summaryrefslogtreecommitdiffstats
path: root/Documentation/RCU
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/RCU')
-rw-r--r--Documentation/RCU/Design/Data-Structures/Data-Structures.html3
-rw-r--r--Documentation/RCU/Design/Expedited-Grace-Periods/Expedited-Grace-Periods.html4
-rw-r--r--Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.html5
-rw-r--r--Documentation/RCU/NMI-RCU.txt13
-rw-r--r--Documentation/RCU/UP.txt6
-rw-r--r--Documentation/RCU/checklist.txt76
-rw-r--r--Documentation/RCU/rcu.txt8
-rw-r--r--Documentation/RCU/rcubarrier.txt27
8 files changed, 66 insertions, 76 deletions
diff --git a/Documentation/RCU/Design/Data-Structures/Data-Structures.html b/Documentation/RCU/Design/Data-Structures/Data-Structures.html
index 18f179807563..c30c1957c7e6 100644
--- a/Documentation/RCU/Design/Data-Structures/Data-Structures.html
+++ b/Documentation/RCU/Design/Data-Structures/Data-Structures.html
@@ -155,8 +155,7 @@ keeping lock contention under control at all tree levels regardless
of the level of loading on the system.
</p><p>RCU updaters wait for normal grace periods by registering
-RCU callbacks, either directly via <tt>call_rcu()</tt> and
-friends (namely <tt>call_rcu_bh()</tt> and <tt>call_rcu_sched()</tt>),
+RCU callbacks, either directly via <tt>call_rcu()</tt>
or indirectly via <tt>synchronize_rcu()</tt> and friends.
RCU callbacks are represented by <tt>rcu_head</tt> structures,
which are queued on <tt>rcu_data</tt> structures while they are
diff --git a/Documentation/RCU/Design/Expedited-Grace-Periods/Expedited-Grace-Periods.html b/Documentation/RCU/Design/Expedited-Grace-Periods/Expedited-Grace-Periods.html
index 19e7a5fb6b73..57300db4b5ff 100644
--- a/Documentation/RCU/Design/Expedited-Grace-Periods/Expedited-Grace-Periods.html
+++ b/Documentation/RCU/Design/Expedited-Grace-Periods/Expedited-Grace-Periods.html
@@ -56,6 +56,7 @@ sections.
RCU-preempt Expedited Grace Periods</a></h2>
<p>
+<tt>CONFIG_PREEMPT=y</tt> kernels implement RCU-preempt.
The overall flow of the handling of a given CPU by an RCU-preempt
expedited grace period is shown in the following diagram:
@@ -139,6 +140,7 @@ or offline, among other things.
RCU-sched Expedited Grace Periods</a></h2>
<p>
+<tt>CONFIG_PREEMPT=n</tt> kernels implement RCU-sched.
The overall flow of the handling of a given CPU by an RCU-sched
expedited grace period is shown in the following diagram:
@@ -146,7 +148,7 @@ expedited grace period is shown in the following diagram:
<p>
As with RCU-preempt, RCU-sched's
-<tt>synchronize_sched_expedited()</tt> ignores offline and
+<tt>synchronize_rcu_expedited()</tt> ignores offline and
idle CPUs, again because they are in remotely detectable
quiescent states.
However, because the
diff --git a/Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.html b/Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.html
index 8d21af02b1f0..c64f8d26609f 100644
--- a/Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.html
+++ b/Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.html
@@ -34,12 +34,11 @@ Similarly, any code that happens before the beginning of a given RCU grace
period is guaranteed to see the effects of all accesses following the end
of that grace period that are within RCU read-side critical sections.
-<p>This guarantee is particularly pervasive for <tt>synchronize_sched()</tt>,
-for which RCU-sched read-side critical sections include any region
+<p>Note well that RCU-sched read-side critical sections include any region
of code for which preemption is disabled.
Given that each individual machine instruction can be thought of as
an extremely small region of preemption-disabled code, one can think of
-<tt>synchronize_sched()</tt> as <tt>smp_mb()</tt> on steroids.
+<tt>synchronize_rcu()</tt> as <tt>smp_mb()</tt> on steroids.
<p>RCU updaters use this guarantee by splitting their updates into
two phases, one of which is executed before the grace period and
diff --git a/Documentation/RCU/NMI-RCU.txt b/Documentation/RCU/NMI-RCU.txt
index 687777f83b23..881353fd5bff 100644
--- a/Documentation/RCU/NMI-RCU.txt
+++ b/Documentation/RCU/NMI-RCU.txt
@@ -81,18 +81,19 @@ currently executing on some other CPU. We therefore cannot free
up any data structures used by the old NMI handler until execution
of it completes on all other CPUs.
-One way to accomplish this is via synchronize_sched(), perhaps as
+One way to accomplish this is via synchronize_rcu(), perhaps as
follows:
unset_nmi_callback();
- synchronize_sched();
+ synchronize_rcu();
kfree(my_nmi_data);
-This works because synchronize_sched() blocks until all CPUs complete
-any preemption-disabled segments of code that they were executing.
-Since NMI handlers disable preemption, synchronize_sched() is guaranteed
+This works because (as of v4.20) synchronize_rcu() blocks until all
+CPUs complete any preemption-disabled segments of code that they were
+executing.
+Since NMI handlers disable preemption, synchronize_rcu() is guaranteed
not to return until all ongoing NMI handlers exit. It is therefore safe
-to free up the handler's data as soon as synchronize_sched() returns.
+to free up the handler's data as soon as synchronize_rcu() returns.
Important note: for this to work, the architecture in question must
invoke nmi_enter() and nmi_exit() on NMI entry and exit, respectively.
diff --git a/Documentation/RCU/UP.txt b/Documentation/RCU/UP.txt
index 90ec5341ee98..53bde717017b 100644
--- a/Documentation/RCU/UP.txt
+++ b/Documentation/RCU/UP.txt
@@ -86,10 +86,8 @@ even on a UP system. So do not do it! Even on a UP system, the RCU
infrastructure -must- respect grace periods, and -must- invoke callbacks
from a known environment in which no locks are held.
-It -is- safe for synchronize_sched() and synchronize_rcu_bh() to return
-immediately on an UP system. It is also safe for synchronize_rcu()
-to return immediately on UP systems, except when running preemptable
-RCU.
+Note that it -is- safe for synchronize_rcu() to return immediately on
+UP systems, including !PREEMPT SMP builds running on UP systems.
Quick Quiz #3: Why can't synchronize_rcu() return immediately on
UP systems running preemptable RCU?
diff --git a/Documentation/RCU/checklist.txt b/Documentation/RCU/checklist.txt
index 6f469864d9f5..fcc59fea5cd4 100644
--- a/Documentation/RCU/checklist.txt
+++ b/Documentation/RCU/checklist.txt
@@ -182,16 +182,13 @@ over a rather long period of time, but improvements are always welcome!
when publicizing a pointer to a structure that can
be traversed by an RCU read-side critical section.
-5. If call_rcu(), or a related primitive such as call_rcu_bh(),
- call_rcu_sched(), or call_srcu() is used, the callback function
- will be called from softirq context. In particular, it cannot
- block.
+5. If call_rcu() or call_srcu() is used, the callback function will
+ be called from softirq context. In particular, it cannot block.
-6. Since synchronize_rcu() can block, it cannot be called from
- any sort of irq context. The same rule applies for
- synchronize_rcu_bh(), synchronize_sched(), synchronize_srcu(),
- synchronize_rcu_expedited(), synchronize_rcu_bh_expedited(),
- synchronize_sched_expedite(), and synchronize_srcu_expedited().
+6. Since synchronize_rcu() can block, it cannot be called
+ from any sort of irq context. The same rule applies
+ for synchronize_srcu(), synchronize_rcu_expedited(), and
+ synchronize_srcu_expedited().
The expedited forms of these primitives have the same semantics
as the non-expedited forms, but expediting is both expensive and
@@ -212,20 +209,20 @@ over a rather long period of time, but improvements are always welcome!
of the system, especially to real-time workloads running on
the rest of the system.
-7. If the updater uses call_rcu() or synchronize_rcu(), then the
- corresponding readers must use rcu_read_lock() and
- rcu_read_unlock(). If the updater uses call_rcu_bh() or
- synchronize_rcu_bh(), then the corresponding readers must
- use rcu_read_lock_bh() and rcu_read_unlock_bh(). If the
- updater uses call_rcu_sched() or synchronize_sched(), then
- the corresponding readers must disable preemption, possibly
- by calling rcu_read_lock_sched() and rcu_read_unlock_sched().
- If the updater uses synchronize_srcu() or call_srcu(), then
- the corresponding readers must use srcu_read_lock() and
+7. As of v4.20, a given kernel implements only one RCU flavor,
+ which is RCU-sched for PREEMPT=n and RCU-preempt for PREEMPT=y.
+ If the updater uses call_rcu() or synchronize_rcu(),
+ then the corresponding readers my use rcu_read_lock() and
+ rcu_read_unlock(), rcu_read_lock_bh() and rcu_read_unlock_bh(),
+ or any pair of primitives that disables and re-enables preemption,
+ for example, rcu_read_lock_sched() and rcu_read_unlock_sched().
+ If the updater uses synchronize_srcu() or call_srcu(),
+ then the corresponding readers must use srcu_read_lock() and
srcu_read_unlock(), and with the same srcu_struct. The rules for
the expedited primitives are the same as for their non-expedited
counterparts. Mixing things up will result in confusion and
- broken kernels.
+ broken kernels, and has even resulted in an exploitable security
+ issue.
One exception to this rule: rcu_read_lock() and rcu_read_unlock()
may be substituted for rcu_read_lock_bh() and rcu_read_unlock_bh()
@@ -288,8 +285,7 @@ over a rather long period of time, but improvements are always welcome!
d. Periodically invoke synchronize_rcu(), permitting a limited
number of updates per grace period.
- The same cautions apply to call_rcu_bh(), call_rcu_sched(),
- call_srcu(), and kfree_rcu().
+ The same cautions apply to call_srcu() and kfree_rcu().
Note that although these primitives do take action to avoid memory
exhaustion when any given CPU has too many callbacks, a determined
@@ -336,12 +332,12 @@ over a rather long period of time, but improvements are always welcome!
to safely access and/or modify that data structure.
RCU callbacks are -usually- executed on the same CPU that executed
- the corresponding call_rcu(), call_rcu_bh(), or call_rcu_sched(),
- but are by -no- means guaranteed to be. For example, if a given
- CPU goes offline while having an RCU callback pending, then that
- RCU callback will execute on some surviving CPU. (If this was
- not the case, a self-spawning RCU callback would prevent the
- victim CPU from ever going offline.)
+ the corresponding call_rcu() or call_srcu(). but are by -no-
+ means guaranteed to be. For example, if a given CPU goes offline
+ while having an RCU callback pending, then that RCU callback
+ will execute on some surviving CPU. (If this was not the case,
+ a self-spawning RCU callback would prevent the victim CPU from
+ ever going offline.)
13. Unlike other forms of RCU, it -is- permissible to block in an
SRCU read-side critical section (demarked by srcu_read_lock()
@@ -381,8 +377,7 @@ over a rather long period of time, but improvements are always welcome!
SRCU's expedited primitive (synchronize_srcu_expedited())
never sends IPIs to other CPUs, so it is easier on
- real-time workloads than is synchronize_rcu_expedited(),
- synchronize_rcu_bh_expedited() or synchronize_sched_expedited().
+ real-time workloads than is synchronize_rcu_expedited().
Note that rcu_dereference() and rcu_assign_pointer() relate to
SRCU just as they do to other forms of RCU.
@@ -428,22 +423,19 @@ over a rather long period of time, but improvements are always welcome!
These debugging aids can help you find problems that are
otherwise extremely difficult to spot.
-17. If you register a callback using call_rcu(), call_rcu_bh(),
- call_rcu_sched(), or call_srcu(), and pass in a function defined
- within a loadable module, then it in necessary to wait for
- all pending callbacks to be invoked after the last invocation
- and before unloading that module. Note that it is absolutely
- -not- sufficient to wait for a grace period! The current (say)
- synchronize_rcu() implementation waits only for all previous
- callbacks registered on the CPU that synchronize_rcu() is running
- on, but it is -not- guaranteed to wait for callbacks registered
- on other CPUs.
+17. If you register a callback using call_rcu() or call_srcu(),
+ and pass in a function defined within a loadable module,
+ then it in necessary to wait for all pending callbacks to
+ be invoked after the last invocation and before unloading
+ that module. Note that it is absolutely -not- sufficient to
+ wait for a grace period! The current (say) synchronize_rcu()
+ implementation waits only for all previous callbacks registered
+ on the CPU that synchronize_rcu() is running on, but it is -not-
+ guaranteed to wait for callbacks registered on other CPUs.
You instead need to use one of the barrier functions:
o call_rcu() -> rcu_barrier()
- o call_rcu_bh() -> rcu_barrier()
- o call_rcu_sched() -> rcu_barrier()
o call_srcu() -> srcu_barrier()
However, these barrier functions are absolutely -not- guaranteed
diff --git a/Documentation/RCU/rcu.txt b/Documentation/RCU/rcu.txt
index 721b3e426515..c818cf65c5a9 100644
--- a/Documentation/RCU/rcu.txt
+++ b/Documentation/RCU/rcu.txt
@@ -52,10 +52,10 @@ o If I am running on a uniprocessor kernel, which can only do one
o How can I see where RCU is currently used in the Linux kernel?
Search for "rcu_read_lock", "rcu_read_unlock", "call_rcu",
- "rcu_read_lock_bh", "rcu_read_unlock_bh", "call_rcu_bh",
- "srcu_read_lock", "srcu_read_unlock", "synchronize_rcu",
- "synchronize_net", "synchronize_srcu", and the other RCU
- primitives. Or grab one of the cscope databases from:
+ "rcu_read_lock_bh", "rcu_read_unlock_bh", "srcu_read_lock",
+ "srcu_read_unlock", "synchronize_rcu", "synchronize_net",
+ "synchronize_srcu", and the other RCU primitives. Or grab one
+ of the cscope databases from:
http://www.rdrop.com/users/paulmck/RCU/linuxusage/rculocktab.html
diff --git a/Documentation/RCU/rcubarrier.txt b/Documentation/RCU/rcubarrier.txt
index 5d7759071a3e..a2782df69732 100644
--- a/Documentation/RCU/rcubarrier.txt
+++ b/Documentation/RCU/rcubarrier.txt
@@ -83,16 +83,15 @@ Pseudo-code using rcu_barrier() is as follows:
2. Execute rcu_barrier().
3. Allow the module to be unloaded.
-There are also rcu_barrier_bh(), rcu_barrier_sched(), and srcu_barrier()
-functions for the other flavors of RCU, and you of course must match
-the flavor of rcu_barrier() with that of call_rcu(). If your module
-uses multiple flavors of call_rcu(), then it must also use multiple
+There is also an srcu_barrier() function for SRCU, and you of course
+must match the flavor of rcu_barrier() with that of call_rcu(). If your
+module uses multiple flavors of call_rcu(), then it must also use multiple
flavors of rcu_barrier() when unloading that module. For example, if
-it uses call_rcu_bh(), call_srcu() on srcu_struct_1, and call_srcu() on
+it uses call_rcu(), call_srcu() on srcu_struct_1, and call_srcu() on
srcu_struct_2(), then the following three lines of code will be required
when unloading:
- 1 rcu_barrier_bh();
+ 1 rcu_barrier();
2 srcu_barrier(&srcu_struct_1);
3 srcu_barrier(&srcu_struct_2);
@@ -185,12 +184,12 @@ module invokes call_rcu() from timers, you will need to first cancel all
the timers, and only then invoke rcu_barrier() to wait for any remaining
RCU callbacks to complete.
-Of course, if you module uses call_rcu_bh(), you will need to invoke
-rcu_barrier_bh() before unloading. Similarly, if your module uses
-call_rcu_sched(), you will need to invoke rcu_barrier_sched() before
-unloading. If your module uses call_rcu(), call_rcu_bh(), -and-
-call_rcu_sched(), then you will need to invoke each of rcu_barrier(),
-rcu_barrier_bh(), and rcu_barrier_sched().
+Of course, if you module uses call_rcu(), you will need to invoke
+rcu_barrier() before unloading. Similarly, if your module uses
+call_srcu(), you will need to invoke srcu_barrier() before unloading,
+and on the same srcu_struct structure. If your module uses call_rcu()
+-and- call_srcu(), then you will need to invoke rcu_barrier() -and-
+srcu_barrier().
Implementing rcu_barrier()
@@ -223,8 +222,8 @@ shown below. Note that the final "1" in on_each_cpu()'s argument list
ensures that all the calls to rcu_barrier_func() will have completed
before on_each_cpu() returns. Line 9 then waits for the completion.
-This code was rewritten in 2008 to support rcu_barrier_bh() and
-rcu_barrier_sched() in addition to the original rcu_barrier().
+This code was rewritten in 2008 and several times thereafter, but this
+still gives the general idea.
The rcu_barrier_func() runs on each CPU, where it invokes call_rcu()
to post an RCU callback, as follows: