summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--arch/Kconfig3
-rw-r--r--arch/ia64/kernel/time.c4
-rw-r--r--arch/powerpc/Kconfig1
-rw-r--r--arch/powerpc/include/asm/cputime.h14
-rw-r--r--arch/powerpc/kernel/time.c8
-rw-r--r--arch/s390/Kconfig1
-rw-r--r--arch/s390/kernel/vtime.c9
-rw-r--r--arch/x86/Kconfig21
-rw-r--r--arch/x86/include/asm/preempt.h8
-rw-r--r--arch/x86/include/asm/topology.h32
-rw-r--r--arch/x86/include/asm/uaccess.h13
-rw-r--r--arch/x86/kernel/Makefile1
-rw-r--r--arch/x86/kernel/apm_32.c4
-rw-r--r--arch/x86/kernel/itmt.c215
-rw-r--r--arch/x86/kernel/smpboot.c39
-rw-r--r--drivers/acpi/bus.c10
-rw-r--r--drivers/cpufreq/Kconfig.x861
-rw-r--r--drivers/cpufreq/intel_pstate.c56
-rw-r--r--include/asm-generic/cputime_jiffies.h1
-rw-r--r--include/asm-generic/cputime_nsecs.h1
-rw-r--r--include/linux/acpi.h1
-rw-r--r--include/linux/kernel_stat.h4
-rw-r--r--include/linux/kthread.h1
-rw-r--r--include/linux/preempt.h21
-rw-r--r--include/linux/sched.h89
-rw-r--r--include/linux/sched/sysctl.h1
-rw-r--r--kernel/fork.c4
-rw-r--r--kernel/kthread.c144
-rw-r--r--kernel/sched/core.c34
-rw-r--r--kernel/sched/cpuacct.c2
-rw-r--r--kernel/sched/cputime.c124
-rw-r--r--kernel/sched/deadline.c4
-rw-r--r--kernel/sched/fair.c665
-rw-r--r--kernel/sched/sched.h11
-rw-r--r--kernel/sysctl.c7
-rw-r--r--kernel/time/posix-cpu-timers.c4
36 files changed, 1152 insertions, 406 deletions
diff --git a/arch/Kconfig b/arch/Kconfig
index 44a44b49eb3a..835d55d52104 100644
--- a/arch/Kconfig
+++ b/arch/Kconfig
@@ -513,6 +513,9 @@ config HAVE_CONTEXT_TRACKING
config HAVE_VIRT_CPU_ACCOUNTING
bool
+config ARCH_HAS_SCALED_CPUTIME
+ bool
+
config HAVE_VIRT_CPU_ACCOUNTING_GEN
bool
default y if 64BIT
diff --git a/arch/ia64/kernel/time.c b/arch/ia64/kernel/time.c
index 6f892b94e906..021f44ab4bfb 100644
--- a/arch/ia64/kernel/time.c
+++ b/arch/ia64/kernel/time.c
@@ -68,7 +68,7 @@ void vtime_account_user(struct task_struct *tsk)
if (ti->ac_utime) {
delta_utime = cycle_to_cputime(ti->ac_utime);
- account_user_time(tsk, delta_utime, delta_utime);
+ account_user_time(tsk, delta_utime);
ti->ac_utime = 0;
}
}
@@ -112,7 +112,7 @@ void vtime_account_system(struct task_struct *tsk)
{
cputime_t delta = vtime_delta(tsk);
- account_system_time(tsk, 0, delta, delta);
+ account_system_time(tsk, 0, delta);
}
EXPORT_SYMBOL_GPL(vtime_account_system);
diff --git a/arch/powerpc/Kconfig b/arch/powerpc/Kconfig
index 65fba4c34cd7..c7f120aaa98f 100644
--- a/arch/powerpc/Kconfig
+++ b/arch/powerpc/Kconfig
@@ -160,6 +160,7 @@ config PPC
select HAVE_LIVEPATCH if HAVE_DYNAMIC_FTRACE_WITH_REGS
select GENERIC_CPU_AUTOPROBE
select HAVE_VIRT_CPU_ACCOUNTING
+ select ARCH_HAS_SCALED_CPUTIME if VIRT_CPU_ACCOUNTING_NATIVE
select HAVE_ARCH_HARDENED_USERCOPY
select HAVE_KERNEL_GZIP
diff --git a/arch/powerpc/include/asm/cputime.h b/arch/powerpc/include/asm/cputime.h
index 4f60db074725..aa2e6a34b872 100644
--- a/arch/powerpc/include/asm/cputime.h
+++ b/arch/powerpc/include/asm/cputime.h
@@ -46,26 +46,12 @@ extern cputime_t cputime_one_jiffy;
* Convert cputime <-> jiffies
*/
extern u64 __cputime_jiffies_factor;
-DECLARE_PER_CPU(unsigned long, cputime_last_delta);
-DECLARE_PER_CPU(unsigned long, cputime_scaled_last_delta);
static inline unsigned long cputime_to_jiffies(const cputime_t ct)
{
return mulhdu((__force u64) ct, __cputime_jiffies_factor);
}
-/* Estimate the scaled cputime by scaling the real cputime based on
- * the last scaled to real ratio */
-static inline cputime_t cputime_to_scaled(const cputime_t ct)
-{
- if (cpu_has_feature(CPU_FTR_SPURR) &&
- __this_cpu_read(cputime_last_delta))
- return (__force u64) ct *
- __this_cpu_read(cputime_scaled_last_delta) /
- __this_cpu_read(cputime_last_delta);
- return ct;
-}
-
static inline cputime_t jiffies_to_cputime(const unsigned long jif)
{
u64 ct;
diff --git a/arch/powerpc/kernel/time.c b/arch/powerpc/kernel/time.c
index bc3f7d0d7b79..be9751f1cb2a 100644
--- a/arch/powerpc/kernel/time.c
+++ b/arch/powerpc/kernel/time.c
@@ -164,8 +164,6 @@ u64 __cputime_sec_factor;
EXPORT_SYMBOL(__cputime_sec_factor);
u64 __cputime_clockt_factor;
EXPORT_SYMBOL(__cputime_clockt_factor);
-DEFINE_PER_CPU(unsigned long, cputime_last_delta);
-DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
cputime_t cputime_one_jiffy;
@@ -360,7 +358,8 @@ void vtime_account_system(struct task_struct *tsk)
unsigned long delta, sys_scaled, stolen;
delta = vtime_delta(tsk, &sys_scaled, &stolen);
- account_system_time(tsk, 0, delta, sys_scaled);
+ account_system_time(tsk, 0, delta);
+ tsk->stimescaled += sys_scaled;
if (stolen)
account_steal_time(stolen);
}
@@ -393,7 +392,8 @@ void vtime_account_user(struct task_struct *tsk)
acct->user_time = 0;
acct->user_time_scaled = 0;
acct->utime_sspurr = 0;
- account_user_time(tsk, utime, utimescaled);
+ account_user_time(tsk, utime);
+ tsk->utimescaled += utimescaled;
}
#ifdef CONFIG_PPC32
diff --git a/arch/s390/Kconfig b/arch/s390/Kconfig
index 426481d4cc86..028f97be5bae 100644
--- a/arch/s390/Kconfig
+++ b/arch/s390/Kconfig
@@ -171,6 +171,7 @@ config S390
select SYSCTL_EXCEPTION_TRACE
select TTY
select VIRT_CPU_ACCOUNTING
+ select ARCH_HAS_SCALED_CPUTIME
select VIRT_TO_BUS
select HAVE_NMI
diff --git a/arch/s390/kernel/vtime.c b/arch/s390/kernel/vtime.c
index 856e30d8463f..1bd5dde2d5a9 100644
--- a/arch/s390/kernel/vtime.c
+++ b/arch/s390/kernel/vtime.c
@@ -137,8 +137,10 @@ static int do_account_vtime(struct task_struct *tsk, int hardirq_offset)
user_scaled = (user_scaled * mult) / div;
system_scaled = (system_scaled * mult) / div;
}
- account_user_time(tsk, user, user_scaled);
- account_system_time(tsk, hardirq_offset, system, system_scaled);
+ account_user_time(tsk, user);
+ tsk->utimescaled += user_scaled;
+ account_system_time(tsk, hardirq_offset, system);
+ tsk->stimescaled += system_scaled;
steal = S390_lowcore.steal_timer;
if ((s64) steal > 0) {
@@ -202,7 +204,8 @@ void vtime_account_irq_enter(struct task_struct *tsk)
system_scaled = (system_scaled * mult) / div;
}
- account_system_time(tsk, 0, system, system_scaled);
+ account_system_time(tsk, 0, system);
+ tsk->stimescaled += system_scaled;
virt_timer_forward(system);
}
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
index bada636d1065..b50e5eeefd21 100644
--- a/arch/x86/Kconfig
+++ b/arch/x86/Kconfig
@@ -939,6 +939,27 @@ config SCHED_MC
making when dealing with multi-core CPU chips at a cost of slightly
increased overhead in some places. If unsure say N here.
+config SCHED_MC_PRIO
+ bool "CPU core priorities scheduler support"
+ depends on SCHED_MC && CPU_SUP_INTEL
+ select X86_INTEL_PSTATE
+ select CPU_FREQ
+ default y
+ ---help---
+ Intel Turbo Boost Max Technology 3.0 enabled CPUs have a
+ core ordering determined at manufacturing time, which allows
+ certain cores to reach higher turbo frequencies (when running
+ single threaded workloads) than others.
+
+ Enabling this kernel feature teaches the scheduler about
+ the TBM3 (aka ITMT) priority order of the CPU cores and adjusts the
+ scheduler's CPU selection logic accordingly, so that higher
+ overall system performance can be achieved.
+
+ This feature will have no effect on CPUs without this feature.
+
+ If unsure say Y here.
+
source "kernel/Kconfig.preempt"
config UP_LATE_INIT
diff --git a/arch/x86/include/asm/preempt.h b/arch/x86/include/asm/preempt.h
index 17f218645701..ec1f3c651150 100644
--- a/arch/x86/include/asm/preempt.h
+++ b/arch/x86/include/asm/preempt.h
@@ -24,7 +24,13 @@ static __always_inline int preempt_count(void)
static __always_inline void preempt_count_set(int pc)
{
- raw_cpu_write_4(__preempt_count, pc);
+ int old, new;
+
+ do {
+ old = raw_cpu_read_4(__preempt_count);
+ new = (old & PREEMPT_NEED_RESCHED) |
+ (pc & ~PREEMPT_NEED_RESCHED);
+ } while (raw_cpu_cmpxchg_4(__preempt_count, old, new) != old);
}
/*
diff --git a/arch/x86/include/asm/topology.h b/arch/x86/include/asm/topology.h
index cf75871d2f81..6358a85e2270 100644
--- a/arch/x86/include/asm/topology.h
+++ b/arch/x86/include/asm/topology.h
@@ -146,4 +146,36 @@ struct pci_bus;
int x86_pci_root_bus_node(int bus);
void x86_pci_root_bus_resources(int bus, struct list_head *resources);
+extern bool x86_topology_update;
+
+#ifdef CONFIG_SCHED_MC_PRIO
+#include <asm/percpu.h>
+
+DECLARE_PER_CPU_READ_MOSTLY(int, sched_core_priority);
+extern unsigned int __read_mostly sysctl_sched_itmt_enabled;
+
+/* Interface to set priority of a cpu */
+void sched_set_itmt_core_prio(int prio, int core_cpu);
+
+/* Interface to notify scheduler that system supports ITMT */
+int sched_set_itmt_support(void);
+
+/* Interface to notify scheduler that system revokes ITMT support */
+void sched_clear_itmt_support(void);
+
+#else /* CONFIG_SCHED_MC_PRIO */
+
+#define sysctl_sched_itmt_enabled 0
+static inline void sched_set_itmt_core_prio(int prio, int core_cpu)
+{
+}
+static inline int sched_set_itmt_support(void)
+{
+ return 0;
+}
+static inline void sched_clear_itmt_support(void)
+{
+}
+#endif /* CONFIG_SCHED_MC_PRIO */
+
#endif /* _ASM_X86_TOPOLOGY_H */
diff --git a/arch/x86/include/asm/uaccess.h b/arch/x86/include/asm/uaccess.h
index faf3687f1035..ea148313570f 100644
--- a/arch/x86/include/asm/uaccess.h
+++ b/arch/x86/include/asm/uaccess.h
@@ -68,6 +68,12 @@ static inline bool __chk_range_not_ok(unsigned long addr, unsigned long size, un
__chk_range_not_ok((unsigned long __force)(addr), size, limit); \
})
+#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
+# define WARN_ON_IN_IRQ() WARN_ON_ONCE(!in_task())
+#else
+# define WARN_ON_IN_IRQ()
+#endif
+
/**
* access_ok: - Checks if a user space pointer is valid
* @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that
@@ -88,8 +94,11 @@ static inline bool __chk_range_not_ok(unsigned long addr, unsigned long size, un
* checks that the pointer is in the user space range - after calling
* this function, memory access functions may still return -EFAULT.
*/
-#define access_ok(type, addr, size) \
- likely(!__range_not_ok(addr, size, user_addr_max()))
+#define access_ok(type, addr, size) \
+({ \
+ WARN_ON_IN_IRQ(); \
+ likely(!__range_not_ok(addr, size, user_addr_max())); \
+})
/*
* These are the main single-value transfer routines. They automatically
diff --git a/arch/x86/kernel/Makefile b/arch/x86/kernel/Makefile
index 79076d75bdbf..05110c1097ae 100644
--- a/arch/x86/kernel/Makefile
+++ b/arch/x86/kernel/Makefile
@@ -123,6 +123,7 @@ obj-$(CONFIG_EFI) += sysfb_efi.o
obj-$(CONFIG_PERF_EVENTS) += perf_regs.o
obj-$(CONFIG_TRACING) += tracepoint.o
+obj-$(CONFIG_SCHED_MC_PRIO) += itmt.o
ifdef CONFIG_FRAME_POINTER
obj-y += unwind_frame.o
diff --git a/arch/x86/kernel/apm_32.c b/arch/x86/kernel/apm_32.c
index 51287cd90bf6..643818a7688b 100644
--- a/arch/x86/kernel/apm_32.c
+++ b/arch/x86/kernel/apm_32.c
@@ -906,14 +906,14 @@ static int apm_cpu_idle(struct cpuidle_device *dev,
static int use_apm_idle; /* = 0 */
static unsigned int last_jiffies; /* = 0 */
static unsigned int last_stime; /* = 0 */
- cputime_t stime;
+ cputime_t stime, utime;
int apm_idle_done = 0;
unsigned int jiffies_since_last_check = jiffies - last_jiffies;
unsigned int bucket;
recalc:
- task_cputime(current, NULL, &stime);
+ task_cputime(current, &utime, &stime);
if (jiffies_since_last_check > IDLE_CALC_LIMIT) {
use_apm_idle = 0;
} else if (jiffies_since_last_check > idle_period) {
diff --git a/arch/x86/kernel/itmt.c b/arch/x86/kernel/itmt.c
new file mode 100644
index 000000000000..cb9c1ed1d391
--- /dev/null
+++ b/arch/x86/kernel/itmt.c
@@ -0,0 +1,215 @@
+/*
+ * itmt.c: Support Intel Turbo Boost Max Technology 3.0
+ *
+ * (C) Copyright 2016 Intel Corporation
+ * Author: Tim Chen <tim.c.chen@linux.intel.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; version 2
+ * of the License.
+ *
+ * On platforms supporting Intel Turbo Boost Max Technology 3.0, (ITMT),
+ * the maximum turbo frequencies of some cores in a CPU package may be
+ * higher than for the other cores in the same package. In that case,
+ * better performance can be achieved by making the scheduler prefer
+ * to run tasks on the CPUs with higher max turbo frequencies.
+ *
+ * This file provides functions and data structures for enabling the
+ * scheduler to favor scheduling on cores can be boosted to a higher
+ * frequency under ITMT.
+ */
+
+#include <linux/sched.h>
+#include <linux/cpumask.h>
+#include <linux/cpuset.h>
+#include <linux/mutex.h>
+#include <linux/sched.h>
+#include <linux/sysctl.h>
+#include <linux/nodemask.h>
+
+static DEFINE_MUTEX(itmt_update_mutex);
+DEFINE_PER_CPU_READ_MOSTLY(int, sched_core_priority);
+
+/* Boolean to track if system has ITMT capabilities */
+static bool __read_mostly sched_itmt_capable;
+
+/*
+ * Boolean to control whether we want to move processes to cpu capable
+ * of higher turbo frequency for cpus supporting Intel Turbo Boost Max
+ * Technology 3.0.
+ *
+ * It can be set via /proc/sys/kernel/sched_itmt_enabled
+ */
+unsigned int __read_mostly sysctl_sched_itmt_enabled;
+
+static int sched_itmt_update_handler(struct ctl_table *table, int write,
+ void __user *buffer, size_t *lenp,
+ loff_t *ppos)
+{
+ unsigned int old_sysctl;
+ int ret;
+
+ mutex_lock(&itmt_update_mutex);
+
+ if (!sched_itmt_capable) {
+ mutex_unlock(&itmt_update_mutex);
+ return -EINVAL;
+ }
+
+ old_sysctl = sysctl_sched_itmt_enabled;
+ ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
+
+ if (!ret && write && old_sysctl != sysctl_sched_itmt_enabled) {
+ x86_topology_update = true;
+ rebuild_sched_domains();
+ }
+
+ mutex_unlock(&itmt_update_mutex);
+
+ return ret;
+}
+
+static unsigned int zero;
+static unsigned int one = 1;
+static struct ctl_table itmt_kern_table[] = {
+ {
+ .procname = "sched_itmt_enabled",
+ .data = &sysctl_sched_itmt_enabled,
+ .maxlen = sizeof(unsigned int),
+ .mode = 0644,
+ .proc_handler = sched_itmt_update_handler,
+ .extra1 = &zero,
+ .extra2 = &one,
+ },
+ {}
+};
+
+static struct ctl_table itmt_root_table[] = {
+ {
+ .procname = "kernel",
+ .mode = 0555,
+ .child = itmt_kern_table,
+ },
+ {}
+};
+
+static struct ctl_table_header *itmt_sysctl_header;
+
+/**
+ * sched_set_itmt_support() - Indicate platform supports ITMT
+ *
+ * This function is used by the OS to indicate to scheduler that the platform
+ * is capable of supporting the ITMT feature.
+ *
+ * The current scheme has the pstate driver detects if the system
+ * is ITMT capable and call sched_set_itmt_support.
+ *
+ * This must be done only after sched_set_itmt_core_prio
+ * has been called to set the cpus' priorities.
+ * It must not be called with cpu hot plug lock
+ * held as we need to acquire the lock to rebuild sched domains
+ * later.
+ *
+ * Return: 0 on success
+ */
+int sched_set_itmt_support(void)
+{
+ mutex_lock(&itmt_update_mutex);
+
+ if (sched_itmt_capable) {
+ mutex_unlock(&itmt_update_mutex);
+ return 0;
+ }
+
+ itmt_sysctl_header = register_sysctl_table(itmt_root_table);
+ if (!itmt_sysctl_header) {
+ mutex_unlock(&itmt_update_mutex);
+ return -ENOMEM;
+ }
+
+ sched_itmt_capable = true;
+
+ sysctl_sched_itmt_enabled = 1;
+
+ if (sysctl_sched_itmt_enabled) {
+ x86_topology_update = true;
+ rebuild_sched_domains();
+ }
+
+ mutex_unlock(&itmt_update_mutex);
+
+ return 0;
+}
+
+/**
+ * sched_clear_itmt_support() - Revoke platform's support of ITMT
+ *
+ * This function is used by the OS to indicate that it has
+ * revoked the platform's support of ITMT feature.
+ *
+ * It must not be called with cpu hot plug lock
+ * held as we need to acquire the lock to rebuild sched domains
+ * later.
+ */
+void sched_clear_itmt_support(void)
+{
+ mutex_lock(&itmt_update_mutex);
+
+ if (!sched_itmt_capable) {
+ mutex_unlock(&itmt_update_mutex);
+ return;
+ }
+ sched_itmt_capable = false;
+
+ if (itmt_sysctl_header) {
+ unregister_sysctl_table(itmt_sysctl_header);
+ itmt_sysctl_header = NULL;
+ }
+
+ if (sysctl_sched_itmt_enabled) {
+ /* disable sched_itmt if we are no longer ITMT capable */
+ sysctl_sched_itmt_enabled = 0;
+ x86_topology_update = true;
+ rebuild_sched_domains();
+ }
+
+ mutex_unlock(&itmt_update_mutex);
+}
+
+int arch_asym_cpu_priority(int cpu)
+{
+ return per_cpu(sched_core_priority, cpu);
+}
+
+/**
+ * sched_set_itmt_core_prio() - Set CPU priority based on ITMT
+ * @prio: Priority of cpu core
+ * @core_cpu: The cpu number associated with the core
+ *
+ * The pstate driver will find out the max boost frequency
+ * and call this function to set a priority proportional
+ * to the max boost frequency. CPU with higher boost
+ * frequency will receive higher priority.
+ *
+ * No need to rebuild sched domain after updating
+ * the CPU priorities. The sched domains have no
+ * dependency on CPU priorities.
+ */
+void sched_set_itmt_core_prio(int prio, int core_cpu)
+{
+ int cpu, i = 1;
+
+ for_each_cpu(cpu, topology_sibling_cpumask(core_cpu)) {
+ int smt_prio;
+
+ /*
+ * Ensure that the siblings are moved to the end
+ * of the priority chain and only used when
+ * all other high priority cpus are out of capacity.
+ */
+ smt_prio = prio * smp_num_siblings / i;
+ per_cpu(sched_core_priority, cpu) = smt_prio;
+ i++;
+ }
+}
diff --git a/arch/x86/kernel/smpboot.c b/arch/x86/kernel/smpboot.c
index b9f02383f372..118e792a7be6 100644
--- a/arch/x86/kernel/smpboot.c
+++ b/arch/x86/kernel/smpboot.c
@@ -109,6 +109,17 @@ static bool logical_packages_frozen __read_mostly;
/* Maximum number of SMT threads on any online core */
int __max_smt_threads __read_mostly;
+/* Flag to indicate if a complete sched domain rebuild is required */
+bool x86_topology_update;
+
+int arch_update_cpu_topology(void)
+{
+ int retval = x86_topology_update;
+
+ x86_topology_update = false;
+ return retval;
+}
+
static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
{
unsigned long flags;
@@ -471,22 +482,42 @@ static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
return false;
}
+#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
+static inline int x86_sched_itmt_flags(void)
+{
+ return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
+}
+
+#ifdef CONFIG_SCHED_MC
+static int x86_core_flags(void)
+{
+ return cpu_core_flags() | x86_sched_itmt_flags();
+}
+#endif
+#ifdef CONFIG_SCHED_SMT
+static int x86_smt_flags(void)
+{
+ return cpu_smt_flags() | x86_sched_itmt_flags();
+}
+#endif
+#endif
+
static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
#ifdef CONFIG_SCHED_SMT
- { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
+ { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
- { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
+ { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
#endif
{ NULL, },
};
static struct sched_domain_topology_level x86_topology[] = {
#ifdef CONFIG_SCHED_SMT
- { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
+ { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
- { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
+ { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
#endif
{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
{ NULL, },
diff --git a/drivers/acpi/bus.c b/drivers/acpi/bus.c
index 56190d00fd87..5cbefd7621f0 100644
--- a/drivers/acpi/bus.c
+++ b/drivers/acpi/bus.c
@@ -331,6 +331,16 @@ static void acpi_bus_osc_support(void)
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_HOTPLUG_OST_SUPPORT;
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_PCLPI_SUPPORT;
+#ifdef CONFIG_X86
+ if (boot_cpu_has(X86_FEATURE_HWP)) {
+ capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_SUPPORT;
+ capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPCV2_SUPPORT;
+ }
+#endif
+
+ if (IS_ENABLED(CONFIG_SCHED_MC_PRIO))
+ capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_CPC_DIVERSE_HIGH_SUPPORT;
+
if (!ghes_disable)
capbuf[OSC_SUPPORT_DWORD] |= OSC_SB_APEI_SUPPORT;
if (ACPI_FAILURE(acpi_get_handle(NULL, "\\_SB", &handle)))
diff --git a/drivers/cpufreq/Kconfig.x86 b/drivers/cpufreq/Kconfig.x86
index adbd1de1cea5..35f71825b7f3 100644
--- a/drivers/cpufreq/Kconfig.x86
+++ b/drivers/cpufreq/Kconfig.x86
@@ -6,6 +6,7 @@ config X86_INTEL_PSTATE
bool "Intel P state control"
depends on X86
select ACPI_PROCESSOR if ACPI
+ select ACPI_CPPC_LIB if X86_64 && ACPI && SCHED_MC_PRIO
help
This driver provides a P state for Intel core processors.
The driver implements an internal governor and will become
diff --git a/drivers/cpufreq/intel_pstate.c b/drivers/cpufreq/intel_pstate.c
index 4737520ec823..e8dc42fc0915 100644
--- a/drivers/cpufreq/intel_pstate.c
+++ b/drivers/cpufreq/intel_pstate.c
@@ -44,6 +44,7 @@
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
+#include <acpi/cppc_acpi.h>
#endif
#define FRAC_BITS 8
@@ -379,14 +380,67 @@ static bool intel_pstate_get_ppc_enable_status(void)
return acpi_ppc;
}
+#ifdef CONFIG_ACPI_CPPC_LIB
+
+/* The work item is needed to avoid CPU hotplug locking issues */
+static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
+{
+ sched_set_itmt_support();
+}
+
+static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
+
+static void intel_pstate_set_itmt_prio(int cpu)
+{
+ struct cppc_perf_caps cppc_perf;
+ static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
+ int ret;
+
+ ret = cppc_get_perf_caps(cpu, &cppc_perf);
+ if (ret)
+ return;
+
+ /*
+ * The priorities can be set regardless of whether or not
+ * sched_set_itmt_support(true) has been called and it is valid to
+ * update them at any time after it has been called.
+ */
+ sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
+
+ if (max_highest_perf <= min_highest_perf) {
+ if (cppc_perf.highest_perf > max_highest_perf)
+ max_highest_perf = cppc_perf.highest_perf;
+
+ if (cppc_perf.highest_perf < min_highest_perf)
+ min_highest_perf = cppc_perf.highest_perf;
+
+ if (max_highest_perf > min_highest_perf) {
+ /*
+ * This code can be run during CPU online under the
+ * CPU hotplug locks, so sched_set_itmt_support()
+ * cannot be called from here. Queue up a work item
+ * to invoke it.
+ */
+ schedule_work(&sched_itmt_work);
+ }
+ }
+}
+#else
+static void intel_pstate_set_itmt_prio(int cpu)
+{
+}
+#endif
+
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
struct cpudata *cpu;
int ret;
int i;
- if (hwp_active)
+ if (hwp_active) {
+ intel_pstate_set_itmt_prio(policy->cpu);
return;
+ }
if (!intel_pstate_get_ppc_enable_status())
return;
diff --git a/include/asm-generic/cputime_jiffies.h b/include/asm-generic/cputime_jiffies.h
index fe386fc6e85e..6bb8cd45f53b 100644
--- a/include/asm-generic/cputime_jiffies.h
+++ b/include/asm-generic/cputime_jiffies.h
@@ -7,7 +7,6 @@ typedef unsigned long __nocast cputime_t;
#define cputime_one_jiffy jiffies_to_cputime(1)
#define cputime_to_jiffies(__ct) (__force unsigned long)(__ct)
-#define cputime_to_scaled(__ct) (__ct)
#define jiffies_to_cputime(__hz) (__force cputime_t)(__hz)
typedef u64 __nocast cputime64_t;
diff --git a/include/asm-generic/cputime_nsecs.h b/include/asm-generic/cputime_nsecs.h
index a84e28e0c634..4e3b18e559b1 100644
--- a/include/asm-generic/cputime_nsecs.h
+++ b/include/asm-generic/cputime_nsecs.h
@@ -34,7 +34,6 @@ typedef u64 __nocast cputime64_t;
*/
#define cputime_to_jiffies(__ct) \
cputime_div(__ct, NSEC_PER_SEC / HZ)
-#define cputime_to_scaled(__ct) (__ct)
#define jiffies_to_cputime(__jif) \
(__force cputime_t)((__jif) * (NSEC_PER_SEC / HZ))
#define cputime64_to_jiffies64(__ct) \
diff --git a/include/linux/acpi.h b/include/linux/acpi.h
index 61a3d90f32b3..051023756520 100644
--- a/include/linux/acpi.h
+++ b/include/linux/acpi.h
@@ -469,6 +469,7 @@ acpi_status acpi_run_osc(acpi_handle handle, struct acpi_osc_context *context);
#define OSC_SB_CPCV2_SUPPORT 0x00000040
#define OSC_SB_PCLPI_SUPPORT 0x00000080
#define OSC_SB_OSLPI_SUPPORT 0x00000100
+#define OSC_SB_CPC_DIVERSE_HIGH_SUPPORT 0x00001000
extern bool osc_sb_apei_support_acked;
extern bool osc_pc_lpi_support_confirmed;
diff --git a/include/linux/kernel_stat.h b/include/linux/kernel_stat.h
index 44fda64ad434..00f776816aa3 100644
--- a/include/linux/kernel_stat.h
+++ b/include/linux/kernel_stat.h
@@ -78,8 +78,8 @@ static inline unsigned int kstat_cpu_irqs_sum(unsigned int cpu)
return kstat_cpu(cpu).irqs_sum;
}
-extern void account_user_time(struct task_struct *, cputime_t, cputime_t);
-extern void account_system_time(struct task_struct *, int, cputime_t, cputime_t);
+extern void account_user_time(struct task_struct *, cputime_t);
+extern void account_system_time(struct task_struct *, int, cputime_t);
extern void account_steal_time(cputime_t);
extern void account_idle_time(cputime_t);
diff --git a/include/linux/kthread.h b/include/linux/kthread.h
index a6e82a69c363..c1c3e63d52c1 100644
--- a/include/linux/kthread.h
+++ b/include/linux/kthread.h
@@ -48,6 +48,7 @@ struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
__k; \
})
+void free_kthread_struct(struct task_struct *k);
void kthread_bind(struct task_struct *k, unsigned int cpu);
void kthread_bind_mask(struct task_struct *k, const struct cpumask *mask);
int kthread_stop(struct task_struct *k);
diff --git a/include/linux/preempt.h b/include/linux/preempt.h
index 75e4e30677f1..7eeceac52dea 100644
--- a/include/linux/preempt.h
+++ b/include/linux/preempt.h
@@ -65,19 +65,24 @@
/*
* Are we doing bottom half or hardware interrupt processing?
- * Are we in a softirq context? Interrupt context?
- * in_softirq - Are we currently processing softirq or have bh disabled?
- * in_serving_softirq - Are we currently processing softirq?
+ *
+ * in_irq() - We're in (hard) IRQ context
+ * in_softirq() - We have BH disabled, or are processing softirqs
+ * in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled
+ * in_serving_softirq() - We're in softirq context
+ * in_nmi() - We're in NMI context
+ * in_task() - We're in task context
+ *
+ * Note: due to the BH disabled confusion: in_softirq(),in_interrupt() really
+ * should not be used in new code.
*/
#define in_irq() (hardirq_count())
#define in_softirq() (softirq_count())
#define in_interrupt() (irq_count())
#define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET)
-
-/*
- * Are we in NMI context?
- */
-#define in_nmi() (preempt_count() & NMI_MASK)
+#define in_nmi() (preempt_count() & NMI_MASK)
+#define in_task() (!(preempt_count() & \
+ (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
/*
* The preempt_count offset after preempt_disable();
diff --git a/include/linux/sched.h b/include/linux/sched.h
index 8863bdf582d5..7551d3e2ab70 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -262,20 +262,9 @@ extern char ___assert_task_state[1 - 2*!!(
#define set_task_state(tsk, state_value) \
do { \
(tsk)->task_state_change = _THIS_IP_; \
- smp_store_mb((tsk)->state, (state_value)); \
+ smp_store_mb((tsk)->state, (state_value)); \
} while (0)
-/*
- * set_current_state() includes a barrier so that the write of current->state
- * is correctly serialised wrt the caller's subsequent test of whether to
- * actually sleep:
- *
- * set_current_state(TASK_UNINTERRUPTIBLE);
- * if (do_i_need_to_sleep())
- * schedule();
- *
- * If the caller does not need such serialisation then use __set_current_state()
- */
#define __set_current_state(state_value) \
do { \
current->task_state_change = _THIS_IP_; \
@@ -284,11 +273,19 @@ extern char ___assert_task_state[1 - 2*!!(
#define set_current_state(state_value) \
do { \
current->task_state_change = _THIS_IP_; \
- smp_store_mb(current->state, (state_value)); \
+ smp_store_mb(current->state, (state_value)); \
} while (0)
#else
+/*
+ * @tsk had better be current, or you get to keep the pieces.
+ *
+ * The only reason is that computing current can be more expensive than
+ * using a pointer that's already available.
+ *
+ * Therefore, see set_current_state().
+ */
#define __set_task_state(tsk, state_value) \
do { (tsk)->state = (state_value); } while (0)
#define set_task_state(tsk, state_value) \
@@ -299,11 +296,34 @@ extern char ___assert_task_state[1 - 2*!!(
* is correctly serialised wrt the caller's subsequent test of whether to
* actually sleep:
*
+ * for (;;) {
* set_current_state(TASK_UNINTERRUPTIBLE);
- * if (do_i_need_to_sleep())
- * schedule();
+ * if (!need_sleep)
+ * break;
+ *
+ * schedule();
+ * }
+ * __set_current_state(TASK_RUNNING);
+ *
+ * If the caller does not need such serialisation (because, for instance, the
+ * condition test and condition change and wakeup are under the same lock) then
+ * use __set_current_state().
+ *
+ * The above is typically ordered against the wakeup, which does:
+ *
+ * need_sleep = false;
+ * wake_up_state(p, TASK_UNINTERRUPTIBLE);
+ *
+ * Where wake_up_state() (and all other wakeup primitives) imply enough
+ * barriers to order the store of the variable against wakeup.
+ *
+ * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
+ * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
+ * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
*
- * If the caller does not need such serialisation then use __set_current_state()
+ * This is obviously fine, since they both store the exact same value.
+ *
+ * Also see the comments of try_to_wake_up().
*/
#define __set_current_state(state_value) \
do { current->state = (state_value); } while (0)
@@ -1057,6 +1077,8 @@ static inline int cpu_numa_flags(void)
}
#endif
+extern int arch_asym_cpu_priority(int cpu);
+
struct sched_domain_attr {
int relax_domain_level;
};
@@ -1627,7 +1649,10 @@ struct task_struct {
int __user *set_child_tid; /* CLONE_CHILD_SETTID */
int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
- cputime_t utime, stime, utimescaled, stimescaled;
+ cputime_t utime, stime;
+#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
+ cputime_t utimescaled, stimescaled;
+#endif
cputime_t gtime;
struct prev_cputime prev_cputime;
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
@@ -2220,34 +2245,38 @@ struct task_struct *try_get_task_struct(struct task_struct **ptask);
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
extern void task_cputime(struct task_struct *t,
cputime_t *utime, cputime_t *stime);
-extern void task_cputime_scaled(struct task_struct *t,
- cputime_t *utimescaled, cputime_t *stimescaled);
extern cputime_t task_gtime(struct task_struct *t);
#else
static inline void task_cputime(struct task_struct *t,
cputime_t *utime, cputime_t *stime)
{
- if (utime)
- *utime = t->utime;
- if (stime)
- *stime = t->stime;
+ *utime = t->utime;
+ *stime = t->stime;
}
+static inline cputime_t task_gtime(struct task_struct *t)
+{
+ return t->gtime;
+}
+#endif
+
+#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
static inline void task_cputime_scaled(struct task_struct *t,
cputime_t *utimescaled,
cputime_t *stimescaled)
{
- if (utimescaled)
- *utimescaled = t->utimescaled;
- if (stimescaled)
- *stimescaled = t->stimescaled;
+ *utimescaled = t->utimescaled;
+ *stimescaled = t->stimescaled;
}
-
-static inline cputime_t task_gtime(struct task_struct *t)
+#else
+static inline void task_cputime_scaled(struct task_struct *t,
+ cputime_t *utimescaled,
+ cputime_t *stimescaled)
{
- return t->gtime;
+ task_cputime(t, utimescaled, stimescaled);
}
#endif
+
extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
diff --git a/include/linux/sched/sysctl.h b/include/linux/sched/sysctl.h
index 22db1e63707e..441145351301 100644
--- a/include/linux/sched/sysctl.h
+++ b/include/linux/sched/sysctl.h
@@ -36,7 +36,6 @@ extern unsigned int sysctl_numa_balancing_scan_size;
extern unsigned int sysctl_sched_migration_cost;
extern unsigned int sysctl_sched_nr_migrate;
extern unsigned int sysctl_sched_time_avg;
-extern unsigned int sysctl_sched_shares_window;
int sched_proc_update_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *length,
diff --git a/kernel/fork.c b/kernel/fork.c
index 997ac1d584f7..7ffa16033ded 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -354,6 +354,8 @@ void free_task(struct task_struct *tsk)
ftrace_graph_exit_task(tsk);
put_seccomp_filter(tsk);
arch_release_task_struct(tsk);
+ if (tsk->flags & PF_KTHREAD)
+ free_kthread_struct(tsk);
free_task_struct(tsk);
}
EXPORT_SYMBOL(free_task);
@@ -1551,7 +1553,9 @@ static __latent_entropy struct task_struct *copy_process(
init_sigpending(&p->pending);
p->utime = p->stime = p->gtime = 0;
+#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
p->utimescaled = p->stimescaled = 0;
+#endif
prev_cputime_init(&p->prev_cputime);
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
diff --git a/kernel/kthread.c b/kernel/kthread.c
index be2cc1f9dd57..956495f0efaf 100644
--- a/kernel/kthread.c
+++ b/kernel/kthread.c
@@ -53,20 +53,29 @@ enum KTHREAD_BITS {
KTHREAD_IS_PARKED,
};
-#define __to_kthread(vfork) \
- container_of(vfork, struct kthread, exited)
+static inline void set_kthread_struct(void *kthread)
+{
+ /*
+ * We abuse ->set_child_tid to avoid the new member and because it
+ * can't be wrongly copied by copy_process(). We also rely on fact
+ * that the caller can't exec, so PF_KTHREAD can't be cleared.
+ */
+ current->set_child_tid = (__force void __user *)kthread;
+}
static inline struct kthread *to_kthread(struct task_struct *k)
{
- return __to_kthread(k->vfork_done);
+ WARN_ON(!(k->flags & PF_KTHREAD));
+ return (__force void *)k->set_child_tid;
}
-static struct kthread *to_live_kthread(struct task_struct *k)
+void free_kthread_struct(struct task_struct *k)
{
- struct completion *vfork = ACCESS_ONCE(k->vfork_done);
- if (likely(vfork) && try_get_task_stack(k))
- return __to_kthread(vfork);
- return NULL;
+ /*
+ * Can be NULL if this kthread was created by kernel_thread()
+ * or if kmalloc() in kthread() failed.
+ */
+ kfree(to_kthread(k));
}
/**
@@ -181,14 +190,11 @@ static int kthread(void *_create)
int (*threadfn)(void *data) = create->threadfn;
void *data = create->data;
struct completion *done;
- struct kthread self;
+ struct kthread *self;
int ret;
- self.flags = 0;
- self.data = data;
- init_completion(&self.exited);
- init_completion(&self.parked);
- current->vfork_done = &self.exited;
+ self = kmalloc(sizeof(*self), GFP_KERNEL);
+ set_kthread_struct(self);
/* If user was SIGKILLed, I release the structure. */
done = xchg(&create->done, NULL);
@@ -196,6 +202,19 @@ static int kthread(void *_create)
kfree(create);
do_exit(-EINTR);
}
+
+ if (!self) {
+ create->result = ERR_PTR(-ENOMEM);
+ complete(done);
+ do_exit(-ENOMEM);
+ }
+
+ self->flags = 0;
+ self->data = data;
+ init_completion(&self->exited);
+ init_completion(&self->parked);
+ current->vfork_done = &self->exited;
+
/* OK, tell user we're spawned, wait for stop or wakeup */
__set_current_state(TASK_UNINTERRUPTIBLE);
create->result = current;
@@ -203,12 +222,10 @@ static int kthread(void *_create)
schedule();
ret = -EINTR;
-
- if (!test_bit(KTHREAD_SHOULD_STOP, &self.flags)) {
- __kthread_parkme(&self);
+ if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
+ __kthread_parkme(self);
ret = threadfn(data);
}
- /* we can't just return, we must preserve "self" on stack */
do_exit(ret);
}
@@ -409,8 +426,18 @@ struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
return p;
}
-static void __kthread_unpark(struct task_struct *k, struct kthread *kthread)
+/**
+ * kthread_unpark - unpark a thread created by kthread_create().
+ * @k: thread created by kthread_create().
+ *
+ * Sets kthread_should_park() for @k to return false, wakes it, and
+ * waits for it to return. If the thread is marked percpu then its
+ * bound to the cpu again.
+ */
+void kthread_unpark(struct task_struct *k)
{
+ struct kthread *kthread = to_kthread(k);
+
clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
/*
* We clear the IS_PARKED bit here as we don't wait
@@ -428,24 +455,6 @@ static void __kthread_unpark(struct task_struct *k, struct kthread *kthread)
wake_up_state(k, TASK_PARKED);
}
}
-
-/**
- * kthread_unpark - unpark a thread created by kthread_create().
- * @k: thread created by kthread_create().
- *
- * Sets kthread_should_park() for @k to return false, wakes it, and
- * waits for it to return. If the thread is marked percpu then its
- * bound to the cpu again.
- */
-void kthread_unpark(struct task_struct *k)
-{
- struct kthread *kthread = to_live_kthread(k);
-
- if (kthread) {
- __kthread_unpark(k, kthread);
- put_task_stack(k);
- }
-}
EXPORT_SYMBOL_GPL(kthread_unpark);
/**
@@ -462,21 +471,20 @@ EXPORT_SYMBOL_GPL(kthread_unpark);
*/
int kthread_park(struct task_struct *k)
{
- struct kthread *kthread = to_live_kthread(k);
- int ret = -ENOSYS;
-
- if (kthread) {
- if (!test_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
- set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
- if (k != current) {
- wake_up_process(k);
- wait_for_completion(&kthread->parked);
- }
+ struct kthread *kthread = to_kthread(k);
+
+ if (WARN_ON(k->flags & PF_EXITING))
+ return -ENOSYS;
+
+ if (!test_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
+ set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
+ if (k != current) {
+ wake_up_process(k);
+ wait_for_completion(&kthread->parked);
}
- put_task_stack(k);
- ret = 0;
}
- return ret;
+
+ return 0;
}
EXPORT_SYMBOL_GPL(kthread_park);
@@ -503,14 +511,11 @@ int kthread_stop(struct task_struct *k)
trace_sched_kthread_stop(k);
get_task_struct(k);
- kthread = to_live_kthread(k);
- if (kthread) {
- set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
- __kthread_unpark(k, kthread);
- wake_up_process(k);
- wait_for_completion(&kthread->exited);
- put_task_stack(k);
- }
+ kthread = to_kthread(k);
+ set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
+ kthread_unpark(k);
+ wake_up_process(k);
+ wait_for_completion(&kthread->exited);
ret = k->exit_code;
put_task_struct(k);
@@ -636,6 +641,7 @@ __kthread_create_worker(int cpu, unsigned int flags,
{
struct kthread_worker *worker;
struct task_struct *task;
+ int node = -1;
worker = kzalloc(sizeof(*worker), GFP_KERNEL);
if (!worker)
@@ -643,25 +649,17 @@ __kthread_create_worker(int cpu, unsigned int flags,
kthread_init_worker(worker);
- if (cpu >= 0) {
- char name[TASK_COMM_LEN];
-
- /*
- * kthread_create_worker_on_cpu() allows to pass a generic
- * namefmt in compare with kthread_create_on_cpu. We need
- * to format it here.
- */
- vsnprintf(name, sizeof(name), namefmt, args);
- task = kthread_create_on_cpu(kthread_worker_fn, worker,
- cpu, name);
- } else {
- task = __kthread_create_on_node(kthread_worker_fn, worker,
- -1, namefmt, args);
- }
+ if (cpu >= 0)
+ node = cpu_to_node(cpu);
+ task = __kthread_create_on_node(kthread_worker_fn, worker,
+ node, namefmt, args);
if (IS_ERR(task))
goto fail_task;
+ if (cpu >= 0)
+ kthread_bind(task, cpu);
+
worker->flags = flags;
worker->task = task;
wake_up_process(task);
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 8b08fb257856..d18804491d9f 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -1995,14 +1995,15 @@ static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
* @state: the mask of task states that can be woken
* @wake_flags: wake modifier flags (WF_*)
*
- * Put it on the run-queue if it's not already there. The "current"
- * thread is always on the run-queue (except when the actual
- * re-schedule is in progress), and as such you're allowed to do
- * the simpler "current->state = TASK_RUNNING" to mark yourself
- * runnable without the overhead of this.
+ * If (@state & @p->state) @p->state = TASK_RUNNING.
*
- * Return: %true if @p was woken up, %false if it was already running.
- * or @state didn't match @p's state.
+ * If the task was not queued/runnable, also place it back on a runqueue.
+ *
+ * Atomic against schedule() which would dequeue a task, also see
+ * set_current_state().
+ *
+ * Return: %true if @p->state changes (an actual wakeup was done),
+ * %false otherwise.
*/
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
@@ -5707,7 +5708,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
printk(KERN_CONT " %*pbl",
cpumask_pr_args(sched_group_cpus(group)));
if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
- printk(KERN_CONT " (cpu_capacity = %d)",
+ printk(KERN_CONT " (cpu_capacity = %lu)",
group->sgc->capacity);
}
@@ -6184,6 +6185,7 @@ build_overlap_sched_groups(struct sched_domain *sd, int cpu)
* die on a /0 trap.
*/
sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
+ sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
/*
* Make sure the first group of this domain contains the
@@ -6301,7 +6303,22 @@ static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
WARN_ON(!sg);
do {
+ int cpu, max_cpu = -1;
+
sg->group_weight = cpumask_weight(sched_group_cpus(sg));
+
+ if (!(sd->flags & SD_ASYM_PACKING))
+ goto next;
+
+ for_each_cpu(cpu, sched_group_cpus(sg)) {
+ if (max_cpu < 0)
+ max_cpu = cpu;
+ else if (sched_asym_prefer(cpu, max_cpu))
+ max_cpu = cpu;
+ }
+ sg->asym_prefer_cpu = max_cpu;
+
+next:
sg = sg->next;
} while (sg != sd->groups);
@@ -7602,6 +7619,7 @@ void __init sched_init(void)
#ifdef CONFIG_FAIR_GROUP_SCHED
root_task_group.shares = ROOT_TASK_GROUP_LOAD;
INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
+ rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
/*
* How much cpu bandwidth does root_task_group get?
*
diff --git a/kernel/sched/cpuacct.c b/kernel/sched/cpuacct.c
index bc0b309c3f19..9add206b5608 100644
--- a/kernel/sched/cpuacct.c
+++ b/kernel/sched/cpuacct.c
@@ -297,7 +297,7 @@ static int cpuacct_stats_show(struct seq_file *sf, void *v)
for (stat = 0; stat < CPUACCT_STAT_NSTATS; stat++) {
seq_printf(sf, "%s %lld\n",
cpuacct_stat_desc[stat],
- cputime64_to_clock_t(val[stat]));
+ (long long)cputime64_to_clock_t(val[stat]));
}
return 0;
diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
index 5ebee3164e64..7700a9cba335 100644
--- a/kernel/sched/cputime.c
+++ b/kernel/sched/cputime.c
@@ -128,16 +128,13 @@ static inline void task_group_account_field(struct task_struct *p, int index,
* Account user cpu time to a process.
* @p: the process that the cpu time gets accounted to
* @cputime: the cpu time spent in user space since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
*/
-void account_user_time(struct task_struct *p, cputime_t cputime,
- cputime_t cputime_scaled)
+void account_user_time(struct task_struct *p, cputime_t cputime)
{
int index;
/* Add user time to process. */
p->utime += cputime;
- p->utimescaled += cputime_scaled;
account_group_user_time(p, cputime);
index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
@@ -153,16 +150,13 @@ void account_user_time(struct task_struct *p, cputime_t cputime,
* Account guest cpu time to a process.
* @p: the process that the cpu time gets accounted to
* @cputime: the cpu time spent in virtual machine since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
*/
-static void account_guest_time(struct task_struct *p, cputime_t cputime,
- cputime_t cputime_scaled)
+static void account_guest_time(struct task_struct *p, cputime_t cputime)
{
u64 *cpustat = kcpustat_this_cpu->cpustat;
/* Add guest time to process. */
p->utime += cputime;
- p->utimescaled += cputime_scaled;
account_group_user_time(p, cputime);
p->gtime += cputime;
@@ -180,16 +174,13 @@ static void account_guest_time(struct task_struct *p, cputime_t cputime,
* Account system cpu time to a process and desired cpustat field
* @p: the process that the cpu time gets accounted to
* @cputime: the cpu time spent in kernel space since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
- * @target_cputime64: pointer to cpustat field that has to be updated
+ * @index: pointer to cpustat field that has to be updated
*/
static inline
-void __account_system_time(struct task_struct *p, cputime_t cputime,
- cputime_t cputime_scaled, int index)
+void __account_system_time(struct task_struct *p, cputime_t cputime, int index)
{
/* Add system time to process. */
p->stime += cputime;
- p->stimescaled += cputime_scaled;
account_group_system_time(p, cputime);
/* Add system time to cpustat. */
@@ -204,15 +195,14 @@ void __account_system_time(struct task_struct *p, cputime_t cputime,
* @p: the process that the cpu time gets accounted to
* @hardirq_offset: the offset to subtract from hardirq_count()
* @cputime: the cpu time spent in kernel space since the last update
- * @cputime_scaled: cputime scaled by cpu frequency
*/
void account_system_time(struct task_struct *p, int hardirq_offset,
- cputime_t cputime, cputime_t cputime_scaled)
+ cputime_t cputime)
{
int index;
if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
- account_guest_time(p, cputime, cputime_scaled);
+ account_guest_time(p, cputime);
return;
}
@@ -223,7 +213,7 @@ void account_system_time(struct task_struct *p, int hardirq_offset,
else
index = CPUTIME_SYSTEM;
- __account_system_time(p, cputime, cputime_scaled, index);
+ __account_system_time(p, cputime, index);
}
/*
@@ -390,7 +380,7 @@ static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
struct rq *rq, int ticks)
{
u64 cputime = (__force u64) cputime_one_jiffy * ticks;
- cputime_t scaled, other;
+ cputime_t other;
/*
* When returning from idle, many ticks can get accounted at
@@ -403,7 +393,6 @@ static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
if (other >= cputime)
return;
cputime -= other;
- scaled = cputime_to_scaled(cputime);
if (this_cpu_ksoftirqd() == p) {
/*
@@ -411,15 +400,15 @@ static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
* So, we have to handle it separately here.
* Also, p->stime needs to be updated for ksoftirqd.
*/
- __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
+ __account_system_time(p, cputime, CPUTIME_SOFTIRQ);
} else if (user_tick) {
- account_user_time(p, cputime, scaled);
+ account_user_time(p, cputime);
} else if (p == rq->idle) {
account_idle_time(cputime);
} else if (p->flags & PF_VCPU) { /* System time or guest time */
- account_guest_time(p, cputime, scaled);
+ account_guest_time(p, cputime);
} else {
- __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
+ __account_system_time(p, cputime, CPUTIME_SYSTEM);
}
}
@@ -502,7 +491,7 @@ void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime
*/
void account_process_tick(struct task_struct *p, int user_tick)
{
- cputime_t cputime, scaled, steal;
+ cputime_t cputime, steal;
struct rq *rq = this_rq();
if (vtime_accounting_cpu_enabled())
@@ -520,12 +509,11 @@ void account_process_tick(struct task_struct *p, int user_tick)
return;
cputime -= steal;
- scaled = cputime_to_scaled(cputime);
if (user_tick)
- account_user_time(p, cputime, scaled);
+ account_user_time(p, cputime);
else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
- account_system_time(p, HARDIRQ_OFFSET, cputime, scaled);
+ account_system_time(p, HARDIRQ_OFFSET, cputime);
else
account_idle_time(cputime);
}
@@ -746,7 +734,7 @@ static void __vtime_account_system(struct task_struct *tsk)
{
cputime_t delta_cpu = get_vtime_delta(tsk);
- account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
+ account_system_time(tsk, irq_count(), delta_cpu);
}
void vtime_account_system(struct task_struct *tsk)
@@ -767,7 +755,7 @@ void vtime_account_user(struct task_struct *tsk)
tsk->vtime_snap_whence = VTIME_SYS;
if (vtime_delta(tsk)) {
delta_cpu = get_vtime_delta(tsk);
- account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
+ account_user_time(tsk, delta_cpu);
}
write_seqcount_end(&tsk->vtime_seqcount);
}
@@ -863,29 +851,25 @@ cputime_t task_gtime(struct task_struct *t)
* add up the pending nohz execution time since the last
* cputime snapshot.
*/
-static void
-fetch_task_cputime(struct task_struct *t,
- cputime_t *u_dst, cputime_t *s_dst,
- cputime_t *u_src, cputime_t *s_src,
- cputime_t *udelta, cputime_t *sdelta)
+void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
{
+ cputime_t delta;
unsigned int seq;
- unsigned long long delta;
- do {
- *udelta = 0;
- *sdelta = 0;
+ if (!vtime_accounting_enabled()) {
+ *utime = t->utime;
+ *stime = t->stime;
+ return;
+ }
+ do {
seq = read_seqcount_begin(&t->vtime_seqcount);
- if (u_dst)
- *u_dst = *u_src;
- if (s_dst)
- *s_dst = *s_src;
+ *utime = t->utime;
+ *stime = t->stime;
/* Task is sleeping, nothing to add */
- if (t->vtime_snap_whence == VTIME_INACTIVE ||
- is_idle_task(t))
+ if (t->vtime_snap_whence == VTIME_INACTIVE || is_idle_task(t))
continue;
delta = vtime_delta(t);
@@ -894,54 +878,10 @@ fetch_task_cputime(struct task_struct *t,
* Task runs either in user or kernel space, add pending nohz time to
* the right place.
*/
- if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
- *udelta = delta;
- } else {
- if (t->vtime_snap_whence == VTIME_SYS)
- *sdelta = delta;
- }
+ if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU)
+ *utime += delta;
+ else if (t->vtime_snap_whence == VTIME_SYS)
+ *stime += delta;
} while (read_seqcount_retry(&t->vtime_seqcount, seq));
}
-
-
-void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
-{
- cputime_t udelta, sdelta;
-
- if (!vtime_accounting_enabled()) {
- if (utime)
- *utime = t->utime;
- if (stime)
- *stime = t->stime;
- return;
- }
-
- fetch_task_cputime(t, utime, stime, &t->utime,
- &t->stime, &udelta, &sdelta);
- if (utime)
- *utime += udelta;
- if (stime)
- *stime += sdelta;
-}
-
-void task_cputime_scaled(struct task_struct *t,
- cputime_t *utimescaled, cputime_t *stimescaled)
-{
- cputime_t udelta, sdelta;
-
- if (!vtime_accounting_enabled()) {
- if (utimescaled)
- *utimescaled = t->utimescaled;
- if (stimescaled)
- *stimescaled = t->stimescaled;
- return;
- }
-
- fetch_task_cputime(t, utimescaled, stimescaled,
- &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
- if (utimescaled)
- *utimescaled += cputime_to_scaled(udelta);
- if (stimescaled)
- *stimescaled += cputime_to_scaled(sdelta);
-}
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index 37e2449186c4..70ef2b1901e4 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -586,7 +586,7 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
/*
* The task might have changed its scheduling policy to something
- * different than SCHED_DEADLINE (through switched_fromd_dl()).
+ * different than SCHED_DEADLINE (through switched_from_dl()).
*/
if (!dl_task(p)) {
__dl_clear_params(p);
@@ -1137,7 +1137,7 @@ pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct pin_cookie coo
pull_dl_task(rq);
lockdep_repin_lock(&rq->lock, cookie);
/*
- * pull_rt_task() can drop (and re-acquire) rq->lock; this
+ * pull_dl_task() can drop (and re-acquire) rq->lock; this
* means a stop task can slip in, in which case we need to
* re-start task selection.
*/
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index c242944f5cbd..6559d197e08a 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -37,7 +37,6 @@
/*
* Targeted preemption latency for CPU-bound tasks:
- * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
*
* NOTE: this latency value is not the same as the concept of
* 'timeslice length' - timeslices in CFS are of variable length
@@ -46,31 +45,35 @@
*
* (to see the precise effective timeslice length of your workload,
* run vmstat and monitor the context-switches (cs) field)
+ *
+ * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
*/
-unsigned int sysctl_sched_latency = 6000000ULL;
-unsigned int normalized_sysctl_sched_latency = 6000000ULL;
+unsigned int sysctl_sched_latency = 6000000ULL;
+unsigned int normalized_sysctl_sched_latency = 6000000ULL;
/*
* The initial- and re-scaling of tunables is configurable
- * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
*
* Options are:
- * SCHED_TUNABLESCALING_NONE - unscaled, always *1
- * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
- * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
+ *
+ * SCHED_TUNABLESCALING_NONE - unscaled, always *1
+ * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
+ * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
+ *
+ * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
*/
-enum sched_tunable_scaling sysctl_sched_tunable_scaling
- = SCHED_TUNABLESCALING_LOG;
+enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
/*
* Minimal preemption granularity for CPU-bound tasks:
+ *
* (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
*/
-unsigned int sysctl_sched_min_granularity = 750000ULL;
-unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
+unsigned int sysctl_sched_min_granularity = 750000ULL;
+unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
/*
- * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
+ * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
*/
static unsigned int sched_nr_latency = 8;
@@ -82,23 +85,27 @@ unsigned int sysctl_sched_child_runs_first __read_mostly;
/*
* SCHED_OTHER wake-up granularity.
- * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
*
* This option delays the preemption effects of decoupled workloads
* and reduces their over-scheduling. Synchronous workloads will still
* have immediate wakeup/sleep latencies.
+ *
+ * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
*/
-unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
-unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
+unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
+unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
-const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
+const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
+#ifdef CONFIG_SMP
/*
- * The exponential sliding window over which load is averaged for shares
- * distribution.
- * (default: 10msec)
+ * For asym packing, by default the lower numbered cpu has higher priority.
*/
-unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
+int __weak arch_asym_cpu_priority(int cpu)
+{
+ return -cpu;
+}
+#endif
#ifdef CONFIG_CFS_BANDWIDTH
/*
@@ -109,16 +116,18 @@ unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
* to consumption or the quota being specified to be smaller than the slice)
* we will always only issue the remaining available time.
*
- * default: 5 msec, units: microseconds
- */
-unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
+ * (default: 5 msec, units: microseconds)
+ */
+unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif
/*
* The margin used when comparing utilization with CPU capacity:
- * util * 1024 < capacity * margin
+ * util * margin < capacity * 1024
+ *
+ * (default: ~20%)
*/
-unsigned int capacity_margin = 1280; /* ~20% */
+unsigned int capacity_margin = 1280;
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
@@ -290,19 +299,59 @@ static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
if (!cfs_rq->on_list) {
+ struct rq *rq = rq_of(cfs_rq);
+ int cpu = cpu_of(rq);
/*
* Ensure we either appear before our parent (if already
* enqueued) or force our parent to appear after us when it is
- * enqueued. The fact that we always enqueue bottom-up
- * reduces this to two cases.
+ * enqueued. The fact that we always enqueue bottom-up
+ * reduces this to two cases and a special case for the root
+ * cfs_rq. Furthermore, it also means that we will always reset
+ * tmp_alone_branch either when the branch is connected
+ * to a tree or when we reach the beg of the tree
*/
if (cfs_rq->tg->parent &&
- cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
- list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
- &rq_of(cfs_rq)->leaf_cfs_rq_list);
- } else {
+ cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
+ /*
+ * If parent is already on the list, we add the child
+ * just before. Thanks to circular linked property of
+ * the list, this means to put the child at the tail
+ * of the list that starts by parent.
+ */
list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
- &rq_of(cfs_rq)->leaf_cfs_rq_list);
+ &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
+ /*
+ * The branch is now connected to its tree so we can
+ * reset tmp_alone_branch to the beginning of the
+ * list.
+ */
+ rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
+ } else if (!cfs_rq->tg->parent) {
+ /*
+ * cfs rq without parent should be put
+ * at the tail of the list.
+ */
+ list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
+ &rq->leaf_cfs_rq_list);
+ /*
+ * We have reach the beg of a tree so we can reset
+ * tmp_alone_branch to the beginning of the list.
+ */
+ rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
+ } else {
+ /*
+ * The parent has not already been added so we want to
+ * make sure that it will be put after us.
+ * tmp_alone_branch points to the beg of the branch
+ * where we will add parent.
+ */
+ list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
+ rq->tmp_alone_branch);
+ /*
+ * update tmp_alone_branch to points to the new beg
+ * of the branch
+ */
+ rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
}
cfs_rq->on_list = 1;
@@ -708,9 +757,7 @@ void init_entity_runnable_average(struct sched_entity *se)
}
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
-static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
-static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
-static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
+static void attach_entity_cfs_rq(struct sched_entity *se);
/*
* With new tasks being created, their initial util_avgs are extrapolated
@@ -742,7 +789,6 @@ void post_init_entity_util_avg(struct sched_entity *se)
struct cfs_rq *cfs_rq = cfs_rq_of(se);
struct sched_avg *sa = &se->avg;
long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
- u64 now = cfs_rq_clock_task(cfs_rq);
if (cap > 0) {
if (cfs_rq->avg.util_avg != 0) {
@@ -770,14 +816,12 @@ void post_init_entity_util_avg(struct sched_entity *se)
* such that the next switched_to_fair() has the
* expected state.
*/
- se->avg.last_update_time = now;
+ se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
return;
}
}
- update_cfs_rq_load_avg(now, cfs_rq, false);
- attach_entity_load_avg(cfs_rq, se);
- update_tg_load_avg(cfs_rq, false);
+ attach_entity_cfs_rq(se);
}
#else /* !CONFIG_SMP */
@@ -2890,6 +2934,26 @@ __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
return decayed;
}
+/*
+ * Signed add and clamp on underflow.
+ *
+ * Explicitly do a load-store to ensure the intermediate value never hits
+ * memory. This allows lockless observations without ever seeing the negative
+ * values.
+ */
+#define add_positive(_ptr, _val) do { \
+ typeof(_ptr) ptr = (_ptr); \
+ typeof(_val) val = (_val); \
+ typeof(*ptr) res, var = READ_ONCE(*ptr); \
+ \
+ res = var + val; \
+ \
+ if (val < 0 && res > var) \
+ res = 0; \
+ \
+ WRITE_ONCE(*ptr, res); \
+} while (0)
+
#ifdef CONFIG_FAIR_GROUP_SCHED
/**
* update_tg_load_avg - update the tg's load avg
@@ -2969,8 +3033,138 @@ void set_task_rq_fair(struct sched_entity *se,
se->avg.last_update_time = n_last_update_time;
}
}
+
+/* Take into account change of utilization of a child task group */
+static inline void
+update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+ struct cfs_rq *gcfs_rq = group_cfs_rq(se);
+ long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
+
+ /* Nothing to update */
+ if (!delta)
+ return;
+
+ /* Set new sched_entity's utilization */
+ se->avg.util_avg = gcfs_rq->avg.util_avg;
+ se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
+
+ /* Update parent cfs_rq utilization */
+ add_positive(&cfs_rq->avg.util_avg, delta);
+ cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
+}
+
+/* Take into account change of load of a child task group */
+static inline void
+update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
+{
+ struct cfs_rq *gcfs_rq = group_cfs_rq(se);
+ long delta, load = gcfs_rq->avg.load_avg;
+
+ /*
+ * If the load of group cfs_rq is null, the load of the
+ * sched_entity will also be null so we can skip the formula
+ */
+ if (load) {
+ long tg_load;
+
+ /* Get tg's load and ensure tg_load > 0 */
+ tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
+
+ /* Ensure tg_load >= load and updated with current load*/
+ tg_load -= gcfs_rq->tg_load_avg_contrib;
+ tg_load += load;
+
+ /*
+ * We need to compute a correction term in the case that the
+ * task group is consuming more CPU than a task of equal
+ * weight. A task with a weight equals to tg->shares will have
+ * a load less or equal to scale_load_down(tg->shares).
+ * Similarly, the sched_entities that represent the task group
+ * at parent level, can't have a load higher than
+ * scale_load_down(tg->shares). And the Sum of sched_entities'
+ * load must be <= scale_load_down(tg->shares).
+ */
+ if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
+ /* scale gcfs_rq's load into tg's shares*/
+ load *= scale_load_down(gcfs_rq->tg->shares);
+ load /= tg_load;
+ }
+ }
+
+ delta = load - se->avg.load_avg;
+
+ /* Nothing to update */
+ if (!delta)
+ return;
+
+ /* Set new sched_entity's load */
+ se->avg.load_avg = load;
+ se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
+
+ /* Update parent cfs_rq load */
+ add_positive(&cfs_rq->avg.load_avg, delta);
+ cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
+
+ /*
+ * If the sched_entity is already enqueued, we also have to update the
+ * runnable load avg.
+ */
+ if (se->on_rq) {
+ /* Update parent cfs_rq runnable_load_avg */
+ add_positive(&cfs_rq->runnable_load_avg, delta);
+ cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
+ }
+}
+
+static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
+{
+ cfs_rq->propagate_avg = 1;
+}
+
+static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
+{
+ struct cfs_rq *cfs_rq = group_cfs_rq(se);
+
+ if (!cfs_rq->propagate_avg)
+ return 0;
+
+ cfs_rq->propagate_avg = 0;
+ return 1;
+}
+
+/* Update task and its cfs_rq load average */
+static inline int propagate_entity_load_avg(struct sched_entity *se)
+{
+ struct cfs_rq *cfs_rq;
+
+ if (entity_is_task(se))
+ return 0;
+
+ if (!test_and_clear_tg_cfs_propagate(se))
+ return 0;
+
+ cfs_rq = cfs_rq_of(se);
+
+ set_tg_cfs_propagate(cfs_rq);
+
+ update_tg_cfs_util(cfs_rq, se);
+ update_tg_cfs_load(cfs_rq, se);
+
+ return 1;
+}
+
#else /* CONFIG_FAIR_GROUP_SCHED */
+
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
+
+static inline int propagate_entity_load_avg(struct sched_entity *se)
+{
+ return 0;
+}
+
+static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
+
#endif /* CONFIG_FAIR_GROUP_SCHED */
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
@@ -3041,6 +3235,7 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
sub_positive(&sa->load_avg, r);
sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
removed_load = 1;
+ set_tg_cfs_propagate(cfs_rq);
}
if (atomic_long_read(&cfs_rq->removed_util_avg)) {
@@ -3048,6 +3243,7 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
sub_positive(&sa->util_avg, r);
sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
removed_util = 1;
+ set_tg_cfs_propagate(cfs_rq);
}
decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
@@ -3064,23 +3260,35 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
return decayed || removed_load;
}
+/*
+ * Optional action to be done while updating the load average
+ */
+#define UPDATE_TG 0x1
+#define SKIP_AGE_LOAD 0x2
+
/* Update task and its cfs_rq load average */
-static inline void update_load_avg(struct sched_entity *se, int update_tg)
+static inline void update_load_avg(struct sched_entity *se, int flags)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
u64 now = cfs_rq_clock_task(cfs_rq);
struct rq *rq = rq_of(cfs_rq);
int cpu = cpu_of(rq);
+ int decayed;
/*
* Track task load average for carrying it to new CPU after migrated, and
* track group sched_entity load average for task_h_load calc in migration
*/
- __update_load_avg(now, cpu, &se->avg,
+ if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) {
+ __update_load_avg(now, cpu, &se->avg,
se->on_rq * scale_load_down(se->load.weight),
cfs_rq->curr == se, NULL);
+ }
- if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
+ decayed = update_cfs_rq_load_avg(now, cfs_rq, true);
+ decayed |= propagate_entity_load_avg(se);
+
+ if (decayed && (flags & UPDATE_TG))
update_tg_load_avg(cfs_rq, 0);
}
@@ -3094,31 +3302,12 @@ static inline void update_load_avg(struct sched_entity *se, int update_tg)
*/
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
- if (!sched_feat(ATTACH_AGE_LOAD))
- goto skip_aging;
-
- /*
- * If we got migrated (either between CPUs or between cgroups) we'll
- * have aged the average right before clearing @last_update_time.
- *
- * Or we're fresh through post_init_entity_util_avg().
- */
- if (se->avg.last_update_time) {
- __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
- &se->avg, 0, 0, NULL);
-
- /*
- * XXX: we could have just aged the entire load away if we've been
- * absent from the fair class for too long.
- */
- }
-
-skip_aging:
se->avg.last_update_time = cfs_rq->avg.last_update_time;
cfs_rq->avg.load_avg += se->avg.load_avg;
cfs_rq->avg.load_sum += se->avg.load_sum;
cfs_rq->avg.util_avg += se->avg.util_avg;
cfs_rq->avg.util_sum += se->avg.util_sum;
+ set_tg_cfs_propagate(cfs_rq);
cfs_rq_util_change(cfs_rq);
}
@@ -3133,14 +3322,12 @@ skip_aging:
*/
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
- __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
- &se->avg, se->on_rq * scale_load_down(se->load.weight),
- cfs_rq->curr == se, NULL);
sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
+ set_tg_cfs_propagate(cfs_rq);
cfs_rq_util_change(cfs_rq);
}
@@ -3150,34 +3337,20 @@ static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
struct sched_avg *sa = &se->avg;
- u64 now = cfs_rq_clock_task(cfs_rq);
- int migrated, decayed;
-
- migrated = !sa->last_update_time;
- if (!migrated) {
- __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
- se->on_rq * scale_load_down(se->load.weight),
- cfs_rq->curr == se, NULL);
- }
-
- decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
cfs_rq->runnable_load_avg += sa->load_avg;
cfs_rq->runnable_load_sum += sa->load_sum;
- if (migrated)
+ if (!sa->last_update_time) {
attach_entity_load_avg(cfs_rq, se);
-
- if (decayed || migrated)
update_tg_load_avg(cfs_rq, 0);
+ }
}
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
- update_load_avg(se, 1);
-
cfs_rq->runnable_load_avg =
max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
cfs_rq->runnable_load_sum =
@@ -3206,13 +3379,25 @@ static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
#endif
/*
+ * Synchronize entity load avg of dequeued entity without locking
+ * the previous rq.
+ */
+void sync_entity_load_avg(struct sched_entity *se)
+{
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
+ u64 last_update_time;
+
+ last_update_time = cfs_rq_last_update_time(cfs_rq);
+ __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
+}
+
+/*
* Task first catches up with cfs_rq, and then subtract
* itself from the cfs_rq (task must be off the queue now).
*/
void remove_entity_load_avg(struct sched_entity *se)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
- u64 last_update_time;
/*
* tasks cannot exit without having gone through wake_up_new_task() ->
@@ -3224,9 +3409,7 @@ void remove_entity_load_avg(struct sched_entity *se)
* calls this.
*/
- last_update_time = cfs_rq_last_update_time(cfs_rq);
-
- __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
+ sync_entity_load_avg(se);
atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
}
@@ -3251,7 +3434,10 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
return 0;
}
-static inline void update_load_avg(struct sched_entity *se, int not_used)
+#define UPDATE_TG 0x0
+#define SKIP_AGE_LOAD 0x0
+
+static inline void update_load_avg(struct sched_entity *se, int not_used1)
{
cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
}
@@ -3396,6 +3582,7 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
if (renorm && !curr)
se->vruntime += cfs_rq->min_vruntime;
+ update_load_avg(se, UPDATE_TG);
enqueue_entity_load_avg(cfs_rq, se);
account_entity_enqueue(cfs_rq, se);
update_cfs_shares(cfs_rq);
@@ -3470,6 +3657,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
+ update_load_avg(se, UPDATE_TG);
dequeue_entity_load_avg(cfs_rq, se);
update_stats_dequeue(cfs_rq, se, flags);
@@ -3557,7 +3745,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
*/
update_stats_wait_end(cfs_rq, se);
__dequeue_entity(cfs_rq, se);
- update_load_avg(se, 1);
+ update_load_avg(se, UPDATE_TG);
}
update_stats_curr_start(cfs_rq, se);
@@ -3675,7 +3863,7 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
/*
* Ensure that runnable average is periodically updated.
*/
- update_load_avg(curr, 1);
+ update_load_avg(curr, UPDATE_TG);
update_cfs_shares(cfs_rq);
#ifdef CONFIG_SCHED_HRTICK
@@ -4572,7 +4760,7 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (cfs_rq_throttled(cfs_rq))
break;
- update_load_avg(se, 1);
+ update_load_avg(se, UPDATE_TG);
update_cfs_shares(cfs_rq);
}
@@ -4631,7 +4819,7 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (cfs_rq_throttled(cfs_rq))
break;
- update_load_avg(se, 1);
+ update_load_avg(se, UPDATE_TG);
update_cfs_shares(cfs_rq);
}
@@ -5199,6 +5387,14 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p,
return 1;
}
+static inline int task_util(struct task_struct *p);
+static int cpu_util_wake(int cpu, struct task_struct *p);
+
+static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
+{
+ return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
+}
+
/*
* find_idlest_group finds and returns the least busy CPU group within the
* domain.
@@ -5208,15 +5404,21 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
int this_cpu, int sd_flag)
{
struct sched_group *idlest = NULL, *group = sd->groups;
- unsigned long min_load = ULONG_MAX, this_load = 0;
+ struct sched_group *most_spare_sg = NULL;
+ unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
+ unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
+ unsigned long most_spare = 0, this_spare = 0;
int load_idx = sd->forkexec_idx;
- int imbalance = 100 + (sd->imbalance_pct-100)/2;
+ int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
+ unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
+ (sd->imbalance_pct-100) / 100;
if (sd_flag & SD_BALANCE_WAKE)
load_idx = sd->wake_idx;
do {
- unsigned long load, avg_load;
+ unsigned long load, avg_load, runnable_load;
+ unsigned long spare_cap, max_spare_cap;
int local_group;
int i;
@@ -5228,8 +5430,13 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
local_group = cpumask_test_cpu(this_cpu,
sched_group_cpus(group));
- /* Tally up the load of all CPUs in the group */
+ /*
+ * Tally up the load of all CPUs in the group and find
+ * the group containing the CPU with most spare capacity.
+ */
avg_load = 0;
+ runnable_load = 0;
+ max_spare_cap = 0;
for_each_cpu(i, sched_group_cpus(group)) {
/* Bias balancing toward cpus of our domain */
@@ -5238,22 +5445,84 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
else
load = target_load(i, load_idx);
- avg_load += load;
+ runnable_load += load;
+
+ avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
+
+ spare_cap = capacity_spare_wake(i, p);
+
+ if (spare_cap > max_spare_cap)
+ max_spare_cap = spare_cap;
}
/* Adjust by relative CPU capacity of the group */
- avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
+ avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
+ group->sgc->capacity;
+ runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
+ group->sgc->capacity;
if (local_group) {
- this_load = avg_load;
- } else if (avg_load < min_load) {
- min_load = avg_load;
- idlest = group;
+ this_runnable_load = runnable_load;
+ this_avg_load = avg_load;
+ this_spare = max_spare_cap;
+ } else {
+ if (min_runnable_load > (runnable_load + imbalance)) {
+ /*
+ * The runnable load is significantly smaller
+ * so we can pick this new cpu
+ */
+ min_runnable_load = runnable_load;
+ min_avg_load = avg_load;
+ idlest = group;
+ } else if ((runnable_load < (min_runnable_load + imbalance)) &&
+ (100*min_avg_load > imbalance_scale*avg_load)) {
+ /*
+ * The runnable loads are close so take the
+ * blocked load into account through avg_load.
+ */
+ min_avg_load = avg_load;
+ idlest = group;
+ }
+
+ if (most_spare < max_spare_cap) {
+ most_spare = max_spare_cap;
+ most_spare_sg = group;
+ }
}
} while (group = group->next, group != sd->groups);
- if (!idlest || 100*this_load < imbalance*min_load)
+ /*
+ * The cross-over point between using spare capacity or least load
+ * is too conservative for high utilization tasks on partially
+ * utilized systems if we require spare_capacity > task_util(p),
+ * so we allow for some task stuffing by using
+ * spare_capacity > task_util(p)/2.
+ *
+ * Spare capacity can't be used for fork because the utilization has
+ * not been set yet, we must first select a rq to compute the initial
+ * utilization.
+ */
+ if (sd_flag & SD_BALANCE_FORK)
+ goto skip_spare;
+
+ if (this_spare > task_util(p) / 2 &&
+ imbalance_scale*this_spare > 100*most_spare)
+ return NULL;
+
+ if (most_spare > task_util(p) / 2)
+ return most_spare_sg;
+
+skip_spare:
+ if (!idlest)
+ return NULL;
+
+ if (min_runnable_load > (this_runnable_load + imbalance))
return NULL;
+
+ if ((this_runnable_load < (min_runnable_load + imbalance)) &&
+ (100*this_avg_load < imbalance_scale*min_avg_load))
+ return NULL;
+
return idlest;
}
@@ -5590,6 +5859,24 @@ static inline int task_util(struct task_struct *p)
}
/*
+ * cpu_util_wake: Compute cpu utilization with any contributions from
+ * the waking task p removed.
+ */
+static int cpu_util_wake(int cpu, struct task_struct *p)
+{
+ unsigned long util, capacity;
+
+ /* Task has no contribution or is new */
+ if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
+ return cpu_util(cpu);
+
+ capacity = capacity_orig_of(cpu);
+ util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
+
+ return (util >= capacity) ? capacity : util;
+}
+
+/*
* Disable WAKE_AFFINE in the case where task @p doesn't fit in the
* capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
*
@@ -5607,6 +5894,9 @@ static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
if (max_cap - min_cap < max_cap >> 3)
return 0;
+ /* Bring task utilization in sync with prev_cpu */
+ sync_entity_load_avg(&p->se);
+
return min_cap * 1024 < task_util(p) * capacity_margin;
}
@@ -6641,6 +6931,10 @@ static void update_blocked_averages(int cpu)
if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
update_tg_load_avg(cfs_rq, 0);
+
+ /* Propagate pending load changes to the parent */
+ if (cfs_rq->tg->se[cpu])
+ update_load_avg(cfs_rq->tg->se[cpu], 0);
}
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
@@ -6845,13 +7139,14 @@ static void update_cpu_capacity(struct sched_domain *sd, int cpu)
cpu_rq(cpu)->cpu_capacity = capacity;
sdg->sgc->capacity = capacity;
+ sdg->sgc->min_capacity = capacity;
}
void update_group_capacity(struct sched_domain *sd, int cpu)
{
struct sched_domain *child = sd->child;
struct sched_group *group, *sdg = sd->groups;
- unsigned long capacity;
+ unsigned long capacity, min_capacity;
unsigned long interval;
interval = msecs_to_jiffies(sd->balance_interval);
@@ -6864,6 +7159,7 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
}
capacity = 0;
+ min_capacity = ULONG_MAX;
if (child->flags & SD_OVERLAP) {
/*
@@ -6888,11 +7184,12 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
*/
if (unlikely(!rq->sd)) {
capacity += capacity_of(cpu);
- continue;
+ } else {
+ sgc = rq->sd->groups->sgc;
+ capacity += sgc->capacity;
}
- sgc = rq->sd->groups->sgc;
- capacity += sgc->capacity;
+ min_capacity = min(capacity, min_capacity);
}
} else {
/*
@@ -6902,12 +7199,16 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
group = child->groups;
do {
- capacity += group->sgc->capacity;
+ struct sched_group_capacity *sgc = group->sgc;
+
+ capacity += sgc->capacity;
+ min_capacity = min(sgc->min_capacity, min_capacity);
group = group->next;
} while (group != child->groups);
}
sdg->sgc->capacity = capacity;
+ sdg->sgc->min_capacity = min_capacity;
}
/*
@@ -6930,8 +7231,8 @@ check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
* cpumask covering 1 cpu of the first group and 3 cpus of the second group.
* Something like:
*
- * { 0 1 2 3 } { 4 5 6 7 }
- * * * * *
+ * { 0 1 2 3 } { 4 5 6 7 }
+ * * * * *
*
* If we were to balance group-wise we'd place two tasks in the first group and
* two tasks in the second group. Clearly this is undesired as it will overload
@@ -7002,6 +7303,17 @@ group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
return false;
}
+/*
+ * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
+ * per-CPU capacity than sched_group ref.
+ */
+static inline bool
+group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
+{
+ return sg->sgc->min_capacity * capacity_margin <
+ ref->sgc->min_capacity * 1024;
+}
+
static inline enum
group_type group_classify(struct sched_group *group,
struct sg_lb_stats *sgs)
@@ -7105,6 +7417,20 @@ static bool update_sd_pick_busiest(struct lb_env *env,
if (sgs->avg_load <= busiest->avg_load)
return false;
+ if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
+ goto asym_packing;
+
+ /*
+ * Candidate sg has no more than one task per CPU and
+ * has higher per-CPU capacity. Migrating tasks to less
+ * capable CPUs may harm throughput. Maximize throughput,
+ * power/energy consequences are not considered.
+ */
+ if (sgs->sum_nr_running <= sgs->group_weight &&
+ group_smaller_cpu_capacity(sds->local, sg))
+ return false;
+
+asym_packing:
/* This is the busiest node in its class. */
if (!(env->sd->flags & SD_ASYM_PACKING))
return true;
@@ -7113,16 +7439,18 @@ static bool update_sd_pick_busiest(struct lb_env *env,
if (env->idle == CPU_NOT_IDLE)
return true;
/*
- * ASYM_PACKING needs to move all the work to the lowest
- * numbered CPUs in the group, therefore mark all groups
- * higher than ourself as busy.
+ * ASYM_PACKING needs to move all the work to the highest
+ * prority CPUs in the group, therefore mark all groups
+ * of lower priority than ourself as busy.
*/
- if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
+ if (sgs->sum_nr_running &&
+ sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
if (!sds->busiest)
return true;
- /* Prefer to move from highest possible cpu's work */
- if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
+ /* Prefer to move from lowest priority cpu's work */
+ if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
+ sg->asym_prefer_cpu))
return true;
}
@@ -7274,8 +7602,8 @@ static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
if (!sds->busiest)
return 0;
- busiest_cpu = group_first_cpu(sds->busiest);
- if (env->dst_cpu > busiest_cpu)
+ busiest_cpu = sds->busiest->asym_prefer_cpu;
+ if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
return 0;
env->imbalance = DIV_ROUND_CLOSEST(
@@ -7613,10 +7941,11 @@ static int need_active_balance(struct lb_env *env)
/*
* ASYM_PACKING needs to force migrate tasks from busy but
- * higher numbered CPUs in order to pack all tasks in the
- * lowest numbered CPUs.
+ * lower priority CPUs in order to pack all tasks in the
+ * highest priority CPUs.
*/
- if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
+ if ((sd->flags & SD_ASYM_PACKING) &&
+ sched_asym_prefer(env->dst_cpu, env->src_cpu))
return 1;
}
@@ -8465,7 +8794,7 @@ static inline bool nohz_kick_needed(struct rq *rq)
unsigned long now = jiffies;
struct sched_domain_shared *sds;
struct sched_domain *sd;
- int nr_busy, cpu = rq->cpu;
+ int nr_busy, i, cpu = rq->cpu;
bool kick = false;
if (unlikely(rq->idle_balance))
@@ -8516,12 +8845,18 @@ static inline bool nohz_kick_needed(struct rq *rq)
}
sd = rcu_dereference(per_cpu(sd_asym, cpu));
- if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
- sched_domain_span(sd)) < cpu)) {
- kick = true;
- goto unlock;
- }
+ if (sd) {
+ for_each_cpu(i, sched_domain_span(sd)) {
+ if (i == cpu ||
+ !cpumask_test_cpu(i, nohz.idle_cpus_mask))
+ continue;
+ if (sched_asym_prefer(i, cpu)) {
+ kick = true;
+ goto unlock;
+ }
+ }
+ }
unlock:
rcu_read_unlock();
return kick;
@@ -8687,32 +9022,45 @@ static inline bool vruntime_normalized(struct task_struct *p)
return false;
}
-static void detach_task_cfs_rq(struct task_struct *p)
+#ifdef CONFIG_FAIR_GROUP_SCHED
+/*
+ * Propagate the changes of the sched_entity across the tg tree to make it
+ * visible to the root
+ */
+static void propagate_entity_cfs_rq(struct sched_entity *se)
{
- struct sched_entity *se = &p->se;
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- u64 now = cfs_rq_clock_task(cfs_rq);
+ struct cfs_rq *cfs_rq;
- if (!vruntime_normalized(p)) {
- /*
- * Fix up our vruntime so that the current sleep doesn't
- * cause 'unlimited' sleep bonus.
- */
- place_entity(cfs_rq, se, 0);
- se->vruntime -= cfs_rq->min_vruntime;
+ /* Start to propagate at parent */
+ se = se->parent;
+
+ for_each_sched_entity(se) {
+ cfs_rq = cfs_rq_of(se);
+
+ if (cfs_rq_throttled(cfs_rq))
+ break;
+
+ update_load_avg(se, UPDATE_TG);
}
+}
+#else
+static void propagate_entity_cfs_rq(struct sched_entity *se) { }
+#endif
+
+static void detach_entity_cfs_rq(struct sched_entity *se)
+{
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
/* Catch up with the cfs_rq and remove our load when we leave */
- update_cfs_rq_load_avg(now, cfs_rq, false);
+ update_load_avg(se, 0);
detach_entity_load_avg(cfs_rq, se);
update_tg_load_avg(cfs_rq, false);
+ propagate_entity_cfs_rq(se);
}
-static void attach_task_cfs_rq(struct task_struct *p)
+static void attach_entity_cfs_rq(struct sched_entity *se)
{
- struct sched_entity *se = &p->se;
struct cfs_rq *cfs_rq = cfs_rq_of(se);
- u64 now = cfs_rq_clock_task(cfs_rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
@@ -8722,10 +9070,36 @@ static void attach_task_cfs_rq(struct task_struct *p)
se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
- /* Synchronize task with its cfs_rq */
- update_cfs_rq_load_avg(now, cfs_rq, false);
+ /* Synchronize entity with its cfs_rq */
+ update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
attach_entity_load_avg(cfs_rq, se);
update_tg_load_avg(cfs_rq, false);
+ propagate_entity_cfs_rq(se);
+}
+
+static void detach_task_cfs_rq(struct task_struct *p)
+{
+ struct sched_entity *se = &p->se;
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
+
+ if (!vruntime_normalized(p)) {
+ /*
+ * Fix up our vruntime so that the current sleep doesn't
+ * cause 'unlimited' sleep bonus.
+ */
+ place_entity(cfs_rq, se, 0);
+ se->vruntime -= cfs_rq->min_vruntime;
+ }
+
+ detach_entity_cfs_rq(se);
+}
+
+static void attach_task_cfs_rq(struct task_struct *p)
+{
+ struct sched_entity *se = &p->se;
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
+
+ attach_entity_cfs_rq(se);
if (!vruntime_normalized(p))
se->vruntime += cfs_rq->min_vruntime;
@@ -8779,6 +9153,9 @@ void init_cfs_rq(struct cfs_rq *cfs_rq)
cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
#ifdef CONFIG_SMP
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ cfs_rq->propagate_avg = 0;
+#endif
atomic_long_set(&cfs_rq->removed_load_avg, 0);
atomic_long_set(&cfs_rq->removed_util_avg, 0);
#endif
@@ -8887,7 +9264,7 @@ void online_fair_sched_group(struct task_group *tg)
se = tg->se[i];
raw_spin_lock_irq(&rq->lock);
- post_init_entity_util_avg(se);
+ attach_entity_cfs_rq(se);
sync_throttle(tg, i);
raw_spin_unlock_irq(&rq->lock);
}
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 055f935d4421..7b34c7826ca5 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -404,6 +404,7 @@ struct cfs_rq {
unsigned long runnable_load_avg;
#ifdef CONFIG_FAIR_GROUP_SCHED
unsigned long tg_load_avg_contrib;
+ unsigned long propagate_avg;
#endif
atomic_long_t removed_load_avg, removed_util_avg;
#ifndef CONFIG_64BIT
@@ -539,6 +540,11 @@ struct dl_rq {
#ifdef CONFIG_SMP
+static inline bool sched_asym_prefer(int a, int b)
+{
+ return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
+}
+
/*
* We add the notion of a root-domain which will be used to define per-domain
* variables. Each exclusive cpuset essentially defines an island domain by
@@ -623,6 +629,7 @@ struct rq {
#ifdef CONFIG_FAIR_GROUP_SCHED
/* list of leaf cfs_rq on this cpu: */
struct list_head leaf_cfs_rq_list;
+ struct list_head *tmp_alone_branch;
#endif /* CONFIG_FAIR_GROUP_SCHED */
/*
@@ -892,7 +899,8 @@ struct sched_group_capacity {
* CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
* for a single CPU.
*/
- unsigned int capacity;
+ unsigned long capacity;
+ unsigned long min_capacity; /* Min per-CPU capacity in group */
unsigned long next_update;
int imbalance; /* XXX unrelated to capacity but shared group state */
@@ -905,6 +913,7 @@ struct sched_group {
unsigned int group_weight;
struct sched_group_capacity *sgc;
+ int asym_prefer_cpu; /* cpu of highest priority in group */
/*
* The CPUs this group covers.
diff --git a/kernel/sysctl.c b/kernel/sysctl.c
index 706309f9ed84..739fb17371af 100644
--- a/kernel/sysctl.c
+++ b/kernel/sysctl.c
@@ -347,13 +347,6 @@ static struct ctl_table kern_table[] = {
.mode = 0644,
.proc_handler = proc_dointvec,
},
- {
- .procname = "sched_shares_window_ns",
- .data = &sysctl_sched_shares_window,
- .maxlen = sizeof(unsigned int),
- .mode = 0644,
- .proc_handler = proc_dointvec,
- },
#ifdef CONFIG_SCHEDSTATS
{
.procname = "sched_schedstats",
diff --git a/kernel/time/posix-cpu-timers.c b/kernel/time/posix-cpu-timers.c
index 39008d78927a..e887ffc8eef3 100644
--- a/kernel/time/posix-cpu-timers.c
+++ b/kernel/time/posix-cpu-timers.c
@@ -133,9 +133,9 @@ static inline unsigned long long prof_ticks(struct task_struct *p)
}
static inline unsigned long long virt_ticks(struct task_struct *p)
{
- cputime_t utime;
+ cputime_t utime, stime;
- task_cputime(p, &utime, NULL);
+ task_cputime(p, &utime, &stime);
return cputime_to_expires(utime);
}