diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/scheduler/sched-rt-group.txt | 20 | ||||
-rw-r--r-- | Documentation/trace/ftrace.txt | 15 |
2 files changed, 31 insertions, 4 deletions
diff --git a/Documentation/scheduler/sched-rt-group.txt b/Documentation/scheduler/sched-rt-group.txt index 5ba4d3fc625a..1df7f9cdab05 100644 --- a/Documentation/scheduler/sched-rt-group.txt +++ b/Documentation/scheduler/sched-rt-group.txt @@ -4,6 +4,7 @@ CONTENTS ======== +0. WARNING 1. Overview 1.1 The problem 1.2 The solution @@ -14,6 +15,23 @@ CONTENTS 3. Future plans +0. WARNING +========== + + Fiddling with these settings can result in an unstable system, the knobs are + root only and assumes root knows what he is doing. + +Most notable: + + * very small values in sched_rt_period_us can result in an unstable + system when the period is smaller than either the available hrtimer + resolution, or the time it takes to handle the budget refresh itself. + + * very small values in sched_rt_runtime_us can result in an unstable + system when the runtime is so small the system has difficulty making + forward progress (NOTE: the migration thread and kstopmachine both + are real-time processes). + 1. Overview =========== @@ -169,7 +187,7 @@ get their allocated time. Implementing SCHED_EDF might take a while to complete. Priority Inheritance is the biggest challenge as the current linux PI infrastructure is geared towards -the limited static priority levels 0-139. With deadline scheduling you need to +the limited static priority levels 0-99. With deadline scheduling you need to do deadline inheritance (since priority is inversely proportional to the deadline delta (deadline - now). diff --git a/Documentation/trace/ftrace.txt b/Documentation/trace/ftrace.txt index fd9a3e693813..e362f50c496f 100644 --- a/Documentation/trace/ftrace.txt +++ b/Documentation/trace/ftrace.txt @@ -518,9 +518,18 @@ priority with zero (0) being the highest priority and the nice values starting at 100 (nice -20). Below is a quick chart to map the kernel priority to user land priorities. - Kernel priority: 0 to 99 ==> user RT priority 99 to 0 - Kernel priority: 100 to 139 ==> user nice -20 to 19 - Kernel priority: 140 ==> idle task priority + Kernel Space User Space + =============================================================== + 0(high) to 98(low) user RT priority 99(high) to 1(low) + with SCHED_RR or SCHED_FIFO + --------------------------------------------------------------- + 99 sched_priority is not used in scheduling + decisions(it must be specified as 0) + --------------------------------------------------------------- + 100(high) to 139(low) user nice -20(high) to 19(low) + --------------------------------------------------------------- + 140 idle task priority + --------------------------------------------------------------- The task states are: |