summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt43
-rw-r--r--Documentation/core-api/kernel-api.rst2
-rw-r--r--Documentation/core-api/symbol-namespaces.rst4
-rw-r--r--Documentation/devicetree/bindings/display/allwinner,sun4i-a10-display-engine.yaml1
-rw-r--r--Documentation/devicetree/bindings/dma/allwinner,sun50i-a64-dma.yaml2
-rw-r--r--Documentation/devicetree/bindings/net/wireless/qca,ath9k.yaml2
-rw-r--r--Documentation/devicetree/bindings/net/wireless/qcom,ath11k.yaml2
-rw-r--r--Documentation/devicetree/bindings/sound/qcom,lpass-cpu.yaml8
-rw-r--r--Documentation/driver-api/firmware/other_interfaces.rst6
-rw-r--r--Documentation/filesystems/netfs_library.rst8
-rw-r--r--Documentation/filesystems/overlayfs.rst4
-rw-r--r--Documentation/firmware-guide/acpi/DSD-properties-rules.rst11
-rw-r--r--Documentation/firmware-guide/acpi/apei/einj.rst2
-rw-r--r--Documentation/livepatch/module-elf-format.rst10
-rw-r--r--Documentation/networking/dsa/dsa.rst363
-rw-r--r--Documentation/networking/ip-sysctl.rst10
-rw-r--r--Documentation/process/maintainer-netdev.rst36
-rw-r--r--Documentation/sound/soc/dai.rst2
-rw-r--r--Documentation/translations/it_IT/core-api/symbol-namespaces.rst6
-rw-r--r--Documentation/translations/zh_CN/core-api/kernel-api.rst2
-rw-r--r--Documentation/translations/zh_CN/core-api/symbol-namespaces.rst2
-rw-r--r--Documentation/virt/kvm/api.rst19
22 files changed, 444 insertions, 101 deletions
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 2522b11e593f..c0fdb04a0435 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -5197,6 +5197,30 @@
retain_initrd [RAM] Keep initrd memory after extraction
+ retbleed= [X86] Control mitigation of RETBleed (Arbitrary
+ Speculative Code Execution with Return Instructions)
+ vulnerability.
+
+ off - no mitigation
+ auto - automatically select a migitation
+ auto,nosmt - automatically select a mitigation,
+ disabling SMT if necessary for
+ the full mitigation (only on Zen1
+ and older without STIBP).
+ ibpb - mitigate short speculation windows on
+ basic block boundaries too. Safe, highest
+ perf impact.
+ unret - force enable untrained return thunks,
+ only effective on AMD f15h-f17h
+ based systems.
+ unret,nosmt - like unret, will disable SMT when STIBP
+ is not available.
+
+ Selecting 'auto' will choose a mitigation method at run
+ time according to the CPU.
+
+ Not specifying this option is equivalent to retbleed=auto.
+
rfkill.default_state=
0 "airplane mode". All wifi, bluetooth, wimax, gps, fm,
etc. communication is blocked by default.
@@ -5568,6 +5592,7 @@
eibrs - enhanced IBRS
eibrs,retpoline - enhanced IBRS + Retpolines
eibrs,lfence - enhanced IBRS + LFENCE
+ ibrs - use IBRS to protect kernel
Not specifying this option is equivalent to
spectre_v2=auto.
@@ -5771,6 +5796,24 @@
expediting. Set to zero to disable automatic
expediting.
+ srcutree.srcu_max_nodelay [KNL]
+ Specifies the number of no-delay instances
+ per jiffy for which the SRCU grace period
+ worker thread will be rescheduled with zero
+ delay. Beyond this limit, worker thread will
+ be rescheduled with a sleep delay of one jiffy.
+
+ srcutree.srcu_max_nodelay_phase [KNL]
+ Specifies the per-grace-period phase, number of
+ non-sleeping polls of readers. Beyond this limit,
+ grace period worker thread will be rescheduled
+ with a sleep delay of one jiffy, between each
+ rescan of the readers, for a grace period phase.
+
+ srcutree.srcu_retry_check_delay [KNL]
+ Specifies number of microseconds of non-sleeping
+ delay between each non-sleeping poll of readers.
+
srcutree.small_contention_lim [KNL]
Specifies the number of update-side contention
events per jiffy will be tolerated before
diff --git a/Documentation/core-api/kernel-api.rst b/Documentation/core-api/kernel-api.rst
index d6b3f94b9f1f..0793c400d4b0 100644
--- a/Documentation/core-api/kernel-api.rst
+++ b/Documentation/core-api/kernel-api.rst
@@ -223,7 +223,7 @@ Module Loading
Inter Module support
--------------------
-Refer to the file kernel/module.c for more information.
+Refer to the files in kernel/module/ for more information.
Hardware Interfaces
===================
diff --git a/Documentation/core-api/symbol-namespaces.rst b/Documentation/core-api/symbol-namespaces.rst
index 5ad9e0abe42c..12e4aecdae94 100644
--- a/Documentation/core-api/symbol-namespaces.rst
+++ b/Documentation/core-api/symbol-namespaces.rst
@@ -51,8 +51,8 @@ namespace ``USB_STORAGE``, use::
The corresponding ksymtab entry struct ``kernel_symbol`` will have the member
``namespace`` set accordingly. A symbol that is exported without a namespace will
refer to ``NULL``. There is no default namespace if none is defined. ``modpost``
-and kernel/module.c make use the namespace at build time or module load time,
-respectively.
+and kernel/module/main.c make use the namespace at build time or module load
+time, respectively.
2.2 Using the DEFAULT_SYMBOL_NAMESPACE define
=============================================
diff --git a/Documentation/devicetree/bindings/display/allwinner,sun4i-a10-display-engine.yaml b/Documentation/devicetree/bindings/display/allwinner,sun4i-a10-display-engine.yaml
index c388ae5da1e4..c9c346e6228e 100644
--- a/Documentation/devicetree/bindings/display/allwinner,sun4i-a10-display-engine.yaml
+++ b/Documentation/devicetree/bindings/display/allwinner,sun4i-a10-display-engine.yaml
@@ -94,6 +94,7 @@ if:
- allwinner,sun8i-a83t-display-engine
- allwinner,sun8i-r40-display-engine
- allwinner,sun9i-a80-display-engine
+ - allwinner,sun20i-d1-display-engine
- allwinner,sun50i-a64-display-engine
then:
diff --git a/Documentation/devicetree/bindings/dma/allwinner,sun50i-a64-dma.yaml b/Documentation/devicetree/bindings/dma/allwinner,sun50i-a64-dma.yaml
index ff0a5c58d78c..e712444abff1 100644
--- a/Documentation/devicetree/bindings/dma/allwinner,sun50i-a64-dma.yaml
+++ b/Documentation/devicetree/bindings/dma/allwinner,sun50i-a64-dma.yaml
@@ -67,7 +67,7 @@ if:
then:
properties:
clocks:
- maxItems: 2
+ minItems: 2
required:
- clock-names
diff --git a/Documentation/devicetree/bindings/net/wireless/qca,ath9k.yaml b/Documentation/devicetree/bindings/net/wireless/qca,ath9k.yaml
index 8cd0adbf7021..7029cb1f38ff 100644
--- a/Documentation/devicetree/bindings/net/wireless/qca,ath9k.yaml
+++ b/Documentation/devicetree/bindings/net/wireless/qca,ath9k.yaml
@@ -7,7 +7,7 @@ $schema: http://devicetree.org/meta-schemas/core.yaml#
title: Qualcomm Atheros ath9k wireless devices Generic Binding
maintainers:
- - Kalle Valo <kvalo@codeaurora.org>
+ - Toke Høiland-Jørgensen <toke@toke.dk>
description: |
This node provides properties for configuring the ath9k wireless device.
diff --git a/Documentation/devicetree/bindings/net/wireless/qcom,ath11k.yaml b/Documentation/devicetree/bindings/net/wireless/qcom,ath11k.yaml
index 8c01fdba134b..a677b056f112 100644
--- a/Documentation/devicetree/bindings/net/wireless/qcom,ath11k.yaml
+++ b/Documentation/devicetree/bindings/net/wireless/qcom,ath11k.yaml
@@ -9,7 +9,7 @@ $schema: http://devicetree.org/meta-schemas/core.yaml#
title: Qualcomm Technologies ath11k wireless devices Generic Binding
maintainers:
- - Kalle Valo <kvalo@codeaurora.org>
+ - Kalle Valo <kvalo@kernel.org>
description: |
These are dt entries for Qualcomm Technologies, Inc. IEEE 802.11ax
diff --git a/Documentation/devicetree/bindings/sound/qcom,lpass-cpu.yaml b/Documentation/devicetree/bindings/sound/qcom,lpass-cpu.yaml
index e9a533080b32..ef18a572a1ff 100644
--- a/Documentation/devicetree/bindings/sound/qcom,lpass-cpu.yaml
+++ b/Documentation/devicetree/bindings/sound/qcom,lpass-cpu.yaml
@@ -25,12 +25,12 @@ properties:
- qcom,sc7280-lpass-cpu
reg:
- minItems: 2
+ minItems: 1
maxItems: 6
description: LPAIF core registers
reg-names:
- minItems: 2
+ minItems: 1
maxItems: 6
clocks:
@@ -42,12 +42,12 @@ properties:
maxItems: 10
interrupts:
- minItems: 2
+ minItems: 1
maxItems: 4
description: LPAIF DMA buffer interrupt
interrupt-names:
- minItems: 2
+ minItems: 1
maxItems: 4
qcom,adsp:
diff --git a/Documentation/driver-api/firmware/other_interfaces.rst b/Documentation/driver-api/firmware/other_interfaces.rst
index b81794e0cfbb..06ac89adaafb 100644
--- a/Documentation/driver-api/firmware/other_interfaces.rst
+++ b/Documentation/driver-api/firmware/other_interfaces.rst
@@ -13,6 +13,12 @@ EDD Interfaces
.. kernel-doc:: drivers/firmware/edd.c
:internal:
+Generic System Framebuffers Interface
+-------------------------------------
+
+.. kernel-doc:: drivers/firmware/sysfb.c
+ :export:
+
Intel Stratix10 SoC Service Layer
---------------------------------
Some features of the Intel Stratix10 SoC require a level of privilege
diff --git a/Documentation/filesystems/netfs_library.rst b/Documentation/filesystems/netfs_library.rst
index 4d19b19bcc08..73a4176144b3 100644
--- a/Documentation/filesystems/netfs_library.rst
+++ b/Documentation/filesystems/netfs_library.rst
@@ -301,7 +301,7 @@ through which it can issue requests and negotiate::
void (*issue_read)(struct netfs_io_subrequest *subreq);
bool (*is_still_valid)(struct netfs_io_request *rreq);
int (*check_write_begin)(struct file *file, loff_t pos, unsigned len,
- struct folio *folio, void **_fsdata);
+ struct folio **foliop, void **_fsdata);
void (*done)(struct netfs_io_request *rreq);
};
@@ -381,8 +381,10 @@ The operations are as follows:
allocated/grabbed the folio to be modified to allow the filesystem to flush
conflicting state before allowing it to be modified.
- It should return 0 if everything is now fine, -EAGAIN if the folio should be
- regrabbed and any other error code to abort the operation.
+ It may unlock and discard the folio it was given and set the caller's folio
+ pointer to NULL. It should return 0 if everything is now fine (``*foliop``
+ left set) or the op should be retried (``*foliop`` cleared) and any other
+ error code to abort the operation.
* ``done``
diff --git a/Documentation/filesystems/overlayfs.rst b/Documentation/filesystems/overlayfs.rst
index 7da6c30ed596..316cfd8b1891 100644
--- a/Documentation/filesystems/overlayfs.rst
+++ b/Documentation/filesystems/overlayfs.rst
@@ -466,6 +466,10 @@ overlay filesystem and the value of st_ino for filesystem objects may not be
persistent and could change even while the overlay filesystem is mounted, as
summarized in the `Inode properties`_ table above.
+4) "idmapped mounts"
+When the upper or lower layers are idmapped mounts overlayfs will be mounted
+without support for POSIX Access Control Lists (ACLs). This limitation will
+eventually be lifted.
Changes to underlying filesystems
---------------------------------
diff --git a/Documentation/firmware-guide/acpi/DSD-properties-rules.rst b/Documentation/firmware-guide/acpi/DSD-properties-rules.rst
index 8b2d8d0864c2..70442bc2521e 100644
--- a/Documentation/firmware-guide/acpi/DSD-properties-rules.rst
+++ b/Documentation/firmware-guide/acpi/DSD-properties-rules.rst
@@ -21,7 +21,9 @@ specific type) associated with it.
In the ACPI _DSD context it is an element of the sub-package following the
generic Device Properties UUID in the _DSD return package as specified in the
-Device Properties UUID definition document [1]_.
+section titled "Well-Known _DSD UUIDs and Data Structure Formats" sub-section
+"Device Properties UUID" in _DSD (Device Specific Data) Implementation Guide
+document [1]_.
It also may be regarded as the definition of a key and the associated data type
that can be returned by _DSD in the Device Properties UUID sub-package for a
@@ -36,7 +38,9 @@ Property subsets are nested collections of properties. Each of them is
associated with an additional key (name) allowing the subset to be referred
to as a whole (and to be treated as a separate entity). The canonical
representation of property subsets is via the mechanism specified in the
-Hierarchical Properties Extension UUID definition document [2]_.
+section titled "Well-Known _DSD UUIDs and Data Structure Formats" sub-section
+"Hierarchical Data Extension UUID" in _DSD (Device Specific Data)
+Implementation Guide document [1]_.
Property sets may be hierarchical. That is, a property set may contain
multiple property subsets that each may contain property subsets of its
@@ -96,5 +100,4 @@ contents.
References
==========
-.. [1] https://www.uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.pdf
-.. [2] https://www.uefi.org/sites/default/files/resources/_DSD-hierarchical-data-extension-UUID-v1.1.pdf
+.. [1] https://github.com/UEFI/DSD-Guide
diff --git a/Documentation/firmware-guide/acpi/apei/einj.rst b/Documentation/firmware-guide/acpi/apei/einj.rst
index 55e2331a6438..d6b61d22f525 100644
--- a/Documentation/firmware-guide/acpi/apei/einj.rst
+++ b/Documentation/firmware-guide/acpi/apei/einj.rst
@@ -168,7 +168,7 @@ An error injection example::
0x00000008 Memory Correctable
0x00000010 Memory Uncorrectable non-fatal
# echo 0x12345000 > param1 # Set memory address for injection
- # echo $((-1 << 12)) > param2 # Mask 0xfffffffffffff000 - anywhere in this page
+ # echo 0xfffffffffffff000 > param2 # Mask - anywhere in this page
# echo 0x8 > error_type # Choose correctable memory error
# echo 1 > error_inject # Inject now
diff --git a/Documentation/livepatch/module-elf-format.rst b/Documentation/livepatch/module-elf-format.rst
index dbe9b400e39f..7347638895a0 100644
--- a/Documentation/livepatch/module-elf-format.rst
+++ b/Documentation/livepatch/module-elf-format.rst
@@ -210,11 +210,11 @@ module->symtab.
=====================================
Normally, a stripped down copy of a module's symbol table (containing only
"core" symbols) is made available through module->symtab (See layout_symtab()
-in kernel/module.c). For livepatch modules, the symbol table copied into memory
-on module load must be exactly the same as the symbol table produced when the
-patch module was compiled. This is because the relocations in each livepatch
-relocation section refer to their respective symbols with their symbol indices,
-and the original symbol indices (and thus the symtab ordering) must be
+in kernel/module/kallsyms.c). For livepatch modules, the symbol table copied
+into memory on module load must be exactly the same as the symbol table produced
+when the patch module was compiled. This is because the relocations in each
+livepatch relocation section refer to their respective symbols with their symbol
+indices, and the original symbol indices (and thus the symtab ordering) must be
preserved in order for apply_relocate_add() to find the right symbol.
For example, take this particular rela from a livepatch module:::
diff --git a/Documentation/networking/dsa/dsa.rst b/Documentation/networking/dsa/dsa.rst
index ed7fa76e7a40..d742ba6bd211 100644
--- a/Documentation/networking/dsa/dsa.rst
+++ b/Documentation/networking/dsa/dsa.rst
@@ -503,26 +503,108 @@ per-port PHY specific details: interface connection, MDIO bus location, etc.
Driver development
==================
-DSA switch drivers need to implement a dsa_switch_ops structure which will
+DSA switch drivers need to implement a ``dsa_switch_ops`` structure which will
contain the various members described below.
-``register_switch_driver()`` registers this dsa_switch_ops in its internal list
-of drivers to probe for. ``unregister_switch_driver()`` does the exact opposite.
+Probing, registration and device lifetime
+-----------------------------------------
-Unless requested differently by setting the priv_size member accordingly, DSA
-does not allocate any driver private context space.
+DSA switches are regular ``device`` structures on buses (be they platform, SPI,
+I2C, MDIO or otherwise). The DSA framework is not involved in their probing
+with the device core.
+
+Switch registration from the perspective of a driver means passing a valid
+``struct dsa_switch`` pointer to ``dsa_register_switch()``, usually from the
+switch driver's probing function. The following members must be valid in the
+provided structure:
+
+- ``ds->dev``: will be used to parse the switch's OF node or platform data.
+
+- ``ds->num_ports``: will be used to create the port list for this switch, and
+ to validate the port indices provided in the OF node.
+
+- ``ds->ops``: a pointer to the ``dsa_switch_ops`` structure holding the DSA
+ method implementations.
+
+- ``ds->priv``: backpointer to a driver-private data structure which can be
+ retrieved in all further DSA method callbacks.
+
+In addition, the following flags in the ``dsa_switch`` structure may optionally
+be configured to obtain driver-specific behavior from the DSA core. Their
+behavior when set is documented through comments in ``include/net/dsa.h``.
+
+- ``ds->vlan_filtering_is_global``
+
+- ``ds->needs_standalone_vlan_filtering``
+
+- ``ds->configure_vlan_while_not_filtering``
+
+- ``ds->untag_bridge_pvid``
+
+- ``ds->assisted_learning_on_cpu_port``
+
+- ``ds->mtu_enforcement_ingress``
+
+- ``ds->fdb_isolation``
+
+Internally, DSA keeps an array of switch trees (group of switches) global to
+the kernel, and attaches a ``dsa_switch`` structure to a tree on registration.
+The tree ID to which the switch is attached is determined by the first u32
+number of the ``dsa,member`` property of the switch's OF node (0 if missing).
+The switch ID within the tree is determined by the second u32 number of the
+same OF property (0 if missing). Registering multiple switches with the same
+switch ID and tree ID is illegal and will cause an error. Using platform data,
+a single switch and a single switch tree is permitted.
+
+In case of a tree with multiple switches, probing takes place asymmetrically.
+The first N-1 callers of ``dsa_register_switch()`` only add their ports to the
+port list of the tree (``dst->ports``), each port having a backpointer to its
+associated switch (``dp->ds``). Then, these switches exit their
+``dsa_register_switch()`` call early, because ``dsa_tree_setup_routing_table()``
+has determined that the tree is not yet complete (not all ports referenced by
+DSA links are present in the tree's port list). The tree becomes complete when
+the last switch calls ``dsa_register_switch()``, and this triggers the effective
+continuation of initialization (including the call to ``ds->ops->setup()``) for
+all switches within that tree, all as part of the calling context of the last
+switch's probe function.
+
+The opposite of registration takes place when calling ``dsa_unregister_switch()``,
+which removes a switch's ports from the port list of the tree. The entire tree
+is torn down when the first switch unregisters.
+
+It is mandatory for DSA switch drivers to implement the ``shutdown()`` callback
+of their respective bus, and call ``dsa_switch_shutdown()`` from it (a minimal
+version of the full teardown performed by ``dsa_unregister_switch()``).
+The reason is that DSA keeps a reference on the master net device, and if the
+driver for the master device decides to unbind on shutdown, DSA's reference
+will block that operation from finalizing.
+
+Either ``dsa_switch_shutdown()`` or ``dsa_unregister_switch()`` must be called,
+but not both, and the device driver model permits the bus' ``remove()`` method
+to be called even if ``shutdown()`` was already called. Therefore, drivers are
+expected to implement a mutual exclusion method between ``remove()`` and
+``shutdown()`` by setting their drvdata to NULL after any of these has run, and
+checking whether the drvdata is NULL before proceeding to take any action.
+
+After ``dsa_switch_shutdown()`` or ``dsa_unregister_switch()`` was called, no
+further callbacks via the provided ``dsa_switch_ops`` may take place, and the
+driver may free the data structures associated with the ``dsa_switch``.
Switch configuration
--------------------
-- ``tag_protocol``: this is to indicate what kind of tagging protocol is supported,
- should be a valid value from the ``dsa_tag_protocol`` enum
+- ``get_tag_protocol``: this is to indicate what kind of tagging protocol is
+ supported, should be a valid value from the ``dsa_tag_protocol`` enum.
+ The returned information does not have to be static; the driver is passed the
+ CPU port number, as well as the tagging protocol of a possibly stacked
+ upstream switch, in case there are hardware limitations in terms of supported
+ tag formats.
-- ``probe``: probe routine which will be invoked by the DSA platform device upon
- registration to test for the presence/absence of a switch device. For MDIO
- devices, it is recommended to issue a read towards internal registers using
- the switch pseudo-PHY and return whether this is a supported device. For other
- buses, return a non-NULL string
+- ``change_tag_protocol``: when the default tagging protocol has compatibility
+ problems with the master or other issues, the driver may support changing it
+ at runtime, either through a device tree property or through sysfs. In that
+ case, further calls to ``get_tag_protocol`` should report the protocol in
+ current use.
- ``setup``: setup function for the switch, this function is responsible for setting
up the ``dsa_switch_ops`` private structure with all it needs: register maps,
@@ -535,7 +617,17 @@ Switch configuration
fully configured and ready to serve any kind of request. It is recommended
to issue a software reset of the switch during this setup function in order to
avoid relying on what a previous software agent such as a bootloader/firmware
- may have previously configured.
+ may have previously configured. The method responsible for undoing any
+ applicable allocations or operations done here is ``teardown``.
+
+- ``port_setup`` and ``port_teardown``: methods for initialization and
+ destruction of per-port data structures. It is mandatory for some operations
+ such as registering and unregistering devlink port regions to be done from
+ these methods, otherwise they are optional. A port will be torn down only if
+ it has been previously set up. It is possible for a port to be set up during
+ probing only to be torn down immediately afterwards, for example in case its
+ PHY cannot be found. In this case, probing of the DSA switch continues
+ without that particular port.
PHY devices and link management
-------------------------------
@@ -635,26 +727,198 @@ Power management
``BR_STATE_DISABLED`` and propagating changes to the hardware if this port is
disabled while being a bridge member
+Address databases
+-----------------
+
+Switching hardware is expected to have a table for FDB entries, however not all
+of them are active at the same time. An address database is the subset (partition)
+of FDB entries that is active (can be matched by address learning on RX, or FDB
+lookup on TX) depending on the state of the port. An address database may
+occasionally be called "FID" (Filtering ID) in this document, although the
+underlying implementation may choose whatever is available to the hardware.
+
+For example, all ports that belong to a VLAN-unaware bridge (which is
+*currently* VLAN-unaware) are expected to learn source addresses in the
+database associated by the driver with that bridge (and not with other
+VLAN-unaware bridges). During forwarding and FDB lookup, a packet received on a
+VLAN-unaware bridge port should be able to find a VLAN-unaware FDB entry having
+the same MAC DA as the packet, which is present on another port member of the
+same bridge. At the same time, the FDB lookup process must be able to not find
+an FDB entry having the same MAC DA as the packet, if that entry points towards
+a port which is a member of a different VLAN-unaware bridge (and is therefore
+associated with a different address database).
+
+Similarly, each VLAN of each offloaded VLAN-aware bridge should have an
+associated address database, which is shared by all ports which are members of
+that VLAN, but not shared by ports belonging to different bridges that are
+members of the same VID.
+
+In this context, a VLAN-unaware database means that all packets are expected to
+match on it irrespective of VLAN ID (only MAC address lookup), whereas a
+VLAN-aware database means that packets are supposed to match based on the VLAN
+ID from the classified 802.1Q header (or the pvid if untagged).
+
+At the bridge layer, VLAN-unaware FDB entries have the special VID value of 0,
+whereas VLAN-aware FDB entries have non-zero VID values. Note that a
+VLAN-unaware bridge may have VLAN-aware (non-zero VID) FDB entries, and a
+VLAN-aware bridge may have VLAN-unaware FDB entries. As in hardware, the
+software bridge keeps separate address databases, and offloads to hardware the
+FDB entries belonging to these databases, through switchdev, asynchronously
+relative to the moment when the databases become active or inactive.
+
+When a user port operates in standalone mode, its driver should configure it to
+use a separate database called a port private database. This is different from
+the databases described above, and should impede operation as standalone port
+(packet in, packet out to the CPU port) as little as possible. For example,
+on ingress, it should not attempt to learn the MAC SA of ingress traffic, since
+learning is a bridging layer service and this is a standalone port, therefore
+it would consume useless space. With no address learning, the port private
+database should be empty in a naive implementation, and in this case, all
+received packets should be trivially flooded to the CPU port.
+
+DSA (cascade) and CPU ports are also called "shared" ports because they service
+multiple address databases, and the database that a packet should be associated
+to is usually embedded in the DSA tag. This means that the CPU port may
+simultaneously transport packets coming from a standalone port (which were
+classified by hardware in one address database), and from a bridge port (which
+were classified to a different address database).
+
+Switch drivers which satisfy certain criteria are able to optimize the naive
+configuration by removing the CPU port from the flooding domain of the switch,
+and just program the hardware with FDB entries pointing towards the CPU port
+for which it is known that software is interested in those MAC addresses.
+Packets which do not match a known FDB entry will not be delivered to the CPU,
+which will save CPU cycles required for creating an skb just to drop it.
+
+DSA is able to perform host address filtering for the following kinds of
+addresses:
+
+- Primary unicast MAC addresses of ports (``dev->dev_addr``). These are
+ associated with the port private database of the respective user port,
+ and the driver is notified to install them through ``port_fdb_add`` towards
+ the CPU port.
+
+- Secondary unicast and multicast MAC addresses of ports (addresses added
+ through ``dev_uc_add()`` and ``dev_mc_add()``). These are also associated
+ with the port private database of the respective user port.
+
+- Local/permanent bridge FDB entries (``BR_FDB_LOCAL``). These are the MAC
+ addresses of the bridge ports, for which packets must be terminated locally
+ and not forwarded. They are associated with the address database for that
+ bridge.
+
+- Static bridge FDB entries installed towards foreign (non-DSA) interfaces
+ present in the same bridge as some DSA switch ports. These are also
+ associated with the address database for that bridge.
+
+- Dynamically learned FDB entries on foreign interfaces present in the same
+ bridge as some DSA switch ports, only if ``ds->assisted_learning_on_cpu_port``
+ is set to true by the driver. These are associated with the address database
+ for that bridge.
+
+For various operations detailed below, DSA provides a ``dsa_db`` structure
+which can be of the following types:
+
+- ``DSA_DB_PORT``: the FDB (or MDB) entry to be installed or deleted belongs to
+ the port private database of user port ``db->dp``.
+- ``DSA_DB_BRIDGE``: the entry belongs to one of the address databases of bridge
+ ``db->bridge``. Separation between the VLAN-unaware database and the per-VID
+ databases of this bridge is expected to be done by the driver.
+- ``DSA_DB_LAG``: the entry belongs to the address database of LAG ``db->lag``.
+ Note: ``DSA_DB_LAG`` is currently unused and may be removed in the future.
+
+The drivers which act upon the ``dsa_db`` argument in ``port_fdb_add``,
+``port_mdb_add`` etc should declare ``ds->fdb_isolation`` as true.
+
+DSA associates each offloaded bridge and each offloaded LAG with a one-based ID
+(``struct dsa_bridge :: num``, ``struct dsa_lag :: id``) for the purposes of
+refcounting addresses on shared ports. Drivers may piggyback on DSA's numbering
+scheme (the ID is readable through ``db->bridge.num`` and ``db->lag.id`` or may
+implement their own.
+
+Only the drivers which declare support for FDB isolation are notified of FDB
+entries on the CPU port belonging to ``DSA_DB_PORT`` databases.
+For compatibility/legacy reasons, ``DSA_DB_BRIDGE`` addresses are notified to
+drivers even if they do not support FDB isolation. However, ``db->bridge.num``
+and ``db->lag.id`` are always set to 0 in that case (to denote the lack of
+isolation, for refcounting purposes).
+
+Note that it is not mandatory for a switch driver to implement physically
+separate address databases for each standalone user port. Since FDB entries in
+the port private databases will always point to the CPU port, there is no risk
+for incorrect forwarding decisions. In this case, all standalone ports may
+share the same database, but the reference counting of host-filtered addresses
+(not deleting the FDB entry for a port's MAC address if it's still in use by
+another port) becomes the responsibility of the driver, because DSA is unaware
+that the port databases are in fact shared. This can be achieved by calling
+``dsa_fdb_present_in_other_db()`` and ``dsa_mdb_present_in_other_db()``.
+The down side is that the RX filtering lists of each user port are in fact
+shared, which means that user port A may accept a packet with a MAC DA it
+shouldn't have, only because that MAC address was in the RX filtering list of
+user port B. These packets will still be dropped in software, however.
+
Bridge layer
------------
+Offloading the bridge forwarding plane is optional and handled by the methods
+below. They may be absent, return -EOPNOTSUPP, or ``ds->max_num_bridges`` may
+be non-zero and exceeded, and in this case, joining a bridge port is still
+possible, but the packet forwarding will take place in software, and the ports
+under a software bridge must remain configured in the same way as for
+standalone operation, i.e. have all bridging service functions (address
+learning etc) disabled, and send all received packets to the CPU port only.
+
+Concretely, a port starts offloading the forwarding plane of a bridge once it
+returns success to the ``port_bridge_join`` method, and stops doing so after
+``port_bridge_leave`` has been called. Offloading the bridge means autonomously
+learning FDB entries in accordance with the software bridge port's state, and
+autonomously forwarding (or flooding) received packets without CPU intervention.
+This is optional even when offloading a bridge port. Tagging protocol drivers
+are expected to call ``dsa_default_offload_fwd_mark(skb)`` for packets which
+have already been autonomously forwarded in the forwarding domain of the
+ingress switch port. DSA, through ``dsa_port_devlink_setup()``, considers all
+switch ports part of the same tree ID to be part of the same bridge forwarding
+domain (capable of autonomous forwarding to each other).
+
+Offloading the TX forwarding process of a bridge is a distinct concept from
+simply offloading its forwarding plane, and refers to the ability of certain
+driver and tag protocol combinations to transmit a single skb coming from the
+bridge device's transmit function to potentially multiple egress ports (and
+thereby avoid its cloning in software).
+
+Packets for which the bridge requests this behavior are called data plane
+packets and have ``skb->offload_fwd_mark`` set to true in the tag protocol
+driver's ``xmit`` function. Data plane packets are subject to FDB lookup,
+hardware learning on the CPU port, and do not override the port STP state.
+Additionally, replication of data plane packets (multicast, flooding) is
+handled in hardware and the bridge driver will transmit a single skb for each
+packet that may or may not need replication.
+
+When the TX forwarding offload is enabled, the tag protocol driver is
+responsible to inject packets into the data plane of the hardware towards the
+correct bridging domain (FID) that the port is a part of. The port may be
+VLAN-unaware, and in this case the FID must be equal to the FID used by the
+driver for its VLAN-unaware address database associated with that bridge.
+Alternatively, the bridge may be VLAN-aware, and in that case, it is guaranteed
+that the packet is also VLAN-tagged with the VLAN ID that the bridge processed
+this packet in. It is the responsibility of the hardware to untag the VID on
+the egress-untagged ports, or keep the tag on the egress-tagged ones.
+
- ``port_bridge_join``: bridge layer function invoked when a given switch port is
added to a bridge, this function should do what's necessary at the switch
level to permit the joining port to be added to the relevant logical
domain for it to ingress/egress traffic with other members of the bridge.
+ By setting the ``tx_fwd_offload`` argument to true, the TX forwarding process
+ of this bridge is also offloaded.
- ``port_bridge_leave``: bridge layer function invoked when a given switch port is
removed from a bridge, this function should do what's necessary at the
switch level to deny the leaving port from ingress/egress traffic from the
- remaining bridge members. When the port leaves the bridge, it should be aged
- out at the switch hardware for the switch to (re) learn MAC addresses behind
- this port.
+ remaining bridge members.
- ``port_stp_state_set``: bridge layer function invoked when a given switch port STP
state is computed by the bridge layer and should be propagated to switch
- hardware to forward/block/learn traffic. The switch driver is responsible for
- computing a STP state change based on current and asked parameters and perform
- the relevant ageing based on the intersection results
+ hardware to forward/block/learn traffic.
- ``port_bridge_flags``: bridge layer function invoked when a port must
configure its settings for e.g. flooding of unknown traffic or source address
@@ -667,21 +931,11 @@ Bridge layer
CPU port, and flooding towards the CPU port should also be enabled, due to a
lack of an explicit address filtering mechanism in the DSA core.
-- ``port_bridge_tx_fwd_offload``: bridge layer function invoked after
- ``port_bridge_join`` when a driver sets ``ds->num_fwd_offloading_bridges`` to
- a non-zero value. Returning success in this function activates the TX
- forwarding offload bridge feature for this port, which enables the tagging
- protocol driver to inject data plane packets towards the bridging domain that
- the port is a part of. Data plane packets are subject to FDB lookup, hardware
- learning on the CPU port, and do not override the port STP state.
- Additionally, replication of data plane packets (multicast, flooding) is
- handled in hardware and the bridge driver will transmit a single skb for each
- packet that needs replication. The method is provided as a configuration
- point for drivers that need to configure the hardware for enabling this
- feature.
-
-- ``port_bridge_tx_fwd_unoffload``: bridge layer function invoked when a driver
- leaves a bridge port which had the TX forwarding offload feature enabled.
+- ``port_fast_age``: bridge layer function invoked when flushing the
+ dynamically learned FDB entries on the port is necessary. This is called when
+ transitioning from an STP state where learning should take place to an STP
+ state where it shouldn't, or when leaving a bridge, or when address learning
+ is turned off via ``port_bridge_flags``.
Bridge VLAN filtering
---------------------
@@ -697,55 +951,44 @@ Bridge VLAN filtering
allowed.
- ``port_vlan_add``: bridge layer function invoked when a VLAN is configured
- (tagged or untagged) for the given switch port. If the operation is not
- supported by the hardware, this function should return ``-EOPNOTSUPP`` to
- inform the bridge code to fallback to a software implementation.
+ (tagged or untagged) for the given switch port. The CPU port becomes a member
+ of a VLAN only if a foreign bridge port is also a member of it (and
+ forwarding needs to take place in software), or the VLAN is installed to the
+ VLAN group of the bridge device itself, for termination purposes
+ (``bridge vlan add dev br0 vid 100 self``). VLANs on shared ports are
+ reference counted and removed when there is no user left. Drivers do not need
+ to manually install a VLAN on the CPU port.
- ``port_vlan_del``: bridge layer function invoked when a VLAN is removed from the
given switch port
-- ``port_vlan_dump``: bridge layer function invoked with a switchdev callback
- function that the driver has to call for each VLAN the given port is a member
- of. A switchdev object is used to carry the VID and bridge flags.
-
- ``port_fdb_add``: bridge layer function invoked when the bridge wants to install a
Forwarding Database entry, the switch hardware should be programmed with the
specified address in the specified VLAN Id in the forwarding database
- associated with this VLAN ID. If the operation is not supported, this
- function should return ``-EOPNOTSUPP`` to inform the bridge code to fallback to
- a software implementation.
-
-.. note:: VLAN ID 0 corresponds to the port private database, which, in the context
- of DSA, would be its port-based VLAN, used by the associated bridge device.
+ associated with this VLAN ID.
- ``port_fdb_del``: bridge layer function invoked when the bridge wants to remove a
Forwarding Database entry, the switch hardware should be programmed to delete
the specified MAC address from the specified VLAN ID if it was mapped into
this port forwarding database
-- ``port_fdb_dump``: bridge layer function invoked with a switchdev callback
- function that the driver has to call for each MAC address known to be behind
- the given port. A switchdev object is used to carry the VID and FDB info.
+- ``port_fdb_dump``: bridge bypass function invoked by ``ndo_fdb_dump`` on the
+ physical DSA port interfaces. Since DSA does not attempt to keep in sync its
+ hardware FDB entries with the software bridge, this method is implemented as
+ a means to view the entries visible on user ports in the hardware database.
+ The entries reported by this function have the ``self`` flag in the output of
+ the ``bridge fdb show`` command.
- ``port_mdb_add``: bridge layer function invoked when the bridge wants to install
- a multicast database entry. If the operation is not supported, this function
- should return ``-EOPNOTSUPP`` to inform the bridge code to fallback to a
- software implementation. The switch hardware should be programmed with the
+ a multicast database entry. The switch hardware should be programmed with the
specified address in the specified VLAN ID in the forwarding database
associated with this VLAN ID.
-.. note:: VLAN ID 0 corresponds to the port private database, which, in the context
- of DSA, would be its port-based VLAN, used by the associated bridge device.
-
- ``port_mdb_del``: bridge layer function invoked when the bridge wants to remove a
multicast database entry, the switch hardware should be programmed to delete
the specified MAC address from the specified VLAN ID if it was mapped into
this port forwarding database.
-- ``port_mdb_dump``: bridge layer function invoked with a switchdev callback
- function that the driver has to call for each MAC address known to be behind
- the given port. A switchdev object is used to carry the VID and MDB info.
-
Link aggregation
----------------
diff --git a/Documentation/networking/ip-sysctl.rst b/Documentation/networking/ip-sysctl.rst
index 9f41961d11d5..66c72230eaad 100644
--- a/Documentation/networking/ip-sysctl.rst
+++ b/Documentation/networking/ip-sysctl.rst
@@ -1052,11 +1052,7 @@ udp_rmem_min - INTEGER
Default: 4K
udp_wmem_min - INTEGER
- Minimal size of send buffer used by UDP sockets in moderation.
- Each UDP socket is able to use the size for sending data, even if
- total pages of UDP sockets exceed udp_mem pressure. The unit is byte.
-
- Default: 4K
+ UDP does not have tx memory accounting and this tunable has no effect.
RAW variables
=============
@@ -1085,7 +1081,7 @@ cipso_cache_enable - BOOLEAN
cipso_cache_bucket_size - INTEGER
The CIPSO label cache consists of a fixed size hash table with each
hash bucket containing a number of cache entries. This variable limits
- the number of entries in each hash bucket; the larger the value the
+ the number of entries in each hash bucket; the larger the value is, the
more CIPSO label mappings that can be cached. When the number of
entries in a given hash bucket reaches this limit adding new entries
causes the oldest entry in the bucket to be removed to make room.
@@ -1179,7 +1175,7 @@ ip_autobind_reuse - BOOLEAN
option should only be set by experts.
Default: 0
-ip_dynaddr - BOOLEAN
+ip_dynaddr - INTEGER
If set non-zero, enables support for dynamic addresses.
If set to a non-zero value larger than 1, a kernel log
message will be printed when dynamic address rewriting
diff --git a/Documentation/process/maintainer-netdev.rst b/Documentation/process/maintainer-netdev.rst
index c456b5225d66..d14007081595 100644
--- a/Documentation/process/maintainer-netdev.rst
+++ b/Documentation/process/maintainer-netdev.rst
@@ -6,6 +6,15 @@
netdev FAQ
==========
+tl;dr
+-----
+
+ - designate your patch to a tree - ``[PATCH net]`` or ``[PATCH net-next]``
+ - for fixes the ``Fixes:`` tag is required, regardless of the tree
+ - don't post large series (> 15 patches), break them up
+ - don't repost your patches within one 24h period
+ - reverse xmas tree
+
What is netdev?
---------------
It is a mailing list for all network-related Linux stuff. This
@@ -136,6 +145,20 @@ it to the maintainer to figure out what is the most recent and current
version that should be applied. If there is any doubt, the maintainer
will reply and ask what should be done.
+How do I divide my work into patches?
+-------------------------------------
+
+Put yourself in the shoes of the reviewer. Each patch is read separately
+and therefore should constitute a comprehensible step towards your stated
+goal.
+
+Avoid sending series longer than 15 patches. Larger series takes longer
+to review as reviewers will defer looking at it until they find a large
+chunk of time. A small series can be reviewed in a short time, so Maintainers
+just do it. As a result, a sequence of smaller series gets merged quicker and
+with better review coverage. Re-posting large series also increases the mailing
+list traffic.
+
I made changes to only a few patches in a patch series should I resend only those changed?
------------------------------------------------------------------------------------------
No, please resend the entire patch series and make sure you do number your
@@ -183,6 +206,19 @@ it is requested that you make it look like this::
* another line of text
*/
+What is "reverse xmas tree"?
+----------------------------
+
+Netdev has a convention for ordering local variables in functions.
+Order the variable declaration lines longest to shortest, e.g.::
+
+ struct scatterlist *sg;
+ struct sk_buff *skb;
+ int err, i;
+
+If there are dependencies between the variables preventing the ordering
+move the initialization out of line.
+
I am working in existing code which uses non-standard formatting. Which formatting should I use?
------------------------------------------------------------------------------------------------
Make your code follow the most recent guidelines, so that eventually all code
diff --git a/Documentation/sound/soc/dai.rst b/Documentation/sound/soc/dai.rst
index 009b07e5a0f3..bf8431386d26 100644
--- a/Documentation/sound/soc/dai.rst
+++ b/Documentation/sound/soc/dai.rst
@@ -10,7 +10,7 @@ AC97
====
AC97 is a five wire interface commonly found on many PC sound cards. It is
-now also popular in many portable devices. This DAI has a reset line and time
+now also popular in many portable devices. This DAI has a RESET line and time
multiplexes its data on its SDATA_OUT (playback) and SDATA_IN (capture) lines.
The bit clock (BCLK) is always driven by the CODEC (usually 12.288MHz) and the
frame (FRAME) (usually 48kHz) is always driven by the controller. Each AC97
diff --git a/Documentation/translations/it_IT/core-api/symbol-namespaces.rst b/Documentation/translations/it_IT/core-api/symbol-namespaces.rst
index 42f5d04e38ec..0f6898860d6d 100644
--- a/Documentation/translations/it_IT/core-api/symbol-namespaces.rst
+++ b/Documentation/translations/it_IT/core-api/symbol-namespaces.rst
@@ -50,9 +50,9 @@ Di conseguenza, nella tabella dei simboli del kernel ci sarà una voce
rappresentata dalla struttura ``kernel_symbol`` che avrà il campo
``namespace`` (spazio dei nomi) impostato. Un simbolo esportato senza uno spazio
dei nomi avrà questo campo impostato a ``NULL``. Non esiste uno spazio dei nomi
-di base. Il programma ``modpost`` e il codice in kernel/module.c usano lo spazio
-dei nomi, rispettivamente, durante la compilazione e durante il caricamento
-di un modulo.
+di base. Il programma ``modpost`` e il codice in kernel/module/main.c usano lo
+spazio dei nomi, rispettivamente, durante la compilazione e durante il
+caricamento di un modulo.
2.2 Usare il simbolo di preprocessore DEFAULT_SYMBOL_NAMESPACE
==============================================================
diff --git a/Documentation/translations/zh_CN/core-api/kernel-api.rst b/Documentation/translations/zh_CN/core-api/kernel-api.rst
index e45fe80d1cd8..962d31d019d7 100644
--- a/Documentation/translations/zh_CN/core-api/kernel-api.rst
+++ b/Documentation/translations/zh_CN/core-api/kernel-api.rst
@@ -224,7 +224,7 @@ kernel/kmod.c
模块接口支持
------------
-更多信息请参考文件kernel/module.c。
+更多信息请参阅kernel/module/目录下的文件。
硬件接口
========
diff --git a/Documentation/translations/zh_CN/core-api/symbol-namespaces.rst b/Documentation/translations/zh_CN/core-api/symbol-namespaces.rst
index 6abf7ed534ca..bb16f0611046 100644
--- a/Documentation/translations/zh_CN/core-api/symbol-namespaces.rst
+++ b/Documentation/translations/zh_CN/core-api/symbol-namespaces.rst
@@ -52,7 +52,7 @@
相应的 ksymtab 条目结构体 ``kernel_symbol`` 将有相应的成员 ``命名空间`` 集。
导出时未指明命名空间的符号将指向 ``NULL`` 。如果没有定义命名空间,则默认没有。
-``modpost`` 和kernel/module.c分别在构建时或模块加载时使用名称空间。
+``modpost`` 和kernel/module/main.c分别在构建时或模块加载时使用名称空间。
2.2 使用DEFAULT_SYMBOL_NAMESPACE定义
====================================
diff --git a/Documentation/virt/kvm/api.rst b/Documentation/virt/kvm/api.rst
index 11e00a46c610..98a283930307 100644
--- a/Documentation/virt/kvm/api.rst
+++ b/Documentation/virt/kvm/api.rst
@@ -5657,7 +5657,8 @@ by a string of size ``name_size``.
#define KVM_STATS_UNIT_BYTES (0x1 << KVM_STATS_UNIT_SHIFT)
#define KVM_STATS_UNIT_SECONDS (0x2 << KVM_STATS_UNIT_SHIFT)
#define KVM_STATS_UNIT_CYCLES (0x3 << KVM_STATS_UNIT_SHIFT)
- #define KVM_STATS_UNIT_MAX KVM_STATS_UNIT_CYCLES
+ #define KVM_STATS_UNIT_BOOLEAN (0x4 << KVM_STATS_UNIT_SHIFT)
+ #define KVM_STATS_UNIT_MAX KVM_STATS_UNIT_BOOLEAN
#define KVM_STATS_BASE_SHIFT 8
#define KVM_STATS_BASE_MASK (0xF << KVM_STATS_BASE_SHIFT)
@@ -5702,14 +5703,13 @@ Bits 0-3 of ``flags`` encode the type:
by the ``hist_param`` field. The range of the Nth bucket (1 <= N < ``size``)
is [``hist_param``*(N-1), ``hist_param``*N), while the range of the last
bucket is [``hist_param``*(``size``-1), +INF). (+INF means positive infinity
- value.) The bucket value indicates how many samples fell in the bucket's range.
+ value.)
* ``KVM_STATS_TYPE_LOG_HIST``
The statistic is reported as a logarithmic histogram. The number of
buckets is specified by the ``size`` field. The range of the first bucket is
[0, 1), while the range of the last bucket is [pow(2, ``size``-2), +INF).
Otherwise, The Nth bucket (1 < N < ``size``) covers
- [pow(2, N-2), pow(2, N-1)). The bucket value indicates how many samples fell
- in the bucket's range.
+ [pow(2, N-2), pow(2, N-1)).
Bits 4-7 of ``flags`` encode the unit:
@@ -5724,6 +5724,15 @@ Bits 4-7 of ``flags`` encode the unit:
It indicates that the statistics data is used to measure time or latency.
* ``KVM_STATS_UNIT_CYCLES``
It indicates that the statistics data is used to measure CPU clock cycles.
+ * ``KVM_STATS_UNIT_BOOLEAN``
+ It indicates that the statistic will always be either 0 or 1. Boolean
+ statistics of "peak" type will never go back from 1 to 0. Boolean
+ statistics can be linear histograms (with two buckets) but not logarithmic
+ histograms.
+
+Note that, in the case of histograms, the unit applies to the bucket
+ranges, while the bucket value indicates how many samples fell in the
+bucket's range.
Bits 8-11 of ``flags``, together with ``exponent``, encode the scale of the
unit:
@@ -5746,7 +5755,7 @@ the corresponding statistics data.
The ``bucket_size`` field is used as a parameter for histogram statistics data.
It is only used by linear histogram statistics data, specifying the size of a
-bucket.
+bucket in the unit expressed by bits 4-11 of ``flags`` together with ``exponent``.
The ``name`` field is the name string of the statistics data. The name string
starts at the end of ``struct kvm_stats_desc``. The maximum length including