diff options
Diffstat (limited to 'arch/arm/kvm')
-rw-r--r-- | arch/arm/kvm/Makefile | 7 | ||||
-rw-r--r-- | arch/arm/kvm/arm.c | 1480 | ||||
-rw-r--r-- | arch/arm/kvm/mmio.c | 217 | ||||
-rw-r--r-- | arch/arm/kvm/mmu.c | 1958 | ||||
-rw-r--r-- | arch/arm/kvm/perf.c | 68 | ||||
-rw-r--r-- | arch/arm/kvm/psci.c | 332 | ||||
-rw-r--r-- | arch/arm/kvm/trace.h | 247 |
7 files changed, 5 insertions, 4304 deletions
diff --git a/arch/arm/kvm/Makefile b/arch/arm/kvm/Makefile index 7b3670c2ae7b..d9beee652d36 100644 --- a/arch/arm/kvm/Makefile +++ b/arch/arm/kvm/Makefile @@ -18,9 +18,12 @@ KVM := ../../../virt/kvm kvm-arm-y = $(KVM)/kvm_main.o $(KVM)/coalesced_mmio.o $(KVM)/eventfd.o $(KVM)/vfio.o obj-$(CONFIG_KVM_ARM_HOST) += hyp/ + obj-y += kvm-arm.o init.o interrupts.o -obj-y += arm.o handle_exit.o guest.o mmu.o emulate.o reset.o -obj-y += coproc.o coproc_a15.o coproc_a7.o mmio.o psci.o perf.o vgic-v3-coproc.o +obj-y += handle_exit.o guest.o emulate.o reset.o +obj-y += coproc.o coproc_a15.o coproc_a7.o vgic-v3-coproc.o +obj-y += $(KVM)/arm/arm.o $(KVM)/arm/mmu.o $(KVM)/arm/mmio.o +obj-y += $(KVM)/arm/psci.o $(KVM)/arm/perf.o obj-y += $(KVM)/arm/aarch32.o obj-y += $(KVM)/arm/vgic/vgic.o diff --git a/arch/arm/kvm/arm.c b/arch/arm/kvm/arm.c deleted file mode 100644 index 7941699a766d..000000000000 --- a/arch/arm/kvm/arm.c +++ /dev/null @@ -1,1480 +0,0 @@ -/* - * Copyright (C) 2012 - Virtual Open Systems and Columbia University - * Author: Christoffer Dall <c.dall@virtualopensystems.com> - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License, version 2, as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. - */ - -#include <linux/cpu_pm.h> -#include <linux/errno.h> -#include <linux/err.h> -#include <linux/kvm_host.h> -#include <linux/list.h> -#include <linux/module.h> -#include <linux/vmalloc.h> -#include <linux/fs.h> -#include <linux/mman.h> -#include <linux/sched.h> -#include <linux/kvm.h> -#include <trace/events/kvm.h> -#include <kvm/arm_pmu.h> - -#define CREATE_TRACE_POINTS -#include "trace.h" - -#include <linux/uaccess.h> -#include <asm/ptrace.h> -#include <asm/mman.h> -#include <asm/tlbflush.h> -#include <asm/cacheflush.h> -#include <asm/virt.h> -#include <asm/kvm_arm.h> -#include <asm/kvm_asm.h> -#include <asm/kvm_mmu.h> -#include <asm/kvm_emulate.h> -#include <asm/kvm_coproc.h> -#include <asm/kvm_psci.h> -#include <asm/sections.h> - -#ifdef REQUIRES_VIRT -__asm__(".arch_extension virt"); -#endif - -static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); -static kvm_cpu_context_t __percpu *kvm_host_cpu_state; - -/* Per-CPU variable containing the currently running vcpu. */ -static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu); - -/* The VMID used in the VTTBR */ -static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); -static u32 kvm_next_vmid; -static unsigned int kvm_vmid_bits __read_mostly; -static DEFINE_SPINLOCK(kvm_vmid_lock); - -static bool vgic_present; - -static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled); - -static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu) -{ - BUG_ON(preemptible()); - __this_cpu_write(kvm_arm_running_vcpu, vcpu); -} - -/** - * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU. - * Must be called from non-preemptible context - */ -struct kvm_vcpu *kvm_arm_get_running_vcpu(void) -{ - BUG_ON(preemptible()); - return __this_cpu_read(kvm_arm_running_vcpu); -} - -/** - * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus. - */ -struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) -{ - return &kvm_arm_running_vcpu; -} - -int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) -{ - return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; -} - -int kvm_arch_hardware_setup(void) -{ - return 0; -} - -void kvm_arch_check_processor_compat(void *rtn) -{ - *(int *)rtn = 0; -} - - -/** - * kvm_arch_init_vm - initializes a VM data structure - * @kvm: pointer to the KVM struct - */ -int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) -{ - int ret, cpu; - - if (type) - return -EINVAL; - - kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran)); - if (!kvm->arch.last_vcpu_ran) - return -ENOMEM; - - for_each_possible_cpu(cpu) - *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1; - - ret = kvm_alloc_stage2_pgd(kvm); - if (ret) - goto out_fail_alloc; - - ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP); - if (ret) - goto out_free_stage2_pgd; - - kvm_vgic_early_init(kvm); - - /* Mark the initial VMID generation invalid */ - kvm->arch.vmid_gen = 0; - - /* The maximum number of VCPUs is limited by the host's GIC model */ - kvm->arch.max_vcpus = vgic_present ? - kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; - - return ret; -out_free_stage2_pgd: - kvm_free_stage2_pgd(kvm); -out_fail_alloc: - free_percpu(kvm->arch.last_vcpu_ran); - kvm->arch.last_vcpu_ran = NULL; - return ret; -} - -bool kvm_arch_has_vcpu_debugfs(void) -{ - return false; -} - -int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) -{ - return 0; -} - -int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) -{ - return VM_FAULT_SIGBUS; -} - - -/** - * kvm_arch_destroy_vm - destroy the VM data structure - * @kvm: pointer to the KVM struct - */ -void kvm_arch_destroy_vm(struct kvm *kvm) -{ - int i; - - free_percpu(kvm->arch.last_vcpu_ran); - kvm->arch.last_vcpu_ran = NULL; - - for (i = 0; i < KVM_MAX_VCPUS; ++i) { - if (kvm->vcpus[i]) { - kvm_arch_vcpu_free(kvm->vcpus[i]); - kvm->vcpus[i] = NULL; - } - } - - kvm_vgic_destroy(kvm); -} - -int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) -{ - int r; - switch (ext) { - case KVM_CAP_IRQCHIP: - r = vgic_present; - break; - case KVM_CAP_IOEVENTFD: - case KVM_CAP_DEVICE_CTRL: - case KVM_CAP_USER_MEMORY: - case KVM_CAP_SYNC_MMU: - case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: - case KVM_CAP_ONE_REG: - case KVM_CAP_ARM_PSCI: - case KVM_CAP_ARM_PSCI_0_2: - case KVM_CAP_READONLY_MEM: - case KVM_CAP_MP_STATE: - case KVM_CAP_IMMEDIATE_EXIT: - r = 1; - break; - case KVM_CAP_COALESCED_MMIO: - r = KVM_COALESCED_MMIO_PAGE_OFFSET; - break; - case KVM_CAP_ARM_SET_DEVICE_ADDR: - r = 1; - break; - case KVM_CAP_NR_VCPUS: - r = num_online_cpus(); - break; - case KVM_CAP_MAX_VCPUS: - r = KVM_MAX_VCPUS; - break; - case KVM_CAP_NR_MEMSLOTS: - r = KVM_USER_MEM_SLOTS; - break; - case KVM_CAP_MSI_DEVID: - if (!kvm) - r = -EINVAL; - else - r = kvm->arch.vgic.msis_require_devid; - break; - case KVM_CAP_ARM_USER_IRQ: - /* - * 1: EL1_VTIMER, EL1_PTIMER, and PMU. - * (bump this number if adding more devices) - */ - r = 1; - break; - default: - r = kvm_arch_dev_ioctl_check_extension(kvm, ext); - break; - } - return r; -} - -long kvm_arch_dev_ioctl(struct file *filp, - unsigned int ioctl, unsigned long arg) -{ - return -EINVAL; -} - - -struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) -{ - int err; - struct kvm_vcpu *vcpu; - - if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) { - err = -EBUSY; - goto out; - } - - if (id >= kvm->arch.max_vcpus) { - err = -EINVAL; - goto out; - } - - vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); - if (!vcpu) { - err = -ENOMEM; - goto out; - } - - err = kvm_vcpu_init(vcpu, kvm, id); - if (err) - goto free_vcpu; - - err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP); - if (err) - goto vcpu_uninit; - - return vcpu; -vcpu_uninit: - kvm_vcpu_uninit(vcpu); -free_vcpu: - kmem_cache_free(kvm_vcpu_cache, vcpu); -out: - return ERR_PTR(err); -} - -void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) -{ - kvm_vgic_vcpu_early_init(vcpu); -} - -void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) -{ - kvm_mmu_free_memory_caches(vcpu); - kvm_timer_vcpu_terminate(vcpu); - kvm_vgic_vcpu_destroy(vcpu); - kvm_pmu_vcpu_destroy(vcpu); - kvm_vcpu_uninit(vcpu); - kmem_cache_free(kvm_vcpu_cache, vcpu); -} - -void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) -{ - kvm_arch_vcpu_free(vcpu); -} - -int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) -{ - return kvm_timer_should_fire(vcpu_vtimer(vcpu)) || - kvm_timer_should_fire(vcpu_ptimer(vcpu)); -} - -void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) -{ - kvm_timer_schedule(vcpu); -} - -void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) -{ - kvm_timer_unschedule(vcpu); -} - -int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) -{ - /* Force users to call KVM_ARM_VCPU_INIT */ - vcpu->arch.target = -1; - bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); - - /* Set up the timer */ - kvm_timer_vcpu_init(vcpu); - - kvm_arm_reset_debug_ptr(vcpu); - - return 0; -} - -void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) -{ - int *last_ran; - - last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran); - - /* - * We might get preempted before the vCPU actually runs, but - * over-invalidation doesn't affect correctness. - */ - if (*last_ran != vcpu->vcpu_id) { - kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu); - *last_ran = vcpu->vcpu_id; - } - - vcpu->cpu = cpu; - vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state); - - kvm_arm_set_running_vcpu(vcpu); - - kvm_vgic_load(vcpu); -} - -void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) -{ - kvm_vgic_put(vcpu); - - vcpu->cpu = -1; - - kvm_arm_set_running_vcpu(NULL); - kvm_timer_vcpu_put(vcpu); -} - -int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, - struct kvm_mp_state *mp_state) -{ - if (vcpu->arch.power_off) - mp_state->mp_state = KVM_MP_STATE_STOPPED; - else - mp_state->mp_state = KVM_MP_STATE_RUNNABLE; - - return 0; -} - -int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, - struct kvm_mp_state *mp_state) -{ - switch (mp_state->mp_state) { - case KVM_MP_STATE_RUNNABLE: - vcpu->arch.power_off = false; - break; - case KVM_MP_STATE_STOPPED: - vcpu->arch.power_off = true; - break; - default: - return -EINVAL; - } - - return 0; -} - -/** - * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled - * @v: The VCPU pointer - * - * If the guest CPU is not waiting for interrupts or an interrupt line is - * asserted, the CPU is by definition runnable. - */ -int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) -{ - return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v)) - && !v->arch.power_off && !v->arch.pause); -} - -/* Just ensure a guest exit from a particular CPU */ -static void exit_vm_noop(void *info) -{ -} - -void force_vm_exit(const cpumask_t *mask) -{ - preempt_disable(); - smp_call_function_many(mask, exit_vm_noop, NULL, true); - preempt_enable(); -} - -/** - * need_new_vmid_gen - check that the VMID is still valid - * @kvm: The VM's VMID to check - * - * return true if there is a new generation of VMIDs being used - * - * The hardware supports only 256 values with the value zero reserved for the - * host, so we check if an assigned value belongs to a previous generation, - * which which requires us to assign a new value. If we're the first to use a - * VMID for the new generation, we must flush necessary caches and TLBs on all - * CPUs. - */ -static bool need_new_vmid_gen(struct kvm *kvm) -{ - return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen)); -} - -/** - * update_vttbr - Update the VTTBR with a valid VMID before the guest runs - * @kvm The guest that we are about to run - * - * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the - * VM has a valid VMID, otherwise assigns a new one and flushes corresponding - * caches and TLBs. - */ -static void update_vttbr(struct kvm *kvm) -{ - phys_addr_t pgd_phys; - u64 vmid; - - if (!need_new_vmid_gen(kvm)) - return; - - spin_lock(&kvm_vmid_lock); - - /* - * We need to re-check the vmid_gen here to ensure that if another vcpu - * already allocated a valid vmid for this vm, then this vcpu should - * use the same vmid. - */ - if (!need_new_vmid_gen(kvm)) { - spin_unlock(&kvm_vmid_lock); - return; - } - - /* First user of a new VMID generation? */ - if (unlikely(kvm_next_vmid == 0)) { - atomic64_inc(&kvm_vmid_gen); - kvm_next_vmid = 1; - - /* - * On SMP we know no other CPUs can use this CPU's or each - * other's VMID after force_vm_exit returns since the - * kvm_vmid_lock blocks them from reentry to the guest. - */ - force_vm_exit(cpu_all_mask); - /* - * Now broadcast TLB + ICACHE invalidation over the inner - * shareable domain to make sure all data structures are - * clean. - */ - kvm_call_hyp(__kvm_flush_vm_context); - } - - kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen); - kvm->arch.vmid = kvm_next_vmid; - kvm_next_vmid++; - kvm_next_vmid &= (1 << kvm_vmid_bits) - 1; - - /* update vttbr to be used with the new vmid */ - pgd_phys = virt_to_phys(kvm->arch.pgd); - BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK); - vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits); - kvm->arch.vttbr = pgd_phys | vmid; - - spin_unlock(&kvm_vmid_lock); -} - -static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) -{ - struct kvm *kvm = vcpu->kvm; - int ret = 0; - - if (likely(vcpu->arch.has_run_once)) - return 0; - - vcpu->arch.has_run_once = true; - - /* - * Map the VGIC hardware resources before running a vcpu the first - * time on this VM. - */ - if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) { - ret = kvm_vgic_map_resources(kvm); - if (ret) - return ret; - } - - ret = kvm_timer_enable(vcpu); - - return ret; -} - -bool kvm_arch_intc_initialized(struct kvm *kvm) -{ - return vgic_initialized(kvm); -} - -void kvm_arm_halt_guest(struct kvm *kvm) -{ - int i; - struct kvm_vcpu *vcpu; - - kvm_for_each_vcpu(i, vcpu, kvm) - vcpu->arch.pause = true; - kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT); -} - -void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu) -{ - vcpu->arch.pause = true; - kvm_vcpu_kick(vcpu); -} - -void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu) -{ - struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu); - - vcpu->arch.pause = false; - swake_up(wq); -} - -void kvm_arm_resume_guest(struct kvm *kvm) -{ - int i; - struct kvm_vcpu *vcpu; - - kvm_for_each_vcpu(i, vcpu, kvm) - kvm_arm_resume_vcpu(vcpu); -} - -static void vcpu_sleep(struct kvm_vcpu *vcpu) -{ - struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu); - - swait_event_interruptible(*wq, ((!vcpu->arch.power_off) && - (!vcpu->arch.pause))); -} - -static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) -{ - return vcpu->arch.target >= 0; -} - -/** - * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code - * @vcpu: The VCPU pointer - * @run: The kvm_run structure pointer used for userspace state exchange - * - * This function is called through the VCPU_RUN ioctl called from user space. It - * will execute VM code in a loop until the time slice for the process is used - * or some emulation is needed from user space in which case the function will - * return with return value 0 and with the kvm_run structure filled in with the - * required data for the requested emulation. - */ -int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) -{ - int ret; - sigset_t sigsaved; - - if (unlikely(!kvm_vcpu_initialized(vcpu))) - return -ENOEXEC; - - ret = kvm_vcpu_first_run_init(vcpu); - if (ret) - return ret; - - if (run->exit_reason == KVM_EXIT_MMIO) { - ret = kvm_handle_mmio_return(vcpu, vcpu->run); - if (ret) - return ret; - } - - if (run->immediate_exit) - return -EINTR; - - if (vcpu->sigset_active) - sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); - - ret = 1; - run->exit_reason = KVM_EXIT_UNKNOWN; - while (ret > 0) { - /* - * Check conditions before entering the guest - */ - cond_resched(); - - update_vttbr(vcpu->kvm); - - if (vcpu->arch.power_off || vcpu->arch.pause) - vcpu_sleep(vcpu); - - /* - * Preparing the interrupts to be injected also - * involves poking the GIC, which must be done in a - * non-preemptible context. - */ - preempt_disable(); - - kvm_pmu_flush_hwstate(vcpu); - - kvm_timer_flush_hwstate(vcpu); - kvm_vgic_flush_hwstate(vcpu); - - local_irq_disable(); - - /* - * If we have a singal pending, or need to notify a userspace - * irqchip about timer or PMU level changes, then we exit (and - * update the timer level state in kvm_timer_update_run - * below). - */ - if (signal_pending(current) || - kvm_timer_should_notify_user(vcpu) || - kvm_pmu_should_notify_user(vcpu)) { - ret = -EINTR; - run->exit_reason = KVM_EXIT_INTR; - } - - if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) || - vcpu->arch.power_off || vcpu->arch.pause) { - local_irq_enable(); - kvm_pmu_sync_hwstate(vcpu); - kvm_timer_sync_hwstate(vcpu); - kvm_vgic_sync_hwstate(vcpu); - preempt_enable(); - continue; - } - - kvm_arm_setup_debug(vcpu); - - /************************************************************** - * Enter the guest - */ - trace_kvm_entry(*vcpu_pc(vcpu)); - guest_enter_irqoff(); - vcpu->mode = IN_GUEST_MODE; - - ret = kvm_call_hyp(__kvm_vcpu_run, vcpu); - - vcpu->mode = OUTSIDE_GUEST_MODE; - vcpu->stat.exits++; - /* - * Back from guest - *************************************************************/ - - kvm_arm_clear_debug(vcpu); - - /* - * We may have taken a host interrupt in HYP mode (ie - * while executing the guest). This interrupt is still - * pending, as we haven't serviced it yet! - * - * We're now back in SVC mode, with interrupts - * disabled. Enabling the interrupts now will have - * the effect of taking the interrupt again, in SVC - * mode this time. - */ - local_irq_enable(); - - /* - * We do local_irq_enable() before calling guest_exit() so - * that if a timer interrupt hits while running the guest we - * account that tick as being spent in the guest. We enable - * preemption after calling guest_exit() so that if we get - * preempted we make sure ticks after that is not counted as - * guest time. - */ - guest_exit(); - trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); - - /* - * We must sync the PMU and timer state before the vgic state so - * that the vgic can properly sample the updated state of the - * interrupt line. - */ - kvm_pmu_sync_hwstate(vcpu); - kvm_timer_sync_hwstate(vcpu); - - kvm_vgic_sync_hwstate(vcpu); - - preempt_enable(); - - ret = handle_exit(vcpu, run, ret); - } - - /* Tell userspace about in-kernel device output levels */ - if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { - kvm_timer_update_run(vcpu); - kvm_pmu_update_run(vcpu); - } - - if (vcpu->sigset_active) - sigprocmask(SIG_SETMASK, &sigsaved, NULL); - return ret; -} - -static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) -{ - int bit_index; - bool set; - unsigned long *ptr; - - if (number == KVM_ARM_IRQ_CPU_IRQ) - bit_index = __ffs(HCR_VI); - else /* KVM_ARM_IRQ_CPU_FIQ */ - bit_index = __ffs(HCR_VF); - - ptr = (unsigned long *)&vcpu->arch.irq_lines; - if (level) - set = test_and_set_bit(bit_index, ptr); - else - set = test_and_clear_bit(bit_index, ptr); - - /* - * If we didn't change anything, no need to wake up or kick other CPUs - */ - if (set == level) - return 0; - - /* - * The vcpu irq_lines field was updated, wake up sleeping VCPUs and - * trigger a world-switch round on the running physical CPU to set the - * virtual IRQ/FIQ fields in the HCR appropriately. - */ - kvm_vcpu_kick(vcpu); - - return 0; -} - -int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, - bool line_status) -{ - u32 irq = irq_level->irq; - unsigned int irq_type, vcpu_idx, irq_num; - int nrcpus = atomic_read(&kvm->online_vcpus); - struct kvm_vcpu *vcpu = NULL; - bool level = irq_level->level; - - irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; - vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; - irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; - - trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); - - switch (irq_type) { - case KVM_ARM_IRQ_TYPE_CPU: - if (irqchip_in_kernel(kvm)) - return -ENXIO; - - if (vcpu_idx >= nrcpus) - return -EINVAL; - - vcpu = kvm_get_vcpu(kvm, vcpu_idx); - if (!vcpu) - return -EINVAL; - - if (irq_num > KVM_ARM_IRQ_CPU_FIQ) - return -EINVAL; - - return vcpu_interrupt_line(vcpu, irq_num, level); - case KVM_ARM_IRQ_TYPE_PPI: - if (!irqchip_in_kernel(kvm)) - return -ENXIO; - - if (vcpu_idx >= nrcpus) - return -EINVAL; - - vcpu = kvm_get_vcpu(kvm, vcpu_idx); - if (!vcpu) - return -EINVAL; - - if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) - return -EINVAL; - - return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level); - case KVM_ARM_IRQ_TYPE_SPI: - if (!irqchip_in_kernel(kvm)) - return -ENXIO; - - if (irq_num < VGIC_NR_PRIVATE_IRQS) - return -EINVAL; - - return kvm_vgic_inject_irq(kvm, 0, irq_num, level); - } - - return -EINVAL; -} - -static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, - const struct kvm_vcpu_init *init) -{ - unsigned int i; - int phys_target = kvm_target_cpu(); - - if (init->target != phys_target) - return -EINVAL; - - /* - * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must - * use the same target. - */ - if (vcpu->arch.target != -1 && vcpu->arch.target != init->target) - return -EINVAL; - - /* -ENOENT for unknown features, -EINVAL for invalid combinations. */ - for (i = 0; i < sizeof(init->features) * 8; i++) { - bool set = (init->features[i / 32] & (1 << (i % 32))); - - if (set && i >= KVM_VCPU_MAX_FEATURES) - return -ENOENT; - - /* - * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must - * use the same feature set. - */ - if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES && - test_bit(i, vcpu->arch.features) != set) - return -EINVAL; - - if (set) - set_bit(i, vcpu->arch.features); - } - - vcpu->arch.target = phys_target; - - /* Now we know what it is, we can reset it. */ - return kvm_reset_vcpu(vcpu); -} - - -static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, - struct kvm_vcpu_init *init) -{ - int ret; - - ret = kvm_vcpu_set_target(vcpu, init); - if (ret) - return ret; - - /* - * Ensure a rebooted VM will fault in RAM pages and detect if the - * guest MMU is turned off and flush the caches as needed. - */ - if (vcpu->arch.has_run_once) - stage2_unmap_vm(vcpu->kvm); - - vcpu_reset_hcr(vcpu); - - /* - * Handle the "start in power-off" case. - */ - if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) - vcpu->arch.power_off = true; - else - vcpu->arch.power_off = false; - - return 0; -} - -static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, - struct kvm_device_attr *attr) -{ - int ret = -ENXIO; - - switch (attr->group) { - default: - ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); - break; - } - - return ret; -} - -static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, - struct kvm_device_attr *attr) -{ - int ret = -ENXIO; - - switch (attr->group) { - default: - ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); - break; - } - - return ret; -} - -static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, - struct kvm_device_attr *attr) -{ - int ret = -ENXIO; - - switch (attr->group) { - default: - ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); - break; - } - - return ret; -} - -long kvm_arch_vcpu_ioctl(struct file *filp, - unsigned int ioctl, unsigned long arg) -{ - struct kvm_vcpu *vcpu = filp->private_data; - void __user *argp = (void __user *)arg; - struct kvm_device_attr attr; - - switch (ioctl) { - case KVM_ARM_VCPU_INIT: { - struct kvm_vcpu_init init; - - if (copy_from_user(&init, argp, sizeof(init))) - return -EFAULT; - - return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); - } - case KVM_SET_ONE_REG: - case KVM_GET_ONE_REG: { - struct kvm_one_reg reg; - - if (unlikely(!kvm_vcpu_initialized(vcpu))) - return -ENOEXEC; - - if (copy_from_user(®, argp, sizeof(reg))) - return -EFAULT; - if (ioctl == KVM_SET_ONE_REG) - return kvm_arm_set_reg(vcpu, ®); - else - return kvm_arm_get_reg(vcpu, ®); - } - case KVM_GET_REG_LIST: { - struct kvm_reg_list __user *user_list = argp; - struct kvm_reg_list reg_list; - unsigned n; - - if (unlikely(!kvm_vcpu_initialized(vcpu))) - return -ENOEXEC; - - if (copy_from_user(®_list, user_list, sizeof(reg_list))) - return -EFAULT; - n = reg_list.n; - reg_list.n = kvm_arm_num_regs(vcpu); - if (copy_to_user(user_list, ®_list, sizeof(reg_list))) - return -EFAULT; - if (n < reg_list.n) - return -E2BIG; - return kvm_arm_copy_reg_indices(vcpu, user_list->reg); - } - case KVM_SET_DEVICE_ATTR: { - if (copy_from_user(&attr, argp, sizeof(attr))) - return -EFAULT; - return kvm_arm_vcpu_set_attr(vcpu, &attr); - } - case KVM_GET_DEVICE_ATTR: { - if (copy_from_user(&attr, argp, sizeof(attr))) - return -EFAULT; - return kvm_arm_vcpu_get_attr(vcpu, &attr); - } - case KVM_HAS_DEVICE_ATTR: { - if (copy_from_user(&attr, argp, sizeof(attr))) - return -EFAULT; - return kvm_arm_vcpu_has_attr(vcpu, &attr); - } - default: - return -EINVAL; - } -} - -/** - * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot - * @kvm: kvm instance - * @log: slot id and address to which we copy the log - * - * Steps 1-4 below provide general overview of dirty page logging. See - * kvm_get_dirty_log_protect() function description for additional details. - * - * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we - * always flush the TLB (step 4) even if previous step failed and the dirty - * bitmap may be corrupt. Regardless of previous outcome the KVM logging API - * does not preclude user space subsequent dirty log read. Flushing TLB ensures - * writes will be marked dirty for next log read. - * - * 1. Take a snapshot of the bit and clear it if needed. - * 2. Write protect the corresponding page. - * 3. Copy the snapshot to the userspace. - * 4. Flush TLB's if needed. - */ -int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) -{ - bool is_dirty = false; - int r; - - mutex_lock(&kvm->slots_lock); - - r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); - - if (is_dirty) - kvm_flush_remote_tlbs(kvm); - - mutex_unlock(&kvm->slots_lock); - return r; -} - -static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, - struct kvm_arm_device_addr *dev_addr) -{ - unsigned long dev_id, type; - - dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >> - KVM_ARM_DEVICE_ID_SHIFT; - type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >> - KVM_ARM_DEVICE_TYPE_SHIFT; - - switch (dev_id) { - case KVM_ARM_DEVICE_VGIC_V2: - if (!vgic_present) - return -ENXIO; - return kvm_vgic_addr(kvm, type, &dev_addr->addr, true); - default: - return -ENODEV; - } -} - -long kvm_arch_vm_ioctl(struct file *filp, - unsigned int ioctl, unsigned long arg) -{ - struct kvm *kvm = filp->private_data; - void __user *argp = (void __user *)arg; - - switch (ioctl) { - case KVM_CREATE_IRQCHIP: { - int ret; - if (!vgic_present) - return -ENXIO; - mutex_lock(&kvm->lock); - ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); - mutex_unlock(&kvm->lock); - return ret; - } - case KVM_ARM_SET_DEVICE_ADDR: { - struct kvm_arm_device_addr dev_addr; - - if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) - return -EFAULT; - return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); - } - case KVM_ARM_PREFERRED_TARGET: { - int err; - struct kvm_vcpu_init init; - - err = kvm_vcpu_preferred_target(&init); - if (err) - return err; - - if (copy_to_user(argp, &init, sizeof(init))) - return -EFAULT; - - return 0; - } - default: - return -EINVAL; - } -} - -static void cpu_init_hyp_mode(void *dummy) -{ - phys_addr_t pgd_ptr; - unsigned long hyp_stack_ptr; - unsigned long stack_page; - unsigned long vector_ptr; - - /* Switch from the HYP stub to our own HYP init vector */ - __hyp_set_vectors(kvm_get_idmap_vector()); - - pgd_ptr = kvm_mmu_get_httbr(); - stack_page = __this_cpu_read(kvm_arm_hyp_stack_page); - hyp_stack_ptr = stack_page + PAGE_SIZE; - vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector); - - __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr); - __cpu_init_stage2(); - - if (is_kernel_in_hyp_mode()) - kvm_timer_init_vhe(); - - kvm_arm_init_debug(); -} - -static void cpu_hyp_reset(void) -{ - if (!is_kernel_in_hyp_mode()) - __hyp_reset_vectors(); -} - -static void cpu_hyp_reinit(void) -{ - cpu_hyp_reset(); - - if (is_kernel_in_hyp_mode()) { - /* - * __cpu_init_stage2() is safe to call even if the PM - * event was cancelled before the CPU was reset. - */ - __cpu_init_stage2(); - } else { - cpu_init_hyp_mode(NULL); - } -} - -static void _kvm_arch_hardware_enable(void *discard) -{ - if (!__this_cpu_read(kvm_arm_hardware_enabled)) { - cpu_hyp_reinit(); - __this_cpu_write(kvm_arm_hardware_enabled, 1); - } -} - -int kvm_arch_hardware_enable(void) -{ - _kvm_arch_hardware_enable(NULL); - return 0; -} - -static void _kvm_arch_hardware_disable(void *discard) -{ - if (__this_cpu_read(kvm_arm_hardware_enabled)) { - cpu_hyp_reset(); - __this_cpu_write(kvm_arm_hardware_enabled, 0); - } -} - -void kvm_arch_hardware_disable(void) -{ - _kvm_arch_hardware_disable(NULL); -} - -#ifdef CONFIG_CPU_PM -static int hyp_init_cpu_pm_notifier(struct notifier_block *self, - unsigned long cmd, - void *v) -{ - /* - * kvm_arm_hardware_enabled is left with its old value over - * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should - * re-enable hyp. - */ - switch (cmd) { - case CPU_PM_ENTER: - if (__this_cpu_read(kvm_arm_hardware_enabled)) - /* - * don't update kvm_arm_hardware_enabled here - * so that the hardware will be re-enabled - * when we resume. See below. - */ - cpu_hyp_reset(); - - return NOTIFY_OK; - case CPU_PM_EXIT: - if (__this_cpu_read(kvm_arm_hardware_enabled)) - /* The hardware was enabled before suspend. */ - cpu_hyp_reinit(); - - return NOTIFY_OK; - - default: - return NOTIFY_DONE; - } -} - -static struct notifier_block hyp_init_cpu_pm_nb = { - .notifier_call = hyp_init_cpu_pm_notifier, -}; - -static void __init hyp_cpu_pm_init(void) -{ - cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); -} -static void __init hyp_cpu_pm_exit(void) -{ - cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); -} -#else -static inline void hyp_cpu_pm_init(void) -{ -} -static inline void hyp_cpu_pm_exit(void) -{ -} -#endif - -static void teardown_common_resources(void) -{ - free_percpu(kvm_host_cpu_state); -} - -static int init_common_resources(void) -{ - kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t); - if (!kvm_host_cpu_state) { - kvm_err("Cannot allocate host CPU state\n"); - return -ENOMEM; - } - - /* set size of VMID supported by CPU */ - kvm_vmid_bits = kvm_get_vmid_bits(); - kvm_info("%d-bit VMID\n", kvm_vmid_bits); - - return 0; -} - -static int init_subsystems(void) -{ - int err = 0; - - /* - * Enable hardware so that subsystem initialisation can access EL2. - */ - on_each_cpu(_kvm_arch_hardware_enable, NULL, 1); - - /* - * Register CPU lower-power notifier - */ - hyp_cpu_pm_init(); - - /* - * Init HYP view of VGIC - */ - err = kvm_vgic_hyp_init(); - switch (err) { - case 0: - vgic_present = true; - break; - case -ENODEV: - case -ENXIO: - vgic_present = false; - err = 0; - break; - default: - goto out; - } - - /* - * Init HYP architected timer support - */ - err = kvm_timer_hyp_init(); - if (err) - goto out; - - kvm_perf_init(); - kvm_coproc_table_init(); - -out: - on_each_cpu(_kvm_arch_hardware_disable, NULL, 1); - - return err; -} - -static void teardown_hyp_mode(void) -{ - int cpu; - - if (is_kernel_in_hyp_mode()) - return; - - free_hyp_pgds(); - for_each_possible_cpu(cpu) - free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); - hyp_cpu_pm_exit(); -} - -static int init_vhe_mode(void) -{ - kvm_info("VHE mode initialized successfully\n"); - return 0; -} - -/** - * Inits Hyp-mode on all online CPUs - */ -static int init_hyp_mode(void) -{ - int cpu; - int err = 0; - - /* - * Allocate Hyp PGD and setup Hyp identity mapping - */ - err = kvm_mmu_init(); - if (err) - goto out_err; - - /* - * Allocate stack pages for Hypervisor-mode - */ - for_each_possible_cpu(cpu) { - unsigned long stack_page; - - stack_page = __get_free_page(GFP_KERNEL); - if (!stack_page) { - err = -ENOMEM; - goto out_err; - } - - per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; - } - - /* - * Map the Hyp-code called directly from the host - */ - err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), - kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); - if (err) { - kvm_err("Cannot map world-switch code\n"); - goto out_err; - } - - err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), - kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); - if (err) { - kvm_err("Cannot map rodata section\n"); - goto out_err; - } - - err = create_hyp_mappings(kvm_ksym_ref(__bss_start), - kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); - if (err) { - kvm_err("Cannot map bss section\n"); - goto out_err; - } - - /* - * Map the Hyp stack pages - */ - for_each_possible_cpu(cpu) { - char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); - err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE, - PAGE_HYP); - - if (err) { - kvm_err("Cannot map hyp stack\n"); - goto out_err; - } - } - - for_each_possible_cpu(cpu) { - kvm_cpu_context_t *cpu_ctxt; - - cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu); - err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP); - - if (err) { - kvm_err("Cannot map host CPU state: %d\n", err); - goto out_err; - } - } - - kvm_info("Hyp mode initialized successfully\n"); - - return 0; - -out_err: - teardown_hyp_mode(); - kvm_err("error initializing Hyp mode: %d\n", err); - return err; -} - -static void check_kvm_target_cpu(void *ret) -{ - *(int *)ret = kvm_target_cpu(); -} - -struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) -{ - struct kvm_vcpu *vcpu; - int i; - - mpidr &= MPIDR_HWID_BITMASK; - kvm_for_each_vcpu(i, vcpu, kvm) { - if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) - return vcpu; - } - return NULL; -} - -/** - * Initialize Hyp-mode and memory mappings on all CPUs. - */ -int kvm_arch_init(void *opaque) -{ - int err; - int ret, cpu; - - if (!is_hyp_mode_available()) { - kvm_err("HYP mode not available\n"); - return -ENODEV; - } - - for_each_online_cpu(cpu) { - smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1); - if (ret < 0) { - kvm_err("Error, CPU %d not supported!\n", cpu); - return -ENODEV; - } - } - - err = init_common_resources(); - if (err) - return err; - - if (is_kernel_in_hyp_mode()) - err = init_vhe_mode(); - else - err = init_hyp_mode(); - if (err) - goto out_err; - - err = init_subsystems(); - if (err) - goto out_hyp; - - return 0; - -out_hyp: - teardown_hyp_mode(); -out_err: - teardown_common_resources(); - return err; -} - -/* NOP: Compiling as a module not supported */ -void kvm_arch_exit(void) -{ - kvm_perf_teardown(); -} - -static int arm_init(void) -{ - int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); - return rc; -} - -module_init(arm_init); diff --git a/arch/arm/kvm/mmio.c b/arch/arm/kvm/mmio.c deleted file mode 100644 index b6e715fd3c90..000000000000 --- a/arch/arm/kvm/mmio.c +++ /dev/null @@ -1,217 +0,0 @@ -/* - * Copyright (C) 2012 - Virtual Open Systems and Columbia University - * Author: Christoffer Dall <c.dall@virtualopensystems.com> - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License, version 2, as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. - */ - -#include <linux/kvm_host.h> -#include <asm/kvm_mmio.h> -#include <asm/kvm_emulate.h> -#include <trace/events/kvm.h> - -#include "trace.h" - -void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data) -{ - void *datap = NULL; - union { - u8 byte; - u16 hword; - u32 word; - u64 dword; - } tmp; - - switch (len) { - case 1: - tmp.byte = data; - datap = &tmp.byte; - break; - case 2: - tmp.hword = data; - datap = &tmp.hword; - break; - case 4: - tmp.word = data; - datap = &tmp.word; - break; - case 8: - tmp.dword = data; - datap = &tmp.dword; - break; - } - - memcpy(buf, datap, len); -} - -unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len) -{ - unsigned long data = 0; - union { - u16 hword; - u32 word; - u64 dword; - } tmp; - - switch (len) { - case 1: - data = *(u8 *)buf; - break; - case 2: - memcpy(&tmp.hword, buf, len); - data = tmp.hword; - break; - case 4: - memcpy(&tmp.word, buf, len); - data = tmp.word; - break; - case 8: - memcpy(&tmp.dword, buf, len); - data = tmp.dword; - break; - } - - return data; -} - -/** - * kvm_handle_mmio_return -- Handle MMIO loads after user space emulation - * or in-kernel IO emulation - * - * @vcpu: The VCPU pointer - * @run: The VCPU run struct containing the mmio data - */ -int kvm_handle_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run) -{ - unsigned long data; - unsigned int len; - int mask; - - if (!run->mmio.is_write) { - len = run->mmio.len; - if (len > sizeof(unsigned long)) - return -EINVAL; - - data = kvm_mmio_read_buf(run->mmio.data, len); - - if (vcpu->arch.mmio_decode.sign_extend && - len < sizeof(unsigned long)) { - mask = 1U << ((len * 8) - 1); - data = (data ^ mask) - mask; - } - - trace_kvm_mmio(KVM_TRACE_MMIO_READ, len, run->mmio.phys_addr, - data); - data = vcpu_data_host_to_guest(vcpu, data, len); - vcpu_set_reg(vcpu, vcpu->arch.mmio_decode.rt, data); - } - - return 0; -} - -static int decode_hsr(struct kvm_vcpu *vcpu, bool *is_write, int *len) -{ - unsigned long rt; - int access_size; - bool sign_extend; - - if (kvm_vcpu_dabt_iss1tw(vcpu)) { - /* page table accesses IO mem: tell guest to fix its TTBR */ - kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); - return 1; - } - - access_size = kvm_vcpu_dabt_get_as(vcpu); - if (unlikely(access_size < 0)) - return access_size; - - *is_write = kvm_vcpu_dabt_iswrite(vcpu); - sign_extend = kvm_vcpu_dabt_issext(vcpu); - rt = kvm_vcpu_dabt_get_rd(vcpu); - - *len = access_size; - vcpu->arch.mmio_decode.sign_extend = sign_extend; - vcpu->arch.mmio_decode.rt = rt; - - /* - * The MMIO instruction is emulated and should not be re-executed - * in the guest. - */ - kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); - return 0; -} - -int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run, - phys_addr_t fault_ipa) -{ - unsigned long data; - unsigned long rt; - int ret; - bool is_write; - int len; - u8 data_buf[8]; - - /* - * Prepare MMIO operation. First decode the syndrome data we get - * from the CPU. Then try if some in-kernel emulation feels - * responsible, otherwise let user space do its magic. - */ - if (kvm_vcpu_dabt_isvalid(vcpu)) { - ret = decode_hsr(vcpu, &is_write, &len); - if (ret) - return ret; - } else { - kvm_err("load/store instruction decoding not implemented\n"); - return -ENOSYS; - } - - rt = vcpu->arch.mmio_decode.rt; - - if (is_write) { - data = vcpu_data_guest_to_host(vcpu, vcpu_get_reg(vcpu, rt), - len); - - trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, len, fault_ipa, data); - kvm_mmio_write_buf(data_buf, len, data); - - ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, fault_ipa, len, - data_buf); - } else { - trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, len, - fault_ipa, 0); - - ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_ipa, len, - data_buf); - } - - /* Now prepare kvm_run for the potential return to userland. */ - run->mmio.is_write = is_write; - run->mmio.phys_addr = fault_ipa; - run->mmio.len = len; - - if (!ret) { - /* We handled the access successfully in the kernel. */ - if (!is_write) - memcpy(run->mmio.data, data_buf, len); - vcpu->stat.mmio_exit_kernel++; - kvm_handle_mmio_return(vcpu, run); - return 1; - } - - if (is_write) - memcpy(run->mmio.data, data_buf, len); - vcpu->stat.mmio_exit_user++; - run->exit_reason = KVM_EXIT_MMIO; - return 0; -} diff --git a/arch/arm/kvm/mmu.c b/arch/arm/kvm/mmu.c deleted file mode 100644 index efb4335aa5c4..000000000000 --- a/arch/arm/kvm/mmu.c +++ /dev/null @@ -1,1958 +0,0 @@ -/* - * Copyright (C) 2012 - Virtual Open Systems and Columbia University - * Author: Christoffer Dall <c.dall@virtualopensystems.com> - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License, version 2, as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. - */ - -#include <linux/mman.h> -#include <linux/kvm_host.h> -#include <linux/io.h> -#include <linux/hugetlb.h> -#include <trace/events/kvm.h> -#include <asm/pgalloc.h> -#include <asm/cacheflush.h> -#include <asm/kvm_arm.h> -#include <asm/kvm_mmu.h> -#include <asm/kvm_mmio.h> -#include <asm/kvm_asm.h> -#include <asm/kvm_emulate.h> -#include <asm/virt.h> - -#include "trace.h" - -static pgd_t *boot_hyp_pgd; -static pgd_t *hyp_pgd; -static pgd_t *merged_hyp_pgd; -static DEFINE_MUTEX(kvm_hyp_pgd_mutex); - -static unsigned long hyp_idmap_start; -static unsigned long hyp_idmap_end; -static phys_addr_t hyp_idmap_vector; - -#define S2_PGD_SIZE (PTRS_PER_S2_PGD * sizeof(pgd_t)) -#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t)) - -#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0) -#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1) - -static bool memslot_is_logging(struct kvm_memory_slot *memslot) -{ - return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); -} - -/** - * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8 - * @kvm: pointer to kvm structure. - * - * Interface to HYP function to flush all VM TLB entries - */ -void kvm_flush_remote_tlbs(struct kvm *kvm) -{ - kvm_call_hyp(__kvm_tlb_flush_vmid, kvm); -} - -static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa) -{ - kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa); -} - -/* - * D-Cache management functions. They take the page table entries by - * value, as they are flushing the cache using the kernel mapping (or - * kmap on 32bit). - */ -static void kvm_flush_dcache_pte(pte_t pte) -{ - __kvm_flush_dcache_pte(pte); -} - -static void kvm_flush_dcache_pmd(pmd_t pmd) -{ - __kvm_flush_dcache_pmd(pmd); -} - -static void kvm_flush_dcache_pud(pud_t pud) -{ - __kvm_flush_dcache_pud(pud); -} - -static bool kvm_is_device_pfn(unsigned long pfn) -{ - return !pfn_valid(pfn); -} - -/** - * stage2_dissolve_pmd() - clear and flush huge PMD entry - * @kvm: pointer to kvm structure. - * @addr: IPA - * @pmd: pmd pointer for IPA - * - * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all - * pages in the range dirty. - */ -static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd) -{ - if (!pmd_thp_or_huge(*pmd)) - return; - - pmd_clear(pmd); - kvm_tlb_flush_vmid_ipa(kvm, addr); - put_page(virt_to_page(pmd)); -} - -static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, - int min, int max) -{ - void *page; - - BUG_ON(max > KVM_NR_MEM_OBJS); - if (cache->nobjs >= min) - return 0; - while (cache->nobjs < max) { - page = (void *)__get_free_page(PGALLOC_GFP); - if (!page) - return -ENOMEM; - cache->objects[cache->nobjs++] = page; - } - return 0; -} - -static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) -{ - while (mc->nobjs) - free_page((unsigned long)mc->objects[--mc->nobjs]); -} - -static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) -{ - void *p; - - BUG_ON(!mc || !mc->nobjs); - p = mc->objects[--mc->nobjs]; - return p; -} - -static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr) -{ - pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL); - stage2_pgd_clear(pgd); - kvm_tlb_flush_vmid_ipa(kvm, addr); - stage2_pud_free(pud_table); - put_page(virt_to_page(pgd)); -} - -static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr) -{ - pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0); - VM_BUG_ON(stage2_pud_huge(*pud)); - stage2_pud_clear(pud); - kvm_tlb_flush_vmid_ipa(kvm, addr); - stage2_pmd_free(pmd_table); - put_page(virt_to_page(pud)); -} - -static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr) -{ - pte_t *pte_table = pte_offset_kernel(pmd, 0); - VM_BUG_ON(pmd_thp_or_huge(*pmd)); - pmd_clear(pmd); - kvm_tlb_flush_vmid_ipa(kvm, addr); - pte_free_kernel(NULL, pte_table); - put_page(virt_to_page(pmd)); -} - -/* - * Unmapping vs dcache management: - * - * If a guest maps certain memory pages as uncached, all writes will - * bypass the data cache and go directly to RAM. However, the CPUs - * can still speculate reads (not writes) and fill cache lines with - * data. - * - * Those cache lines will be *clean* cache lines though, so a - * clean+invalidate operation is equivalent to an invalidate - * operation, because no cache lines are marked dirty. - * - * Those clean cache lines could be filled prior to an uncached write - * by the guest, and the cache coherent IO subsystem would therefore - * end up writing old data to disk. - * - * This is why right after unmapping a page/section and invalidating - * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure - * the IO subsystem will never hit in the cache. - */ -static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd, - phys_addr_t addr, phys_addr_t end) -{ - phys_addr_t start_addr = addr; - pte_t *pte, *start_pte; - - start_pte = pte = pte_offset_kernel(pmd, addr); - do { - if (!pte_none(*pte)) { - pte_t old_pte = *pte; - - kvm_set_pte(pte, __pte(0)); - kvm_tlb_flush_vmid_ipa(kvm, addr); - - /* No need to invalidate the cache for device mappings */ - if (!kvm_is_device_pfn(pte_pfn(old_pte))) - kvm_flush_dcache_pte(old_pte); - - put_page(virt_to_page(pte)); - } - } while (pte++, addr += PAGE_SIZE, addr != end); - - if (stage2_pte_table_empty(start_pte)) - clear_stage2_pmd_entry(kvm, pmd, start_addr); -} - -static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud, - phys_addr_t addr, phys_addr_t end) -{ - phys_addr_t next, start_addr = addr; - pmd_t *pmd, *start_pmd; - - start_pmd = pmd = stage2_pmd_offset(pud, addr); - do { - next = stage2_pmd_addr_end(addr, end); - if (!pmd_none(*pmd)) { - if (pmd_thp_or_huge(*pmd)) { - pmd_t old_pmd = *pmd; - - pmd_clear(pmd); - kvm_tlb_flush_vmid_ipa(kvm, addr); - - kvm_flush_dcache_pmd(old_pmd); - - put_page(virt_to_page(pmd)); - } else { - unmap_stage2_ptes(kvm, pmd, addr, next); - } - } - } while (pmd++, addr = next, addr != end); - - if (stage2_pmd_table_empty(start_pmd)) - clear_stage2_pud_entry(kvm, pud, start_addr); -} - -static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd, - phys_addr_t addr, phys_addr_t end) -{ - phys_addr_t next, start_addr = addr; - pud_t *pud, *start_pud; - - start_pud = pud = stage2_pud_offset(pgd, addr); - do { - next = stage2_pud_addr_end(addr, end); - if (!stage2_pud_none(*pud)) { - if (stage2_pud_huge(*pud)) { - pud_t old_pud = *pud; - - stage2_pud_clear(pud); - kvm_tlb_flush_vmid_ipa(kvm, addr); - kvm_flush_dcache_pud(old_pud); - put_page(virt_to_page(pud)); - } else { - unmap_stage2_pmds(kvm, pud, addr, next); - } - } - } while (pud++, addr = next, addr != end); - - if (stage2_pud_table_empty(start_pud)) - clear_stage2_pgd_entry(kvm, pgd, start_addr); -} - -/** - * unmap_stage2_range -- Clear stage2 page table entries to unmap a range - * @kvm: The VM pointer - * @start: The intermediate physical base address of the range to unmap - * @size: The size of the area to unmap - * - * Clear a range of stage-2 mappings, lowering the various ref-counts. Must - * be called while holding mmu_lock (unless for freeing the stage2 pgd before - * destroying the VM), otherwise another faulting VCPU may come in and mess - * with things behind our backs. - */ -static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size) -{ - pgd_t *pgd; - phys_addr_t addr = start, end = start + size; - phys_addr_t next; - - pgd = kvm->arch.pgd + stage2_pgd_index(addr); - do { - next = stage2_pgd_addr_end(addr, end); - if (!stage2_pgd_none(*pgd)) - unmap_stage2_puds(kvm, pgd, addr, next); - } while (pgd++, addr = next, addr != end); -} - -static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd, - phys_addr_t addr, phys_addr_t end) -{ - pte_t *pte; - - pte = pte_offset_kernel(pmd, addr); - do { - if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte))) - kvm_flush_dcache_pte(*pte); - } while (pte++, addr += PAGE_SIZE, addr != end); -} - -static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud, - phys_addr_t addr, phys_addr_t end) -{ - pmd_t *pmd; - phys_addr_t next; - - pmd = stage2_pmd_offset(pud, addr); - do { - next = stage2_pmd_addr_end(addr, end); - if (!pmd_none(*pmd)) { - if (pmd_thp_or_huge(*pmd)) - kvm_flush_dcache_pmd(*pmd); - else - stage2_flush_ptes(kvm, pmd, addr, next); - } - } while (pmd++, addr = next, addr != end); -} - -static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd, - phys_addr_t addr, phys_addr_t end) -{ - pud_t *pud; - phys_addr_t next; - - pud = stage2_pud_offset(pgd, addr); - do { - next = stage2_pud_addr_end(addr, end); - if (!stage2_pud_none(*pud)) { - if (stage2_pud_huge(*pud)) - kvm_flush_dcache_pud(*pud); - else - stage2_flush_pmds(kvm, pud, addr, next); - } - } while (pud++, addr = next, addr != end); -} - -static void stage2_flush_memslot(struct kvm *kvm, - struct kvm_memory_slot *memslot) -{ - phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; - phys_addr_t end = addr + PAGE_SIZE * memslot->npages; - phys_addr_t next; - pgd_t *pgd; - - pgd = kvm->arch.pgd + stage2_pgd_index(addr); - do { - next = stage2_pgd_addr_end(addr, end); - stage2_flush_puds(kvm, pgd, addr, next); - } while (pgd++, addr = next, addr != end); -} - -/** - * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 - * @kvm: The struct kvm pointer - * - * Go through the stage 2 page tables and invalidate any cache lines - * backing memory already mapped to the VM. - */ -static void stage2_flush_vm(struct kvm *kvm) -{ - struct kvm_memslots *slots; - struct kvm_memory_slot *memslot; - int idx; - - idx = srcu_read_lock(&kvm->srcu); - spin_lock(&kvm->mmu_lock); - - slots = kvm_memslots(kvm); - kvm_for_each_memslot(memslot, slots) - stage2_flush_memslot(kvm, memslot); - - spin_unlock(&kvm->mmu_lock); - srcu_read_unlock(&kvm->srcu, idx); -} - -static void clear_hyp_pgd_entry(pgd_t *pgd) -{ - pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL); - pgd_clear(pgd); - pud_free(NULL, pud_table); - put_page(virt_to_page(pgd)); -} - -static void clear_hyp_pud_entry(pud_t *pud) -{ - pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0); - VM_BUG_ON(pud_huge(*pud)); - pud_clear(pud); - pmd_free(NULL, pmd_table); - put_page(virt_to_page(pud)); -} - -static void clear_hyp_pmd_entry(pmd_t *pmd) -{ - pte_t *pte_table = pte_offset_kernel(pmd, 0); - VM_BUG_ON(pmd_thp_or_huge(*pmd)); - pmd_clear(pmd); - pte_free_kernel(NULL, pte_table); - put_page(virt_to_page(pmd)); -} - -static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end) -{ - pte_t *pte, *start_pte; - - start_pte = pte = pte_offset_kernel(pmd, addr); - do { - if (!pte_none(*pte)) { - kvm_set_pte(pte, __pte(0)); - put_page(virt_to_page(pte)); - } - } while (pte++, addr += PAGE_SIZE, addr != end); - - if (hyp_pte_table_empty(start_pte)) - clear_hyp_pmd_entry(pmd); -} - -static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end) -{ - phys_addr_t next; - pmd_t *pmd, *start_pmd; - - start_pmd = pmd = pmd_offset(pud, addr); - do { - next = pmd_addr_end(addr, end); - /* Hyp doesn't use huge pmds */ - if (!pmd_none(*pmd)) - unmap_hyp_ptes(pmd, addr, next); - } while (pmd++, addr = next, addr != end); - - if (hyp_pmd_table_empty(start_pmd)) - clear_hyp_pud_entry(pud); -} - -static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end) -{ - phys_addr_t next; - pud_t *pud, *start_pud; - - start_pud = pud = pud_offset(pgd, addr); - do { - next = pud_addr_end(addr, end); - /* Hyp doesn't use huge puds */ - if (!pud_none(*pud)) - unmap_hyp_pmds(pud, addr, next); - } while (pud++, addr = next, addr != end); - - if (hyp_pud_table_empty(start_pud)) - clear_hyp_pgd_entry(pgd); -} - -static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size) -{ - pgd_t *pgd; - phys_addr_t addr = start, end = start + size; - phys_addr_t next; - - /* - * We don't unmap anything from HYP, except at the hyp tear down. - * Hence, we don't have to invalidate the TLBs here. - */ - pgd = pgdp + pgd_index(addr); - do { - next = pgd_addr_end(addr, end); - if (!pgd_none(*pgd)) - unmap_hyp_puds(pgd, addr, next); - } while (pgd++, addr = next, addr != end); -} - -/** - * free_hyp_pgds - free Hyp-mode page tables - * - * Assumes hyp_pgd is a page table used strictly in Hyp-mode and - * therefore contains either mappings in the kernel memory area (above - * PAGE_OFFSET), or device mappings in the vmalloc range (from - * VMALLOC_START to VMALLOC_END). - * - * boot_hyp_pgd should only map two pages for the init code. - */ -void free_hyp_pgds(void) -{ - unsigned long addr; - - mutex_lock(&kvm_hyp_pgd_mutex); - - if (boot_hyp_pgd) { - unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE); - free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order); - boot_hyp_pgd = NULL; - } - - if (hyp_pgd) { - unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE); - for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE) - unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE); - for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE) - unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE); - - free_pages((unsigned long)hyp_pgd, hyp_pgd_order); - hyp_pgd = NULL; - } - if (merged_hyp_pgd) { - clear_page(merged_hyp_pgd); - free_page((unsigned long)merged_hyp_pgd); - merged_hyp_pgd = NULL; - } - - mutex_unlock(&kvm_hyp_pgd_mutex); -} - -static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start, - unsigned long end, unsigned long pfn, - pgprot_t prot) -{ - pte_t *pte; - unsigned long addr; - - addr = start; - do { - pte = pte_offset_kernel(pmd, addr); - kvm_set_pte(pte, pfn_pte(pfn, prot)); - get_page(virt_to_page(pte)); - kvm_flush_dcache_to_poc(pte, sizeof(*pte)); - pfn++; - } while (addr += PAGE_SIZE, addr != end); -} - -static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start, - unsigned long end, unsigned long pfn, - pgprot_t prot) -{ - pmd_t *pmd; - pte_t *pte; - unsigned long addr, next; - - addr = start; - do { - pmd = pmd_offset(pud, addr); - - BUG_ON(pmd_sect(*pmd)); - - if (pmd_none(*pmd)) { - pte = pte_alloc_one_kernel(NULL, addr); - if (!pte) { - kvm_err("Cannot allocate Hyp pte\n"); - return -ENOMEM; - } - pmd_populate_kernel(NULL, pmd, pte); - get_page(virt_to_page(pmd)); - kvm_flush_dcache_to_poc(pmd, sizeof(*pmd)); - } - - next = pmd_addr_end(addr, end); - - create_hyp_pte_mappings(pmd, addr, next, pfn, prot); - pfn += (next - addr) >> PAGE_SHIFT; - } while (addr = next, addr != end); - - return 0; -} - -static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start, - unsigned long end, unsigned long pfn, - pgprot_t prot) -{ - pud_t *pud; - pmd_t *pmd; - unsigned long addr, next; - int ret; - - addr = start; - do { - pud = pud_offset(pgd, addr); - - if (pud_none_or_clear_bad(pud)) { - pmd = pmd_alloc_one(NULL, addr); - if (!pmd) { - kvm_err("Cannot allocate Hyp pmd\n"); - return -ENOMEM; - } - pud_populate(NULL, pud, pmd); - get_page(virt_to_page(pud)); - kvm_flush_dcache_to_poc(pud, sizeof(*pud)); - } - - next = pud_addr_end(addr, end); - ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot); - if (ret) - return ret; - pfn += (next - addr) >> PAGE_SHIFT; - } while (addr = next, addr != end); - - return 0; -} - -static int __create_hyp_mappings(pgd_t *pgdp, - unsigned long start, unsigned long end, - unsigned long pfn, pgprot_t prot) -{ - pgd_t *pgd; - pud_t *pud; - unsigned long addr, next; - int err = 0; - - mutex_lock(&kvm_hyp_pgd_mutex); - addr = start & PAGE_MASK; - end = PAGE_ALIGN(end); - do { - pgd = pgdp + pgd_index(addr); - - if (pgd_none(*pgd)) { - pud = pud_alloc_one(NULL, addr); - if (!pud) { - kvm_err("Cannot allocate Hyp pud\n"); - err = -ENOMEM; - goto out; - } - pgd_populate(NULL, pgd, pud); - get_page(virt_to_page(pgd)); - kvm_flush_dcache_to_poc(pgd, sizeof(*pgd)); - } - - next = pgd_addr_end(addr, end); - err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot); - if (err) - goto out; - pfn += (next - addr) >> PAGE_SHIFT; - } while (addr = next, addr != end); -out: - mutex_unlock(&kvm_hyp_pgd_mutex); - return err; -} - -static phys_addr_t kvm_kaddr_to_phys(void *kaddr) -{ - if (!is_vmalloc_addr(kaddr)) { - BUG_ON(!virt_addr_valid(kaddr)); - return __pa(kaddr); - } else { - return page_to_phys(vmalloc_to_page(kaddr)) + - offset_in_page(kaddr); - } -} - -/** - * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode - * @from: The virtual kernel start address of the range - * @to: The virtual kernel end address of the range (exclusive) - * @prot: The protection to be applied to this range - * - * The same virtual address as the kernel virtual address is also used - * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying - * physical pages. - */ -int create_hyp_mappings(void *from, void *to, pgprot_t prot) -{ - phys_addr_t phys_addr; - unsigned long virt_addr; - unsigned long start = kern_hyp_va((unsigned long)from); - unsigned long end = kern_hyp_va((unsigned long)to); - - if (is_kernel_in_hyp_mode()) - return 0; - - start = start & PAGE_MASK; - end = PAGE_ALIGN(end); - - for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { - int err; - - phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); - err = __create_hyp_mappings(hyp_pgd, virt_addr, - virt_addr + PAGE_SIZE, - __phys_to_pfn(phys_addr), - prot); - if (err) - return err; - } - - return 0; -} - -/** - * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode - * @from: The kernel start VA of the range - * @to: The kernel end VA of the range (exclusive) - * @phys_addr: The physical start address which gets mapped - * - * The resulting HYP VA is the same as the kernel VA, modulo - * HYP_PAGE_OFFSET. - */ -int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr) -{ - unsigned long start = kern_hyp_va((unsigned long)from); - unsigned long end = kern_hyp_va((unsigned long)to); - - if (is_kernel_in_hyp_mode()) - return 0; - - /* Check for a valid kernel IO mapping */ - if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1)) - return -EINVAL; - - return __create_hyp_mappings(hyp_pgd, start, end, - __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE); -} - -/** - * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation. - * @kvm: The KVM struct pointer for the VM. - * - * Allocates only the stage-2 HW PGD level table(s) (can support either full - * 40-bit input addresses or limited to 32-bit input addresses). Clears the - * allocated pages. - * - * Note we don't need locking here as this is only called when the VM is - * created, which can only be done once. - */ -int kvm_alloc_stage2_pgd(struct kvm *kvm) -{ - pgd_t *pgd; - - if (kvm->arch.pgd != NULL) { - kvm_err("kvm_arch already initialized?\n"); - return -EINVAL; - } - - /* Allocate the HW PGD, making sure that each page gets its own refcount */ - pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO); - if (!pgd) - return -ENOMEM; - - kvm->arch.pgd = pgd; - return 0; -} - -static void stage2_unmap_memslot(struct kvm *kvm, - struct kvm_memory_slot *memslot) -{ - hva_t hva = memslot->userspace_addr; - phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; - phys_addr_t size = PAGE_SIZE * memslot->npages; - hva_t reg_end = hva + size; - - /* - * A memory region could potentially cover multiple VMAs, and any holes - * between them, so iterate over all of them to find out if we should - * unmap any of them. - * - * +--------------------------------------------+ - * +---------------+----------------+ +----------------+ - * | : VMA 1 | VMA 2 | | VMA 3 : | - * +---------------+----------------+ +----------------+ - * | memory region | - * +--------------------------------------------+ - */ - do { - struct vm_area_struct *vma = find_vma(current->mm, hva); - hva_t vm_start, vm_end; - - if (!vma || vma->vm_start >= reg_end) - break; - - /* - * Take the intersection of this VMA with the memory region - */ - vm_start = max(hva, vma->vm_start); - vm_end = min(reg_end, vma->vm_end); - - if (!(vma->vm_flags & VM_PFNMAP)) { - gpa_t gpa = addr + (vm_start - memslot->userspace_addr); - unmap_stage2_range(kvm, gpa, vm_end - vm_start); - } - hva = vm_end; - } while (hva < reg_end); -} - -/** - * stage2_unmap_vm - Unmap Stage-2 RAM mappings - * @kvm: The struct kvm pointer - * - * Go through the memregions and unmap any reguler RAM - * backing memory already mapped to the VM. - */ -void stage2_unmap_vm(struct kvm *kvm) -{ - struct kvm_memslots *slots; - struct kvm_memory_slot *memslot; - int idx; - - idx = srcu_read_lock(&kvm->srcu); - spin_lock(&kvm->mmu_lock); - - slots = kvm_memslots(kvm); - kvm_for_each_memslot(memslot, slots) - stage2_unmap_memslot(kvm, memslot); - - spin_unlock(&kvm->mmu_lock); - srcu_read_unlock(&kvm->srcu, idx); -} - -/** - * kvm_free_stage2_pgd - free all stage-2 tables - * @kvm: The KVM struct pointer for the VM. - * - * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all - * underlying level-2 and level-3 tables before freeing the actual level-1 table - * and setting the struct pointer to NULL. - * - * Note we don't need locking here as this is only called when the VM is - * destroyed, which can only be done once. - */ -void kvm_free_stage2_pgd(struct kvm *kvm) -{ - if (kvm->arch.pgd == NULL) - return; - - unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE); - /* Free the HW pgd, one page at a time */ - free_pages_exact(kvm->arch.pgd, S2_PGD_SIZE); - kvm->arch.pgd = NULL; -} - -static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, - phys_addr_t addr) -{ - pgd_t *pgd; - pud_t *pud; - - pgd = kvm->arch.pgd + stage2_pgd_index(addr); - if (WARN_ON(stage2_pgd_none(*pgd))) { - if (!cache) - return NULL; - pud = mmu_memory_cache_alloc(cache); - stage2_pgd_populate(pgd, pud); - get_page(virt_to_page(pgd)); - } - - return stage2_pud_offset(pgd, addr); -} - -static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, - phys_addr_t addr) -{ - pud_t *pud; - pmd_t *pmd; - - pud = stage2_get_pud(kvm, cache, addr); - if (stage2_pud_none(*pud)) { - if (!cache) - return NULL; - pmd = mmu_memory_cache_alloc(cache); - stage2_pud_populate(pud, pmd); - get_page(virt_to_page(pud)); - } - - return stage2_pmd_offset(pud, addr); -} - -static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache - *cache, phys_addr_t addr, const pmd_t *new_pmd) -{ - pmd_t *pmd, old_pmd; - - pmd = stage2_get_pmd(kvm, cache, addr); - VM_BUG_ON(!pmd); - - /* - * Mapping in huge pages should only happen through a fault. If a - * page is merged into a transparent huge page, the individual - * subpages of that huge page should be unmapped through MMU - * notifiers before we get here. - * - * Merging of CompoundPages is not supported; they should become - * splitting first, unmapped, merged, and mapped back in on-demand. - */ - VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd)); - - old_pmd = *pmd; - if (pmd_present(old_pmd)) { - pmd_clear(pmd); - kvm_tlb_flush_vmid_ipa(kvm, addr); - } else { - get_page(virt_to_page(pmd)); - } - - kvm_set_pmd(pmd, *new_pmd); - return 0; -} - -static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, - phys_addr_t addr, const pte_t *new_pte, - unsigned long flags) -{ - pmd_t *pmd; - pte_t *pte, old_pte; - bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP; - bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE; - - VM_BUG_ON(logging_active && !cache); - - /* Create stage-2 page table mapping - Levels 0 and 1 */ - pmd = stage2_get_pmd(kvm, cache, addr); - if (!pmd) { - /* - * Ignore calls from kvm_set_spte_hva for unallocated - * address ranges. - */ - return 0; - } - - /* - * While dirty page logging - dissolve huge PMD, then continue on to - * allocate page. - */ - if (logging_active) - stage2_dissolve_pmd(kvm, addr, pmd); - - /* Create stage-2 page mappings - Level 2 */ - if (pmd_none(*pmd)) { - if (!cache) - return 0; /* ignore calls from kvm_set_spte_hva */ - pte = mmu_memory_cache_alloc(cache); - pmd_populate_kernel(NULL, pmd, pte); - get_page(virt_to_page(pmd)); - } - - pte = pte_offset_kernel(pmd, addr); - - if (iomap && pte_present(*pte)) - return -EFAULT; - - /* Create 2nd stage page table mapping - Level 3 */ - old_pte = *pte; - if (pte_present(old_pte)) { - kvm_set_pte(pte, __pte(0)); - kvm_tlb_flush_vmid_ipa(kvm, addr); - } else { - get_page(virt_to_page(pte)); - } - - kvm_set_pte(pte, *new_pte); - return 0; -} - -#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG -static int stage2_ptep_test_and_clear_young(pte_t *pte) -{ - if (pte_young(*pte)) { - *pte = pte_mkold(*pte); - return 1; - } - return 0; -} -#else -static int stage2_ptep_test_and_clear_young(pte_t *pte) -{ - return __ptep_test_and_clear_young(pte); -} -#endif - -static int stage2_pmdp_test_and_clear_young(pmd_t *pmd) -{ - return stage2_ptep_test_and_clear_young((pte_t *)pmd); -} - -/** - * kvm_phys_addr_ioremap - map a device range to guest IPA - * - * @kvm: The KVM pointer - * @guest_ipa: The IPA at which to insert the mapping - * @pa: The physical address of the device - * @size: The size of the mapping - */ -int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, - phys_addr_t pa, unsigned long size, bool writable) -{ - phys_addr_t addr, end; - int ret = 0; - unsigned long pfn; - struct kvm_mmu_memory_cache cache = { 0, }; - - end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK; - pfn = __phys_to_pfn(pa); - - for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) { - pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE); - - if (writable) - pte = kvm_s2pte_mkwrite(pte); - - ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES, - KVM_NR_MEM_OBJS); - if (ret) - goto out; - spin_lock(&kvm->mmu_lock); - ret = stage2_set_pte(kvm, &cache, addr, &pte, - KVM_S2PTE_FLAG_IS_IOMAP); - spin_unlock(&kvm->mmu_lock); - if (ret) - goto out; - - pfn++; - } - -out: - mmu_free_memory_cache(&cache); - return ret; -} - -static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap) -{ - kvm_pfn_t pfn = *pfnp; - gfn_t gfn = *ipap >> PAGE_SHIFT; - - if (PageTransCompoundMap(pfn_to_page(pfn))) { - unsigned long mask; - /* - * The address we faulted on is backed by a transparent huge - * page. However, because we map the compound huge page and - * not the individual tail page, we need to transfer the - * refcount to the head page. We have to be careful that the - * THP doesn't start to split while we are adjusting the - * refcounts. - * - * We are sure this doesn't happen, because mmu_notifier_retry - * was successful and we are holding the mmu_lock, so if this - * THP is trying to split, it will be blocked in the mmu - * notifier before touching any of the pages, specifically - * before being able to call __split_huge_page_refcount(). - * - * We can therefore safely transfer the refcount from PG_tail - * to PG_head and switch the pfn from a tail page to the head - * page accordingly. - */ - mask = PTRS_PER_PMD - 1; - VM_BUG_ON((gfn & mask) != (pfn & mask)); - if (pfn & mask) { - *ipap &= PMD_MASK; - kvm_release_pfn_clean(pfn); - pfn &= ~mask; - kvm_get_pfn(pfn); - *pfnp = pfn; - } - - return true; - } - - return false; -} - -static bool kvm_is_write_fault(struct kvm_vcpu *vcpu) -{ - if (kvm_vcpu_trap_is_iabt(vcpu)) - return false; - - return kvm_vcpu_dabt_iswrite(vcpu); -} - -/** - * stage2_wp_ptes - write protect PMD range - * @pmd: pointer to pmd entry - * @addr: range start address - * @end: range end address - */ -static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end) -{ - pte_t *pte; - - pte = pte_offset_kernel(pmd, addr); - do { - if (!pte_none(*pte)) { - if (!kvm_s2pte_readonly(pte)) - kvm_set_s2pte_readonly(pte); - } - } while (pte++, addr += PAGE_SIZE, addr != end); -} - -/** - * stage2_wp_pmds - write protect PUD range - * @pud: pointer to pud entry - * @addr: range start address - * @end: range end address - */ -static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end) -{ - pmd_t *pmd; - phys_addr_t next; - - pmd = stage2_pmd_offset(pud, addr); - - do { - next = stage2_pmd_addr_end(addr, end); - if (!pmd_none(*pmd)) { - if (pmd_thp_or_huge(*pmd)) { - if (!kvm_s2pmd_readonly(pmd)) - kvm_set_s2pmd_readonly(pmd); - } else { - stage2_wp_ptes(pmd, addr, next); - } - } - } while (pmd++, addr = next, addr != end); -} - -/** - * stage2_wp_puds - write protect PGD range - * @pgd: pointer to pgd entry - * @addr: range start address - * @end: range end address - * - * Process PUD entries, for a huge PUD we cause a panic. - */ -static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end) -{ - pud_t *pud; - phys_addr_t next; - - pud = stage2_pud_offset(pgd, addr); - do { - next = stage2_pud_addr_end(addr, end); - if (!stage2_pud_none(*pud)) { - /* TODO:PUD not supported, revisit later if supported */ - BUG_ON(stage2_pud_huge(*pud)); - stage2_wp_pmds(pud, addr, next); - } - } while (pud++, addr = next, addr != end); -} - -/** - * stage2_wp_range() - write protect stage2 memory region range - * @kvm: The KVM pointer - * @addr: Start address of range - * @end: End address of range - */ -static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end) -{ - pgd_t *pgd; - phys_addr_t next; - - pgd = kvm->arch.pgd + stage2_pgd_index(addr); - do { - /* - * Release kvm_mmu_lock periodically if the memory region is - * large. Otherwise, we may see kernel panics with - * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR, - * CONFIG_LOCKDEP. Additionally, holding the lock too long - * will also starve other vCPUs. - */ - if (need_resched() || spin_needbreak(&kvm->mmu_lock)) - cond_resched_lock(&kvm->mmu_lock); - - next = stage2_pgd_addr_end(addr, end); - if (stage2_pgd_present(*pgd)) - stage2_wp_puds(pgd, addr, next); - } while (pgd++, addr = next, addr != end); -} - -/** - * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot - * @kvm: The KVM pointer - * @slot: The memory slot to write protect - * - * Called to start logging dirty pages after memory region - * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns - * all present PMD and PTEs are write protected in the memory region. - * Afterwards read of dirty page log can be called. - * - * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, - * serializing operations for VM memory regions. - */ -void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) -{ - struct kvm_memslots *slots = kvm_memslots(kvm); - struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); - phys_addr_t start = memslot->base_gfn << PAGE_SHIFT; - phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; - - spin_lock(&kvm->mmu_lock); - stage2_wp_range(kvm, start, end); - spin_unlock(&kvm->mmu_lock); - kvm_flush_remote_tlbs(kvm); -} - -/** - * kvm_mmu_write_protect_pt_masked() - write protect dirty pages - * @kvm: The KVM pointer - * @slot: The memory slot associated with mask - * @gfn_offset: The gfn offset in memory slot - * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory - * slot to be write protected - * - * Walks bits set in mask write protects the associated pte's. Caller must - * acquire kvm_mmu_lock. - */ -static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, - struct kvm_memory_slot *slot, - gfn_t gfn_offset, unsigned long mask) -{ - phys_addr_t base_gfn = slot->base_gfn + gfn_offset; - phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; - phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; - - stage2_wp_range(kvm, start, end); -} - -/* - * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected - * dirty pages. - * - * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to - * enable dirty logging for them. - */ -void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, - struct kvm_memory_slot *slot, - gfn_t gfn_offset, unsigned long mask) -{ - kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); -} - -static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn, - unsigned long size) -{ - __coherent_cache_guest_page(vcpu, pfn, size); -} - -static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, - struct kvm_memory_slot *memslot, unsigned long hva, - unsigned long fault_status) -{ - int ret; - bool write_fault, writable, hugetlb = false, force_pte = false; - unsigned long mmu_seq; - gfn_t gfn = fault_ipa >> PAGE_SHIFT; - struct kvm *kvm = vcpu->kvm; - struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; - struct vm_area_struct *vma; - kvm_pfn_t pfn; - pgprot_t mem_type = PAGE_S2; - bool logging_active = memslot_is_logging(memslot); - unsigned long flags = 0; - - write_fault = kvm_is_write_fault(vcpu); - if (fault_status == FSC_PERM && !write_fault) { - kvm_err("Unexpected L2 read permission error\n"); - return -EFAULT; - } - - /* Let's check if we will get back a huge page backed by hugetlbfs */ - down_read(¤t->mm->mmap_sem); - vma = find_vma_intersection(current->mm, hva, hva + 1); - if (unlikely(!vma)) { - kvm_err("Failed to find VMA for hva 0x%lx\n", hva); - up_read(¤t->mm->mmap_sem); - return -EFAULT; - } - - if (is_vm_hugetlb_page(vma) && !logging_active) { - hugetlb = true; - gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT; - } else { - /* - * Pages belonging to memslots that don't have the same - * alignment for userspace and IPA cannot be mapped using - * block descriptors even if the pages belong to a THP for - * the process, because the stage-2 block descriptor will - * cover more than a single THP and we loose atomicity for - * unmapping, updates, and splits of the THP or other pages - * in the stage-2 block range. - */ - if ((memslot->userspace_addr & ~PMD_MASK) != - ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK)) - force_pte = true; - } - up_read(¤t->mm->mmap_sem); - - /* We need minimum second+third level pages */ - ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES, - KVM_NR_MEM_OBJS); - if (ret) - return ret; - - mmu_seq = vcpu->kvm->mmu_notifier_seq; - /* - * Ensure the read of mmu_notifier_seq happens before we call - * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk - * the page we just got a reference to gets unmapped before we have a - * chance to grab the mmu_lock, which ensure that if the page gets - * unmapped afterwards, the call to kvm_unmap_hva will take it away - * from us again properly. This smp_rmb() interacts with the smp_wmb() - * in kvm_mmu_notifier_invalidate_<page|range_end>. - */ - smp_rmb(); - - pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable); - if (is_error_noslot_pfn(pfn)) - return -EFAULT; - - if (kvm_is_device_pfn(pfn)) { - mem_type = PAGE_S2_DEVICE; - flags |= KVM_S2PTE_FLAG_IS_IOMAP; - } else if (logging_active) { - /* - * Faults on pages in a memslot with logging enabled - * should not be mapped with huge pages (it introduces churn - * and performance degradation), so force a pte mapping. - */ - force_pte = true; - flags |= KVM_S2_FLAG_LOGGING_ACTIVE; - - /* - * Only actually map the page as writable if this was a write - * fault. - */ - if (!write_fault) - writable = false; - } - - spin_lock(&kvm->mmu_lock); - if (mmu_notifier_retry(kvm, mmu_seq)) - goto out_unlock; - - if (!hugetlb && !force_pte) - hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa); - - if (hugetlb) { - pmd_t new_pmd = pfn_pmd(pfn, mem_type); - new_pmd = pmd_mkhuge(new_pmd); - if (writable) { - new_pmd = kvm_s2pmd_mkwrite(new_pmd); - kvm_set_pfn_dirty(pfn); - } - coherent_cache_guest_page(vcpu, pfn, PMD_SIZE); - ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd); - } else { - pte_t new_pte = pfn_pte(pfn, mem_type); - - if (writable) { - new_pte = kvm_s2pte_mkwrite(new_pte); - kvm_set_pfn_dirty(pfn); - mark_page_dirty(kvm, gfn); - } - coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE); - ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags); - } - -out_unlock: - spin_unlock(&kvm->mmu_lock); - kvm_set_pfn_accessed(pfn); - kvm_release_pfn_clean(pfn); - return ret; -} - -/* - * Resolve the access fault by making the page young again. - * Note that because the faulting entry is guaranteed not to be - * cached in the TLB, we don't need to invalidate anything. - * Only the HW Access Flag updates are supported for Stage 2 (no DBM), - * so there is no need for atomic (pte|pmd)_mkyoung operations. - */ -static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) -{ - pmd_t *pmd; - pte_t *pte; - kvm_pfn_t pfn; - bool pfn_valid = false; - - trace_kvm_access_fault(fault_ipa); - - spin_lock(&vcpu->kvm->mmu_lock); - - pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa); - if (!pmd || pmd_none(*pmd)) /* Nothing there */ - goto out; - - if (pmd_thp_or_huge(*pmd)) { /* THP, HugeTLB */ - *pmd = pmd_mkyoung(*pmd); - pfn = pmd_pfn(*pmd); - pfn_valid = true; - goto out; - } - - pte = pte_offset_kernel(pmd, fault_ipa); - if (pte_none(*pte)) /* Nothing there either */ - goto out; - - *pte = pte_mkyoung(*pte); /* Just a page... */ - pfn = pte_pfn(*pte); - pfn_valid = true; -out: - spin_unlock(&vcpu->kvm->mmu_lock); - if (pfn_valid) - kvm_set_pfn_accessed(pfn); -} - -/** - * kvm_handle_guest_abort - handles all 2nd stage aborts - * @vcpu: the VCPU pointer - * @run: the kvm_run structure - * - * Any abort that gets to the host is almost guaranteed to be caused by a - * missing second stage translation table entry, which can mean that either the - * guest simply needs more memory and we must allocate an appropriate page or it - * can mean that the guest tried to access I/O memory, which is emulated by user - * space. The distinction is based on the IPA causing the fault and whether this - * memory region has been registered as standard RAM by user space. - */ -int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run) -{ - unsigned long fault_status; - phys_addr_t fault_ipa; - struct kvm_memory_slot *memslot; - unsigned long hva; - bool is_iabt, write_fault, writable; - gfn_t gfn; - int ret, idx; - - is_iabt = kvm_vcpu_trap_is_iabt(vcpu); - if (unlikely(!is_iabt && kvm_vcpu_dabt_isextabt(vcpu))) { - kvm_inject_vabt(vcpu); - return 1; - } - - fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); - - trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu), - kvm_vcpu_get_hfar(vcpu), fault_ipa); - - /* Check the stage-2 fault is trans. fault or write fault */ - fault_status = kvm_vcpu_trap_get_fault_type(vcpu); - if (fault_status != FSC_FAULT && fault_status != FSC_PERM && - fault_status != FSC_ACCESS) { - kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", - kvm_vcpu_trap_get_class(vcpu), - (unsigned long)kvm_vcpu_trap_get_fault(vcpu), - (unsigned long)kvm_vcpu_get_hsr(vcpu)); - return -EFAULT; - } - - idx = srcu_read_lock(&vcpu->kvm->srcu); - - gfn = fault_ipa >> PAGE_SHIFT; - memslot = gfn_to_memslot(vcpu->kvm, gfn); - hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); - write_fault = kvm_is_write_fault(vcpu); - if (kvm_is_error_hva(hva) || (write_fault && !writable)) { - if (is_iabt) { - /* Prefetch Abort on I/O address */ - kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); - ret = 1; - goto out_unlock; - } - - /* - * Check for a cache maintenance operation. Since we - * ended-up here, we know it is outside of any memory - * slot. But we can't find out if that is for a device, - * or if the guest is just being stupid. The only thing - * we know for sure is that this range cannot be cached. - * - * So let's assume that the guest is just being - * cautious, and skip the instruction. - */ - if (kvm_vcpu_dabt_is_cm(vcpu)) { - kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); - ret = 1; - goto out_unlock; - } - - /* - * The IPA is reported as [MAX:12], so we need to - * complement it with the bottom 12 bits from the - * faulting VA. This is always 12 bits, irrespective - * of the page size. - */ - fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); - ret = io_mem_abort(vcpu, run, fault_ipa); - goto out_unlock; - } - - /* Userspace should not be able to register out-of-bounds IPAs */ - VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE); - - if (fault_status == FSC_ACCESS) { - handle_access_fault(vcpu, fault_ipa); - ret = 1; - goto out_unlock; - } - - ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); - if (ret == 0) - ret = 1; -out_unlock: - srcu_read_unlock(&vcpu->kvm->srcu, idx); - return ret; -} - -static int handle_hva_to_gpa(struct kvm *kvm, - unsigned long start, - unsigned long end, - int (*handler)(struct kvm *kvm, - gpa_t gpa, u64 size, - void *data), - void *data) -{ - struct kvm_memslots *slots; - struct kvm_memory_slot *memslot; - int ret = 0; - - slots = kvm_memslots(kvm); - - /* we only care about the pages that the guest sees */ - kvm_for_each_memslot(memslot, slots) { - unsigned long hva_start, hva_end; - gfn_t gpa; - - hva_start = max(start, memslot->userspace_addr); - hva_end = min(end, memslot->userspace_addr + - (memslot->npages << PAGE_SHIFT)); - if (hva_start >= hva_end) - continue; - - gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT; - ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data); - } - - return ret; -} - -static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) -{ - unmap_stage2_range(kvm, gpa, size); - return 0; -} - -int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) -{ - unsigned long end = hva + PAGE_SIZE; - - if (!kvm->arch.pgd) - return 0; - - trace_kvm_unmap_hva(hva); - handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL); - return 0; -} - -int kvm_unmap_hva_range(struct kvm *kvm, - unsigned long start, unsigned long end) -{ - if (!kvm->arch.pgd) - return 0; - - trace_kvm_unmap_hva_range(start, end); - handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL); - return 0; -} - -static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) -{ - pte_t *pte = (pte_t *)data; - - WARN_ON(size != PAGE_SIZE); - /* - * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE - * flag clear because MMU notifiers will have unmapped a huge PMD before - * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and - * therefore stage2_set_pte() never needs to clear out a huge PMD - * through this calling path. - */ - stage2_set_pte(kvm, NULL, gpa, pte, 0); - return 0; -} - - -void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) -{ - unsigned long end = hva + PAGE_SIZE; - pte_t stage2_pte; - - if (!kvm->arch.pgd) - return; - - trace_kvm_set_spte_hva(hva); - stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2); - handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte); -} - -static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) -{ - pmd_t *pmd; - pte_t *pte; - - WARN_ON(size != PAGE_SIZE && size != PMD_SIZE); - pmd = stage2_get_pmd(kvm, NULL, gpa); - if (!pmd || pmd_none(*pmd)) /* Nothing there */ - return 0; - - if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */ - return stage2_pmdp_test_and_clear_young(pmd); - - pte = pte_offset_kernel(pmd, gpa); - if (pte_none(*pte)) - return 0; - - return stage2_ptep_test_and_clear_young(pte); -} - -static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) -{ - pmd_t *pmd; - pte_t *pte; - - WARN_ON(size != PAGE_SIZE && size != PMD_SIZE); - pmd = stage2_get_pmd(kvm, NULL, gpa); - if (!pmd || pmd_none(*pmd)) /* Nothing there */ - return 0; - - if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */ - return pmd_young(*pmd); - - pte = pte_offset_kernel(pmd, gpa); - if (!pte_none(*pte)) /* Just a page... */ - return pte_young(*pte); - - return 0; -} - -int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) -{ - trace_kvm_age_hva(start, end); - return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL); -} - -int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) -{ - trace_kvm_test_age_hva(hva); - return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL); -} - -void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu) -{ - mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); -} - -phys_addr_t kvm_mmu_get_httbr(void) -{ - if (__kvm_cpu_uses_extended_idmap()) - return virt_to_phys(merged_hyp_pgd); - else - return virt_to_phys(hyp_pgd); -} - -phys_addr_t kvm_get_idmap_vector(void) -{ - return hyp_idmap_vector; -} - -static int kvm_map_idmap_text(pgd_t *pgd) -{ - int err; - - /* Create the idmap in the boot page tables */ - err = __create_hyp_mappings(pgd, - hyp_idmap_start, hyp_idmap_end, - __phys_to_pfn(hyp_idmap_start), - PAGE_HYP_EXEC); - if (err) - kvm_err("Failed to idmap %lx-%lx\n", - hyp_idmap_start, hyp_idmap_end); - - return err; -} - -int kvm_mmu_init(void) -{ - int err; - - hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start); - hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end); - hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init); - - /* - * We rely on the linker script to ensure at build time that the HYP - * init code does not cross a page boundary. - */ - BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); - - kvm_info("IDMAP page: %lx\n", hyp_idmap_start); - kvm_info("HYP VA range: %lx:%lx\n", - kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL)); - - if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && - hyp_idmap_start < kern_hyp_va(~0UL) && - hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { - /* - * The idmap page is intersecting with the VA space, - * it is not safe to continue further. - */ - kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); - err = -EINVAL; - goto out; - } - - hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order); - if (!hyp_pgd) { - kvm_err("Hyp mode PGD not allocated\n"); - err = -ENOMEM; - goto out; - } - - if (__kvm_cpu_uses_extended_idmap()) { - boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, - hyp_pgd_order); - if (!boot_hyp_pgd) { - kvm_err("Hyp boot PGD not allocated\n"); - err = -ENOMEM; - goto out; - } - - err = kvm_map_idmap_text(boot_hyp_pgd); - if (err) - goto out; - - merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); - if (!merged_hyp_pgd) { - kvm_err("Failed to allocate extra HYP pgd\n"); - goto out; - } - __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd, - hyp_idmap_start); - } else { - err = kvm_map_idmap_text(hyp_pgd); - if (err) - goto out; - } - - return 0; -out: - free_hyp_pgds(); - return err; -} - -void kvm_arch_commit_memory_region(struct kvm *kvm, - const struct kvm_userspace_memory_region *mem, - const struct kvm_memory_slot *old, - const struct kvm_memory_slot *new, - enum kvm_mr_change change) -{ - /* - * At this point memslot has been committed and there is an - * allocated dirty_bitmap[], dirty pages will be be tracked while the - * memory slot is write protected. - */ - if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) - kvm_mmu_wp_memory_region(kvm, mem->slot); -} - -int kvm_arch_prepare_memory_region(struct kvm *kvm, - struct kvm_memory_slot *memslot, - const struct kvm_userspace_memory_region *mem, - enum kvm_mr_change change) -{ - hva_t hva = mem->userspace_addr; - hva_t reg_end = hva + mem->memory_size; - bool writable = !(mem->flags & KVM_MEM_READONLY); - int ret = 0; - - if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && - change != KVM_MR_FLAGS_ONLY) - return 0; - - /* - * Prevent userspace from creating a memory region outside of the IPA - * space addressable by the KVM guest IPA space. - */ - if (memslot->base_gfn + memslot->npages >= - (KVM_PHYS_SIZE >> PAGE_SHIFT)) - return -EFAULT; - - /* - * A memory region could potentially cover multiple VMAs, and any holes - * between them, so iterate over all of them to find out if we can map - * any of them right now. - * - * +--------------------------------------------+ - * +---------------+----------------+ +----------------+ - * | : VMA 1 | VMA 2 | | VMA 3 : | - * +---------------+----------------+ +----------------+ - * | memory region | - * +--------------------------------------------+ - */ - do { - struct vm_area_struct *vma = find_vma(current->mm, hva); - hva_t vm_start, vm_end; - - if (!vma || vma->vm_start >= reg_end) - break; - - /* - * Mapping a read-only VMA is only allowed if the - * memory region is configured as read-only. - */ - if (writable && !(vma->vm_flags & VM_WRITE)) { - ret = -EPERM; - break; - } - - /* - * Take the intersection of this VMA with the memory region - */ - vm_start = max(hva, vma->vm_start); - vm_end = min(reg_end, vma->vm_end); - - if (vma->vm_flags & VM_PFNMAP) { - gpa_t gpa = mem->guest_phys_addr + - (vm_start - mem->userspace_addr); - phys_addr_t pa; - - pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT; - pa += vm_start - vma->vm_start; - - /* IO region dirty page logging not allowed */ - if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) - return -EINVAL; - - ret = kvm_phys_addr_ioremap(kvm, gpa, pa, - vm_end - vm_start, - writable); - if (ret) - break; - } - hva = vm_end; - } while (hva < reg_end); - - if (change == KVM_MR_FLAGS_ONLY) - return ret; - - spin_lock(&kvm->mmu_lock); - if (ret) - unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size); - else - stage2_flush_memslot(kvm, memslot); - spin_unlock(&kvm->mmu_lock); - return ret; -} - -void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, - struct kvm_memory_slot *dont) -{ -} - -int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, - unsigned long npages) -{ - return 0; -} - -void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots) -{ -} - -void kvm_arch_flush_shadow_all(struct kvm *kvm) -{ - kvm_free_stage2_pgd(kvm); -} - -void kvm_arch_flush_shadow_memslot(struct kvm *kvm, - struct kvm_memory_slot *slot) -{ - gpa_t gpa = slot->base_gfn << PAGE_SHIFT; - phys_addr_t size = slot->npages << PAGE_SHIFT; - - spin_lock(&kvm->mmu_lock); - unmap_stage2_range(kvm, gpa, size); - spin_unlock(&kvm->mmu_lock); -} - -/* - * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). - * - * Main problems: - * - S/W ops are local to a CPU (not broadcast) - * - We have line migration behind our back (speculation) - * - System caches don't support S/W at all (damn!) - * - * In the face of the above, the best we can do is to try and convert - * S/W ops to VA ops. Because the guest is not allowed to infer the - * S/W to PA mapping, it can only use S/W to nuke the whole cache, - * which is a rather good thing for us. - * - * Also, it is only used when turning caches on/off ("The expected - * usage of the cache maintenance instructions that operate by set/way - * is associated with the cache maintenance instructions associated - * with the powerdown and powerup of caches, if this is required by - * the implementation."). - * - * We use the following policy: - * - * - If we trap a S/W operation, we enable VM trapping to detect - * caches being turned on/off, and do a full clean. - * - * - We flush the caches on both caches being turned on and off. - * - * - Once the caches are enabled, we stop trapping VM ops. - */ -void kvm_set_way_flush(struct kvm_vcpu *vcpu) -{ - unsigned long hcr = vcpu_get_hcr(vcpu); - - /* - * If this is the first time we do a S/W operation - * (i.e. HCR_TVM not set) flush the whole memory, and set the - * VM trapping. - * - * Otherwise, rely on the VM trapping to wait for the MMU + - * Caches to be turned off. At that point, we'll be able to - * clean the caches again. - */ - if (!(hcr & HCR_TVM)) { - trace_kvm_set_way_flush(*vcpu_pc(vcpu), - vcpu_has_cache_enabled(vcpu)); - stage2_flush_vm(vcpu->kvm); - vcpu_set_hcr(vcpu, hcr | HCR_TVM); - } -} - -void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) -{ - bool now_enabled = vcpu_has_cache_enabled(vcpu); - - /* - * If switching the MMU+caches on, need to invalidate the caches. - * If switching it off, need to clean the caches. - * Clean + invalidate does the trick always. - */ - if (now_enabled != was_enabled) - stage2_flush_vm(vcpu->kvm); - - /* Caches are now on, stop trapping VM ops (until a S/W op) */ - if (now_enabled) - vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM); - - trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); -} diff --git a/arch/arm/kvm/perf.c b/arch/arm/kvm/perf.c deleted file mode 100644 index 1a3849da0b4b..000000000000 --- a/arch/arm/kvm/perf.c +++ /dev/null @@ -1,68 +0,0 @@ -/* - * Based on the x86 implementation. - * - * Copyright (C) 2012 ARM Ltd. - * Author: Marc Zyngier <marc.zyngier@arm.com> - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program. If not, see <http://www.gnu.org/licenses/>. - */ - -#include <linux/perf_event.h> -#include <linux/kvm_host.h> - -#include <asm/kvm_emulate.h> - -static int kvm_is_in_guest(void) -{ - return kvm_arm_get_running_vcpu() != NULL; -} - -static int kvm_is_user_mode(void) -{ - struct kvm_vcpu *vcpu; - - vcpu = kvm_arm_get_running_vcpu(); - - if (vcpu) - return !vcpu_mode_priv(vcpu); - - return 0; -} - -static unsigned long kvm_get_guest_ip(void) -{ - struct kvm_vcpu *vcpu; - - vcpu = kvm_arm_get_running_vcpu(); - - if (vcpu) - return *vcpu_pc(vcpu); - - return 0; -} - -static struct perf_guest_info_callbacks kvm_guest_cbs = { - .is_in_guest = kvm_is_in_guest, - .is_user_mode = kvm_is_user_mode, - .get_guest_ip = kvm_get_guest_ip, -}; - -int kvm_perf_init(void) -{ - return perf_register_guest_info_callbacks(&kvm_guest_cbs); -} - -int kvm_perf_teardown(void) -{ - return perf_unregister_guest_info_callbacks(&kvm_guest_cbs); -} diff --git a/arch/arm/kvm/psci.c b/arch/arm/kvm/psci.c deleted file mode 100644 index a08d7a93aebb..000000000000 --- a/arch/arm/kvm/psci.c +++ /dev/null @@ -1,332 +0,0 @@ -/* - * Copyright (C) 2012 - ARM Ltd - * Author: Marc Zyngier <marc.zyngier@arm.com> - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program. If not, see <http://www.gnu.org/licenses/>. - */ - -#include <linux/preempt.h> -#include <linux/kvm_host.h> -#include <linux/wait.h> - -#include <asm/cputype.h> -#include <asm/kvm_emulate.h> -#include <asm/kvm_psci.h> -#include <asm/kvm_host.h> - -#include <uapi/linux/psci.h> - -/* - * This is an implementation of the Power State Coordination Interface - * as described in ARM document number ARM DEN 0022A. - */ - -#define AFFINITY_MASK(level) ~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1) - -static unsigned long psci_affinity_mask(unsigned long affinity_level) -{ - if (affinity_level <= 3) - return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level); - - return 0; -} - -static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu) -{ - /* - * NOTE: For simplicity, we make VCPU suspend emulation to be - * same-as WFI (Wait-for-interrupt) emulation. - * - * This means for KVM the wakeup events are interrupts and - * this is consistent with intended use of StateID as described - * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A). - * - * Further, we also treat power-down request to be same as - * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2 - * specification (ARM DEN 0022A). This means all suspend states - * for KVM will preserve the register state. - */ - kvm_vcpu_block(vcpu); - - return PSCI_RET_SUCCESS; -} - -static void kvm_psci_vcpu_off(struct kvm_vcpu *vcpu) -{ - vcpu->arch.power_off = true; -} - -static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu) -{ - struct kvm *kvm = source_vcpu->kvm; - struct kvm_vcpu *vcpu = NULL; - struct swait_queue_head *wq; - unsigned long cpu_id; - unsigned long context_id; - phys_addr_t target_pc; - - cpu_id = vcpu_get_reg(source_vcpu, 1) & MPIDR_HWID_BITMASK; - if (vcpu_mode_is_32bit(source_vcpu)) - cpu_id &= ~((u32) 0); - - vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id); - - /* - * Make sure the caller requested a valid CPU and that the CPU is - * turned off. - */ - if (!vcpu) - return PSCI_RET_INVALID_PARAMS; - if (!vcpu->arch.power_off) { - if (kvm_psci_version(source_vcpu) != KVM_ARM_PSCI_0_1) - return PSCI_RET_ALREADY_ON; - else - return PSCI_RET_INVALID_PARAMS; - } - - target_pc = vcpu_get_reg(source_vcpu, 2); - context_id = vcpu_get_reg(source_vcpu, 3); - - kvm_reset_vcpu(vcpu); - - /* Gracefully handle Thumb2 entry point */ - if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) { - target_pc &= ~((phys_addr_t) 1); - vcpu_set_thumb(vcpu); - } - - /* Propagate caller endianness */ - if (kvm_vcpu_is_be(source_vcpu)) - kvm_vcpu_set_be(vcpu); - - *vcpu_pc(vcpu) = target_pc; - /* - * NOTE: We always update r0 (or x0) because for PSCI v0.1 - * the general puspose registers are undefined upon CPU_ON. - */ - vcpu_set_reg(vcpu, 0, context_id); - vcpu->arch.power_off = false; - smp_mb(); /* Make sure the above is visible */ - - wq = kvm_arch_vcpu_wq(vcpu); - swake_up(wq); - - return PSCI_RET_SUCCESS; -} - -static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu) -{ - int i, matching_cpus = 0; - unsigned long mpidr; - unsigned long target_affinity; - unsigned long target_affinity_mask; - unsigned long lowest_affinity_level; - struct kvm *kvm = vcpu->kvm; - struct kvm_vcpu *tmp; - - target_affinity = vcpu_get_reg(vcpu, 1); - lowest_affinity_level = vcpu_get_reg(vcpu, 2); - - /* Determine target affinity mask */ - target_affinity_mask = psci_affinity_mask(lowest_affinity_level); - if (!target_affinity_mask) - return PSCI_RET_INVALID_PARAMS; - - /* Ignore other bits of target affinity */ - target_affinity &= target_affinity_mask; - - /* - * If one or more VCPU matching target affinity are running - * then ON else OFF - */ - kvm_for_each_vcpu(i, tmp, kvm) { - mpidr = kvm_vcpu_get_mpidr_aff(tmp); - if ((mpidr & target_affinity_mask) == target_affinity) { - matching_cpus++; - if (!tmp->arch.power_off) - return PSCI_0_2_AFFINITY_LEVEL_ON; - } - } - - if (!matching_cpus) - return PSCI_RET_INVALID_PARAMS; - - return PSCI_0_2_AFFINITY_LEVEL_OFF; -} - -static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type) -{ - int i; - struct kvm_vcpu *tmp; - - /* - * The KVM ABI specifies that a system event exit may call KVM_RUN - * again and may perform shutdown/reboot at a later time that when the - * actual request is made. Since we are implementing PSCI and a - * caller of PSCI reboot and shutdown expects that the system shuts - * down or reboots immediately, let's make sure that VCPUs are not run - * after this call is handled and before the VCPUs have been - * re-initialized. - */ - kvm_for_each_vcpu(i, tmp, vcpu->kvm) { - tmp->arch.power_off = true; - kvm_vcpu_kick(tmp); - } - - memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); - vcpu->run->system_event.type = type; - vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; -} - -static void kvm_psci_system_off(struct kvm_vcpu *vcpu) -{ - kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN); -} - -static void kvm_psci_system_reset(struct kvm_vcpu *vcpu) -{ - kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET); -} - -int kvm_psci_version(struct kvm_vcpu *vcpu) -{ - if (test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features)) - return KVM_ARM_PSCI_0_2; - - return KVM_ARM_PSCI_0_1; -} - -static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu) -{ - struct kvm *kvm = vcpu->kvm; - unsigned long psci_fn = vcpu_get_reg(vcpu, 0) & ~((u32) 0); - unsigned long val; - int ret = 1; - - switch (psci_fn) { - case PSCI_0_2_FN_PSCI_VERSION: - /* - * Bits[31:16] = Major Version = 0 - * Bits[15:0] = Minor Version = 2 - */ - val = 2; - break; - case PSCI_0_2_FN_CPU_SUSPEND: - case PSCI_0_2_FN64_CPU_SUSPEND: - val = kvm_psci_vcpu_suspend(vcpu); - break; - case PSCI_0_2_FN_CPU_OFF: - kvm_psci_vcpu_off(vcpu); - val = PSCI_RET_SUCCESS; - break; - case PSCI_0_2_FN_CPU_ON: - case PSCI_0_2_FN64_CPU_ON: - mutex_lock(&kvm->lock); - val = kvm_psci_vcpu_on(vcpu); - mutex_unlock(&kvm->lock); - break; - case PSCI_0_2_FN_AFFINITY_INFO: - case PSCI_0_2_FN64_AFFINITY_INFO: - val = kvm_psci_vcpu_affinity_info(vcpu); - break; - case PSCI_0_2_FN_MIGRATE_INFO_TYPE: - /* - * Trusted OS is MP hence does not require migration - * or - * Trusted OS is not present - */ - val = PSCI_0_2_TOS_MP; - break; - case PSCI_0_2_FN_SYSTEM_OFF: - kvm_psci_system_off(vcpu); - /* - * We should'nt be going back to guest VCPU after - * receiving SYSTEM_OFF request. - * - * If user space accidently/deliberately resumes - * guest VCPU after SYSTEM_OFF request then guest - * VCPU should see internal failure from PSCI return - * value. To achieve this, we preload r0 (or x0) with - * PSCI return value INTERNAL_FAILURE. - */ - val = PSCI_RET_INTERNAL_FAILURE; - ret = 0; - break; - case PSCI_0_2_FN_SYSTEM_RESET: - kvm_psci_system_reset(vcpu); - /* - * Same reason as SYSTEM_OFF for preloading r0 (or x0) - * with PSCI return value INTERNAL_FAILURE. - */ - val = PSCI_RET_INTERNAL_FAILURE; - ret = 0; - break; - default: - val = PSCI_RET_NOT_SUPPORTED; - break; - } - - vcpu_set_reg(vcpu, 0, val); - return ret; -} - -static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu) -{ - struct kvm *kvm = vcpu->kvm; - unsigned long psci_fn = vcpu_get_reg(vcpu, 0) & ~((u32) 0); - unsigned long val; - - switch (psci_fn) { - case KVM_PSCI_FN_CPU_OFF: - kvm_psci_vcpu_off(vcpu); - val = PSCI_RET_SUCCESS; - break; - case KVM_PSCI_FN_CPU_ON: - mutex_lock(&kvm->lock); - val = kvm_psci_vcpu_on(vcpu); - mutex_unlock(&kvm->lock); - break; - default: - val = PSCI_RET_NOT_SUPPORTED; - break; - } - - vcpu_set_reg(vcpu, 0, val); - return 1; -} - -/** - * kvm_psci_call - handle PSCI call if r0 value is in range - * @vcpu: Pointer to the VCPU struct - * - * Handle PSCI calls from guests through traps from HVC instructions. - * The calling convention is similar to SMC calls to the secure world - * where the function number is placed in r0. - * - * This function returns: > 0 (success), 0 (success but exit to user - * space), and < 0 (errors) - * - * Errors: - * -EINVAL: Unrecognized PSCI function - */ -int kvm_psci_call(struct kvm_vcpu *vcpu) -{ - switch (kvm_psci_version(vcpu)) { - case KVM_ARM_PSCI_0_2: - return kvm_psci_0_2_call(vcpu); - case KVM_ARM_PSCI_0_1: - return kvm_psci_0_1_call(vcpu); - default: - return -EINVAL; - }; -} diff --git a/arch/arm/kvm/trace.h b/arch/arm/kvm/trace.h index c25a88598eb0..fc0943776db2 100644 --- a/arch/arm/kvm/trace.h +++ b/arch/arm/kvm/trace.h @@ -6,133 +6,6 @@ #undef TRACE_SYSTEM #define TRACE_SYSTEM kvm -/* - * Tracepoints for entry/exit to guest - */ -TRACE_EVENT(kvm_entry, - TP_PROTO(unsigned long vcpu_pc), - TP_ARGS(vcpu_pc), - - TP_STRUCT__entry( - __field( unsigned long, vcpu_pc ) - ), - - TP_fast_assign( - __entry->vcpu_pc = vcpu_pc; - ), - - TP_printk("PC: 0x%08lx", __entry->vcpu_pc) -); - -TRACE_EVENT(kvm_exit, - TP_PROTO(int idx, unsigned int exit_reason, unsigned long vcpu_pc), - TP_ARGS(idx, exit_reason, vcpu_pc), - - TP_STRUCT__entry( - __field( int, idx ) - __field( unsigned int, exit_reason ) - __field( unsigned long, vcpu_pc ) - ), - - TP_fast_assign( - __entry->idx = idx; - __entry->exit_reason = exit_reason; - __entry->vcpu_pc = vcpu_pc; - ), - - TP_printk("%s: HSR_EC: 0x%04x (%s), PC: 0x%08lx", - __print_symbolic(__entry->idx, kvm_arm_exception_type), - __entry->exit_reason, - __print_symbolic(__entry->exit_reason, kvm_arm_exception_class), - __entry->vcpu_pc) -); - -TRACE_EVENT(kvm_guest_fault, - TP_PROTO(unsigned long vcpu_pc, unsigned long hsr, - unsigned long hxfar, - unsigned long long ipa), - TP_ARGS(vcpu_pc, hsr, hxfar, ipa), - - TP_STRUCT__entry( - __field( unsigned long, vcpu_pc ) - __field( unsigned long, hsr ) - __field( unsigned long, hxfar ) - __field( unsigned long long, ipa ) - ), - - TP_fast_assign( - __entry->vcpu_pc = vcpu_pc; - __entry->hsr = hsr; - __entry->hxfar = hxfar; - __entry->ipa = ipa; - ), - - TP_printk("ipa %#llx, hsr %#08lx, hxfar %#08lx, pc %#08lx", - __entry->ipa, __entry->hsr, - __entry->hxfar, __entry->vcpu_pc) -); - -TRACE_EVENT(kvm_access_fault, - TP_PROTO(unsigned long ipa), - TP_ARGS(ipa), - - TP_STRUCT__entry( - __field( unsigned long, ipa ) - ), - - TP_fast_assign( - __entry->ipa = ipa; - ), - - TP_printk("IPA: %lx", __entry->ipa) -); - -TRACE_EVENT(kvm_irq_line, - TP_PROTO(unsigned int type, int vcpu_idx, int irq_num, int level), - TP_ARGS(type, vcpu_idx, irq_num, level), - - TP_STRUCT__entry( - __field( unsigned int, type ) - __field( int, vcpu_idx ) - __field( int, irq_num ) - __field( int, level ) - ), - - TP_fast_assign( - __entry->type = type; - __entry->vcpu_idx = vcpu_idx; - __entry->irq_num = irq_num; - __entry->level = level; - ), - - TP_printk("Inject %s interrupt (%d), vcpu->idx: %d, num: %d, level: %d", - (__entry->type == KVM_ARM_IRQ_TYPE_CPU) ? "CPU" : - (__entry->type == KVM_ARM_IRQ_TYPE_PPI) ? "VGIC PPI" : - (__entry->type == KVM_ARM_IRQ_TYPE_SPI) ? "VGIC SPI" : "UNKNOWN", - __entry->type, __entry->vcpu_idx, __entry->irq_num, __entry->level) -); - -TRACE_EVENT(kvm_mmio_emulate, - TP_PROTO(unsigned long vcpu_pc, unsigned long instr, - unsigned long cpsr), - TP_ARGS(vcpu_pc, instr, cpsr), - - TP_STRUCT__entry( - __field( unsigned long, vcpu_pc ) - __field( unsigned long, instr ) - __field( unsigned long, cpsr ) - ), - - TP_fast_assign( - __entry->vcpu_pc = vcpu_pc; - __entry->instr = instr; - __entry->cpsr = cpsr; - ), - - TP_printk("Emulate MMIO at: 0x%08lx (instr: %08lx, cpsr: %08lx)", - __entry->vcpu_pc, __entry->instr, __entry->cpsr) -); - /* Architecturally implementation defined CP15 register access */ TRACE_EVENT(kvm_emulate_cp15_imp, TP_PROTO(unsigned long Op1, unsigned long Rt1, unsigned long CRn, @@ -181,87 +54,6 @@ TRACE_EVENT(kvm_wfx, __entry->is_wfe ? 'e' : 'i', __entry->vcpu_pc) ); -TRACE_EVENT(kvm_unmap_hva, - TP_PROTO(unsigned long hva), - TP_ARGS(hva), - - TP_STRUCT__entry( - __field( unsigned long, hva ) - ), - - TP_fast_assign( - __entry->hva = hva; - ), - - TP_printk("mmu notifier unmap hva: %#08lx", __entry->hva) -); - -TRACE_EVENT(kvm_unmap_hva_range, - TP_PROTO(unsigned long start, unsigned long end), - TP_ARGS(start, end), - - TP_STRUCT__entry( - __field( unsigned long, start ) - __field( unsigned long, end ) - ), - - TP_fast_assign( - __entry->start = start; - __entry->end = end; - ), - - TP_printk("mmu notifier unmap range: %#08lx -- %#08lx", - __entry->start, __entry->end) -); - -TRACE_EVENT(kvm_set_spte_hva, - TP_PROTO(unsigned long hva), - TP_ARGS(hva), - - TP_STRUCT__entry( - __field( unsigned long, hva ) - ), - - TP_fast_assign( - __entry->hva = hva; - ), - - TP_printk("mmu notifier set pte hva: %#08lx", __entry->hva) -); - -TRACE_EVENT(kvm_age_hva, - TP_PROTO(unsigned long start, unsigned long end), - TP_ARGS(start, end), - - TP_STRUCT__entry( - __field( unsigned long, start ) - __field( unsigned long, end ) - ), - - TP_fast_assign( - __entry->start = start; - __entry->end = end; - ), - - TP_printk("mmu notifier age hva: %#08lx -- %#08lx", - __entry->start, __entry->end) -); - -TRACE_EVENT(kvm_test_age_hva, - TP_PROTO(unsigned long hva), - TP_ARGS(hva), - - TP_STRUCT__entry( - __field( unsigned long, hva ) - ), - - TP_fast_assign( - __entry->hva = hva; - ), - - TP_printk("mmu notifier test age hva: %#08lx", __entry->hva) -); - TRACE_EVENT(kvm_hvc, TP_PROTO(unsigned long vcpu_pc, unsigned long r0, unsigned long imm), TP_ARGS(vcpu_pc, r0, imm), @@ -282,45 +74,6 @@ TRACE_EVENT(kvm_hvc, __entry->vcpu_pc, __entry->r0, __entry->imm) ); -TRACE_EVENT(kvm_set_way_flush, - TP_PROTO(unsigned long vcpu_pc, bool cache), - TP_ARGS(vcpu_pc, cache), - - TP_STRUCT__entry( - __field( unsigned long, vcpu_pc ) - __field( bool, cache ) - ), - - TP_fast_assign( - __entry->vcpu_pc = vcpu_pc; - __entry->cache = cache; - ), - - TP_printk("S/W flush at 0x%016lx (cache %s)", - __entry->vcpu_pc, __entry->cache ? "on" : "off") -); - -TRACE_EVENT(kvm_toggle_cache, - TP_PROTO(unsigned long vcpu_pc, bool was, bool now), - TP_ARGS(vcpu_pc, was, now), - - TP_STRUCT__entry( - __field( unsigned long, vcpu_pc ) - __field( bool, was ) - __field( bool, now ) - ), - - TP_fast_assign( - __entry->vcpu_pc = vcpu_pc; - __entry->was = was; - __entry->now = now; - ), - - TP_printk("VM op at 0x%016lx (cache was %s, now %s)", - __entry->vcpu_pc, __entry->was ? "on" : "off", - __entry->now ? "on" : "off") -); - #endif /* _TRACE_KVM_H */ #undef TRACE_INCLUDE_PATH |