diff options
Diffstat (limited to 'Documentation/trace')
-rw-r--r-- | Documentation/trace/intel_th.txt | 99 | ||||
-rw-r--r-- | Documentation/trace/stm.txt | 80 |
2 files changed, 179 insertions, 0 deletions
diff --git a/Documentation/trace/intel_th.txt b/Documentation/trace/intel_th.txt new file mode 100644 index 000000000000..f7fc5ba5df8d --- /dev/null +++ b/Documentation/trace/intel_th.txt @@ -0,0 +1,99 @@ +Intel(R) Trace Hub (TH) +======================= + +Overview +-------- + +Intel(R) Trace Hub (TH) is a set of hardware blocks that produce, +switch and output trace data from multiple hardware and software +sources over several types of trace output ports encoded in System +Trace Protocol (MIPI STPv2) and is intended to perform full system +debugging. For more information on the hardware, see Intel(R) Trace +Hub developer's manual [1]. + +It consists of trace sources, trace destinations (outputs) and a +switch (Global Trace Hub, GTH). These devices are placed on a bus of +their own ("intel_th"), where they can be discovered and configured +via sysfs attributes. + +Currently, the following Intel TH subdevices (blocks) are supported: + - Software Trace Hub (STH), trace source, which is a System Trace + Module (STM) device, + - Memory Storage Unit (MSU), trace output, which allows storing + trace hub output in system memory, + - Parallel Trace Interface output (PTI), trace output to an external + debug host via a PTI port, + - Global Trace Hub (GTH), which is a switch and a central component + of Intel(R) Trace Hub architecture. + +Common attributes for output devices are described in +Documentation/ABI/testing/sysfs-bus-intel_th-output-devices, the most +notable of them is "active", which enables or disables trace output +into that particular output device. + +GTH allows directing different STP masters into different output ports +via its "masters" attribute group. More detailed GTH interface +description is at Documentation/ABI/testing/sysfs-bus-intel_th-devices-gth. + +STH registers an stm class device, through which it provides interface +to userspace and kernelspace software trace sources. See +Documentation/tracing/stm.txt for more information on that. + +MSU can be configured to collect trace data into a system memory +buffer, which can later on be read from its device nodes via read() or +mmap() interface. + +On the whole, Intel(R) Trace Hub does not require any special +userspace software to function; everything can be configured, started +and collected via sysfs attributes, and device nodes. + +[1] https://software.intel.com/sites/default/files/managed/d3/3c/intel-th-developer-manual.pdf + +Bus and Subdevices +------------------ + +For each Intel TH device in the system a bus of its own is +created and assigned an id number that reflects the order in which TH +devices were emumerated. All TH subdevices (devices on intel_th bus) +begin with this id: 0-gth, 0-msc0, 0-msc1, 0-pti, 0-sth, which is +followed by device's name and an optional index. + +Output devices also get a device node in /dev/intel_thN, where N is +the Intel TH device id. For example, MSU's memory buffers, when +allocated, are accessible via /dev/intel_th0/msc{0,1}. + +Quick example +------------- + +# figure out which GTH port is the first memory controller: + +$ cat /sys/bus/intel_th/devices/0-msc0/port +0 + +# looks like it's port 0, configure master 33 to send data to port 0: + +$ echo 0 > /sys/bus/intel_th/devices/0-gth/masters/33 + +# allocate a 2-windowed multiblock buffer on the first memory +# controller, each with 64 pages: + +$ echo multi > /sys/bus/intel_th/devices/0-msc0/mode +$ echo 64,64 > /sys/bus/intel_th/devices/0-msc0/nr_pages + +# enable wrapping for this controller, too: + +$ echo 1 > /sys/bus/intel_th/devices/0-msc0/wrap + +# and enable tracing into this port: + +$ echo 1 > /sys/bus/intel_th/devices/0-msc0/active + +# .. send data to master 33, see stm.txt for more details .. +# .. wait for traces to pile up .. +# .. and stop the trace: + +$ echo 0 > /sys/bus/intel_th/devices/0-msc0/active + +# and now you can collect the trace from the device node: + +$ cat /dev/intel_th0/msc0 > my_stp_trace diff --git a/Documentation/trace/stm.txt b/Documentation/trace/stm.txt new file mode 100644 index 000000000000..ea035f9dbfd7 --- /dev/null +++ b/Documentation/trace/stm.txt @@ -0,0 +1,80 @@ +System Trace Module +=================== + +System Trace Module (STM) is a device described in MIPI STP specs as +STP trace stream generator. STP (System Trace Protocol) is a trace +protocol multiplexing data from multiple trace sources, each one of +which is assigned a unique pair of master and channel. While some of +these masters and channels are statically allocated to certain +hardware trace sources, others are available to software. Software +trace sources are usually free to pick for themselves any +master/channel combination from this pool. + +On the receiving end of this STP stream (the decoder side), trace +sources can only be identified by master/channel combination, so in +order for the decoder to be able to make sense of the trace that +involves multiple trace sources, it needs to be able to map those +master/channel pairs to the trace sources that it understands. + +For instance, it is helpful to know that syslog messages come on +master 7 channel 15, while arbitrary user applications can use masters +48 to 63 and channels 0 to 127. + +To solve this mapping problem, stm class provides a policy management +mechanism via configfs, that allows defining rules that map string +identifiers to ranges of masters and channels. If these rules (policy) +are consistent with what decoder expects, it will be able to properly +process the trace data. + +This policy is a tree structure containing rules (policy_node) that +have a name (string identifier) and a range of masters and channels +associated with it, located in "stp-policy" subsystem directory in +configfs. The topmost directory's name (the policy) is formatted as +the STM device name to which this policy applies and and arbitrary +string identifier separated by a stop. From the examle above, a rule +may look like this: + +$ ls /config/stp-policy/dummy_stm.my-policy/user +channels masters +$ cat /config/stp-policy/dummy_stm.my-policy/user/masters +48 63 +$ cat /config/stp-policy/dummy_stm.my-policy/user/channels +0 127 + +which means that the master allocation pool for this rule consists of +masters 48 through 63 and channel allocation pool has channels 0 +through 127 in it. Now, any producer (trace source) identifying itself +with "user" identification string will be allocated a master and +channel from within these ranges. + +These rules can be nested, for example, one can define a rule "dummy" +under "user" directory from the example above and this new rule will +be used for trace sources with the id string of "user/dummy". + +Trace sources have to open the stm class device's node and write their +trace data into its file descriptor. In order to identify themselves +to the policy, they need to do a STP_POLICY_ID_SET ioctl on this file +descriptor providing their id string. Otherwise, they will be +automatically allocated a master/channel pair upon first write to this +file descriptor according to the "default" rule of the policy, if such +exists. + +Some STM devices may allow direct mapping of the channel mmio regions +to userspace for zero-copy writing. One mappable page (in terms of +mmu) will usually contain multiple channels' mmios, so the user will +need to allocate that many channels to themselves (via the +aforementioned ioctl() call) to be able to do this. That is, if your +stm device's channel mmio region is 64 bytes and hardware page size is +4096 bytes, after a successful STP_POLICY_ID_SET ioctl() call with +width==64, you should be able to mmap() one page on this file +descriptor and obtain direct access to an mmio region for 64 channels. + +For kernel-based trace sources, there is "stm_source" device +class. Devices of this class can be connected and disconnected to/from +stm devices at runtime via a sysfs attribute. + +Examples of STM devices are Intel(R) Trace Hub [1] and Coresight STM +[2]. + +[1] https://software.intel.com/sites/default/files/managed/d3/3c/intel-th-developer-manual.pdf +[2] http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0444b/index.html |