diff options
Diffstat (limited to 'Documentation/admin-guide/media/ipu3.rst')
-rw-r--r-- | Documentation/admin-guide/media/ipu3.rst | 142 |
1 files changed, 74 insertions, 68 deletions
diff --git a/Documentation/admin-guide/media/ipu3.rst b/Documentation/admin-guide/media/ipu3.rst index 9361c34f123e..07d139bf8459 100644 --- a/Documentation/admin-guide/media/ipu3.rst +++ b/Documentation/admin-guide/media/ipu3.rst @@ -89,41 +89,41 @@ Let us take the example of ov5670 sensor connected to CSI2 port 0, for a Using the media contorller APIs, the ov5670 sensor is configured to send frames in packed raw Bayer format to IPU3 CSI2 receiver. -# This example assumes /dev/media0 as the CIO2 media device - -export MDEV=/dev/media0 - -# and that ov5670 sensor is connected to i2c bus 10 with address 0x36 - -export SDEV=$(media-ctl -d $MDEV -e "ov5670 10-0036") +.. code-block:: none -# Establish the link for the media devices using media-ctl [#f3]_ -media-ctl -d $MDEV -l "ov5670:0 -> ipu3-csi2 0:0[1]" + # This example assumes /dev/media0 as the CIO2 media device + export MDEV=/dev/media0 -# Set the format for the media devices -media-ctl -d $MDEV -V "ov5670:0 [fmt:SGRBG10/2592x1944]" + # and that ov5670 sensor is connected to i2c bus 10 with address 0x36 + export SDEV=$(media-ctl -d $MDEV -e "ov5670 10-0036") -media-ctl -d $MDEV -V "ipu3-csi2 0:0 [fmt:SGRBG10/2592x1944]" + # Establish the link for the media devices using media-ctl [#f3]_ + media-ctl -d $MDEV -l "ov5670:0 -> ipu3-csi2 0:0[1]" -media-ctl -d $MDEV -V "ipu3-csi2 0:1 [fmt:SGRBG10/2592x1944]" + # Set the format for the media devices + media-ctl -d $MDEV -V "ov5670:0 [fmt:SGRBG10/2592x1944]" + media-ctl -d $MDEV -V "ipu3-csi2 0:0 [fmt:SGRBG10/2592x1944]" + media-ctl -d $MDEV -V "ipu3-csi2 0:1 [fmt:SGRBG10/2592x1944]" Once the media pipeline is configured, desired sensor specific settings (such as exposure and gain settings) can be set, using the yavta tool. e.g -yavta -w 0x009e0903 444 $SDEV - -yavta -w 0x009e0913 1024 $SDEV +.. code-block:: none -yavta -w 0x009e0911 2046 $SDEV + yavta -w 0x009e0903 444 $SDEV + yavta -w 0x009e0913 1024 $SDEV + yavta -w 0x009e0911 2046 $SDEV Once the desired sensor settings are set, frame captures can be done as below. e.g -yavta --data-prefix -u -c10 -n5 -I -s2592x1944 --file=/tmp/frame-#.bin \ - -f IPU3_SGRBG10 $(media-ctl -d $MDEV -e "ipu3-cio2 0") +.. code-block:: none + + yavta --data-prefix -u -c10 -n5 -I -s2592x1944 --file=/tmp/frame-#.bin \ + -f IPU3_SGRBG10 $(media-ctl -d $MDEV -e "ipu3-cio2 0") With the above command, 10 frames are captured at 2592x1944 resolution, with sGRBG10 format and output as IPU3_SGRBG10 format. @@ -269,21 +269,21 @@ all the video nodes setup correctly. Let us take "ipu3-imgu 0" subdev as an example. -media-ctl -d $MDEV -r - -media-ctl -d $MDEV -l "ipu3-imgu 0 input":0 -> "ipu3-imgu 0":0[1] - -media-ctl -d $MDEV -l "ipu3-imgu 0":2 -> "ipu3-imgu 0 output":0[1] - -media-ctl -d $MDEV -l "ipu3-imgu 0":3 -> "ipu3-imgu 0 viewfinder":0[1] +.. code-block:: none -media-ctl -d $MDEV -l "ipu3-imgu 0":4 -> "ipu3-imgu 0 3a stat":0[1] + media-ctl -d $MDEV -r + media-ctl -d $MDEV -l "ipu3-imgu 0 input":0 -> "ipu3-imgu 0":0[1] + media-ctl -d $MDEV -l "ipu3-imgu 0":2 -> "ipu3-imgu 0 output":0[1] + media-ctl -d $MDEV -l "ipu3-imgu 0":3 -> "ipu3-imgu 0 viewfinder":0[1] + media-ctl -d $MDEV -l "ipu3-imgu 0":4 -> "ipu3-imgu 0 3a stat":0[1] Also the pipe mode of the corresponding V4L2 subdev should be set as desired (e.g 0 for video mode or 1 for still mode) through the control id 0x009819a1 as below. -yavta -w "0x009819A1 1" /dev/v4l-subdev7 +.. code-block:: none + + yavta -w "0x009819A1 1" /dev/v4l-subdev7 Certain hardware blocks in ImgU pipeline can change the frame resolution by cropping or scaling, these hardware blocks include Input Feeder(IF), Bayer Down @@ -371,30 +371,32 @@ v4l2n command can be used. This helps process the raw Bayer frames and produces the desired results for the main output image and the viewfinder output, in NV12 format. -v4l2n --pipe=4 --load=/tmp/frame-#.bin --open=/dev/video4 ---fmt=type:VIDEO_OUTPUT_MPLANE,width=2592,height=1944,pixelformat=0X47337069 ---reqbufs=type:VIDEO_OUTPUT_MPLANE,count:1 --pipe=1 --output=/tmp/frames.out ---open=/dev/video5 ---fmt=type:VIDEO_CAPTURE_MPLANE,width=2560,height=1920,pixelformat=NV12 ---reqbufs=type:VIDEO_CAPTURE_MPLANE,count:1 --pipe=2 --output=/tmp/frames.vf ---open=/dev/video6 ---fmt=type:VIDEO_CAPTURE_MPLANE,width=2560,height=1920,pixelformat=NV12 ---reqbufs=type:VIDEO_CAPTURE_MPLANE,count:1 --pipe=3 --open=/dev/video7 ---output=/tmp/frames.3A --fmt=type:META_CAPTURE,? ---reqbufs=count:1,type:META_CAPTURE --pipe=1,2,3,4 --stream=5 +.. code-block:: none + + v4l2n --pipe=4 --load=/tmp/frame-#.bin --open=/dev/video4 + --fmt=type:VIDEO_OUTPUT_MPLANE,width=2592,height=1944,pixelformat=0X47337069 \ + --reqbufs=type:VIDEO_OUTPUT_MPLANE,count:1 --pipe=1 \ + --output=/tmp/frames.out --open=/dev/video5 \ + --fmt=type:VIDEO_CAPTURE_MPLANE,width=2560,height=1920,pixelformat=NV12 \ + --reqbufs=type:VIDEO_CAPTURE_MPLANE,count:1 --pipe=2 \ + --output=/tmp/frames.vf --open=/dev/video6 \ + --fmt=type:VIDEO_CAPTURE_MPLANE,width=2560,height=1920,pixelformat=NV12 \ + --reqbufs=type:VIDEO_CAPTURE_MPLANE,count:1 --pipe=3 --open=/dev/video7 \ + --output=/tmp/frames.3A --fmt=type:META_CAPTURE,? \ + --reqbufs=count:1,type:META_CAPTURE --pipe=1,2,3,4 --stream=5 You can also use yavta [#f2]_ command to do same thing as above: .. code-block:: none - yavta --data-prefix -Bcapture-mplane -c10 -n5 -I -s2592x1944 \ - --file=frame-#.out-f NV12 /dev/video5 & \ - yavta --data-prefix -Bcapture-mplane -c10 -n5 -I -s2592x1944 \ - --file=frame-#.vf -f NV12 /dev/video6 & \ - yavta --data-prefix -Bmeta-capture -c10 -n5 -I \ - --file=frame-#.3a /dev/video7 & \ - yavta --data-prefix -Boutput-mplane -c10 -n5 -I -s2592x1944 \ - --file=/tmp/frame-in.cio2 -f IPU3_SGRBG10 /dev/video4 + yavta --data-prefix -Bcapture-mplane -c10 -n5 -I -s2592x1944 \ + --file=frame-#.out-f NV12 /dev/video5 & \ + yavta --data-prefix -Bcapture-mplane -c10 -n5 -I -s2592x1944 \ + --file=frame-#.vf -f NV12 /dev/video6 & \ + yavta --data-prefix -Bmeta-capture -c10 -n5 -I \ + --file=frame-#.3a /dev/video7 & \ + yavta --data-prefix -Boutput-mplane -c10 -n5 -I -s2592x1944 \ + --file=/tmp/frame-in.cio2 -f IPU3_SGRBG10 /dev/video4 where /dev/video4, /dev/video5, /dev/video6 and /dev/video7 devices point to input, output, viewfinder and 3A statistics video nodes respectively. @@ -408,7 +410,9 @@ as below. Main output frames ~~~~~~~~~~~~~~~~~~ -raw2pnm -x2560 -y1920 -fNV12 /tmp/frames.out /tmp/frames.out.ppm +.. code-block:: none + + raw2pnm -x2560 -y1920 -fNV12 /tmp/frames.out /tmp/frames.out.ppm where 2560x1920 is output resolution, NV12 is the video format, followed by input frame and output PNM file. @@ -416,7 +420,9 @@ by input frame and output PNM file. Viewfinder output frames ~~~~~~~~~~~~~~~~~~~~~~~~ -raw2pnm -x2560 -y1920 -fNV12 /tmp/frames.vf /tmp/frames.vf.ppm +.. code-block:: none + + raw2pnm -x2560 -y1920 -fNV12 /tmp/frames.vf /tmp/frames.vf.ppm where 2560x1920 is output resolution, NV12 is the video format, followed by input frame and output PNM file. @@ -482,63 +488,63 @@ Name Description Optical Black Correction Optical Black Correction block subtracts a pre-defined value from the respective pixel values to obtain better image quality. - Defined in :c:type:`ipu3_uapi_obgrid_param`. + Defined in struct ipu3_uapi_obgrid_param. Linearization This algo block uses linearization parameters to address non-linearity sensor effects. The Lookup table table is defined in - :c:type:`ipu3_uapi_isp_lin_vmem_params`. + struct ipu3_uapi_isp_lin_vmem_params. SHD Lens shading correction is used to correct spatial non-uniformity of the pixel response due to optical lens shading. This is done by applying a different gain for each pixel. The gain, black level etc are - configured in :c:type:`ipu3_uapi_shd_config_static`. + configured in struct ipu3_uapi_shd_config_static. BNR Bayer noise reduction block removes image noise by applying a bilateral filter. - See :c:type:`ipu3_uapi_bnr_static_config` for details. + See struct ipu3_uapi_bnr_static_config for details. ANR Advanced Noise Reduction is a block based algorithm that performs noise reduction in the Bayer domain. The convolution matrix etc can be found in - :c:type:`ipu3_uapi_anr_config`. + struct ipu3_uapi_anr_config. DM Demosaicing converts raw sensor data in Bayer format into RGB (Red, Green, Blue) presentation. Then add outputs of estimation of Y channel for following stream processing by Firmware. The struct is defined as - :c:type:`ipu3_uapi_dm_config`. + struct ipu3_uapi_dm_config. Color Correction Color Correction algo transforms sensor specific color space to the standard "sRGB" color space. This is done by applying 3x3 matrix defined in - :c:type:`ipu3_uapi_ccm_mat_config`. -Gamma correction Gamma correction :c:type:`ipu3_uapi_gamma_config` is a + struct ipu3_uapi_ccm_mat_config. +Gamma correction Gamma correction struct ipu3_uapi_gamma_config is a basic non-linear tone mapping correction that is applied per pixel for each pixel component. CSC Color space conversion transforms each pixel from the RGB primary presentation to YUV (Y: brightness, UV: Luminance) presentation. This is done by applying a 3x3 matrix defined in - :c:type:`ipu3_uapi_csc_mat_config` + struct ipu3_uapi_csc_mat_config CDS Chroma down sampling After the CSC is performed, the Chroma Down Sampling is applied for a UV plane down sampling by a factor of 2 in each direction for YUV 4:2:0 using a 4x2 - configurable filter :c:type:`ipu3_uapi_cds_params`. + configurable filter struct ipu3_uapi_cds_params. CHNR Chroma noise reduction This block processes only the chrominance pixels and performs noise reduction by cleaning the high frequency noise. - See struct :c:type:`ipu3_uapi_yuvp1_chnr_config`. + See struct struct ipu3_uapi_yuvp1_chnr_config. TCC Total color correction as defined in struct - :c:type:`ipu3_uapi_yuvp2_tcc_static_config`. + struct ipu3_uapi_yuvp2_tcc_static_config. XNR3 eXtreme Noise Reduction V3 is the third revision of noise reduction algorithm used to improve image quality. This removes the low frequency noise in the captured image. Two related structs are being defined, - :c:type:`ipu3_uapi_isp_xnr3_params` for ISP data memory - and :c:type:`ipu3_uapi_isp_xnr3_vmem_params` for vector + struct ipu3_uapi_isp_xnr3_params for ISP data memory + and struct ipu3_uapi_isp_xnr3_vmem_params for vector memory. TNR Temporal Noise Reduction block compares successive frames in time to remove anomalies / noise in pixel - values. :c:type:`ipu3_uapi_isp_tnr3_vmem_params` and - :c:type:`ipu3_uapi_isp_tnr3_params` are defined for ISP + values. struct ipu3_uapi_isp_tnr3_vmem_params and + struct ipu3_uapi_isp_tnr3_params are defined for ISP vector and data memory respectively. ======================== ======================================================= @@ -570,9 +576,9 @@ processor, while many others will use a set of fixed hardware blocks also called accelerator cluster (ACC) to crunch pixel data and produce statistics. ACC parameters of individual algorithms, as defined by -:c:type:`ipu3_uapi_acc_param`, can be chosen to be applied by the user -space through struct :c:type:`ipu3_uapi_flags` embedded in -:c:type:`ipu3_uapi_params` structure. For parameters that are configured as +struct ipu3_uapi_acc_param, can be chosen to be applied by the user +space through struct struct ipu3_uapi_flags embedded in +struct ipu3_uapi_params structure. For parameters that are configured as not enabled by the user space, the corresponding structs are ignored by the driver, in which case the existing configuration of the algorithm will be preserved. |