summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/admin-guide/sysctl/net.rst29
-rw-r--r--Documentation/networking/tls-offload.rst18
-rw-r--r--Documentation/networking/tuntap.txt4
3 files changed, 3 insertions, 48 deletions
diff --git a/Documentation/admin-guide/sysctl/net.rst b/Documentation/admin-guide/sysctl/net.rst
index a7d44e71019d..287b98708a40 100644
--- a/Documentation/admin-guide/sysctl/net.rst
+++ b/Documentation/admin-guide/sysctl/net.rst
@@ -39,7 +39,6 @@ Table : Subdirectories in /proc/sys/net
802 E802 protocol ax25 AX25
ethernet Ethernet protocol rose X.25 PLP layer
ipv4 IP version 4 x25 X.25 protocol
- ipx IPX token-ring IBM token ring
bridge Bridging decnet DEC net
ipv6 IP version 6 tipc TIPC
========= =================== = ========== ==================
@@ -401,33 +400,7 @@ interface.
(network) that the route leads to, the router (may be directly connected), the
route flags, and the device the route is using.
-
-5. IPX
-------
-
-The IPX protocol has no tunable values in proc/sys/net.
-
-The IPX protocol does, however, provide proc/net/ipx. This lists each IPX
-socket giving the local and remote addresses in Novell format (that is
-network:node:port). In accordance with the strange Novell tradition,
-everything but the port is in hex. Not_Connected is displayed for sockets that
-are not tied to a specific remote address. The Tx and Rx queue sizes indicate
-the number of bytes pending for transmission and reception. The state
-indicates the state the socket is in and the uid is the owning uid of the
-socket.
-
-The /proc/net/ipx_interface file lists all IPX interfaces. For each interface
-it gives the network number, the node number, and indicates if the network is
-the primary network. It also indicates which device it is bound to (or
-Internal for internal networks) and the Frame Type if appropriate. Linux
-supports 802.3, 802.2, 802.2 SNAP and DIX (Blue Book) ethernet framing for
-IPX.
-
-The /proc/net/ipx_route table holds a list of IPX routes. For each route it
-gives the destination network, the router node (or Directly) and the network
-address of the router (or Connected) for internal networks.
-
-6. TIPC
+5. TIPC
-------
tipc_rmem
diff --git a/Documentation/networking/tls-offload.rst b/Documentation/networking/tls-offload.rst
index b70b70dc4524..0dd3f748239f 100644
--- a/Documentation/networking/tls-offload.rst
+++ b/Documentation/networking/tls-offload.rst
@@ -506,21 +506,3 @@ Drivers should ignore the changes to TLS the device feature flags.
These flags will be acted upon accordingly by the core ``ktls`` code.
TLS device feature flags only control adding of new TLS connection
offloads, old connections will remain active after flags are cleared.
-
-Known bugs
-==========
-
-skb_orphan() leaks clear text
------------------------------
-
-Currently drivers depend on the :c:member:`sk` member of
-:c:type:`struct sk_buff <sk_buff>` to identify segments requiring
-encryption. Any operation which removes or does not preserve the socket
-association such as :c:func:`skb_orphan` or :c:func:`skb_clone`
-will cause the driver to miss the packets and lead to clear text leaks.
-
-Redirects leak clear text
--------------------------
-
-In the RX direction, if segment has already been decrypted by the device
-and it gets redirected or mirrored - clear text will be transmitted out.
diff --git a/Documentation/networking/tuntap.txt b/Documentation/networking/tuntap.txt
index 949d5dcdd9a3..0104830d5075 100644
--- a/Documentation/networking/tuntap.txt
+++ b/Documentation/networking/tuntap.txt
@@ -204,8 +204,8 @@ Ethernet device, which instead of receiving packets from a physical
media, receives them from user space program and instead of sending
packets via physical media sends them to the user space program.
-Let's say that you configured IPX on the tap0, then whenever
-the kernel sends an IPX packet to tap0, it is passed to the application
+Let's say that you configured IPv6 on the tap0, then whenever
+the kernel sends an IPv6 packet to tap0, it is passed to the application
(VTun for example). The application encrypts, compresses and sends it to
the other side over TCP or UDP. The application on the other side decompresses
and decrypts the data received and writes the packet to the TAP device,