summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/scheduler/sched-rt-group.txt20
-rw-r--r--Documentation/trace/ftrace.txt15
2 files changed, 31 insertions, 4 deletions
diff --git a/Documentation/scheduler/sched-rt-group.txt b/Documentation/scheduler/sched-rt-group.txt
index 5ba4d3fc625a..1df7f9cdab05 100644
--- a/Documentation/scheduler/sched-rt-group.txt
+++ b/Documentation/scheduler/sched-rt-group.txt
@@ -4,6 +4,7 @@
CONTENTS
========
+0. WARNING
1. Overview
1.1 The problem
1.2 The solution
@@ -14,6 +15,23 @@ CONTENTS
3. Future plans
+0. WARNING
+==========
+
+ Fiddling with these settings can result in an unstable system, the knobs are
+ root only and assumes root knows what he is doing.
+
+Most notable:
+
+ * very small values in sched_rt_period_us can result in an unstable
+ system when the period is smaller than either the available hrtimer
+ resolution, or the time it takes to handle the budget refresh itself.
+
+ * very small values in sched_rt_runtime_us can result in an unstable
+ system when the runtime is so small the system has difficulty making
+ forward progress (NOTE: the migration thread and kstopmachine both
+ are real-time processes).
+
1. Overview
===========
@@ -169,7 +187,7 @@ get their allocated time.
Implementing SCHED_EDF might take a while to complete. Priority Inheritance is
the biggest challenge as the current linux PI infrastructure is geared towards
-the limited static priority levels 0-139. With deadline scheduling you need to
+the limited static priority levels 0-99. With deadline scheduling you need to
do deadline inheritance (since priority is inversely proportional to the
deadline delta (deadline - now).
diff --git a/Documentation/trace/ftrace.txt b/Documentation/trace/ftrace.txt
index fd9a3e693813..e362f50c496f 100644
--- a/Documentation/trace/ftrace.txt
+++ b/Documentation/trace/ftrace.txt
@@ -518,9 +518,18 @@ priority with zero (0) being the highest priority and the nice
values starting at 100 (nice -20). Below is a quick chart to map
the kernel priority to user land priorities.
- Kernel priority: 0 to 99 ==> user RT priority 99 to 0
- Kernel priority: 100 to 139 ==> user nice -20 to 19
- Kernel priority: 140 ==> idle task priority
+ Kernel Space User Space
+ ===============================================================
+ 0(high) to 98(low) user RT priority 99(high) to 1(low)
+ with SCHED_RR or SCHED_FIFO
+ ---------------------------------------------------------------
+ 99 sched_priority is not used in scheduling
+ decisions(it must be specified as 0)
+ ---------------------------------------------------------------
+ 100(high) to 139(low) user nice -20(high) to 19(low)
+ ---------------------------------------------------------------
+ 140 idle task priority
+ ---------------------------------------------------------------
The task states are: