ ret = X##_s ? -1 : 1; \
+ else if (X##_e < Y##_e) \
+ ret = X##_s ? 1 : -1; \
+ else if (_FP_FRAC_GT_##wc(X, Y)) \
+ ret = X##_s ? -1 : 1; \
+ else if (_FP_FRAC_GT_##wc(Y, X)) \
+ ret = X##_s ? 1 : -1; \
+ else \
+ ret = 0; \
+ } \
+ } while (0)
+
+
+/* Simplification for strict equality. */
+
+#define _FP_CMP_EQ(fs, wc, ret, X, Y) \
+ do { \
+ /* NANs are unordered */ \
+ if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \
+ || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \
+ { \
+ ret = 1; \
+ } \
+ else \
+ { \
+ ret = !(X##_e == Y##_e \
+ && _FP_FRAC_EQ_##wc(X, Y) \
+ && (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \
+ } \
+ } while (0)
+
+/*
+ * Main square root routine. The input value should be cooked.
+ */
+
+#define _FP_SQRT(fs, wc, R, X) \
+do { \
+ _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S); \
+ _FP_W_TYPE q; \
+ switch (X##_c) \
+ { \
+ case FP_CLS_NAN: \
+ R##_s = 0; \
+ R##_c = FP_CLS_NAN; \
+ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
+ break; \
+ case FP_CLS_INF: \
+ if (X##_s) \
+ { \
+ R##_s = 0; \
+ R##_c = FP_CLS_NAN; /* sNAN */ \
+ } \
+ else \
+ { \
+ R##_s = 0; \
+ R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */ \
+ } \
+ break; \
+ case FP_CLS_ZERO: \
+ R##_s = X##_s; \
+ R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */ \
+ break; \
+ case FP_CLS_NORMAL: \
+ R##_s = 0; \
+ if (X##_s) \
+ { \
+ R##_c = FP_CLS_NAN; /* sNAN */ \
+ break; \
+ } \
+ R##_c = FP_CLS_NORMAL; \
+ if (X##_e & 1) \
+ _FP_FRAC_SLL_##wc(X, 1); \
+ R##_e = X##_e >> 1; \
+ _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc); \
+ _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc); \
+ q = _FP_OVERFLOW_##fs; \
+ _FP_FRAC_SLL_##wc(X, 1); \
+ _FP_SQRT_MEAT_##wc(R, S, T, X, q); \
+ _FP_FRAC_SRL_##wc(R, 1); \
+ } \
+ } while (0)
+
+/*
+ * Convert from FP to integer
+ */
+
+/* "When a NaN, infinity, large positive argument >= 2147483648.0, or
+ * large negative argument <= -2147483649.0 is converted to an integer,
+ * the invalid_current bit...should be set and fp_exception_IEEE_754 should
+ * be raised. If the floating point invalid trap is disabled, no trap occurs
+ * and a numerical result is generated: if the sign bit of the operand
+ * is 0, the result is 2147483647; if the sign bit of the operand is 1,
+ * the result is -2147483648."
+ * Similarly for conversion to extended ints, except that the boundaries
+ * are >= 2^63, <= -(2^63 + 1), and the results are 2^63 + 1 for s=0 and
+ * -2^63 for s=1.
+ * -- SPARC Architecture Manual V9, Appendix B, which specifies how
+ * SPARCs resolve implementation dependencies in the IEEE-754 spec.
+ * I don't believe that the code below follows this. I'm not even sure
+ * it's right!
+ * It doesn't cope with needing to convert to an n bit integer when there
+ * is no n bit integer type. Fortunately gcc provides long long so this
+ * isn't a problem for sparc32.
+ * I have, however, fixed its NaN handling to conform as above.
+ * -- PMM 02/1998
+ * NB: rsigned is not 'is r declared signed?' but 'should the value stored
+ * in r be signed or unsigned?'. r is always(?) declared unsigned.
+ * Comments below are mine, BTW -- PMM
+ */
+#define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \
+ do { \
+ switch (X##_c) \
+ { \
+ case FP_CLS_NORMAL: \
+ if (X##_e < 0) \
+ { \
+ /* case FP_CLS_NAN: see above! */ \
+ case FP_CLS_ZERO: \
+ r = 0; \
+ } \
+ else if (X##_e >= rsize - (rsigned != 0)) \
+ { /* overflow */ \
+ case FP_CLS_NAN: \
+ case FP_CLS_INF: \
+ if (rsigned) \
+ { \
+ r = 1; \
+ r <<= rsize - 1; \
+ r -= 1 - X##_s; \
+ } \
+ else \
+ { \
+ r = 0; \
+ if (!X##_s) \
+ r = ~r; \
+ } \
+ } \
+ else \
+ { \
+ if (_FP_W_TYPE_SIZE*wc < rsize) \
+ { \
+ _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
+ r <<= X##_e - _FP_WFRACBITS_##fs; \
+ } \
+ else \
+ { \
+ if (X##_e >= _FP_WFRACBITS_##fs) \
+ _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));\
+ else \
+ _FP_FRAC_SRL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));\
+ _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
+ } \
+ if (rsigned && X##_s) \
+ r = -r; \
+ } \
+ break; \
+ } \
+ } while (0)
+
+#define _FP_FROM_INT(fs, wc, X, r, rsize, rtype) \
+ do { \
+ if (r) \
+ { \
+ X##_c = FP_CLS_NORMAL; \
+ \
+ if ((X##_s = (r < 0))) \
+ r = -r; \
+ /* Note that `r' is now considered unsigned, so we don't have \
+ to worry about the single signed overflow case. */ \
+ \
+ if (rsize <= _FP_W_TYPE_SIZE) \
+ __FP_CLZ(X##_e, r); \
+ else \
+ __FP_CLZ_2(X##_e, (_FP_W_TYPE)(r >> _FP_W_TYPE_SIZE), \
+ (_FP_W_TYPE)r); \
+ if (rsize < _FP_W_TYPE_SIZE) \
+ X##_e -= (_FP_W_TYPE_SIZE - rsize); \
+ X##_e = rsize - X##_e - 1; \
+ \
+ if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs < X##_e) \
+ __FP_FRAC_SRS_1(r, (X##_e - _FP_WFRACBITS_##fs), rsize); \
+ r &= ~((_FP_W_TYPE)1 << X##_e); \
+ _FP_FRAC_DISASSEMBLE_##wc(X, ((unsigned rtype)r), rsize); \
+ _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1)); \
+ } \
+ else \
+ { \
+ X##_c = FP_CLS_ZERO, X##_s = 0; \
+ } \
+ } while (0)
+
+
+#define FP_CONV(dfs,sfs,dwc,swc,D,S) \
+ do { \
+ _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S); \
+ D##_e = S##_e; \
+ D##_c = S##_c; \
+ D##_s = S##_s; \
+ } while (0)
+
+/*
+ * Helper primitives.
+ */
+
+/* Count leading zeros in a word. */
+
+#ifndef __FP_CLZ
+#if _FP_W_TYPE_SIZE < 64
+/* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */
+#define __FP_CLZ(r, x) \
+ do { \
+ _FP_W_TYPE _t = (x); \
+ r = _FP_W_TYPE_SIZE - 1; \
+ if (_t > 0xffff) r -= 16; \
+ if (_t > 0xffff) _t >>= 16; \
+ if (_t > 0xff) r -= 8; \
+ if (_t > 0xff) _t >>= 8; \
+ if (_t & 0xf0) r -= 4; \
+ if (_t & 0xf0) _t >>= 4; \
+ if (_t & 0xc) r -= 2; \
+ if (_t & 0xc) _t >>= 2; \
+ if (_t & 0x2) r -= 1; \
+ } while (0)
+#else /* not _FP_W_TYPE_SIZE < 64 */
+#define __FP_CLZ(r, x) \
+ do { \
+ _FP_W_TYPE _t = (x); \
+ r = _FP_W_TYPE_SIZE - 1; \
+ if (_t > 0xffffffff) r -= 32; \
+ if (_t > 0xffffffff) _t >>= 32; \
+ if (_t > 0xffff) r -= 16; \
+ if (_t > 0xffff) _t >>= 16; \
+ if (_t > 0xff) r -= 8; \
+ if (_t > 0xff) _t >>= 8; \
+ if (_t & 0xf0) r -= 4; \
+ if (_t & 0xf0) _t >>= 4; \
+ if (_t & 0xc) r -= 2; \
+ if (_t & 0xc) _t >>= 2; \
+ if (_t & 0x2) r -= 1; \
+ } while (0)
+#endif /* not _FP_W_TYPE_SIZE < 64 */
+#endif /* ndef __FP_CLZ */
+
+#define _FP_DIV_HELP_imm(q, r, n, d) \
+ do { \
+ q = n / d, r = n % d; \
+ } while (0)
+