summaryrefslogtreecommitdiffstats
path: root/Documentation/bpf/kfuncs.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/bpf/kfuncs.rst')
-rw-r--r--Documentation/bpf/kfuncs.rst255
1 files changed, 242 insertions, 13 deletions
diff --git a/Documentation/bpf/kfuncs.rst b/Documentation/bpf/kfuncs.rst
index 0f858156371d..9fd7fb539f85 100644
--- a/Documentation/bpf/kfuncs.rst
+++ b/Documentation/bpf/kfuncs.rst
@@ -72,6 +72,30 @@ argument as its size. By default, without __sz annotation, the size of the type
of the pointer is used. Without __sz annotation, a kfunc cannot accept a void
pointer.
+2.2.2 __k Annotation
+--------------------
+
+This annotation is only understood for scalar arguments, where it indicates that
+the verifier must check the scalar argument to be a known constant, which does
+not indicate a size parameter, and the value of the constant is relevant to the
+safety of the program.
+
+An example is given below::
+
+ void *bpf_obj_new(u32 local_type_id__k, ...)
+ {
+ ...
+ }
+
+Here, bpf_obj_new uses local_type_id argument to find out the size of that type
+ID in program's BTF and return a sized pointer to it. Each type ID will have a
+distinct size, hence it is crucial to treat each such call as distinct when
+values don't match during verifier state pruning checks.
+
+Hence, whenever a constant scalar argument is accepted by a kfunc which is not a
+size parameter, and the value of the constant matters for program safety, __k
+suffix should be used.
+
.. _BPF_kfunc_nodef:
2.3 Using an existing kernel function
@@ -137,22 +161,20 @@ KF_ACQUIRE and KF_RET_NULL flags.
--------------------------
The KF_TRUSTED_ARGS flag is used for kfuncs taking pointer arguments. It
-indicates that the all pointer arguments will always have a guaranteed lifetime,
-and pointers to kernel objects are always passed to helpers in their unmodified
-form (as obtained from acquire kfuncs).
+indicates that the all pointer arguments are valid, and that all pointers to
+BTF objects have been passed in their unmodified form (that is, at a zero
+offset, and without having been obtained from walking another pointer).
-It can be used to enforce that a pointer to a refcounted object acquired from a
-kfunc or BPF helper is passed as an argument to this kfunc without any
-modifications (e.g. pointer arithmetic) such that it is trusted and points to
-the original object.
+There are two types of pointers to kernel objects which are considered "valid":
-Meanwhile, it is also allowed pass pointers to normal memory to such kfuncs,
-but those can have a non-zero offset.
+1. Pointers which are passed as tracepoint or struct_ops callback arguments.
+2. Pointers which were returned from a KF_ACQUIRE or KF_KPTR_GET kfunc.
-This flag is often used for kfuncs that operate (change some property, perform
-some operation) on an object that was obtained using an acquire kfunc. Such
-kfuncs need an unchanged pointer to ensure the integrity of the operation being
-performed on the expected object.
+Pointers to non-BTF objects (e.g. scalar pointers) may also be passed to
+KF_TRUSTED_ARGS kfuncs, and may have a non-zero offset.
+
+The definition of "valid" pointers is subject to change at any time, and has
+absolutely no ABI stability guarantees.
2.4.6 KF_SLEEPABLE flag
-----------------------
@@ -169,6 +191,15 @@ rebooting or panicking. Due to this additional restrictions apply to these
calls. At the moment they only require CAP_SYS_BOOT capability, but more can be
added later.
+2.4.8 KF_RCU flag
+-----------------
+
+The KF_RCU flag is used for kfuncs which have a rcu ptr as its argument.
+When used together with KF_ACQUIRE, it indicates the kfunc should have a
+single argument which must be a trusted argument or a MEM_RCU pointer.
+The argument may have reference count of 0 and the kfunc must take this
+into consideration.
+
2.5 Registering the kfuncs
--------------------------
@@ -191,3 +222,201 @@ type. An example is shown below::
return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_task_kfunc_set);
}
late_initcall(init_subsystem);
+
+3. Core kfuncs
+==============
+
+The BPF subsystem provides a number of "core" kfuncs that are potentially
+applicable to a wide variety of different possible use cases and programs.
+Those kfuncs are documented here.
+
+3.1 struct task_struct * kfuncs
+-------------------------------
+
+There are a number of kfuncs that allow ``struct task_struct *`` objects to be
+used as kptrs:
+
+.. kernel-doc:: kernel/bpf/helpers.c
+ :identifiers: bpf_task_acquire bpf_task_release
+
+These kfuncs are useful when you want to acquire or release a reference to a
+``struct task_struct *`` that was passed as e.g. a tracepoint arg, or a
+struct_ops callback arg. For example:
+
+.. code-block:: c
+
+ /**
+ * A trivial example tracepoint program that shows how to
+ * acquire and release a struct task_struct * pointer.
+ */
+ SEC("tp_btf/task_newtask")
+ int BPF_PROG(task_acquire_release_example, struct task_struct *task, u64 clone_flags)
+ {
+ struct task_struct *acquired;
+
+ acquired = bpf_task_acquire(task);
+
+ /*
+ * In a typical program you'd do something like store
+ * the task in a map, and the map will automatically
+ * release it later. Here, we release it manually.
+ */
+ bpf_task_release(acquired);
+ return 0;
+ }
+
+----
+
+A BPF program can also look up a task from a pid. This can be useful if the
+caller doesn't have a trusted pointer to a ``struct task_struct *`` object that
+it can acquire a reference on with bpf_task_acquire().
+
+.. kernel-doc:: kernel/bpf/helpers.c
+ :identifiers: bpf_task_from_pid
+
+Here is an example of it being used:
+
+.. code-block:: c
+
+ SEC("tp_btf/task_newtask")
+ int BPF_PROG(task_get_pid_example, struct task_struct *task, u64 clone_flags)
+ {
+ struct task_struct *lookup;
+
+ lookup = bpf_task_from_pid(task->pid);
+ if (!lookup)
+ /* A task should always be found, as %task is a tracepoint arg. */
+ return -ENOENT;
+
+ if (lookup->pid != task->pid) {
+ /* bpf_task_from_pid() looks up the task via its
+ * globally-unique pid from the init_pid_ns. Thus,
+ * the pid of the lookup task should always be the
+ * same as the input task.
+ */
+ bpf_task_release(lookup);
+ return -EINVAL;
+ }
+
+ /* bpf_task_from_pid() returns an acquired reference,
+ * so it must be dropped before returning from the
+ * tracepoint handler.
+ */
+ bpf_task_release(lookup);
+ return 0;
+ }
+
+3.2 struct cgroup * kfuncs
+--------------------------
+
+``struct cgroup *`` objects also have acquire and release functions:
+
+.. kernel-doc:: kernel/bpf/helpers.c
+ :identifiers: bpf_cgroup_acquire bpf_cgroup_release
+
+These kfuncs are used in exactly the same manner as bpf_task_acquire() and
+bpf_task_release() respectively, so we won't provide examples for them.
+
+----
+
+You may also acquire a reference to a ``struct cgroup`` kptr that's already
+stored in a map using bpf_cgroup_kptr_get():
+
+.. kernel-doc:: kernel/bpf/helpers.c
+ :identifiers: bpf_cgroup_kptr_get
+
+Here's an example of how it can be used:
+
+.. code-block:: c
+
+ /* struct containing the struct task_struct kptr which is actually stored in the map. */
+ struct __cgroups_kfunc_map_value {
+ struct cgroup __kptr_ref * cgroup;
+ };
+
+ /* The map containing struct __cgroups_kfunc_map_value entries. */
+ struct {
+ __uint(type, BPF_MAP_TYPE_HASH);
+ __type(key, int);
+ __type(value, struct __cgroups_kfunc_map_value);
+ __uint(max_entries, 1);
+ } __cgroups_kfunc_map SEC(".maps");
+
+ /* ... */
+
+ /**
+ * A simple example tracepoint program showing how a
+ * struct cgroup kptr that is stored in a map can
+ * be acquired using the bpf_cgroup_kptr_get() kfunc.
+ */
+ SEC("tp_btf/cgroup_mkdir")
+ int BPF_PROG(cgroup_kptr_get_example, struct cgroup *cgrp, const char *path)
+ {
+ struct cgroup *kptr;
+ struct __cgroups_kfunc_map_value *v;
+ s32 id = cgrp->self.id;
+
+ /* Assume a cgroup kptr was previously stored in the map. */
+ v = bpf_map_lookup_elem(&__cgroups_kfunc_map, &id);
+ if (!v)
+ return -ENOENT;
+
+ /* Acquire a reference to the cgroup kptr that's already stored in the map. */
+ kptr = bpf_cgroup_kptr_get(&v->cgroup);
+ if (!kptr)
+ /* If no cgroup was present in the map, it's because
+ * we're racing with another CPU that removed it with
+ * bpf_kptr_xchg() between the bpf_map_lookup_elem()
+ * above, and our call to bpf_cgroup_kptr_get().
+ * bpf_cgroup_kptr_get() internally safely handles this
+ * race, and will return NULL if the task is no longer
+ * present in the map by the time we invoke the kfunc.
+ */
+ return -EBUSY;
+
+ /* Free the reference we just took above. Note that the
+ * original struct cgroup kptr is still in the map. It will
+ * be freed either at a later time if another context deletes
+ * it from the map, or automatically by the BPF subsystem if
+ * it's still present when the map is destroyed.
+ */
+ bpf_cgroup_release(kptr);
+
+ return 0;
+ }
+
+----
+
+Another kfunc available for interacting with ``struct cgroup *`` objects is
+bpf_cgroup_ancestor(). This allows callers to access the ancestor of a cgroup,
+and return it as a cgroup kptr.
+
+.. kernel-doc:: kernel/bpf/helpers.c
+ :identifiers: bpf_cgroup_ancestor
+
+Eventually, BPF should be updated to allow this to happen with a normal memory
+load in the program itself. This is currently not possible without more work in
+the verifier. bpf_cgroup_ancestor() can be used as follows:
+
+.. code-block:: c
+
+ /**
+ * Simple tracepoint example that illustrates how a cgroup's
+ * ancestor can be accessed using bpf_cgroup_ancestor().
+ */
+ SEC("tp_btf/cgroup_mkdir")
+ int BPF_PROG(cgrp_ancestor_example, struct cgroup *cgrp, const char *path)
+ {
+ struct cgroup *parent;
+
+ /* The parent cgroup resides at the level before the current cgroup's level. */
+ parent = bpf_cgroup_ancestor(cgrp, cgrp->level - 1);
+ if (!parent)
+ return -ENOENT;
+
+ bpf_printk("Parent id is %d", parent->self.id);
+
+ /* Return the parent cgroup that was acquired above. */
+ bpf_cgroup_release(parent);
+ return 0;
+ }