summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/sysfs-bus-pci2
-rw-r--r--Documentation/ABI/testing/sysfs-power29
-rw-r--r--Documentation/DocBook/drm.tmpl12
-rw-r--r--Documentation/DocBook/media/Makefile2
-rw-r--r--Documentation/debugging-via-ohci1394.txt13
-rw-r--r--Documentation/device-mapper/thin-provisioning.txt5
-rw-r--r--Documentation/devicetree/bindings/clock/at91-clock.txt2
-rw-r--r--Documentation/devicetree/bindings/clock/renesas,cpg-mstp-clocks.txt2
-rw-r--r--Documentation/devicetree/bindings/dma/ti-edma.txt4
-rw-r--r--Documentation/devicetree/bindings/net/mdio-gpio.txt2
-rw-r--r--Documentation/email-clients.txt15
-rw-r--r--Documentation/filesystems/proc.txt5
-rw-r--r--Documentation/hwmon/sysfs-interface14
-rw-r--r--Documentation/java.txt8
-rw-r--r--Documentation/kernel-parameters.txt32
-rw-r--r--Documentation/networking/filter.txt2
-rw-r--r--Documentation/networking/packet_mmap.txt2
-rw-r--r--Documentation/power/devices.txt34
-rw-r--r--Documentation/power/runtime_pm.txt37
-rw-r--r--Documentation/power/states.txt87
-rw-r--r--Documentation/power/swsusp.txt5
-rw-r--r--Documentation/virtual/kvm/api.txt2
22 files changed, 222 insertions, 94 deletions
diff --git a/Documentation/ABI/testing/sysfs-bus-pci b/Documentation/ABI/testing/sysfs-bus-pci
index a3c5a6685036..ab8d76dfaa80 100644
--- a/Documentation/ABI/testing/sysfs-bus-pci
+++ b/Documentation/ABI/testing/sysfs-bus-pci
@@ -117,7 +117,7 @@ Description:
What: /sys/bus/pci/devices/.../vpd
Date: February 2008
-Contact: Ben Hutchings <bhutchings@solarflare.com>
+Contact: Ben Hutchings <bwh@kernel.org>
Description:
A file named vpd in a device directory will be a
binary file containing the Vital Product Data for the
diff --git a/Documentation/ABI/testing/sysfs-power b/Documentation/ABI/testing/sysfs-power
index 64c9276e9421..f4551816329e 100644
--- a/Documentation/ABI/testing/sysfs-power
+++ b/Documentation/ABI/testing/sysfs-power
@@ -7,19 +7,30 @@ Description:
subsystem.
What: /sys/power/state
-Date: August 2006
+Date: May 2014
Contact: Rafael J. Wysocki <rjw@rjwysocki.net>
Description:
- The /sys/power/state file controls the system power state.
- Reading from this file returns what states are supported,
- which is hard-coded to 'freeze' (Low-Power Idle), 'standby'
- (Power-On Suspend), 'mem' (Suspend-to-RAM), and 'disk'
- (Suspend-to-Disk).
+ The /sys/power/state file controls system sleep states.
+ Reading from this file returns the available sleep state
+ labels, which may be "mem", "standby", "freeze" and "disk"
+ (hibernation). The meanings of the first three labels depend on
+ the relative_sleep_states command line argument as follows:
+ 1) relative_sleep_states = 1
+ "mem", "standby", "freeze" represent non-hibernation sleep
+ states from the deepest ("mem", always present) to the
+ shallowest ("freeze"). "standby" and "freeze" may or may
+ not be present depending on the capabilities of the
+ platform. "freeze" can only be present if "standby" is
+ present.
+ 2) relative_sleep_states = 0 (default)
+ "mem" - "suspend-to-RAM", present if supported.
+ "standby" - "power-on suspend", present if supported.
+ "freeze" - "suspend-to-idle", always present.
Writing to this file one of these strings causes the system to
- transition into that state. Please see the file
- Documentation/power/states.txt for a description of each of
- these states.
+ transition into the corresponding state, if available. See
+ Documentation/power/states.txt for a description of what
+ "suspend-to-RAM", "power-on suspend" and "suspend-to-idle" mean.
What: /sys/power/disk
Date: September 2006
diff --git a/Documentation/DocBook/drm.tmpl b/Documentation/DocBook/drm.tmpl
index 677a02553ec0..ba60d93c1855 100644
--- a/Documentation/DocBook/drm.tmpl
+++ b/Documentation/DocBook/drm.tmpl
@@ -79,7 +79,7 @@
<partintro>
<para>
This first part of the DRM Developer's Guide documents core DRM code,
- helper libraries for writting drivers and generic userspace interfaces
+ helper libraries for writing drivers and generic userspace interfaces
exposed by DRM drivers.
</para>
</partintro>
@@ -459,7 +459,7 @@ char *date;</synopsis>
providing a solution to every graphics memory-related problems, GEM
identified common code between drivers and created a support library to
share it. GEM has simpler initialization and execution requirements than
- TTM, but has no video RAM management capabitilies and is thus limited to
+ TTM, but has no video RAM management capabilities and is thus limited to
UMA devices.
</para>
<sect2>
@@ -889,7 +889,7 @@ int (*prime_fd_to_handle)(struct drm_device *dev,
vice versa. Drivers must use the kernel dma-buf buffer sharing framework
to manage the PRIME file descriptors. Similar to the mode setting
API PRIME is agnostic to the underlying buffer object manager, as
- long as handles are 32bit unsinged integers.
+ long as handles are 32bit unsigned integers.
</para>
<para>
While non-GEM drivers must implement the operations themselves, GEM
@@ -2356,7 +2356,7 @@ void intel_crt_init(struct drm_device *dev)
first create properties and then create and associate individual instances
of those properties to objects. A property can be instantiated multiple
times and associated with different objects. Values are stored in property
- instances, and all other property information are stored in the propery
+ instances, and all other property information are stored in the property
and shared between all instances of the property.
</para>
<para>
@@ -2697,10 +2697,10 @@ int num_ioctls;</synopsis>
<sect1>
<title>Legacy Support Code</title>
<para>
- The section very brievely covers some of the old legacy support code which
+ The section very briefly covers some of the old legacy support code which
is only used by old DRM drivers which have done a so-called shadow-attach
to the underlying device instead of registering as a real driver. This
- also includes some of the old generic buffer mangement and command
+ also includes some of the old generic buffer management and command
submission code. Do not use any of this in new and modern drivers.
</para>
diff --git a/Documentation/DocBook/media/Makefile b/Documentation/DocBook/media/Makefile
index f9fd615427fb..1d27f0a1abd1 100644
--- a/Documentation/DocBook/media/Makefile
+++ b/Documentation/DocBook/media/Makefile
@@ -195,7 +195,7 @@ DVB_DOCUMENTED = \
#
install_media_images = \
- $(Q)cp $(OBJIMGFILES) $(MEDIA_SRC_DIR)/v4l/*.svg $(MEDIA_OBJ_DIR)/media_api
+ $(Q)-cp $(OBJIMGFILES) $(MEDIA_SRC_DIR)/v4l/*.svg $(MEDIA_OBJ_DIR)/media_api
$(MEDIA_OBJ_DIR)/%: $(MEDIA_SRC_DIR)/%.b64
$(Q)base64 -d $< >$@
diff --git a/Documentation/debugging-via-ohci1394.txt b/Documentation/debugging-via-ohci1394.txt
index fa0151a712f9..5c9a567b3fac 100644
--- a/Documentation/debugging-via-ohci1394.txt
+++ b/Documentation/debugging-via-ohci1394.txt
@@ -25,9 +25,11 @@ using data transfer rates in the order of 10MB/s or more.
With most FireWire controllers, memory access is limited to the low 4 GB
of physical address space. This can be a problem on IA64 machines where
memory is located mostly above that limit, but it is rarely a problem on
-more common hardware such as x86, x86-64 and PowerPC. However, at least
-Agere/LSI FW643e and FW643e2 controllers are known to support access to
-physical addresses above 4 GB.
+more common hardware such as x86, x86-64 and PowerPC.
+
+At least LSI FW643e and FW643e2 controllers are known to support access to
+physical addresses above 4 GB, but this feature is currently not enabled by
+Linux.
Together with a early initialization of the OHCI-1394 controller for debugging,
this facility proved most useful for examining long debugs logs in the printk
@@ -101,8 +103,9 @@ Step-by-step instructions for using firescope with early OHCI initialization:
compliant, they are based on TI PCILynx chips and require drivers for Win-
dows operating systems.
- The mentioned kernel log message contains ">4 GB phys DMA" in case of
- OHCI-1394 controllers which support accesses above this limit.
+ The mentioned kernel log message contains the string "physUB" if the
+ controller implements a writable Physical Upper Bound register. This is
+ required for physical DMA above 4 GB (but not utilized by Linux yet).
2) Establish a working FireWire cable connection:
diff --git a/Documentation/device-mapper/thin-provisioning.txt b/Documentation/device-mapper/thin-provisioning.txt
index 05a27e9442bd..2f5173500bd9 100644
--- a/Documentation/device-mapper/thin-provisioning.txt
+++ b/Documentation/device-mapper/thin-provisioning.txt
@@ -309,7 +309,10 @@ ii) Status
error_if_no_space|queue_if_no_space
If the pool runs out of data or metadata space, the pool will
either queue or error the IO destined to the data device. The
- default is to queue the IO until more space is added.
+ default is to queue the IO until more space is added or the
+ 'no_space_timeout' expires. The 'no_space_timeout' dm-thin-pool
+ module parameter can be used to change this timeout -- it
+ defaults to 60 seconds but may be disabled using a value of 0.
iii) Messages
diff --git a/Documentation/devicetree/bindings/clock/at91-clock.txt b/Documentation/devicetree/bindings/clock/at91-clock.txt
index cd5e23912888..6794cdc96d8f 100644
--- a/Documentation/devicetree/bindings/clock/at91-clock.txt
+++ b/Documentation/devicetree/bindings/clock/at91-clock.txt
@@ -62,7 +62,7 @@ Required properties for PMC node:
- interrupt-controller : tell that the PMC is an interrupt controller.
- #interrupt-cells : must be set to 1. The first cell encodes the interrupt id,
and reflect the bit position in the PMC_ER/DR/SR registers.
- You can use the dt macros defined in dt-bindings/clk/at91.h.
+ You can use the dt macros defined in dt-bindings/clock/at91.h.
0 (AT91_PMC_MOSCS) -> main oscillator ready
1 (AT91_PMC_LOCKA) -> PLL A ready
2 (AT91_PMC_LOCKB) -> PLL B ready
diff --git a/Documentation/devicetree/bindings/clock/renesas,cpg-mstp-clocks.txt b/Documentation/devicetree/bindings/clock/renesas,cpg-mstp-clocks.txt
index 5992dceec7af..02a25d99ca61 100644
--- a/Documentation/devicetree/bindings/clock/renesas,cpg-mstp-clocks.txt
+++ b/Documentation/devicetree/bindings/clock/renesas,cpg-mstp-clocks.txt
@@ -43,7 +43,7 @@ Example
clock-output-names =
"tpu0", "mmcif1", "sdhi3", "sdhi2",
"sdhi1", "sdhi0", "mmcif0";
- renesas,clock-indices = <
+ clock-indices = <
R8A7790_CLK_TPU0 R8A7790_CLK_MMCIF1 R8A7790_CLK_SDHI3
R8A7790_CLK_SDHI2 R8A7790_CLK_SDHI1 R8A7790_CLK_SDHI0
R8A7790_CLK_MMCIF0
diff --git a/Documentation/devicetree/bindings/dma/ti-edma.txt b/Documentation/devicetree/bindings/dma/ti-edma.txt
index 9fbbdb783a72..68ff2137bae7 100644
--- a/Documentation/devicetree/bindings/dma/ti-edma.txt
+++ b/Documentation/devicetree/bindings/dma/ti-edma.txt
@@ -29,6 +29,6 @@ edma: edma@49000000 {
dma-channels = <64>;
ti,edma-regions = <4>;
ti,edma-slots = <256>;
- ti,edma-xbar-event-map = <1 12
- 2 13>;
+ ti,edma-xbar-event-map = /bits/ 16 <1 12
+ 2 13>;
};
diff --git a/Documentation/devicetree/bindings/net/mdio-gpio.txt b/Documentation/devicetree/bindings/net/mdio-gpio.txt
index c79bab025369..8dbcf8295c6c 100644
--- a/Documentation/devicetree/bindings/net/mdio-gpio.txt
+++ b/Documentation/devicetree/bindings/net/mdio-gpio.txt
@@ -14,7 +14,7 @@ node.
Example:
aliases {
- mdio-gpio0 = <&mdio0>;
+ mdio-gpio0 = &mdio0;
};
mdio0: mdio {
diff --git a/Documentation/email-clients.txt b/Documentation/email-clients.txt
index e9f5daccbd02..4e30ebaa9e5b 100644
--- a/Documentation/email-clients.txt
+++ b/Documentation/email-clients.txt
@@ -201,20 +201,15 @@ To beat some sense out of the internal editor, do this:
- Edit your Thunderbird config settings so that it won't use format=flowed.
Go to "edit->preferences->advanced->config editor" to bring up the
- thunderbird's registry editor, and set "mailnews.send_plaintext_flowed" to
- "false".
+ thunderbird's registry editor.
-- Disable HTML Format: Set "mail.identity.id1.compose_html" to "false".
+- Set "mailnews.send_plaintext_flowed" to "false"
-- Enable "preformat" mode: Set "editor.quotesPreformatted" to "true".
+- Set "mailnews.wraplength" from "72" to "0"
-- Enable UTF8: Set "prefs.converted-to-utf8" to "true".
+- "View" > "Message Body As" > "Plain Text"
-- Install the "toggle wordwrap" extension. Download the file from:
- https://addons.mozilla.org/thunderbird/addon/2351/
- Then go to "tools->add ons", select "install" at the bottom of the screen,
- and browse to where you saved the .xul file. This adds an "Enable
- Wordwrap" entry under the Options menu of the message composer.
+- "View" > "Character Encoding" > "Unicode (UTF-8)"
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
TkRat (GUI)
diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt
index 8b9cd8eb3f91..264bcde0c51c 100644
--- a/Documentation/filesystems/proc.txt
+++ b/Documentation/filesystems/proc.txt
@@ -1245,8 +1245,9 @@ second). The meanings of the columns are as follows, from left to right:
The "intr" line gives counts of interrupts serviced since boot time, for each
of the possible system interrupts. The first column is the total of all
-interrupts serviced; each subsequent column is the total for that particular
-interrupt.
+interrupts serviced including unnumbered architecture specific interrupts;
+each subsequent column is the total for that particular numbered interrupt.
+Unnumbered interrupts are not shown, only summed into the total.
The "ctxt" line gives the total number of context switches across all CPUs.
diff --git a/Documentation/hwmon/sysfs-interface b/Documentation/hwmon/sysfs-interface
index 79f8257dd790..2cc95ad46604 100644
--- a/Documentation/hwmon/sysfs-interface
+++ b/Documentation/hwmon/sysfs-interface
@@ -327,6 +327,13 @@ temp[1-*]_max_hyst
from the max value.
RW
+temp[1-*]_min_hyst
+ Temperature hysteresis value for min limit.
+ Unit: millidegree Celsius
+ Must be reported as an absolute temperature, NOT a delta
+ from the min value.
+ RW
+
temp[1-*]_input Temperature input value.
Unit: millidegree Celsius
RO
@@ -362,6 +369,13 @@ temp[1-*]_lcrit Temperature critical min value, typically lower than
Unit: millidegree Celsius
RW
+temp[1-*]_lcrit_hyst
+ Temperature hysteresis value for critical min limit.
+ Unit: millidegree Celsius
+ Must be reported as an absolute temperature, NOT a delta
+ from the critical min value.
+ RW
+
temp[1-*]_offset
Temperature offset which is added to the temperature reading
by the chip.
diff --git a/Documentation/java.txt b/Documentation/java.txt
index e6a723281547..418020584ccc 100644
--- a/Documentation/java.txt
+++ b/Documentation/java.txt
@@ -188,6 +188,9 @@ shift
#define CP_METHODREF 10
#define CP_INTERFACEMETHODREF 11
#define CP_NAMEANDTYPE 12
+#define CP_METHODHANDLE 15
+#define CP_METHODTYPE 16
+#define CP_INVOKEDYNAMIC 18
/* Define some commonly used error messages */
@@ -242,14 +245,19 @@ void skip_constant(FILE *classfile, u_int16_t *cur)
break;
case CP_CLASS:
case CP_STRING:
+ case CP_METHODTYPE:
seekerr = fseek(classfile, 2, SEEK_CUR);
break;
+ case CP_METHODHANDLE:
+ seekerr = fseek(classfile, 3, SEEK_CUR);
+ break;
case CP_INTEGER:
case CP_FLOAT:
case CP_FIELDREF:
case CP_METHODREF:
case CP_INTERFACEMETHODREF:
case CP_NAMEANDTYPE:
+ case CP_INVOKEDYNAMIC:
seekerr = fseek(classfile, 4, SEEK_CUR);
break;
case CP_LONG:
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index 43842177b771..0933ec4924d3 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -214,6 +214,11 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
unusable. The "log_buf_len" parameter may be useful
if you need to capture more output.
+ acpi_force_table_verification [HW,ACPI]
+ Enable table checksum verification during early stage.
+ By default, this is disabled due to x86 early mapping
+ size limitation.
+
acpi_irq_balance [HW,ACPI]
ACPI will balance active IRQs
default in APIC mode
@@ -237,7 +242,15 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
This feature is enabled by default.
This option allows to turn off the feature.
- acpi_no_auto_ssdt [HW,ACPI] Disable automatic loading of SSDT
+ acpi_no_static_ssdt [HW,ACPI]
+ Disable installation of static SSDTs at early boot time
+ By default, SSDTs contained in the RSDT/XSDT will be
+ installed automatically and they will appear under
+ /sys/firmware/acpi/tables.
+ This option turns off this feature.
+ Note that specifying this option does not affect
+ dynamic table installation which will install SSDT
+ tables to /sys/firmware/acpi/tables/dynamic.
acpica_no_return_repair [HW, ACPI]
Disable AML predefined validation mechanism
@@ -2218,10 +2231,10 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
noreplace-smp [X86-32,SMP] Don't replace SMP instructions
with UP alternatives
- nordrand [X86] Disable the direct use of the RDRAND
- instruction even if it is supported by the
- processor. RDRAND is still available to user
- space applications.
+ nordrand [X86] Disable kernel use of the RDRAND and
+ RDSEED instructions even if they are supported
+ by the processor. RDRAND and RDSEED are still
+ available to user space applications.
noresume [SWSUSP] Disables resume and restores original swap
space.
@@ -2889,6 +2902,13 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
[KNL, SMP] Set scheduler's default relax_domain_level.
See Documentation/cgroups/cpusets.txt.
+ relative_sleep_states=
+ [SUSPEND] Use sleep state labeling where the deepest
+ state available other than hibernation is always "mem".
+ Format: { "0" | "1" }
+ 0 -- Traditional sleep state labels.
+ 1 -- Relative sleep state labels.
+
reserve= [KNL,BUGS] Force the kernel to ignore some iomem area
reservetop= [X86-32]
@@ -3461,7 +3481,7 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
the allocated input device; If set to 0, video driver
will only send out the event without touching backlight
brightness level.
- default: 1
+ default: 0
virtio_mmio.device=
[VMMIO] Memory mapped virtio (platform) device.
diff --git a/Documentation/networking/filter.txt b/Documentation/networking/filter.txt
index 81f940f4e884..e3ba753cb714 100644
--- a/Documentation/networking/filter.txt
+++ b/Documentation/networking/filter.txt
@@ -277,7 +277,7 @@ Possible BPF extensions are shown in the following table:
mark skb->mark
queue skb->queue_mapping
hatype skb->dev->type
- rxhash skb->rxhash
+ rxhash skb->hash
cpu raw_smp_processor_id()
vlan_tci vlan_tx_tag_get(skb)
vlan_pr vlan_tx_tag_present(skb)
diff --git a/Documentation/networking/packet_mmap.txt b/Documentation/networking/packet_mmap.txt
index 6fea79efb4cb..38112d512f47 100644
--- a/Documentation/networking/packet_mmap.txt
+++ b/Documentation/networking/packet_mmap.txt
@@ -578,7 +578,7 @@ processes. This also works in combination with mmap(2) on packet sockets.
Currently implemented fanout policies are:
- - PACKET_FANOUT_HASH: schedule to socket by skb's rxhash
+ - PACKET_FANOUT_HASH: schedule to socket by skb's packet hash
- PACKET_FANOUT_LB: schedule to socket by round-robin
- PACKET_FANOUT_CPU: schedule to socket by CPU packet arrives on
- PACKET_FANOUT_RND: schedule to socket by random selection
diff --git a/Documentation/power/devices.txt b/Documentation/power/devices.txt
index 47d46dff70f7..d172bce0fd49 100644
--- a/Documentation/power/devices.txt
+++ b/Documentation/power/devices.txt
@@ -2,6 +2,7 @@ Device Power Management
Copyright (c) 2010-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
Copyright (c) 2010 Alan Stern <stern@rowland.harvard.edu>
+Copyright (c) 2014 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Most of the code in Linux is device drivers, so most of the Linux power
@@ -326,6 +327,20 @@ the phases are:
driver in some way for the upcoming system power transition, but it
should not put the device into a low-power state.
+ For devices supporting runtime power management, the return value of the
+ prepare callback can be used to indicate to the PM core that it may
+ safely leave the device in runtime suspend (if runtime-suspended
+ already), provided that all of the device's descendants are also left in
+ runtime suspend. Namely, if the prepare callback returns a positive
+ number and that happens for all of the descendants of the device too,
+ and all of them (including the device itself) are runtime-suspended, the
+ PM core will skip the suspend, suspend_late and suspend_noirq suspend
+ phases as well as the resume_noirq, resume_early and resume phases of
+ the following system resume for all of these devices. In that case,
+ the complete callback will be called directly after the prepare callback
+ and is entirely responsible for bringing the device back to the
+ functional state as appropriate.
+
2. The suspend methods should quiesce the device to stop it from performing
I/O. They also may save the device registers and put it into the
appropriate low-power state, depending on the bus type the device is on,
@@ -400,12 +415,23 @@ When resuming from freeze, standby or memory sleep, the phases are:
the resume callbacks occur; it's not necessary to wait until the
complete phase.
+ Moreover, if the preceding prepare callback returned a positive number,
+ the device may have been left in runtime suspend throughout the whole
+ system suspend and resume (the suspend, suspend_late, suspend_noirq
+ phases of system suspend and the resume_noirq, resume_early, resume
+ phases of system resume may have been skipped for it). In that case,
+ the complete callback is entirely responsible for bringing the device
+ back to the functional state after system suspend if necessary. [For
+ example, it may need to queue up a runtime resume request for the device
+ for this purpose.] To check if that is the case, the complete callback
+ can consult the device's power.direct_complete flag. Namely, if that
+ flag is set when the complete callback is being run, it has been called
+ directly after the preceding prepare and special action may be required
+ to make the device work correctly afterward.
+
At the end of these phases, drivers should be as functional as they were before
suspending: I/O can be performed using DMA and IRQs, and the relevant clocks are
-gated on. Even if the device was in a low-power state before the system sleep
-because of runtime power management, afterwards it should be back in its
-full-power state. There are multiple reasons why it's best to do this; they are
-discussed in more detail in Documentation/power/runtime_pm.txt.
+gated on.
However, the details here may again be platform-specific. For example,
some systems support multiple "run" states, and the mode in effect at
diff --git a/Documentation/power/runtime_pm.txt b/Documentation/power/runtime_pm.txt
index 5f96daf8566a..f32ce5419573 100644
--- a/Documentation/power/runtime_pm.txt
+++ b/Documentation/power/runtime_pm.txt
@@ -2,6 +2,7 @@ Runtime Power Management Framework for I/O Devices
(C) 2009-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
(C) 2010 Alan Stern <stern@rowland.harvard.edu>
+(C) 2014 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>
1. Introduction
@@ -444,6 +445,10 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
bool pm_runtime_status_suspended(struct device *dev);
- return true if the device's runtime PM status is 'suspended'
+ bool pm_runtime_suspended_if_enabled(struct device *dev);
+ - return true if the device's runtime PM status is 'suspended' and its
+ 'power.disable_depth' field is equal to 1
+
void pm_runtime_allow(struct device *dev);
- set the power.runtime_auto flag for the device and decrease its usage
counter (used by the /sys/devices/.../power/control interface to
@@ -644,19 +649,33 @@ place (in particular, if the system is not waking up from hibernation), it may
be more efficient to leave the devices that had been suspended before the system
suspend began in the suspended state.
+To this end, the PM core provides a mechanism allowing some coordination between
+different levels of device hierarchy. Namely, if a system suspend .prepare()
+callback returns a positive number for a device, that indicates to the PM core
+that the device appears to be runtime-suspended and its state is fine, so it
+may be left in runtime suspend provided that all of its descendants are also
+left in runtime suspend. If that happens, the PM core will not execute any
+system suspend and resume callbacks for all of those devices, except for the
+complete callback, which is then entirely responsible for handling the device
+as appropriate. This only applies to system suspend transitions that are not
+related to hibernation (see Documentation/power/devices.txt for more
+information).
+
The PM core does its best to reduce the probability of race conditions between
the runtime PM and system suspend/resume (and hibernation) callbacks by carrying
out the following operations:
- * During system suspend it calls pm_runtime_get_noresume() and
- pm_runtime_barrier() for every device right before executing the
- subsystem-level .suspend() callback for it. In addition to that it calls
- __pm_runtime_disable() with 'false' as the second argument for every device
- right before executing the subsystem-level .suspend_late() callback for it.
-
- * During system resume it calls pm_runtime_enable() and pm_runtime_put()
- for every device right after executing the subsystem-level .resume_early()
- callback and right after executing the subsystem-level .resume() callback
+ * During system suspend pm_runtime_get_noresume() is called for every device
+ right before executing the subsystem-level .prepare() callback for it and
+ pm_runtime_barrier() is called for every device right before executing the
+ subsystem-level .suspend() callback for it. In addition to that the PM core
+ calls __pm_runtime_disable() with 'false' as the second argument for every
+ device right before executing the subsystem-level .suspend_late() callback
+ for it.
+
+ * During system resume pm_runtime_enable() and pm_runtime_put() are called for
+ every device right after executing the subsystem-level .resume_early()
+ callback and right after executing the subsystem-level .complete() callback
for it, respectively.
7. Generic subsystem callbacks
diff --git a/Documentation/power/states.txt b/Documentation/power/states.txt
index 442d43df9b25..50f3ef9177c1 100644
--- a/Documentation/power/states.txt
+++ b/Documentation/power/states.txt
@@ -1,62 +1,87 @@
+System Power Management Sleep States
-System Power Management States
+(C) 2014 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>
+The kernel supports up to four system sleep states generically, although three
+of them depend on the platform support code to implement the low-level details
+for each state.
-The kernel supports four power management states generically, though
-one is generic and the other three are dependent on platform support
-code to implement the low-level details for each state.
-This file describes each state, what they are
-commonly called, what ACPI state they map to, and what string to write
-to /sys/power/state to enter that state
+The states are represented by strings that can be read or written to the
+/sys/power/state file. Those strings may be "mem", "standby", "freeze" and
+"disk", where the last one always represents hibernation (Suspend-To-Disk) and
+the meaning of the remaining ones depends on the relative_sleep_states command
+line argument.
-state: Freeze / Low-Power Idle
+For relative_sleep_states=1, the strings "mem", "standby" and "freeze" label the
+available non-hibernation sleep states from the deepest to the shallowest,
+respectively. In that case, "mem" is always present in /sys/power/state,
+because there is at least one non-hibernation sleep state in every system. If
+the given system supports two non-hibernation sleep states, "standby" is present
+in /sys/power/state in addition to "mem". If the system supports three
+non-hibernation sleep states, "freeze" will be present in /sys/power/state in
+addition to "mem" and "standby".
+
+For relative_sleep_states=0, which is the default, the following descriptions
+apply.
+
+state: Suspend-To-Idle
ACPI state: S0
-String: "freeze"
+Label: "freeze"
-This state is a generic, pure software, light-weight, low-power state.
-It allows more energy to be saved relative to idle by freezing user
+This state is a generic, pure software, light-weight, system sleep state.
+It allows more energy to be saved relative to runtime idle by freezing user
space and putting all I/O devices into low-power states (possibly
lower-power than available at run time), such that the processors can
spend more time in their idle states.
-This state can be used for platforms without Standby/Suspend-to-RAM
+
+This state can be used for platforms without Power-On Suspend/Suspend-to-RAM
support, or it can be used in addition to Suspend-to-RAM (memory sleep)
-to provide reduced resume latency.
+to provide reduced resume latency. It is always supported.
State: Standby / Power-On Suspend
ACPI State: S1
-String: "standby"
+Label: "standby"
-This state offers minimal, though real, power savings, while providing
-a very low-latency transition back to a working system. No operating
-state is lost (the CPU retains power), so the system easily starts up
+This state, if supported, offers moderate, though real, power savings, while
+providing a relatively low-latency transition back to a working system. No
+operating state is lost (the CPU retains power), so the system easily starts up
again where it left off.
-We try to put devices in a low-power state equivalent to D1, which
-also offers low power savings, but low resume latency. Not all devices
-support D1, and those that don't are left on.
+In addition to freezing user space and putting all I/O devices into low-power
+states, which is done for Suspend-To-Idle too, nonboot CPUs are taken offline
+and all low-level system functions are suspended during transitions into this
+state. For this reason, it should allow more energy to be saved relative to
+Suspend-To-Idle, but the resume latency will generally be greater than for that
+state.
State: Suspend-to-RAM
ACPI State: S3
-String: "mem"
+Label: "mem"
-This state offers significant power savings as everything in the
-system is put into a low-power state, except for memory, which is
-placed in self-refresh mode to retain its contents.
+This state, if supported, offers significant power savings as everything in the
+system is put into a low-power state, except for memory, which should be placed
+into the self-refresh mode to retain its contents. All of the steps carried out
+when entering Power-On Suspend are also carried out during transitions to STR.
+Additional operations may take place depending on the platform capabilities. In
+particular, on ACPI systems the kernel passes control to the BIOS (platform
+firmware) as the last step during STR transitions and that usually results in
+powering down some more low-level components that aren't directly controlled by
+the kernel.
-System and device state is saved and kept in memory. All devices are
-suspended and put into D3. In many cases, all peripheral buses lose
-power when entering STR, so devices must be able to handle the
-transition back to the On state.
+System and device state is saved and kept in memory. All devices are suspended
+and put into low-power states. In many cases, all peripheral buses lose power
+when entering STR, so devices must be able to handle the transition back to the
+"on" state.
-For at least ACPI, STR requires some minimal boot-strapping code to
-resume the system from STR. This may be true on other platforms.
+For at least ACPI, STR requires some minimal boot-strapping code to resume the
+system from it. This may be the case on other platforms too.
State: Suspend-to-disk
ACPI State: S4
-String: "disk"
+Label: "disk"
This state offers the greatest power savings, and can be used even in
the absence of low-level platform support for power management. This
diff --git a/Documentation/power/swsusp.txt b/Documentation/power/swsusp.txt
index 079160e22bcc..f732a8321e8a 100644
--- a/Documentation/power/swsusp.txt
+++ b/Documentation/power/swsusp.txt
@@ -220,7 +220,10 @@ Q: After resuming, system is paging heavily, leading to very bad interactivity.
A: Try running
-cat `cat /proc/[0-9]*/maps | grep / | sed 's:.* /:/:' | sort -u` > /dev/null
+cat /proc/[0-9]*/maps | grep / | sed 's:.* /:/:' | sort -u | while read file
+do
+ test -f "$file" && cat "$file" > /dev/null
+done
after resume. swapoff -a; swapon -a may also be useful.
diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt
index a9380ba54c8e..b4f53653c106 100644
--- a/Documentation/virtual/kvm/api.txt
+++ b/Documentation/virtual/kvm/api.txt
@@ -2126,7 +2126,7 @@ into the hash PTE second double word).
4.75 KVM_IRQFD
Capability: KVM_CAP_IRQFD
-Architectures: x86
+Architectures: x86 s390
Type: vm ioctl
Parameters: struct kvm_irqfd (in)
Returns: 0 on success, -1 on error