diff options
-rw-r--r-- | drivers/dma/stm32-dma.c | 90 |
1 files changed, 77 insertions, 13 deletions
diff --git a/drivers/dma/stm32-dma.c b/drivers/dma/stm32-dma.c index dde796686736..88d9c6c4389f 100644 --- a/drivers/dma/stm32-dma.c +++ b/drivers/dma/stm32-dma.c @@ -1042,33 +1042,97 @@ static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan) return ndtr << width; } +/** + * stm32_dma_is_current_sg - check that expected sg_req is currently transferred + * @chan: dma channel + * + * This function called when IRQ are disable, checks that the hardware has not + * switched on the next transfer in double buffer mode. The test is done by + * comparing the next_sg memory address with the hardware related register + * (based on CT bit value). + * + * Returns true if expected current transfer is still running or double + * buffer mode is not activated. + */ +static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan) +{ + struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); + struct stm32_dma_sg_req *sg_req; + u32 dma_scr, dma_smar, id; + + id = chan->id; + dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); + + if (!(dma_scr & STM32_DMA_SCR_DBM)) + return true; + + sg_req = &chan->desc->sg_req[chan->next_sg]; + + if (dma_scr & STM32_DMA_SCR_CT) { + dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)); + return (dma_smar == sg_req->chan_reg.dma_sm0ar); + } + + dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)); + + return (dma_smar == sg_req->chan_reg.dma_sm1ar); +} + static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan, struct stm32_dma_desc *desc, u32 next_sg) { u32 modulo, burst_size; - u32 residue = 0; + u32 residue; + u32 n_sg = next_sg; + struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg]; int i; /* - * In cyclic mode, for the last period, residue = remaining bytes from - * NDTR + * Calculate the residue means compute the descriptors + * information: + * - the sg_req currently transferred + * - the Hardware remaining position in this sg (NDTR bits field). + * + * A race condition may occur if DMA is running in cyclic or double + * buffer mode, since the DMA register are automatically reloaded at end + * of period transfer. The hardware may have switched to the next + * transfer (CT bit updated) just before the position (SxNDTR reg) is + * read. + * In this case the SxNDTR reg could (or not) correspond to the new + * transfer position, and not the expected one. + * The strategy implemented in the stm32 driver is to: + * - read the SxNDTR register + * - crosscheck that hardware is still in current transfer. + * In case of switch, we can assume that the DMA is at the beginning of + * the next transfer. So we approximate the residue in consequence, by + * pointing on the beginning of next transfer. + * + * This race condition doesn't apply for none cyclic mode, as double + * buffer is not used. In such situation registers are updated by the + * software. */ - if (chan->desc->cyclic && next_sg == 0) { - residue = stm32_dma_get_remaining_bytes(chan); - goto end; + + residue = stm32_dma_get_remaining_bytes(chan); + + if (!stm32_dma_is_current_sg(chan)) { + n_sg++; + if (n_sg == chan->desc->num_sgs) + n_sg = 0; + residue = sg_req->len; } /* - * For all other periods in cyclic mode, and in sg mode, - * residue = remaining bytes from NDTR + remaining periods/sg to be - * transferred + * In cyclic mode, for the last period, residue = remaining bytes + * from NDTR, + * else for all other periods in cyclic mode, and in sg mode, + * residue = remaining bytes from NDTR + remaining + * periods/sg to be transferred */ - for (i = next_sg; i < desc->num_sgs; i++) - residue += desc->sg_req[i].len; - residue += stm32_dma_get_remaining_bytes(chan); + if (!chan->desc->cyclic || n_sg != 0) + for (i = n_sg; i < desc->num_sgs; i++) + residue += desc->sg_req[i].len; -end: if (!chan->mem_burst) return residue; |