summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/acpi-hotkey.txt38
-rw-r--r--Documentation/feature-removal-schedule.txt23
-rw-r--r--Documentation/gpio.txt17
-rw-r--r--Documentation/hrtimer/timer_stats.txt68
-rw-r--r--Documentation/hrtimers/highres.txt249
-rw-r--r--Documentation/hrtimers/hrtimers.txt (renamed from Documentation/hrtimers.txt)0
-rw-r--r--Documentation/kernel-parameters.txt14
-rw-r--r--Documentation/pci.txt4
-rw-r--r--Documentation/sony-laptop.txt106
9 files changed, 449 insertions, 70 deletions
diff --git a/Documentation/acpi-hotkey.txt b/Documentation/acpi-hotkey.txt
deleted file mode 100644
index 38040fa37649..000000000000
--- a/Documentation/acpi-hotkey.txt
+++ /dev/null
@@ -1,38 +0,0 @@
-driver/acpi/hotkey.c implement:
-1. /proc/acpi/hotkey/event_config
-(event based hotkey or event config interface):
-a. add a event based hotkey(event) :
-echo "0:bus::action:method:num:num" > event_config
-
-b. delete a event based hotkey(event):
-echo "1:::::num:num" > event_config
-
-c. modify a event based hotkey(event):
-echo "2:bus::action:method:num:num" > event_config
-
-2. /proc/acpi/hotkey/poll_config
-(polling based hotkey or event config interface):
-a.add a polling based hotkey(event) :
-echo "0:bus:method:action:method:num" > poll_config
-this adding command will create a proc file
-/proc/acpi/hotkey/method, which is used to get
-result of polling.
-
-b.delete a polling based hotkey(event):
-echo "1:::::num" > event_config
-
-c.modify a polling based hotkey(event):
-echo "2:bus:method:action:method:num" > poll_config
-
-3./proc/acpi/hotkey/action
-(interface to call aml method associated with a
-specific hotkey(event))
-echo "event_num:event_type:event_argument" >
- /proc/acpi/hotkey/action.
-The result of the execution of this aml method is
-attached to /proc/acpi/hotkey/poll_method, which is dynamically
-created. Please use command "cat /proc/acpi/hotkey/polling_method"
-to retrieve it.
-
-Note: Use cmdline "acpi_generic_hotkey" to over-ride
-platform-specific with generic driver.
diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt
index c585aa8d62b4..28f897fd3674 100644
--- a/Documentation/feature-removal-schedule.txt
+++ b/Documentation/feature-removal-schedule.txt
@@ -253,29 +253,6 @@ Who: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
---------------------------
-<<<<<<< test:Documentation/feature-removal-schedule.txt
-What: ACPI hotkey driver (CONFIG_ACPI_HOTKEY)
-When: 2.6.21
-Why: hotkey.c was an attempt to consolidate multiple drivers that use
- ACPI to implement hotkeys. However, hotkeys are not documented
- in the ACPI specification, so the drivers used undocumented
- vendor-specific hooks and turned out to be more different than
- the same.
-
- Further, the keys and the features supplied by each platform
- are different, so there will always be a need for
- platform-specific drivers.
-
- So the new plan is to delete hotkey.c and instead, work on the
- platform specific drivers to try to make them look the same
- to the user when they supply the same features.
-
- hotkey.c has always depended on CONFIG_EXPERIMENTAL
-
-Who: Len Brown <len.brown@intel.com>
-
----------------------------
-
What: /sys/firmware/acpi/namespace
When: 2.6.21
Why: The ACPI namespace is effectively the symbol list for
diff --git a/Documentation/gpio.txt b/Documentation/gpio.txt
index 09dd510c4a5f..576ce463cf44 100644
--- a/Documentation/gpio.txt
+++ b/Documentation/gpio.txt
@@ -78,7 +78,8 @@ Identifying GPIOs
-----------------
GPIOs are identified by unsigned integers in the range 0..MAX_INT. That
reserves "negative" numbers for other purposes like marking signals as
-"not available on this board", or indicating faults.
+"not available on this board", or indicating faults. Code that doesn't
+touch the underlying hardware treats these integers as opaque cookies.
Platforms define how they use those integers, and usually #define symbols
for the GPIO lines so that board-specific setup code directly corresponds
@@ -139,10 +140,10 @@ issues including wire-OR and output latencies.
The get/set calls have no error returns because "invalid GPIO" should have
been reported earlier in gpio_set_direction(). However, note that not all
platforms can read the value of output pins; those that can't should always
-return zero. Also, these calls will be ignored for GPIOs that can't safely
-be accessed wihtout sleeping (see below).
+return zero. Also, using these calls for GPIOs that can't safely be accessed
+without sleeping (see below) is an error.
-Platform-specific implementations are encouraged to optimise the two
+Platform-specific implementations are encouraged to optimize the two
calls to access the GPIO value in cases where the GPIO number (and for
output, value) are constant. It's normal for them to need only a couple
of instructions in such cases (reading or writing a hardware register),
@@ -239,7 +240,8 @@ options are part of the IRQ interface, e.g. IRQF_TRIGGER_FALLING, as are
system wakeup capabilities.
Non-error values returned from irq_to_gpio() would most commonly be used
-with gpio_get_value().
+with gpio_get_value(), for example to initialize or update driver state
+when the IRQ is edge-triggered.
@@ -260,9 +262,10 @@ pullups (or pulldowns) so that the on-chip ones should not be used.
There are other system-specific mechanisms that are not specified here,
like the aforementioned options for input de-glitching and wire-OR output.
Hardware may support reading or writing GPIOs in gangs, but that's usually
-configuration dependednt: for GPIOs sharing the same bank. (GPIOs are
+configuration dependent: for GPIOs sharing the same bank. (GPIOs are
commonly grouped in banks of 16 or 32, with a given SOC having several such
-banks.) Code relying on such mechanisms will necessarily be nonportable.
+banks.) Some systems can trigger IRQs from output GPIOs. Code relying on
+such mechanisms will necessarily be nonportable.
Dynamic definition of GPIOs is not currently supported; for example, as
a side effect of configuring an add-on board with some GPIO expanders.
diff --git a/Documentation/hrtimer/timer_stats.txt b/Documentation/hrtimer/timer_stats.txt
new file mode 100644
index 000000000000..27f782e3593f
--- /dev/null
+++ b/Documentation/hrtimer/timer_stats.txt
@@ -0,0 +1,68 @@
+timer_stats - timer usage statistics
+------------------------------------
+
+timer_stats is a debugging facility to make the timer (ab)usage in a Linux
+system visible to kernel and userspace developers. It is not intended for
+production usage as it adds significant overhead to the (hr)timer code and the
+(hr)timer data structures.
+
+timer_stats should be used by kernel and userspace developers to verify that
+their code does not make unduly use of timers. This helps to avoid unnecessary
+wakeups, which should be avoided to optimize power consumption.
+
+It can be enabled by CONFIG_TIMER_STATS in the "Kernel hacking" configuration
+section.
+
+timer_stats collects information about the timer events which are fired in a
+Linux system over a sample period:
+
+- the pid of the task(process) which initialized the timer
+- the name of the process which initialized the timer
+- the function where the timer was intialized
+- the callback function which is associated to the timer
+- the number of events (callbacks)
+
+timer_stats adds an entry to /proc: /proc/timer_stats
+
+This entry is used to control the statistics functionality and to read out the
+sampled information.
+
+The timer_stats functionality is inactive on bootup.
+
+To activate a sample period issue:
+# echo 1 >/proc/timer_stats
+
+To stop a sample period issue:
+# echo 0 >/proc/timer_stats
+
+The statistics can be retrieved by:
+# cat /proc/timer_stats
+
+The readout of /proc/timer_stats automatically disables sampling. The sampled
+information is kept until a new sample period is started. This allows multiple
+readouts.
+
+Sample output of /proc/timer_stats:
+
+Timerstats sample period: 3.888770 s
+ 12, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
+ 15, 1 swapper hcd_submit_urb (rh_timer_func)
+ 4, 959 kedac schedule_timeout (process_timeout)
+ 1, 0 swapper page_writeback_init (wb_timer_fn)
+ 28, 0 swapper hrtimer_stop_sched_tick (hrtimer_sched_tick)
+ 22, 2948 IRQ 4 tty_flip_buffer_push (delayed_work_timer_fn)
+ 3, 3100 bash schedule_timeout (process_timeout)
+ 1, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
+ 1, 1 swapper queue_delayed_work_on (delayed_work_timer_fn)
+ 1, 1 swapper neigh_table_init_no_netlink (neigh_periodic_timer)
+ 1, 2292 ip __netdev_watchdog_up (dev_watchdog)
+ 1, 23 events/1 do_cache_clean (delayed_work_timer_fn)
+90 total events, 30.0 events/sec
+
+The first column is the number of events, the second column the pid, the third
+column is the name of the process. The forth column shows the function which
+initialized the timer and in parantheses the callback function which was
+executed on expiry.
+
+ Thomas, Ingo
+
diff --git a/Documentation/hrtimers/highres.txt b/Documentation/hrtimers/highres.txt
new file mode 100644
index 000000000000..ce0e9a91e157
--- /dev/null
+++ b/Documentation/hrtimers/highres.txt
@@ -0,0 +1,249 @@
+High resolution timers and dynamic ticks design notes
+-----------------------------------------------------
+
+Further information can be found in the paper of the OLS 2006 talk "hrtimers
+and beyond". The paper is part of the OLS 2006 Proceedings Volume 1, which can
+be found on the OLS website:
+http://www.linuxsymposium.org/2006/linuxsymposium_procv1.pdf
+
+The slides to this talk are available from:
+http://tglx.de/projects/hrtimers/ols2006-hrtimers.pdf
+
+The slides contain five figures (pages 2, 15, 18, 20, 22), which illustrate the
+changes in the time(r) related Linux subsystems. Figure #1 (p. 2) shows the
+design of the Linux time(r) system before hrtimers and other building blocks
+got merged into mainline.
+
+Note: the paper and the slides are talking about "clock event source", while we
+switched to the name "clock event devices" in meantime.
+
+The design contains the following basic building blocks:
+
+- hrtimer base infrastructure
+- timeofday and clock source management
+- clock event management
+- high resolution timer functionality
+- dynamic ticks
+
+
+hrtimer base infrastructure
+---------------------------
+
+The hrtimer base infrastructure was merged into the 2.6.16 kernel. Details of
+the base implementation are covered in Documentation/hrtimers/hrtimer.txt. See
+also figure #2 (OLS slides p. 15)
+
+The main differences to the timer wheel, which holds the armed timer_list type
+timers are:
+ - time ordered enqueueing into a rb-tree
+ - independent of ticks (the processing is based on nanoseconds)
+
+
+timeofday and clock source management
+-------------------------------------
+
+John Stultz's Generic Time Of Day (GTOD) framework moves a large portion of
+code out of the architecture-specific areas into a generic management
+framework, as illustrated in figure #3 (OLS slides p. 18). The architecture
+specific portion is reduced to the low level hardware details of the clock
+sources, which are registered in the framework and selected on a quality based
+decision. The low level code provides hardware setup and readout routines and
+initializes data structures, which are used by the generic time keeping code to
+convert the clock ticks to nanosecond based time values. All other time keeping
+related functionality is moved into the generic code. The GTOD base patch got
+merged into the 2.6.18 kernel.
+
+Further information about the Generic Time Of Day framework is available in the
+OLS 2005 Proceedings Volume 1:
+http://www.linuxsymposium.org/2005/linuxsymposium_procv1.pdf
+
+The paper "We Are Not Getting Any Younger: A New Approach to Time and
+Timers" was written by J. Stultz, D.V. Hart, & N. Aravamudan.
+
+Figure #3 (OLS slides p.18) illustrates the transformation.
+
+
+clock event management
+----------------------
+
+While clock sources provide read access to the monotonically increasing time
+value, clock event devices are used to schedule the next event
+interrupt(s). The next event is currently defined to be periodic, with its
+period defined at compile time. The setup and selection of the event device
+for various event driven functionalities is hardwired into the architecture
+dependent code. This results in duplicated code across all architectures and
+makes it extremely difficult to change the configuration of the system to use
+event interrupt devices other than those already built into the
+architecture. Another implication of the current design is that it is necessary
+to touch all the architecture-specific implementations in order to provide new
+functionality like high resolution timers or dynamic ticks.
+
+The clock events subsystem tries to address this problem by providing a generic
+solution to manage clock event devices and their usage for the various clock
+event driven kernel functionalities. The goal of the clock event subsystem is
+to minimize the clock event related architecture dependent code to the pure
+hardware related handling and to allow easy addition and utilization of new
+clock event devices. It also minimizes the duplicated code across the
+architectures as it provides generic functionality down to the interrupt
+service handler, which is almost inherently hardware dependent.
+
+Clock event devices are registered either by the architecture dependent boot
+code or at module insertion time. Each clock event device fills a data
+structure with clock-specific property parameters and callback functions. The
+clock event management decides, by using the specified property parameters, the
+set of system functions a clock event device will be used to support. This
+includes the distinction of per-CPU and per-system global event devices.
+
+System-level global event devices are used for the Linux periodic tick. Per-CPU
+event devices are used to provide local CPU functionality such as process
+accounting, profiling, and high resolution timers.
+
+The management layer assignes one or more of the folliwing functions to a clock
+event device:
+ - system global periodic tick (jiffies update)
+ - cpu local update_process_times
+ - cpu local profiling
+ - cpu local next event interrupt (non periodic mode)
+
+The clock event device delegates the selection of those timer interrupt related
+functions completely to the management layer. The clock management layer stores
+a function pointer in the device description structure, which has to be called
+from the hardware level handler. This removes a lot of duplicated code from the
+architecture specific timer interrupt handlers and hands the control over the
+clock event devices and the assignment of timer interrupt related functionality
+to the core code.
+
+The clock event layer API is rather small. Aside from the clock event device
+registration interface it provides functions to schedule the next event
+interrupt, clock event device notification service and support for suspend and
+resume.
+
+The framework adds about 700 lines of code which results in a 2KB increase of
+the kernel binary size. The conversion of i386 removes about 100 lines of
+code. The binary size decrease is in the range of 400 byte. We believe that the
+increase of flexibility and the avoidance of duplicated code across
+architectures justifies the slight increase of the binary size.
+
+The conversion of an architecture has no functional impact, but allows to
+utilize the high resolution and dynamic tick functionalites without any change
+to the clock event device and timer interrupt code. After the conversion the
+enabling of high resolution timers and dynamic ticks is simply provided by
+adding the kernel/time/Kconfig file to the architecture specific Kconfig and
+adding the dynamic tick specific calls to the idle routine (a total of 3 lines
+added to the idle function and the Kconfig file)
+
+Figure #4 (OLS slides p.20) illustrates the transformation.
+
+
+high resolution timer functionality
+-----------------------------------
+
+During system boot it is not possible to use the high resolution timer
+functionality, while making it possible would be difficult and would serve no
+useful function. The initialization of the clock event device framework, the
+clock source framework (GTOD) and hrtimers itself has to be done and
+appropriate clock sources and clock event devices have to be registered before
+the high resolution functionality can work. Up to the point where hrtimers are
+initialized, the system works in the usual low resolution periodic mode. The
+clock source and the clock event device layers provide notification functions
+which inform hrtimers about availability of new hardware. hrtimers validates
+the usability of the registered clock sources and clock event devices before
+switching to high resolution mode. This ensures also that a kernel which is
+configured for high resolution timers can run on a system which lacks the
+necessary hardware support.
+
+The high resolution timer code does not support SMP machines which have only
+global clock event devices. The support of such hardware would involve IPI
+calls when an interrupt happens. The overhead would be much larger than the
+benefit. This is the reason why we currently disable high resolution and
+dynamic ticks on i386 SMP systems which stop the local APIC in C3 power
+state. A workaround is available as an idea, but the problem has not been
+tackled yet.
+
+The time ordered insertion of timers provides all the infrastructure to decide
+whether the event device has to be reprogrammed when a timer is added. The
+decision is made per timer base and synchronized across per-cpu timer bases in
+a support function. The design allows the system to utilize separate per-CPU
+clock event devices for the per-CPU timer bases, but currently only one
+reprogrammable clock event device per-CPU is utilized.
+
+When the timer interrupt happens, the next event interrupt handler is called
+from the clock event distribution code and moves expired timers from the
+red-black tree to a separate double linked list and invokes the softirq
+handler. An additional mode field in the hrtimer structure allows the system to
+execute callback functions directly from the next event interrupt handler. This
+is restricted to code which can safely be executed in the hard interrupt
+context. This applies, for example, to the common case of a wakeup function as
+used by nanosleep. The advantage of executing the handler in the interrupt
+context is the avoidance of up to two context switches - from the interrupted
+context to the softirq and to the task which is woken up by the expired
+timer.
+
+Once a system has switched to high resolution mode, the periodic tick is
+switched off. This disables the per system global periodic clock event device -
+e.g. the PIT on i386 SMP systems.
+
+The periodic tick functionality is provided by an per-cpu hrtimer. The callback
+function is executed in the next event interrupt context and updates jiffies
+and calls update_process_times and profiling. The implementation of the hrtimer
+based periodic tick is designed to be extended with dynamic tick functionality.
+This allows to use a single clock event device to schedule high resolution
+timer and periodic events (jiffies tick, profiling, process accounting) on UP
+systems. This has been proved to work with the PIT on i386 and the Incrementer
+on PPC.
+
+The softirq for running the hrtimer queues and executing the callbacks has been
+separated from the tick bound timer softirq to allow accurate delivery of high
+resolution timer signals which are used by itimer and POSIX interval
+timers. The execution of this softirq can still be delayed by other softirqs,
+but the overall latencies have been significantly improved by this separation.
+
+Figure #5 (OLS slides p.22) illustrates the transformation.
+
+
+dynamic ticks
+-------------
+
+Dynamic ticks are the logical consequence of the hrtimer based periodic tick
+replacement (sched_tick). The functionality of the sched_tick hrtimer is
+extended by three functions:
+
+- hrtimer_stop_sched_tick
+- hrtimer_restart_sched_tick
+- hrtimer_update_jiffies
+
+hrtimer_stop_sched_tick() is called when a CPU goes into idle state. The code
+evaluates the next scheduled timer event (from both hrtimers and the timer
+wheel) and in case that the next event is further away than the next tick it
+reprograms the sched_tick to this future event, to allow longer idle sleeps
+without worthless interruption by the periodic tick. The function is also
+called when an interrupt happens during the idle period, which does not cause a
+reschedule. The call is necessary as the interrupt handler might have armed a
+new timer whose expiry time is before the time which was identified as the
+nearest event in the previous call to hrtimer_stop_sched_tick.
+
+hrtimer_restart_sched_tick() is called when the CPU leaves the idle state before
+it calls schedule(). hrtimer_restart_sched_tick() resumes the periodic tick,
+which is kept active until the next call to hrtimer_stop_sched_tick().
+
+hrtimer_update_jiffies() is called from irq_enter() when an interrupt happens
+in the idle period to make sure that jiffies are up to date and the interrupt
+handler has not to deal with an eventually stale jiffy value.
+
+The dynamic tick feature provides statistical values which are exported to
+userspace via /proc/stats and can be made available for enhanced power
+management control.
+
+The implementation leaves room for further development like full tickless
+systems, where the time slice is controlled by the scheduler, variable
+frequency profiling, and a complete removal of jiffies in the future.
+
+
+Aside the current initial submission of i386 support, the patchset has been
+extended to x86_64 and ARM already. Initial (work in progress) support is also
+available for MIPS and PowerPC.
+
+ Thomas, Ingo
+
+
+
diff --git a/Documentation/hrtimers.txt b/Documentation/hrtimers/hrtimers.txt
index ce31f65e12e7..ce31f65e12e7 100644
--- a/Documentation/hrtimers.txt
+++ b/Documentation/hrtimers/hrtimers.txt
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index 22b19962a1a2..ce1f2c85e20f 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -609,6 +609,10 @@ and is between 256 and 4096 characters. It is defined in the file
highmem otherwise. This also works to reduce highmem
size on bigger boxes.
+ highres= [KNL] Enable/disable high resolution timer mode.
+ Valid parameters: "on", "off"
+ Default: "on"
+
hisax= [HW,ISDN]
See Documentation/isdn/README.HiSax.
@@ -1078,6 +1082,10 @@ and is between 256 and 4096 characters. It is defined in the file
in certain environments such as networked servers or
real-time systems.
+ nohz= [KNL] Boottime enable/disable dynamic ticks
+ Valid arguments: on, off
+ Default: on
+
noirqbalance [IA-32,SMP,KNL] Disable kernel irq balancing
noirqdebug [IA-32] Disables the code which attempts to detect and
@@ -1267,6 +1275,12 @@ and is between 256 and 4096 characters. It is defined in the file
This sorting is done to get a device
order compatible with older (<= 2.4) kernels.
nobfsort Don't sort PCI devices into breadth-first order.
+ cbiosize=nn[KMG] The fixed amount of bus space which is
+ reserved for the CardBus bridge's IO window.
+ The default value is 256 bytes.
+ cbmemsize=nn[KMG] The fixed amount of bus space which is
+ reserved for the CardBus bridge's memory
+ window. The default value is 64 megabytes.
pcmv= [HW,PCMCIA] BadgePAD 4
diff --git a/Documentation/pci.txt b/Documentation/pci.txt
index fd5028eca13e..cdf2f3c0ab14 100644
--- a/Documentation/pci.txt
+++ b/Documentation/pci.txt
@@ -205,8 +205,8 @@ Tips on when/where to use the above attributes:
exclusively called by the probe() routine, can be marked __devinit.
Ditto for remove() and __devexit.
- o If mydriver_probe() is marked with __devinit(), then all address
- references to mydriver_probe must use __devexit_p(mydriver_probe)
+ o If mydriver_remove() is marked with __devexit(), then all address
+ references to mydriver_remove must use __devexit_p(mydriver_remove)
(in the struct pci_driver declaration for example).
__devexit_p() will generate the function name _or_ NULL if the
function will be discarded. For an example, see drivers/net/tg3.c.
diff --git a/Documentation/sony-laptop.txt b/Documentation/sony-laptop.txt
new file mode 100644
index 000000000000..dfd26df056f4
--- /dev/null
+++ b/Documentation/sony-laptop.txt
@@ -0,0 +1,106 @@
+Sony Notebook Control Driver (SNC) Readme
+-----------------------------------------
+ Copyright (C) 2004- 2005 Stelian Pop <stelian@popies.net>
+ Copyright (C) 2007 Mattia Dongili <malattia@linux.it>
+
+This mini-driver drives the SNC device present in the ACPI BIOS of
+the Sony Vaio laptops.
+
+It gives access to some extra laptop functionalities. In its current
+form, this driver let the user set or query the screen brightness
+through the backlight subsystem and remove/apply power to some devices.
+
+Backlight control:
+------------------
+If your laptop model supports it, you will find sysfs files in the
+/sys/class/backlight/sony/
+directory. You will be able to query and set the current screen
+brightness:
+ brightness get/set screen brightness (an iteger
+ between 0 and 7)
+ actual_brightness reading from this file will query the HW
+ to get real brightness value
+ max_brightness the maximum brightness value
+
+
+Platform specific:
+------------------
+Loading the sony-laptop module will create a
+/sys/devices/platform/sony-laptop/
+directory populated with some files.
+
+You then read/write integer values from/to those files by using
+standard UNIX tools.
+
+The files are:
+ brightness_default screen brightness which will be set
+ when the laptop will be rebooted
+ cdpower power on/off the internal CD drive
+ audiopower power on/off the internal sound card
+ lanpower power on/off the internal ethernet card
+ (only in debug mode)
+
+Note that some files may be missing if they are not supported
+by your particular laptop model.
+
+Example usage:
+ # echo "1" > /sys/devices/platform/sony-laptop/brightness_default
+sets the lowest screen brightness for the next and later reboots,
+ # echo "8" > /sys/devices/platform/sony-laptop/brightness_default
+sets the highest screen brightness for the next and later reboots,
+ # cat /sys/devices/platform/sony-laptop/brightness_default
+retrieves the value.
+
+ # echo "0" > /sys/devices/platform/sony-laptop/audiopower
+powers off the sound card,
+ # echo "1" > /sys/devices/platform/sony-laptop/audiopower
+powers on the sound card.
+
+Development:
+------------
+
+If you want to help with the development of this driver (and
+you are not afraid of any side effects doing strange things with
+your ACPI BIOS could have on your laptop), load the driver and
+pass the option 'debug=1'.
+
+REPEAT: DON'T DO THIS IF YOU DON'T LIKE RISKY BUSINESS.
+
+In your kernel logs you will find the list of all ACPI methods
+the SNC device has on your laptop. You can see the GCDP/GCDP methods
+used to pwer on/off the CD drive, but there are others.
+
+I HAVE NO IDEA WHAT THOSE METHODS DO.
+
+The sony-laptop driver creates, for some of those methods (the most
+current ones found on several Vaio models), an entry under
+/sys/devices/platform/sony-laptop, just like the 'cdpower' one.
+You can create other entries corresponding to your own laptop methods by
+further editing the source (see the 'sony_acpi_values' table, and add a new
+entry to this table with your get/set method names using the
+HANDLE_NAMES macro).
+
+Your mission, should you accept it, is to try finding out what
+those entries are for, by reading/writing random values from/to those
+files and find out what is the impact on your laptop.
+
+Should you find anything interesting, please report it back to me,
+I will not disavow all knowledge of your actions :)
+
+Bugs/Limitations:
+-----------------
+
+* This driver is not based on official documentation from Sony
+ (because there is none), so there is no guarantee this driver
+ will work at all, or do the right thing. Although this hasn't
+ happened to me, this driver could do very bad things to your
+ laptop, including permanent damage.
+
+* The sony-laptop and sonypi drivers do not interact at all. In the
+ future, sonypi could use sony-laptop to do (part of) its business.
+
+* spicctrl, which is the userspace tool used to communicate with the
+ sonypi driver (through /dev/sonypi) does not try to use the
+ sony-laptop driver. In the future, spicctrl could try sonypi first,
+ and if it isn't present, try sony-laptop instead.
+