diff options
167 files changed, 6836 insertions, 814 deletions
diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile index bec06659e0eb..9c7d92d03f62 100644 --- a/Documentation/DocBook/Makefile +++ b/Documentation/DocBook/Makefile @@ -15,7 +15,7 @@ DOCBOOKS := z8530book.xml device-drivers.xml \ 80211.xml debugobjects.xml sh.xml regulator.xml \ alsa-driver-api.xml writing-an-alsa-driver.xml \ tracepoint.xml drm.xml media_api.xml w1.xml \ - writing_musb_glue_layer.xml + writing_musb_glue_layer.xml crypto-API.xml include Documentation/DocBook/media/Makefile diff --git a/Documentation/DocBook/crypto-API.tmpl b/Documentation/DocBook/crypto-API.tmpl new file mode 100644 index 000000000000..c763d30f4893 --- /dev/null +++ b/Documentation/DocBook/crypto-API.tmpl @@ -0,0 +1,1253 @@ +<?xml version="1.0" encoding="UTF-8"?> +<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" + "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> + +<book id="KernelCryptoAPI"> + <bookinfo> + <title>Linux Kernel Crypto API</title> + + <authorgroup> + <author> + <firstname>Stephan</firstname> + <surname>Mueller</surname> + <affiliation> + <address> + <email>smueller@chronox.de</email> + </address> + </affiliation> + </author> + <author> + <firstname>Marek</firstname> + <surname>Vasut</surname> + <affiliation> + <address> + <email>marek@denx.de</email> + </address> + </affiliation> + </author> + </authorgroup> + + <copyright> + <year>2014</year> + <holder>Stephan Mueller</holder> + </copyright> + + + <legalnotice> + <para> + This documentation is free software; you can redistribute + it and/or modify it under the terms of the GNU General Public + License as published by the Free Software Foundation; either + version 2 of the License, or (at your option) any later + version. + </para> + + <para> + This program is distributed in the hope that it will be + useful, but WITHOUT ANY WARRANTY; without even the implied + warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the GNU General Public License for more details. + </para> + + <para> + You should have received a copy of the GNU General Public + License along with this program; if not, write to the Free + Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, + MA 02111-1307 USA + </para> + + <para> + For more details see the file COPYING in the source + distribution of Linux. + </para> + </legalnotice> + </bookinfo> + + <toc></toc> + + <chapter id="Intro"> + <title>Kernel Crypto API Interface Specification</title> + + <sect1><title>Introduction</title> + + <para> + The kernel crypto API offers a rich set of cryptographic ciphers as + well as other data transformation mechanisms and methods to invoke + these. This document contains a description of the API and provides + example code. + </para> + + <para> + To understand and properly use the kernel crypto API a brief + explanation of its structure is given. Based on the architecture, + the API can be separated into different components. Following the + architecture specification, hints to developers of ciphers are + provided. Pointers to the API function call documentation are + given at the end. + </para> + + <para> + The kernel crypto API refers to all algorithms as "transformations". + Therefore, a cipher handle variable usually has the name "tfm". + Besides cryptographic operations, the kernel crypto API also knows + compression transformations and handles them the same way as ciphers. + </para> + + <para> + The kernel crypto API serves the following entity types: + + <itemizedlist> + <listitem> + <para>consumers requesting cryptographic services</para> + </listitem> + <listitem> + <para>data transformation implementations (typically ciphers) + that can be called by consumers using the kernel crypto + API</para> + </listitem> + </itemizedlist> + </para> + + <para> + This specification is intended for consumers of the kernel crypto + API as well as for developers implementing ciphers. This API + specification, however, does not discusses all API calls available + to data transformation implementations (i.e. implementations of + ciphers and other transformations (such as CRC or even compression + algorithms) that can register with the kernel crypto API). + </para> + + <para> + Note: The terms "transformation" and cipher algorithm are used + interchangably. + </para> + </sect1> + + <sect1><title>Terminology</title> + <para> + The transformation implementation is an actual code or interface + to hardware which implements a certain transformation with precisely + defined behavior. + </para> + + <para> + The transformation object (TFM) is an instance of a transformation + implementation. There can be multiple transformation objects + associated with a single transformation implementation. Each of + those transformation objects is held by a crypto API consumer or + another transformation. Transformation object is allocated when a + crypto API consumer requests a transformation implementation. + The consumer is then provided with a structure, which contains + a transformation object (TFM). + </para> + + <para> + The structure that contains transformation objects may also be + referred to as a "cipher handle". Such a cipher handle is always + subject to the following phases that are reflected in the API calls + applicable to such a cipher handle: + </para> + + <orderedlist> + <listitem> + <para>Initialization of a cipher handle.</para> + </listitem> + <listitem> + <para>Execution of all intended cipher operations applicable + for the handle where the cipher handle must be furnished to + every API call.</para> + </listitem> + <listitem> + <para>Destruction of a cipher handle.</para> + </listitem> + </orderedlist> + + <para> + When using the initialization API calls, a cipher handle is + created and returned to the consumer. Therefore, please refer + to all initialization API calls that refer to the data + structure type a consumer is expected to receive and subsequently + to use. The initialization API calls have all the same naming + conventions of crypto_alloc_*. + </para> + + <para> + The transformation context is private data associated with + the transformation object. + </para> + </sect1> + </chapter> + + <chapter id="Architecture"><title>Kernel Crypto API Architecture</title> + <sect1><title>Cipher algorithm types</title> + <para> + The kernel crypto API provides different API calls for the + following cipher types: + + <itemizedlist> + <listitem><para>Symmetric ciphers</para></listitem> + <listitem><para>AEAD ciphers</para></listitem> + <listitem><para>Message digest, including keyed message digest</para></listitem> + <listitem><para>Random number generation</para></listitem> + <listitem><para>User space interface</para></listitem> + </itemizedlist> + </para> + </sect1> + + <sect1><title>Ciphers And Templates</title> + <para> + The kernel crypto API provides implementations of single block + ciphers and message digests. In addition, the kernel crypto API + provides numerous "templates" that can be used in conjunction + with the single block ciphers and message digests. Templates + include all types of block chaining mode, the HMAC mechanism, etc. + </para> + + <para> + Single block ciphers and message digests can either be directly + used by a caller or invoked together with a template to form + multi-block ciphers or keyed message digests. + </para> + + <para> + A single block cipher may even be called with multiple templates. + However, templates cannot be used without a single cipher. + </para> + + <para> + See /proc/crypto and search for "name". For example: + + <itemizedlist> + <listitem><para>aes</para></listitem> + <listitem><para>ecb(aes)</para></listitem> + <listitem><para>cmac(aes)</para></listitem> + <listitem><para>ccm(aes)</para></listitem> + <listitem><para>rfc4106(gcm(aes))</para></listitem> + <listitem><para>sha1</para></listitem> + <listitem><para>hmac(sha1)</para></listitem> + <listitem><para>authenc(hmac(sha1),cbc(aes))</para></listitem> + </itemizedlist> + </para> + + <para> + In these examples, "aes" and "sha1" are the ciphers and all + others are the templates. + </para> + </sect1> + + <sect1><title>Synchronous And Asynchronous Operation</title> + <para> + The kernel crypto API provides synchronous and asynchronous + API operations. + </para> + + <para> + When using the synchronous API operation, the caller invokes + a cipher operation which is performed synchronously by the + kernel crypto API. That means, the caller waits until the + cipher operation completes. Therefore, the kernel crypto API + calls work like regular function calls. For synchronous + operation, the set of API calls is small and conceptually + similar to any other crypto library. + </para> + + <para> + Asynchronous operation is provided by the kernel crypto API + which implies that the invocation of a cipher operation will + complete almost instantly. That invocation triggers the + cipher operation but it does not signal its completion. Before + invoking a cipher operation, the caller must provide a callback + function the kernel crypto API can invoke to signal the + completion of the cipher operation. Furthermore, the caller + must ensure it can handle such asynchronous events by applying + appropriate locking around its data. The kernel crypto API + does not perform any special serialization operation to protect + the caller's data integrity. + </para> + </sect1> + + <sect1><title>Crypto API Cipher References And Priority</title> + <para> + A cipher is referenced by the caller with a string. That string + has the following semantics: + + <programlisting> + template(single block cipher) + </programlisting> + + where "template" and "single block cipher" is the aforementioned + template and single block cipher, respectively. If applicable, + additional templates may enclose other templates, such as + + <programlisting> + template1(template2(single block cipher))) + </programlisting> + </para> + + <para> + The kernel crypto API may provide multiple implementations of a + template or a single block cipher. For example, AES on newer + Intel hardware has the following implementations: AES-NI, + assembler implementation, or straight C. Now, when using the + string "aes" with the kernel crypto API, which cipher + implementation is used? The answer to that question is the + priority number assigned to each cipher implementation by the + kernel crypto API. When a caller uses the string to refer to a + cipher during initialization of a cipher handle, the kernel + crypto API looks up all implementations providing an + implementation with that name and selects the implementation + with the highest priority. + </para> + + <para> + Now, a caller may have the need to refer to a specific cipher + implementation and thus does not want to rely on the + priority-based selection. To accommodate this scenario, the + kernel crypto API allows the cipher implementation to register + a unique name in addition to common names. When using that + unique name, a caller is therefore always sure to refer to + the intended cipher implementation. + </para> + + <para> + The list of available ciphers is given in /proc/crypto. However, + that list does not specify all possible permutations of + templates and ciphers. Each block listed in /proc/crypto may + contain the following information -- if one of the components + listed as follows are not applicable to a cipher, it is not + displayed: + </para> + + <itemizedlist> + <listitem> + <para>name: the generic name of the cipher that is subject + to the priority-based selection -- this name can be used by + the cipher allocation API calls (all names listed above are + examples for such generic names)</para> + </listitem> + <listitem> + <para>driver: the unique name of the cipher -- this name can + be used by the cipher allocation API calls</para> + </listitem> + <listitem> + <para>module: the kernel module providing the cipher + implementation (or "kernel" for statically linked ciphers)</para> + </listitem> + <listitem> + <para>priority: the priority value of the cipher implementation</para> + </listitem> + <listitem> + <para>refcnt: the reference count of the respective cipher + (i.e. the number of current consumers of this cipher)</para> + </listitem> + <listitem> + <para>selftest: specification whether the self test for the + cipher passed</para> + </listitem> + <listitem> + <para>type: + <itemizedlist> + <listitem> + <para>blkcipher for synchronous block ciphers</para> + </listitem> + <listitem> + <para>ablkcipher for asynchronous block ciphers</para> + </listitem> + <listitem> + <para>cipher for single block ciphers that may be used with + an additional template</para> + </listitem> + <listitem> + <para>shash for synchronous message digest</para> + </listitem> + <listitem> + <para>ahash for asynchronous message digest</para> + </listitem> + <listitem> + <para>aead for AEAD cipher type</para> + </listitem> + <listitem> + <para>compression for compression type transformations</para> + </listitem> + <listitem> + <para>rng for random number generator</para> + </listitem> + <listitem> + <para>givcipher for cipher with associated IV generator + (see the geniv entry below for the specification of the + IV generator type used by the cipher implementation)</para> + </listitem> + </itemizedlist> + </para> + </listitem> + <listitem> + <para>blocksize: blocksize of cipher in bytes</para> + </listitem> + <listitem> + <para>keysize: key size in bytes</para> + </listitem> + <listitem> + <para>ivsize: IV size in bytes</para> + </listitem> + <listitem> + <para>seedsize: required size of seed data for random number + generator</para> + </listitem> + <listitem> + <para>digestsize: output size of the message digest</para> + </listitem> + <listitem> + <para>geniv: IV generation type: + <itemizedlist> + <listitem> + <para>eseqiv for encrypted sequence number based IV + generation</para> + </listitem> + <listitem> + <para>seqiv for sequence number based IV generation</para> + </listitem> + <listitem> + <para>chainiv for chain iv generation</para> + </listitem> + <listitem> + <para><builtin> is a marker that the cipher implements + IV generation and handling as it is specific to the given + cipher</para> + </listitem> + </itemizedlist> + </para> + </listitem> + </itemizedlist> + </sect1> + + <sect1><title>Key Sizes</title> + <para> + When allocating a cipher handle, the caller only specifies the + cipher type. Symmetric ciphers, however, typically support + multiple key sizes (e.g. AES-128 vs. AES-192 vs. AES-256). + These key sizes are determined with the length of the provided + key. Thus, the kernel crypto API does not provide a separate + way to select the particular symmetric cipher key size. + </para> + </sect1> + + <sect1><title>Cipher Allocation Type And Masks</title> + <para> + The different cipher handle allocation functions allow the + specification of a type and mask flag. Both parameters have + the following meaning (and are therefore not covered in the + subsequent sections). + </para> + + <para> + The type flag specifies the type of the cipher algorithm. + The caller usually provides a 0 when the caller wants the + default handling. Otherwise, the caller may provide the + following selections which match the the aforementioned + cipher types: + </para> + + <itemizedlist> + <listitem> + <para>CRYPTO_ALG_TYPE_CIPHER Single block cipher</para> + </listitem> + <listitem> + <para>CRYPTO_ALG_TYPE_COMPRESS Compression</para> + </listitem> + <listitem> + <para>CRYPTO_ALG_TYPE_AEAD Authenticated Encryption with + Associated Data (MAC)</para> + </listitem> + <listitem> + <para>CRYPTO_ALG_TYPE_BLKCIPHER Synchronous multi-block cipher</para> + </listitem> + <listitem> + <para>CRYPTO_ALG_TYPE_ABLKCIPHER Asynchronous multi-block cipher</para> + </listitem> + <listitem> + <para>CRYPTO_ALG_TYPE_GIVCIPHER Asynchronous multi-block + cipher packed together with an IV generator (see geniv field + in the /proc/crypto listing for the known IV generators)</para> + </listitem> + <listitem> + <para>CRYPTO_ALG_TYPE_DIGEST Raw message digest</para> + </listitem> + <listitem> + <para>CRYPTO_ALG_TYPE_HASH Alias for CRYPTO_ALG_TYPE_DIGEST</para> + </listitem> + <listitem> + <para>CRYPTO_ALG_TYPE_SHASH Synchronous multi-block hash</para> + </listitem> + <listitem> + <para>CRYPTO_ALG_TYPE_AHASH Asynchronous multi-block hash</para> + </listitem> + <listitem> + <para>CRYPTO_ALG_TYPE_RNG Random Number Generation</para> + </listitem> + <listitem> + <para>CRYPTO_ALG_TYPE_PCOMPRESS Enhanced version of + CRYPTO_ALG_TYPE_COMPRESS allowing for segmented compression / + decompression instead of performing the operation on one + segment only. CRYPTO_ALG_TYPE_PCOMPRESS is intended to replace + CRYPTO_ALG_TYPE_COMPRESS once existing consumers are converted.</para> + </listitem> + </itemizedlist> + + <para> + The mask flag restricts the type of cipher. The only allowed + flag is CRYPTO_ALG_ASYNC to restrict the cipher lookup function + to asynchronous ciphers. Usually, a caller provides a 0 for the + mask flag. + </para> + + <para> + When the caller provides a mask and type specification, the + caller limits the search the kernel crypto API can perform for + a suitable cipher implementation for the given cipher name. + That means, even when a caller uses a cipher name that exists + during its initialization call, the kernel crypto API may not + select it due to the used type and mask field. + </para> + </sect1> + </chapter> + + <chapter id="Development"><title>Developing Cipher Algorithms</title> + <sect1><title>Registering And Unregistering Transformation</title> + <para> + There are three distinct types of registration functions in + the Crypto API. One is used to register a generic cryptographic + transformation, while the other two are specific to HASH + transformations and COMPRESSion. We will discuss the latter + two in a separate chapter, here we will only look at the + generic ones. + </para> + + <para> + Before discussing the register functions, the data structure + to be filled with each, struct crypto_alg, must be considered + -- see below for a description of this data structure. + </para> + + <para> + The generic registration functions can be found in + include/linux/crypto.h and their definition can be seen below. + The former function registers a single transformation, while + the latter works on an array of transformation descriptions. + The latter is useful when registering transformations in bulk. + </para> + + <programlisting> + int crypto_register_alg(struct crypto_alg *alg); + int crypto_register_algs(struct crypto_alg *algs, int count); + </programlisting> + + <para> + The counterparts to those functions are listed below. + </para> + + <programlisting> + int crypto_unregister_alg(struct crypto_alg *alg); + int crypto_unregister_algs(struct crypto_alg *algs, int count); + </programlisting> + + <para> + Notice that both registration and unregistration functions + do return a value, so make sure to handle errors. A return + code of zero implies success. Any return code < 0 implies + an error. + </para> + + <para> + The bulk registration / unregistration functions require + that struct crypto_alg is an array of count size. These + functions simply loop over that array and register / + unregister each individual algorithm. If an error occurs, + the loop is terminated at the offending algorithm definition. + That means, the algorithms prior to the offending algorithm + are successfully registered. Note, the caller has no way of + knowing which cipher implementations have successfully + registered. If this is important to know, the caller should + loop through the different implementations using the single + instance *_alg functions for each individual implementation. + </para> + </sect1> + + <sect1><title>Single-Block Symmetric Ciphers [CIPHER]</title> + <para> + Example of transformations: aes, arc4, ... + </para> + + <para> + This section describes the simplest of all transformation + implementations, that being the CIPHER type used for symmetric + ciphers. The CIPHER type is used for transformations which + operate on exactly one block at a time and there are no + dependencies between blocks at all. + </para> + + <sect2><title>Registration specifics</title> + <para> + The registration of [CIPHER] algorithm is specific in that + struct crypto_alg field .cra_type is empty. The .cra_u.cipher + has to be filled in with proper callbacks to implement this + transformation. + </para> + + <para> + See struct cipher_alg below. + </para> + </sect2> + + <sect2><title>Cipher Definition With struct cipher_alg</title> + <para> + Struct cipher_alg defines a single block cipher. + </para> + + <para> + Here are schematics of how these functions are called when + operated from other part of the kernel. Note that the + .cia_setkey() call might happen before or after any of these + schematics happen, but must not happen during any of these + are in-flight. + </para> + + <para> + <programlisting> + KEY ---. PLAINTEXT ---. + v v + .cia_setkey() -> .cia_encrypt() + | + '-----> CIPHERTEXT + </programlisting> + </para> + + <para> + Please note that a pattern where .cia_setkey() is called + multiple times is also valid: + </para> + + <para> + <programlisting> + + KEY1 --. PLAINTEXT1 --. KEY2 --. PLAINTEXT2 --. + v v v v + .cia_setkey() -> .cia_encrypt() -> .cia_setkey() -> .cia_encrypt() + | | + '---> CIPHERTEXT1 '---> CIPHERTEXT2 + </programlisting> + </para> + + </sect2> + </sect1> + + <sect1><title>Multi-Block Ciphers [BLKCIPHER] [ABLKCIPHER]</title> + <para> + Example of transformations: cbc(aes), ecb(arc4), ... + </para> + + <para> + This section describes the multi-block cipher transformation + implementations for both synchronous [BLKCIPHER] and + asynchronous [ABLKCIPHER] case. The multi-block ciphers are + used for transformations which operate on scatterlists of + data supplied to the transformation functions. They output + the result into a scatterlist of data as well. + </para> + + <sect2><title>Registration Specifics</title> + + <para> + The registration of [BLKCIPHER] or [ABLKCIPHER] algorithms + is one of the most standard procedures throughout the crypto API. + </para> + + <para> + Note, if a cipher implementation requires a proper alignment + of data, the caller should use the functions of + crypto_blkcipher_alignmask() or crypto_ablkcipher_alignmask() + respectively to identify a memory alignment mask. The kernel + crypto API is able to process requests that are unaligned. + This implies, however, additional overhead as the kernel + crypto API needs to perform the realignment of the data which + may imply moving of data. + </para> + </sect2> + + <sect2><title>Cipher Definition With struct blkcipher_alg and ablkcipher_alg</title> + <para> + Struct blkcipher_alg defines a synchronous block cipher whereas + struct ablkcipher_alg defines an asynchronous block cipher. + </para> + + <para> + Please refer to the single block cipher description for schematics + of the block cipher usage. The usage patterns are exactly the same + for [ABLKCIPHER] and [BLKCIPHER] as they are for plain [CIPHER]. + </para> + </sect2> + + <sect2><title>Specifics Of Asynchronous Multi-Block Cipher</title> + <para> + There are a couple of specifics to the [ABLKCIPHER] interface. + </para> + + <para> + First of all, some of the drivers will want to use the + Generic ScatterWalk in case the hardware needs to be fed + separate chunks of the scatterlist which contains the + plaintext and will contain the ciphertext. Please refer + to the ScatterWalk interface offered by the Linux kernel + scatter / gather list implementation. + </para> + </sect2> + </sect1> + + <sect1><title>Hashing [HASH]</title> + + <para> + Example of transformations: crc32, md5, sha1, sha256,... + </para> + + <sect2><title>Registering And Unregistering The Transformation</title> + + <para> + There are multiple ways to register a HASH transformation, + depending on whether the transformation is synchronous [SHASH] + or asynchronous [AHASH] and the amount of HASH transformations + we are registering. You can find the prototypes defined in + include/crypto/internal/hash.h: + </para> + + <programlisting> + int crypto_register_ahash(struct ahash_alg *alg); + + int crypto_register_shash(struct shash_alg *alg); + int crypto_register_shashes(struct shash_alg *algs, int count); + </programlisting> + + <para> + The respective counterparts for unregistering the HASH + transformation are as follows: + </para> + + <programlisting> + int crypto_unregister_ahash(struct ahash_alg *alg); + + int crypto_unregister_shash(struct shash_alg *alg); + int crypto_unregister_shashes(struct shash_alg *algs, int count); + </programlisting> + </sect2> + + <sect2><title>Cipher Definition With struct shash_alg and ahash_alg</title> + <para> + Here are schematics of how these functions are called when + operated from other part of the kernel. Note that the .setkey() + call might happen before or after any of these schematics happen, + but must not happen during any of these are in-flight. Please note + that calling .init() followed immediately by .finish() is also a + perfectly valid transformation. + </para> + + <programlisting> + I) DATA -----------. + v + .init() -> .update() -> .final() ! .update() might not be called + ^ | | at all in this scenario. + '----' '---> HASH + + II) DATA -----------.-----------. + v v + .init() -> .update() -> .finup() ! .update() may not be called + ^ | | at all in this scenario. + '----' '---> HASH + + III) DATA -----------. + v + .digest() ! The entire process is handled + | by the .digest() call. + '---------------> HASH + </programlisting> + + <para> + Here is a schematic of how the .export()/.import() functions are + called when used from another part of the kernel. + </para> + + <programlisting> + KEY--. DATA--. + v v ! .update() may not be called + .setkey() -> .init() -> .update() -> .export() at all in this scenario. + ^ | | + '-----' '--> PARTIAL_HASH + + ----------- other transformations happen here ----------- + + PARTIAL_HASH--. DATA1--. + v v + .import -> .update() -> .final() ! .update() may not be called + ^ | | at all in this scenario. + '----' '--> HASH1 + + PARTIAL_HASH--. DATA2-. + v v + .import -> .finup() + | + '---------------> HASH2 + </programlisting> + </sect2> + + <sect2><title>Specifics Of Asynchronous HASH Transformation</title> + <para> + Some of the drivers will want to use the Generic ScatterWalk + in case the implementation needs to be fed separate chunks of the + scatterlist which contains the input data. The buffer containing + the resulting hash will always be properly aligned to + .cra_alignmask so there is no need to worry about this. + </para> + </sect2> + </sect1> + </chapter> + + <chapter id="API"><title>Programming Interface</title> + <sect1><title>Block Cipher Context Data Structures</title> +!Pinclude/linux/crypto.h Block Cipher Context Data Structures +!Finclude/linux/crypto.h aead_request + </sect1> + <sect1><title>Block Cipher Algorithm Definitions</title> +!Pinclude/linux/crypto.h Block Cipher Algorithm Definitions +!Finclude/linux/crypto.h crypto_alg +!Finclude/linux/crypto.h ablkcipher_alg +!Finclude/linux/crypto.h aead_alg +!Finclude/linux/crypto.h blkcipher_alg +!Finclude/linux/crypto.h cipher_alg +!Finclude/linux/crypto.h rng_alg + </sect1> + <sect1><title>Asynchronous Block Cipher API</title> +!Pinclude/linux/crypto.h Asynchronous Block Cipher API +!Finclude/linux/crypto.h crypto_alloc_ablkcipher +!Finclude/linux/crypto.h crypto_free_ablkcipher +!Finclude/linux/crypto.h crypto_has_ablkcipher +!Finclude/linux/crypto.h crypto_ablkcipher_ivsize +!Finclude/linux/crypto.h crypto_ablkcipher_blocksize +!Finclude/linux/crypto.h crypto_ablkcipher_setkey +!Finclude/linux/crypto.h crypto_ablkcipher_reqtfm +!Finclude/linux/crypto.h crypto_ablkcipher_encrypt +!Finclude/linux/crypto.h crypto_ablkcipher_decrypt + </sect1> + <sect1><title>Asynchronous Cipher Request Handle</title> +!Pinclude/linux/crypto.h Asynchronous Cipher Request Handle +!Finclude/linux/crypto.h crypto_ablkcipher_reqsize +!Finclude/linux/crypto.h ablkcipher_request_set_tfm +!Finclude/linux/crypto.h ablkcipher_request_alloc +!Finclude/linux/crypto.h ablkcipher_request_free +!Finclude/linux/crypto.h ablkcipher_request_set_callback +!Finclude/linux/crypto.h ablkcipher_request_set_crypt + </sect1> + <sect1><title>Authenticated Encryption With Associated Data (AEAD) Cipher API</title> +!Pinclude/linux/crypto.h Authenticated Encryption With Associated Data (AEAD) Cipher API +!Finclude/linux/crypto.h crypto_alloc_aead +!Finclude/linux/crypto.h crypto_free_aead +!Finclude/linux/crypto.h crypto_aead_ivsize +!Finclude/linux/crypto.h crypto_aead_authsize +!Finclude/linux/crypto.h crypto_aead_blocksize +!Finclude/linux/crypto.h crypto_aead_setkey +!Finclude/linux/crypto.h crypto_aead_setauthsize +!Finclude/linux/crypto.h crypto_aead_encrypt +!Finclude/linux/crypto.h crypto_aead_decrypt + </sect1> + <sect1><title>Asynchronous AEAD Request Handle</title> +!Pinclude/linux/crypto.h Asynchronous AEAD Request Handle +!Finclude/linux/crypto.h crypto_aead_reqsize +!Finclude/linux/crypto.h aead_request_set_tfm +!Finclude/linux/crypto.h aead_request_alloc +!Finclude/linux/crypto.h aead_request_free +!Finclude/linux/crypto.h aead_request_set_callback +!Finclude/linux/crypto.h aead_request_set_crypt +!Finclude/linux/crypto.h aead_request_set_assoc + </sect1> + <sect1><title>Synchronous Block Cipher API</title> +!Pinclude/linux/crypto.h Synchronous Block Cipher API +!Finclude/linux/crypto.h crypto_alloc_blkcipher +!Finclude/linux/crypto.h crypto_free_blkcipher +!Finclude/linux/crypto.h crypto_has_blkcipher +!Finclude/linux/crypto.h crypto_blkcipher_name +!Finclude/linux/crypto.h crypto_blkcipher_ivsize +!Finclude/linux/crypto.h crypto_blkcipher_blocksize +!Finclude/linux/crypto.h crypto_blkcipher_setkey +!Finclude/linux/crypto.h crypto_blkcipher_encrypt +!Finclude/linux/crypto.h crypto_blkcipher_encrypt_iv +!Finclude/linux/crypto.h crypto_blkcipher_decrypt +!Finclude/linux/crypto.h crypto_blkcipher_decrypt_iv +!Finclude/linux/crypto.h crypto_blkcipher_set_iv +!Finclude/linux/crypto.h crypto_blkcipher_get_iv + </sect1> + <sect1><title>Single Block Cipher API</title> +!Pinclude/linux/crypto.h Single Block Cipher API +!Finclude/linux/crypto.h crypto_alloc_cipher +!Finclude/linux/crypto.h crypto_free_cipher +!Finclude/linux/crypto.h crypto_has_cipher +!Finclude/linux/crypto.h crypto_cipher_blocksize +!Finclude/linux/crypto.h crypto_cipher_setkey +!Finclude/linux/crypto.h crypto_cipher_encrypt_one +!Finclude/linux/crypto.h crypto_cipher_decrypt_one + </sect1> + <sect1><title>Synchronous Message Digest API</title> +!Pinclude/linux/crypto.h Synchronous Message Digest API +!Finclude/linux/crypto.h crypto_alloc_hash +!Finclude/linux/crypto.h crypto_free_hash +!Finclude/linux/crypto.h crypto_has_hash +!Finclude/linux/crypto.h crypto_hash_blocksize +!Finclude/linux/crypto.h crypto_hash_digestsize +!Finclude/linux/crypto.h crypto_hash_init +!Finclude/linux/crypto.h crypto_hash_update +!Finclude/linux/crypto.h crypto_hash_final +!Finclude/linux/crypto.h crypto_hash_digest +!Finclude/linux/crypto.h crypto_hash_setkey + </sect1> + <sect1><title>Message Digest Algorithm Definitions</title> +!Pinclude/crypto/hash.h Message Digest Algorithm Definitions +!Finclude/crypto/hash.h hash_alg_common +!Finclude/crypto/hash.h ahash_alg +!Finclude/crypto/hash.h shash_alg + </sect1> + <sect1><title>Asynchronous Message Digest API</title> +!Pinclude/crypto/hash.h Asynchronous Message Digest API +!Finclude/crypto/hash.h crypto_alloc_ahash +!Finclude/crypto/hash.h crypto_free_ahash +!Finclude/crypto/hash.h crypto_ahash_init +!Finclude/crypto/hash.h crypto_ahash_digestsize +!Finclude/crypto/hash.h crypto_ahash_reqtfm +!Finclude/crypto/hash.h crypto_ahash_reqsize +!Finclude/crypto/hash.h crypto_ahash_setkey +!Finclude/crypto/hash.h crypto_ahash_finup +!Finclude/crypto/hash.h crypto_ahash_final +!Finclude/crypto/hash.h crypto_ahash_digest +!Finclude/crypto/hash.h crypto_ahash_export +!Finclude/crypto/hash.h crypto_ahash_import + </sect1> + <sect1><title>Asynchronous Hash Request Handle</title> +!Pinclude/crypto/hash.h Asynchronous Hash Request Handle +!Finclude/crypto/hash.h ahash_request_set_tfm +!Finclude/crypto/hash.h ahash_request_alloc +!Finclude/crypto/hash.h ahash_request_free +!Finclude/crypto/hash.h ahash_request_set_callback +!Finclude/crypto/hash.h ahash_request_set_crypt + </sect1> + <sect1><title>Synchronous Message Digest API</title> +!Pinclude/crypto/hash.h Synchronous Message Digest API +!Finclude/crypto/hash.h crypto_alloc_shash +!Finclude/crypto/hash.h crypto_free_shash +!Finclude/crypto/hash.h crypto_shash_blocksize +!Finclude/crypto/hash.h crypto_shash_digestsize +!Finclude/crypto/hash.h crypto_shash_descsize +!Finclude/crypto/hash.h crypto_shash_setkey +!Finclude/crypto/hash.h crypto_shash_digest +!Finclude/crypto/hash.h crypto_shash_export +!Finclude/crypto/hash.h crypto_shash_import +!Finclude/crypto/hash.h crypto_shash_init +!Finclude/crypto/hash.h crypto_shash_update +!Finclude/crypto/hash.h crypto_shash_final +!Finclude/crypto/hash.h crypto_shash_finup + </sect1> + <sect1><title>Crypto API Random Number API</title> +!Pinclude/crypto/rng.h Random number generator API +!Finclude/crypto/rng.h crypto_alloc_rng +!Finclude/crypto/rng.h crypto_rng_alg +!Finclude/crypto/rng.h crypto_free_rng +!Finclude/crypto/rng.h crypto_rng_get_bytes +!Finclude/crypto/rng.h crypto_rng_reset +!Finclude/crypto/rng.h crypto_rng_seedsize +!Cinclude/crypto/rng.h + </sect1> + </chapter> + + <chapter id="Code"><title>Code Examples</title> + <sect1><title>Code Example For Asynchronous Block Cipher Operation</title> + <programlisting> + +struct tcrypt_result { + struct completion completion; + int err; +}; + +/* tie all data structures together */ +struct ablkcipher_def { + struct scatterlist sg; + struct crypto_ablkcipher *tfm; + struct ablkcipher_request *req; + struct tcrypt_result result; +}; + +/* Callback function */ +static void test_ablkcipher_cb(struct crypto_async_request *req, int error) +{ + struct tcrypt_result *result = req->data; + + if (error == -EINPROGRESS) + return; + result->err = error; + complete(&result->completion); + pr_info("Encryption finished successfully\n"); +} + +/* Perform cipher operation */ +static unsigned int test_ablkcipher_encdec(struct ablkcipher_def *ablk, + int enc) +{ + int rc = 0; + + if (enc) + rc = crypto_ablkcipher_encrypt(ablk->req); + else + rc = crypto_ablkcipher_decrypt(ablk->req); + + switch (rc) { + case 0: + break; + case -EINPROGRESS: + case -EBUSY: + rc = wait_for_completion_interruptible( + &ablk->result.completion); + if (!rc && !ablk->result.err) { + reinit_completion(&ablk->result.completion); + break; + } + default: + pr_info("ablkcipher encrypt returned with %d result %d\n", + rc, ablk->result.err); + break; + } + init_completion(&ablk->result.completion); + + return rc; +} + +/* Initialize and trigger cipher operation */ +static int test_ablkcipher(void) +{ + struct ablkcipher_def ablk; + struct crypto_ablkcipher *ablkcipher = NULL; + struct ablkcipher_request *req = NULL; + char *scratchpad = NULL; + char *ivdata = NULL; + unsigned char key[32]; + int ret = -EFAULT; + + ablkcipher = crypto_alloc_ablkcipher("cbc-aes-aesni", 0, 0); + if (IS_ERR(ablkcipher)) { + pr_info("could not allocate ablkcipher handle\n"); + return PTR_ERR(ablkcipher); + } + + req = ablkcipher_request_alloc(ablkcipher, GFP_KERNEL); + if (IS_ERR(req)) { + pr_info("could not allocate request queue\n"); + ret = PTR_ERR(req); + goto out; + } + + ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, + test_ablkcipher_cb, + &ablk.result); + + /* AES 256 with random key */ + get_random_bytes(&key, 32); + if (crypto_ablkcipher_setkey(ablkcipher, key, 32)) { + pr_info("key could not be set\n"); + ret = -EAGAIN; + goto out; + } + + /* IV will be random */ + ivdata = kmalloc(16, GFP_KERNEL); + if (!ivdata) { + pr_info("could not allocate ivdata\n"); + goto out; + } + get_random_bytes(ivdata, 16); + + /* Input data will be random */ + scratchpad = kmalloc(16, GFP_KERNEL); + if (!scratchpad) { + pr_info("could not allocate scratchpad\n"); + goto out; + } + get_random_bytes(scratchpad, 16); + + ablk.tfm = ablkcipher; + ablk.req = req; + + /* We encrypt one block */ + sg_init_one(&ablk.sg, scratchpad, 16); + ablkcipher_request_set_crypt(req, &ablk.sg, &ablk.sg, 16, ivdata); + init_completion(&ablk.result.completion); + + /* encrypt data */ + ret = test_ablkcipher_encdec(&ablk, 1); + if (ret) + goto out; + + pr_info("Encryption triggered successfully\n"); + +out: + if (ablkcipher) + crypto_free_ablkcipher(ablkcipher); + if (req) + ablkcipher_request_free(req); + if (ivdata) + kfree(ivdata); + if (scratchpad) + kfree(scratchpad); + return ret; +} + </programlisting> + </sect1> + + <sect1><title>Code Example For Synchronous Block Cipher Operation</title> + <programlisting> + +static int test_blkcipher(void) +{ + struct crypto_blkcipher *blkcipher = NULL; + char *cipher = "cbc(aes)"; + // AES 128 + charkey = +"\x12\x34\x56\x78\x90\xab\xcd\xef\x12\x34\x56\x78\x90\xab\xcd\xef"; + chariv = +"\x12\x34\x56\x78\x90\xab\xcd\xef\x12\x34\x56\x78\x90\xab\xcd\xef"; + unsigned int ivsize = 0; + char *scratchpad = NULL; // holds plaintext and ciphertext + struct scatterlist sg; + struct blkcipher_desc desc; + int ret = -EFAULT; + + blkcipher = crypto_alloc_blkcipher(cipher, 0, 0); + if (IS_ERR(blkcipher)) { + printk("could not allocate blkcipher handle for %s\n", cipher); + return -PTR_ERR(blkcipher); + } + + if (crypto_blkcipher_setkey(blkcipher, key, strlen(key))) { + printk("key could not be set\n"); + ret = -EAGAIN; + goto out; + } + + ivsize = crypto_blkcipher_ivsize(blkcipher); + if (ivsize) { + if (ivsize != strlen(iv)) + printk("IV length differs from expected length\n"); + crypto_blkcipher_set_iv(blkcipher, iv, ivsize); + } + + scratchpad = kmalloc(crypto_blkcipher_blocksize(blkcipher), GFP_KERNEL); + if (!scratchpad) { + printk("could not allocate scratchpad for %s\n", cipher); + goto out; + } + /* get some random data that we want to encrypt */ + get_random_bytes(scratchpad, crypto_blkcipher_blocksize(blkcipher)); + + desc.flags = 0; + desc.tfm = blkcipher; + sg_init_one(&sg, scratchpad, crypto_blkcipher_blocksize(blkcipher)); + + /* encrypt data in place */ + crypto_blkcipher_encrypt(&desc, &sg, &sg, + crypto_blkcipher_blocksize(blkcipher)); + + /* decrypt data in place + * crypto_blkcipher_decrypt(&desc, &sg, &sg, + */ crypto_blkcipher_blocksize(blkcipher)); + + + printk("Cipher operation completed\n"); + return 0; + +out: + if (blkcipher) + crypto_free_blkcipher(blkcipher); + if (scratchpad) + kzfree(scratchpad); + return ret; +} + </programlisting> + </sect1> + + <sect1><title>Code Example For Use of Operational State Memory With SHASH</title> + <programlisting> + +struct sdesc { + struct shash_desc shash; + char ctx[]; +}; + +static struct sdescinit_sdesc(struct crypto_shash *alg) +{ + struct sdescsdesc; + int size; + + size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); + sdesc = kmalloc(size, GFP_KERNEL); + if (!sdesc) + return ERR_PTR(-ENOMEM); + sdesc->shash.tfm = alg; + sdesc->shash.flags = 0x0; + return sdesc; +} + +static int calc_hash(struct crypto_shashalg, + const unsigned chardata, unsigned int datalen, + unsigned chardigest) { + struct sdescsdesc; + int ret; + + sdesc = init_sdesc(alg); + if (IS_ERR(sdesc)) { + pr_info("trusted_key: can't alloc %s\n", hash_alg); + return PTR_ERR(sdesc); + } + + ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest); + kfree(sdesc); + return ret; +} + </programlisting> + </sect1> + + <sect1><title>Code Example For Random Number Generator Usage</title> + <programlisting> + +static int get_random_numbers(u8 *buf, unsigned int len) +{ + struct crypto_rngrng = NULL; + chardrbg = "drbg_nopr_sha256"; /* Hash DRBG with SHA-256, no PR */ + int ret; + + if (!buf || !len) { + pr_debug("No output buffer provided\n"); + return -EINVAL; + } + + rng = crypto_alloc_rng(drbg, 0, 0); + if (IS_ERR(rng)) { + pr_debug("could not allocate RNG handle for %s\n", drbg); + return -PTR_ERR(rng); + } + + ret = crypto_rng_get_bytes(rng, buf, len); + if (ret < 0) + pr_debug("generation of random numbers failed\n"); + else if (ret == 0) + pr_debug("RNG returned no data"); + else + pr_debug("RNG returned %d bytes of data\n", ret); + +out: + crypto_free_rng(rng); + return ret; +} + </programlisting> + </sect1> + </chapter> + </book> diff --git a/Documentation/crypto/crypto-API-userspace.txt b/Documentation/crypto/crypto-API-userspace.txt new file mode 100644 index 000000000000..ac619cd90300 --- /dev/null +++ b/Documentation/crypto/crypto-API-userspace.txt @@ -0,0 +1,205 @@ +Introduction +============ + +The concepts of the kernel crypto API visible to kernel space is fully +applicable to the user space interface as well. Therefore, the kernel crypto API +high level discussion for the in-kernel use cases applies here as well. + +The major difference, however, is that user space can only act as a consumer +and never as a provider of a transformation or cipher algorithm. + +The following covers the user space interface exported by the kernel crypto +API. A working example of this description is libkcapi that can be obtained from +[1]. That library can be used by user space applications that require +cryptographic services from the kernel. + +Some details of the in-kernel kernel crypto API aspects do not +apply to user space, however. This includes the difference between synchronous +and asynchronous invocations. The user space API call is fully synchronous. +In addition, only a subset of all cipher types are available as documented +below. + + +User space API general remarks +============================== + +The kernel crypto API is accessible from user space. Currently, the following +ciphers are accessible: + + * Message digest including keyed message digest (HMAC, CMAC) + + * Symmetric ciphers + +Note, AEAD ciphers are currently not supported via the symmetric cipher +interface. + +The interface is provided via Netlink using the type AF_ALG. In addition, the +setsockopt option type is SOL_ALG. In case the user space header files do not +export these flags yet, use the following macros: + +#ifndef AF_ALG +#define AF_ALG 38 +#endif +#ifndef SOL_ALG +#define SOL_ALG 279 +#endif + +A cipher is accessed with the same name as done for the in-kernel API calls. +This includes the generic vs. unique naming schema for ciphers as well as the +enforcement of priorities for generic names. + +To interact with the kernel crypto API, a Netlink socket must be created by +the user space application. User space invokes the cipher operation with the +send/write system call family. The result of the cipher operation is obtained +with the read/recv system call family. + +The following API calls assume that the Netlink socket descriptor is already +opened by the user space application and discusses only the kernel crypto API +specific invocations. + +To initialize a Netlink interface, the following sequence has to be performed +by the consumer: + + 1. Create a socket of type AF_ALG with the struct sockaddr_alg parameter + specified below for the different cipher types. + + 2. Invoke bind with the socket descriptor + + 3. Invoke accept with the socket descriptor. The accept system call + returns a new file descriptor that is to be used to interact with + the particular cipher instance. When invoking send/write or recv/read + system calls to send data to the kernel or obtain data from the + kernel, the file descriptor returned by accept must be used. + +In-place cipher operation +========================= + +Just like the in-kernel operation of the kernel crypto API, the user space +interface allows the cipher operation in-place. That means that the input buffer +used for the send/write system call and the output buffer used by the read/recv +system call may be one and the same. This is of particular interest for +symmetric cipher operations where a copying of the output data to its final +destination can be avoided. + +If a consumer on the other hand wants to maintain the plaintext and the +ciphertext in different memory locations, all a consumer needs to do is to +provide different memory pointers for the encryption and decryption operation. + +Message digest API +================== + +The message digest type to be used for the cipher operation is selected when +invoking the bind syscall. bind requires the caller to provide a filled +struct sockaddr data structure. This data structure must be filled as follows: + +struct sockaddr_alg sa = { + .salg_family = AF_ALG, + .salg_type = "hash", /* this selects the hash logic in the kernel */ + .salg_name = "sha1" /* this is the cipher name */ +}; + +The salg_type value "hash" applies to message digests and keyed message digests. +Though, a keyed message digest is referenced by the appropriate salg_name. +Please see below for the setsockopt interface that explains how the key can be +set for a keyed message digest. + +Using the send() system call, the application provides the data that should be +processed with the message digest. The send system call allows the following +flags to be specified: + + * MSG_MORE: If this flag is set, the send system call acts like a + message digest update function where the final hash is not + yet calculated. If the flag is not set, the send system call + calculates the final message digest immediately. + +With the recv() system call, the application can read the message digest from +the kernel crypto API. If the buffer is too small for the message digest, the +flag MSG_TRUNC is set by the kernel. + +In order to set a message digest key, the calling application must use the +setsockopt() option of ALG_SET_KEY. If the key is not set the HMAC operation is +performed without the initial HMAC state change caused by the key. + + +Symmetric cipher API +==================== + +The operation is very similar to the message digest discussion. During +initialization, the struct sockaddr data structure must be filled as follows: + +struct sockaddr_alg sa = { + .salg_family = AF_ALG, + .salg_type = "skcipher", /* this selects the symmetric cipher */ + .salg_name = "cbc(aes)" /* this is the cipher name */ +}; + +Before data can be sent to the kernel using the write/send system call family, +the consumer must set the key. The key setting is described with the setsockopt +invocation below. + +Using the sendmsg() system call, the application provides the data that should +be processed for encryption or decryption. In addition, the IV is specified +with the data structure provided by the sendmsg() system call. + +The sendmsg system call parameter of struct msghdr is embedded into the +struct cmsghdr data structure. See recv(2) and cmsg(3) for more information +on how the cmsghdr data structure is used together with the send/recv system +call family. That cmsghdr data structure holds the following information +specified with a separate header instances: + + * specification of the cipher operation type with one of these flags: + ALG_OP_ENCRYPT - encryption of data + ALG_OP_DECRYPT - decryption of data + + * specification of the IV information marked with the flag ALG_SET_IV + +The send system call family allows the following flag to be specified: + + * MSG_MORE: If this flag is set, the send system call acts like a + cipher update function where more input data is expected + with a subsequent invocation of the send system call. + +Note: The kernel reports -EINVAL for any unexpected data. The caller must +make sure that all data matches the constraints given in /proc/crypto for the +selected cipher. + +With the recv() system call, the application can read the result of the +cipher operation from the kernel crypto API. The output buffer must be at least +as large as to hold all blocks of the encrypted or decrypted data. If the output +data size is smaller, only as many blocks are returned that fit into that +output buffer size. + +Setsockopt interface +==================== + +In addition to the read/recv and send/write system call handling to send and +retrieve data subject to the cipher operation, a consumer also needs to set +the additional information for the cipher operation. This additional information +is set using the setsockopt system call that must be invoked with the file +descriptor of the open cipher (i.e. the file descriptor returned by the +accept system call). + +Each setsockopt invocation must use the level SOL_ALG. + +The setsockopt interface allows setting the following data using the mentioned +optname: + + * ALG_SET_KEY -- Setting the key. Key setting is applicable to: + + - the skcipher cipher type (symmetric ciphers) + + - the hash cipher type (keyed message digests) + +User space API example +====================== + +Please see [1] for libkcapi which provides an easy-to-use wrapper around the +aforementioned Netlink kernel interface. [1] also contains a test application +that invokes all libkcapi API calls. + +[1] http://www.chronox.de/libkcapi.html + +Author +====== + +Stephan Mueller <smueller@chronox.de> diff --git a/Documentation/devicetree/bindings/crypto/fsl-imx-sahara.txt b/Documentation/devicetree/bindings/crypto/fsl-imx-sahara.txt index 5c65eccd0e56..e8a35c71e947 100644 --- a/Documentation/devicetree/bindings/crypto/fsl-imx-sahara.txt +++ b/Documentation/devicetree/bindings/crypto/fsl-imx-sahara.txt @@ -1,5 +1,5 @@ Freescale SAHARA Cryptographic Accelerator included in some i.MX chips. -Currently only i.MX27 is supported. +Currently only i.MX27 and i.MX53 are supported. Required properties: - compatible : Should be "fsl,<soc>-sahara" diff --git a/Documentation/devicetree/bindings/hwrng/atmel-trng.txt b/Documentation/devicetree/bindings/hwrng/atmel-trng.txt new file mode 100644 index 000000000000..4ac5aaa2d024 --- /dev/null +++ b/Documentation/devicetree/bindings/hwrng/atmel-trng.txt @@ -0,0 +1,16 @@ +Atmel TRNG (True Random Number Generator) block + +Required properties: +- compatible : Should be "atmel,at91sam9g45-trng" +- reg : Offset and length of the register set of this block +- interrupts : the interrupt number for the TRNG block +- clocks: should contain the TRNG clk source + +Example: + +trng@fffcc000 { + compatible = "atmel,at91sam9g45-trng"; + reg = <0xfffcc000 0x4000>; + interrupts = <6 IRQ_TYPE_LEVEL_HIGH 0>; + clocks = <&trng_clk>; +}; diff --git a/arch/arm/boot/dts/at91sam9g45.dtsi b/arch/arm/boot/dts/at91sam9g45.dtsi index d3f65130a1f8..6c0637a4bda5 100644 --- a/arch/arm/boot/dts/at91sam9g45.dtsi +++ b/arch/arm/boot/dts/at91sam9g45.dtsi @@ -940,6 +940,13 @@ status = "disabled"; }; + trng@fffcc000 { + compatible = "atmel,at91sam9g45-trng"; + reg = <0xfffcc000 0x4000>; + interrupts = <6 IRQ_TYPE_LEVEL_HIGH 0>; + clocks = <&trng_clk>; + }; + i2c0: i2c@fff84000 { compatible = "atmel,at91sam9g10-i2c"; reg = <0xfff84000 0x100>; diff --git a/arch/arm/crypto/aes_glue.c b/arch/arm/crypto/aes_glue.c index 3003fa1f6fb4..0409b8f89782 100644 --- a/arch/arm/crypto/aes_glue.c +++ b/arch/arm/crypto/aes_glue.c @@ -93,6 +93,6 @@ module_exit(aes_fini); MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm (ASM)"); MODULE_LICENSE("GPL"); -MODULE_ALIAS("aes"); -MODULE_ALIAS("aes-asm"); +MODULE_ALIAS_CRYPTO("aes"); +MODULE_ALIAS_CRYPTO("aes-asm"); MODULE_AUTHOR("David McCullough <ucdevel@gmail.com>"); diff --git a/arch/arm/crypto/sha1_glue.c b/arch/arm/crypto/sha1_glue.c index 84f2a756588b..e31b0440c613 100644 --- a/arch/arm/crypto/sha1_glue.c +++ b/arch/arm/crypto/sha1_glue.c @@ -171,5 +171,5 @@ module_exit(sha1_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm (ARM)"); -MODULE_ALIAS("sha1"); +MODULE_ALIAS_CRYPTO("sha1"); MODULE_AUTHOR("David McCullough <ucdevel@gmail.com>"); diff --git a/arch/arm/crypto/sha1_neon_glue.c b/arch/arm/crypto/sha1_neon_glue.c index 6f1b411b1d55..0b0083757d47 100644 --- a/arch/arm/crypto/sha1_neon_glue.c +++ b/arch/arm/crypto/sha1_neon_glue.c @@ -194,4 +194,4 @@ module_exit(sha1_neon_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, NEON accelerated"); -MODULE_ALIAS("sha1"); +MODULE_ALIAS_CRYPTO("sha1"); diff --git a/arch/arm/crypto/sha512_neon_glue.c b/arch/arm/crypto/sha512_neon_glue.c index 0d2758ff5e12..b124dce838d6 100644 --- a/arch/arm/crypto/sha512_neon_glue.c +++ b/arch/arm/crypto/sha512_neon_glue.c @@ -241,7 +241,7 @@ static int sha384_neon_final(struct shash_desc *desc, u8 *hash) sha512_neon_final(desc, D); memcpy(hash, D, SHA384_DIGEST_SIZE); - memset(D, 0, SHA512_DIGEST_SIZE); + memzero_explicit(D, SHA512_DIGEST_SIZE); return 0; } @@ -301,5 +301,5 @@ module_exit(sha512_neon_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA512 Secure Hash Algorithm, NEON accelerated"); -MODULE_ALIAS("sha512"); -MODULE_ALIAS("sha384"); +MODULE_ALIAS_CRYPTO("sha512"); +MODULE_ALIAS_CRYPTO("sha384"); diff --git a/arch/arm64/crypto/Kconfig b/arch/arm64/crypto/Kconfig index a38b02ce5f9a..2cf32e9887e1 100644 --- a/arch/arm64/crypto/Kconfig +++ b/arch/arm64/crypto/Kconfig @@ -49,4 +49,8 @@ config CRYPTO_AES_ARM64_NEON_BLK select CRYPTO_AES select CRYPTO_ABLK_HELPER +config CRYPTO_CRC32_ARM64 + tristate "CRC32 and CRC32C using optional ARMv8 instructions" + depends on ARM64 + select CRYPTO_HASH endif diff --git a/arch/arm64/crypto/Makefile b/arch/arm64/crypto/Makefile index a3f935fde975..5720608c50b1 100644 --- a/arch/arm64/crypto/Makefile +++ b/arch/arm64/crypto/Makefile @@ -34,5 +34,9 @@ AFLAGS_aes-neon.o := -DINTERLEAVE=4 CFLAGS_aes-glue-ce.o := -DUSE_V8_CRYPTO_EXTENSIONS +obj-$(CONFIG_CRYPTO_CRC32_ARM64) += crc32-arm64.o + +CFLAGS_crc32-arm64.o := -mcpu=generic+crc + $(obj)/aes-glue-%.o: $(src)/aes-glue.c FORCE $(call if_changed_rule,cc_o_c) diff --git a/arch/arm64/crypto/aes-ce-ccm-glue.c b/arch/arm64/crypto/aes-ce-ccm-glue.c index 0ac73b838fa3..6c348df5bf36 100644 --- a/arch/arm64/crypto/aes-ce-ccm-glue.c +++ b/arch/arm64/crypto/aes-ce-ccm-glue.c @@ -296,4 +296,4 @@ module_exit(aes_mod_exit); MODULE_DESCRIPTION("Synchronous AES in CCM mode using ARMv8 Crypto Extensions"); MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); MODULE_LICENSE("GPL v2"); -MODULE_ALIAS("ccm(aes)"); +MODULE_ALIAS_CRYPTO("ccm(aes)"); diff --git a/arch/arm64/crypto/aes-glue.c b/arch/arm64/crypto/aes-glue.c index 801aae32841f..b1b5b893eb20 100644 --- a/arch/arm64/crypto/aes-glue.c +++ b/arch/arm64/crypto/aes-glue.c @@ -44,10 +44,10 @@ MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions"); #define aes_xts_encrypt neon_aes_xts_encrypt #define aes_xts_decrypt neon_aes_xts_decrypt MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON"); -MODULE_ALIAS("ecb(aes)"); -MODULE_ALIAS("cbc(aes)"); -MODULE_ALIAS("ctr(aes)"); -MODULE_ALIAS("xts(aes)"); +MODULE_ALIAS_CRYPTO("ecb(aes)"); +MODULE_ALIAS_CRYPTO("cbc(aes)"); +MODULE_ALIAS_CRYPTO("ctr(aes)"); +MODULE_ALIAS_CRYPTO("xts(aes)"); #endif MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); diff --git a/arch/arm64/crypto/crc32-arm64.c b/arch/arm64/crypto/crc32-arm64.c new file mode 100644 index 000000000000..9499199924ae --- /dev/null +++ b/arch/arm64/crypto/crc32-arm64.c @@ -0,0 +1,274 @@ +/* + * crc32-arm64.c - CRC32 and CRC32C using optional ARMv8 instructions + * + * Module based on crypto/crc32c_generic.c + * + * CRC32 loop taken from Ed Nevill's Hadoop CRC patch + * http://mail-archives.apache.org/mod_mbox/hadoop-common-dev/201406.mbox/%3C1403687030.3355.19.camel%40localhost.localdomain%3E + * + * Using inline assembly instead of intrinsics in order to be backwards + * compatible with older compilers. + * + * Copyright (C) 2014 Linaro Ltd <yazen.ghannam@linaro.org> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#include <linux/unaligned/access_ok.h> +#include <linux/cpufeature.h> +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/string.h> + +#include <crypto/internal/hash.h> + +MODULE_AUTHOR("Yazen Ghannam <yazen.ghannam@linaro.org>"); +MODULE_DESCRIPTION("CRC32 and CRC32C using optional ARMv8 instructions"); +MODULE_LICENSE("GPL v2"); + +#define CRC32X(crc, value) __asm__("crc32x %w[c], %w[c], %x[v]":[c]"+r"(crc):[v]"r"(value)) +#define CRC32W(crc, value) __asm__("crc32w %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value)) +#define CRC32H(crc, value) __asm__("crc32h %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value)) +#define CRC32B(crc, value) __asm__("crc32b %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value)) +#define CRC32CX(crc, value) __asm__("crc32cx %w[c], %w[c], %x[v]":[c]"+r"(crc):[v]"r"(value)) +#define CRC32CW(crc, value) __asm__("crc32cw %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value)) +#define CRC32CH(crc, value) __asm__("crc32ch %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value)) +#define CRC32CB(crc, value) __asm__("crc32cb %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value)) + +static u32 crc32_arm64_le_hw(u32 crc, const u8 *p, unsigned int len) +{ + s64 length = len; + + while ((length -= sizeof(u64)) >= 0) { + CRC32X(crc, get_unaligned_le64(p)); + p += sizeof(u64); + } + + /* The following is more efficient than the straight loop */ + if (length & sizeof(u32)) { + CRC32W(crc, get_unaligned_le32(p)); + p += sizeof(u32); + } + if (length & sizeof(u16)) { + CRC32H(crc, get_unaligned_le16(p)); + p += sizeof(u16); + } + if (length & sizeof(u8)) + CRC32B(crc, *p); + + return crc; +} + +static u32 crc32c_arm64_le_hw(u32 crc, const u8 *p, unsigned int len) +{ + s64 length = len; + + while ((length -= sizeof(u64)) >= 0) { + CRC32CX(crc, get_unaligned_le64(p)); + p += sizeof(u64); + } + + /* The following is more efficient than the straight loop */ + if (length & sizeof(u32)) { + CRC32CW(crc, get_unaligned_le32(p)); + p += sizeof(u32); + } + if (length & sizeof(u16)) { + CRC32CH(crc, get_unaligned_le16(p)); + p += sizeof(u16); + } + if (length & sizeof(u8)) + CRC32CB(crc, *p); + + return crc; +} + +#define CHKSUM_BLOCK_SIZE 1 +#define CHKSUM_DIGEST_SIZE 4 + +struct chksum_ctx { + u32 key; +}; + +struct chksum_desc_ctx { + u32 crc; +}; + +static int chksum_init(struct shash_desc *desc) +{ + struct chksum_ctx *mctx = crypto_shash_ctx(desc->tfm); + struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); + + ctx->crc = mctx->key; + + return 0; +} + +/* + * Setting the seed allows arbitrary accumulators and flexible XOR policy + * If your algorithm starts with ~0, then XOR with ~0 before you set + * the seed. + */ +static int chksum_setkey(struct crypto_shash *tfm, const u8 *key, + unsigned int keylen) +{ + struct chksum_ctx *mctx = crypto_shash_ctx(tfm); + + if (keylen != sizeof(mctx->key)) { + crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); + return -EINVAL; + } + mctx->key = get_unaligned_le32(key); + return 0; +} + +static int chksum_update(struct shash_desc *desc, const u8 *data, + unsigned int length) +{ + struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); + + ctx->crc = crc32_arm64_le_hw(ctx->crc, data, length); + return 0; +} + +static int chksumc_update(struct shash_desc *desc, const u8 *data, + unsigned int length) +{ + struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); + + ctx->crc = crc32c_arm64_le_hw(ctx->crc, data, length); + return 0; +} + +static int chksum_final(struct shash_desc *desc, u8 *out) +{ + struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); + + put_unaligned_le32(~ctx->crc, out); + return 0; +} + +static int __chksum_finup(u32 crc, const u8 *data, unsigned int len, u8 *out) +{ + put_unaligned_le32(~crc32_arm64_le_hw(crc, data, len), out); + return 0; +} + +static int __chksumc_finup(u32 crc, const u8 *data, unsigned int len, u8 *out) +{ + put_unaligned_le32(~crc32c_arm64_le_hw(crc, data, len), out); + return 0; +} + +static int chksum_finup(struct shash_desc *desc, const u8 *data, + unsigned int len, u8 *out) +{ + struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); + + return __chksum_finup(ctx->crc, data, len, out); +} + +static int chksumc_finup(struct shash_desc *desc, const u8 *data, + unsigned int len, u8 *out) +{ + struct chksum_desc_ctx *ctx = shash_desc_ctx(desc); + + return __chksumc_finup(ctx->crc, data, len, out); +} + +static int chksum_digest(struct shash_desc *desc, const u8 *data, + unsigned int length, u8 *out) +{ + struct chksum_ctx *mctx = crypto_shash_ctx(desc->tfm); + + return __chksum_finup(mctx->key, data, length, out); +} + +static int chksumc_digest(struct shash_desc *desc, const u8 *data, + unsigned int length, u8 *out) +{ + struct chksum_ctx *mctx = crypto_shash_ctx(desc->tfm); + + return __chksumc_finup(mctx->key, data, length, out); +} + +static int crc32_cra_init(struct crypto_tfm *tfm) +{ + struct chksum_ctx *mctx = crypto_tfm_ctx(tfm); + + mctx->key = ~0; + return 0; +} + +static struct shash_alg crc32_alg = { + .digestsize = CHKSUM_DIGEST_SIZE, + .setkey = chksum_setkey, + .init = chksum_init, + .update = chksum_update, + .final = chksum_final, + .finup = chksum_finup, + .digest = chksum_digest, + .descsize = sizeof(struct chksum_desc_ctx), + .base = { + .cra_name = "crc32", + .cra_driver_name = "crc32-arm64-hw", + .cra_priority = 300, + .cra_blocksize = CHKSUM_BLOCK_SIZE, + .cra_alignmask = 0, + .cra_ctxsize = sizeof(struct chksum_ctx), + .cra_module = THIS_MODULE, + .cra_init = crc32_cra_init, + } +}; + +static struct shash_alg crc32c_alg = { + .digestsize = CHKSUM_DIGEST_SIZE, + .setkey = chksum_setkey, + .init = chksum_init, + .update = chksumc_update, + .final = chksum_final, + .finup = chksumc_finup, + .digest = chksumc_digest, + .descsize = sizeof(struct chksum_desc_ctx), + .base = { + .cra_name = "crc32c", + .cra_driver_name = "crc32c-arm64-hw", + .cra_priority = 300, + .cra_blocksize = CHKSUM_BLOCK_SIZE, + .cra_alignmask = 0, + .cra_ctxsize = sizeof(struct chksum_ctx), + .cra_module = THIS_MODULE, + .cra_init = crc32_cra_init, + } +}; + +static int __init crc32_mod_init(void) +{ + int err; + + err = crypto_register_shash(&crc32_alg); + + if (err) + return err; + + err = crypto_register_shash(&crc32c_alg); + + if (err) { + crypto_unregister_shash(&crc32_alg); + return err; + } + + return 0; +} + +static void __exit crc32_mod_exit(void) +{ + crypto_unregister_shash(&crc32_alg); + crypto_unregister_shash(&crc32c_alg); +} + +module_cpu_feature_match(CRC32, crc32_mod_init); +module_exit(crc32_mod_exit); diff --git a/arch/powerpc/crypto/sha1.c b/arch/powerpc/crypto/sha1.c index f9e8b9491efc..d3feba5a275f 100644 --- a/arch/powerpc/crypto/sha1.c +++ b/arch/powerpc/crypto/sha1.c @@ -66,7 +66,7 @@ static int sha1_update(struct shash_desc *desc, const u8 *data, src = data + done; } while (done + 63 < len); - memset(temp, 0, sizeof(temp)); + memzero_explicit(temp, sizeof(temp)); partial = 0; } memcpy(sctx->buffer + partial, src, len - done); @@ -154,4 +154,4 @@ module_exit(sha1_powerpc_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm"); -MODULE_ALIAS("sha1-powerpc"); +MODULE_ALIAS_CRYPTO("sha1-powerpc"); diff --git a/arch/s390/crypto/aes_s390.c b/arch/s390/crypto/aes_s390.c index 23223cd63e54..1f272b24fc0b 100644 --- a/arch/s390/crypto/aes_s390.c +++ b/arch/s390/crypto/aes_s390.c @@ -979,7 +979,7 @@ static void __exit aes_s390_fini(void) module_init(aes_s390_init); module_exit(aes_s390_fini); -MODULE_ALIAS("aes-all"); +MODULE_ALIAS_CRYPTO("aes-all"); MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm"); MODULE_LICENSE("GPL"); diff --git a/arch/s390/crypto/des_s390.c b/arch/s390/crypto/des_s390.c index 7acb77f7ef1a..9e05cc453a40 100644 --- a/arch/s390/crypto/des_s390.c +++ b/arch/s390/crypto/des_s390.c @@ -619,8 +619,8 @@ static void __exit des_s390_exit(void) module_init(des_s390_init); module_exit(des_s390_exit); -MODULE_ALIAS("des"); -MODULE_ALIAS("des3_ede"); +MODULE_ALIAS_CRYPTO("des"); +MODULE_ALIAS_CRYPTO("des3_ede"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("DES & Triple DES EDE Cipher Algorithms"); diff --git a/arch/s390/crypto/ghash_s390.c b/arch/s390/crypto/ghash_s390.c index d43485d142e9..7940dc90e80b 100644 --- a/arch/s390/crypto/ghash_s390.c +++ b/arch/s390/crypto/ghash_s390.c @@ -160,7 +160,7 @@ static void __exit ghash_mod_exit(void) module_init(ghash_mod_init); module_exit(ghash_mod_exit); -MODULE_ALIAS("ghash"); +MODULE_ALIAS_CRYPTO("ghash"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("GHASH Message Digest Algorithm, s390 implementation"); diff --git a/arch/s390/crypto/sha1_s390.c b/arch/s390/crypto/sha1_s390.c index a1b3a9dc9d8a..5b2bee323694 100644 --- a/arch/s390/crypto/sha1_s390.c +++ b/arch/s390/crypto/sha1_s390.c @@ -103,6 +103,6 @@ static void __exit sha1_s390_fini(void) module_init(sha1_s390_init); module_exit(sha1_s390_fini); -MODULE_ALIAS("sha1"); +MODULE_ALIAS_CRYPTO("sha1"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm"); diff --git a/arch/s390/crypto/sha256_s390.c b/arch/s390/crypto/sha256_s390.c index 9b853809a492..b74ff158108c 100644 --- a/arch/s390/crypto/sha256_s390.c +++ b/arch/s390/crypto/sha256_s390.c @@ -143,7 +143,7 @@ static void __exit sha256_s390_fini(void) module_init(sha256_s390_init); module_exit(sha256_s390_fini); -MODULE_ALIAS("sha256"); -MODULE_ALIAS("sha224"); +MODULE_ALIAS_CRYPTO("sha256"); +MODULE_ALIAS_CRYPTO("sha224"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA256 and SHA224 Secure Hash Algorithm"); diff --git a/arch/s390/crypto/sha512_s390.c b/arch/s390/crypto/sha512_s390.c index 32a81383b69c..0c36989ba182 100644 --- a/arch/s390/crypto/sha512_s390.c +++ b/arch/s390/crypto/sha512_s390.c @@ -86,7 +86,7 @@ static struct shash_alg sha512_alg = { } }; -MODULE_ALIAS("sha512"); +MODULE_ALIAS_CRYPTO("sha512"); static int sha384_init(struct shash_desc *desc) { @@ -126,7 +126,7 @@ static struct shash_alg sha384_alg = { } }; -MODULE_ALIAS("sha384"); +MODULE_ALIAS_CRYPTO("sha384"); static int __init init(void) { diff --git a/arch/sparc/crypto/aes_glue.c b/arch/sparc/crypto/aes_glue.c index df922f52d76d..705408766ab0 100644 --- a/arch/sparc/crypto/aes_glue.c +++ b/arch/sparc/crypto/aes_glue.c @@ -499,6 +499,6 @@ module_exit(aes_sparc64_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("AES Secure Hash Algorithm, sparc64 aes opcode accelerated"); -MODULE_ALIAS("aes"); +MODULE_ALIAS_CRYPTO("aes"); #include "crop_devid.c" diff --git a/arch/sparc/crypto/camellia_glue.c b/arch/sparc/crypto/camellia_glue.c index 888f6260b4ec..641f55cb61c3 100644 --- a/arch/sparc/crypto/camellia_glue.c +++ b/arch/sparc/crypto/camellia_glue.c @@ -322,6 +322,6 @@ module_exit(camellia_sparc64_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Camellia Cipher Algorithm, sparc64 camellia opcode accelerated"); -MODULE_ALIAS("aes"); +MODULE_ALIAS_CRYPTO("aes"); #include "crop_devid.c" diff --git a/arch/sparc/crypto/crc32c_glue.c b/arch/sparc/crypto/crc32c_glue.c index 5162fad912ce..d1064e46efe8 100644 --- a/arch/sparc/crypto/crc32c_glue.c +++ b/arch/sparc/crypto/crc32c_glue.c @@ -176,6 +176,6 @@ module_exit(crc32c_sparc64_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("CRC32c (Castagnoli), sparc64 crc32c opcode accelerated"); -MODULE_ALIAS("crc32c"); +MODULE_ALIAS_CRYPTO("crc32c"); #include "crop_devid.c" diff --git a/arch/sparc/crypto/des_glue.c b/arch/sparc/crypto/des_glue.c index 3065bc61f9d3..d11500972994 100644 --- a/arch/sparc/crypto/des_glue.c +++ b/arch/sparc/crypto/des_glue.c @@ -532,6 +532,6 @@ module_exit(des_sparc64_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("DES & Triple DES EDE Cipher Algorithms, sparc64 des opcode accelerated"); -MODULE_ALIAS("des"); +MODULE_ALIAS_CRYPTO("des"); #include "crop_devid.c" diff --git a/arch/sparc/crypto/md5_glue.c b/arch/sparc/crypto/md5_glue.c index 09a9ea1dfb69..64c7ff5f72a9 100644 --- a/arch/sparc/crypto/md5_glue.c +++ b/arch/sparc/crypto/md5_glue.c @@ -185,6 +185,6 @@ module_exit(md5_sparc64_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("MD5 Secure Hash Algorithm, sparc64 md5 opcode accelerated"); -MODULE_ALIAS("md5"); +MODULE_ALIAS_CRYPTO("md5"); #include "crop_devid.c" diff --git a/arch/sparc/crypto/sha1_glue.c b/arch/sparc/crypto/sha1_glue.c index 6cd5f29e1e0d..1b3e47accc74 100644 --- a/arch/sparc/crypto/sha1_glue.c +++ b/arch/sparc/crypto/sha1_glue.c @@ -180,6 +180,6 @@ module_exit(sha1_sparc64_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, sparc64 sha1 opcode accelerated"); -MODULE_ALIAS("sha1"); +MODULE_ALIAS_CRYPTO("sha1"); #include "crop_devid.c" diff --git a/arch/sparc/crypto/sha256_glue.c b/arch/sparc/crypto/sha256_glue.c index 04f555ab2680..285268ca9279 100644 --- a/arch/sparc/crypto/sha256_glue.c +++ b/arch/sparc/crypto/sha256_glue.c @@ -135,7 +135,7 @@ static int sha224_sparc64_final(struct shash_desc *desc, u8 *hash) sha256_sparc64_final(desc, D); memcpy(hash, D, SHA224_DIGEST_SIZE); - memset(D, 0, SHA256_DIGEST_SIZE); + memzero_explicit(D, SHA256_DIGEST_SIZE); return 0; } @@ -237,7 +237,7 @@ module_exit(sha256_sparc64_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA-224 and SHA-256 Secure Hash Algorithm, sparc64 sha256 opcode accelerated"); -MODULE_ALIAS("sha224"); -MODULE_ALIAS("sha256"); +MODULE_ALIAS_CRYPTO("sha224"); +MODULE_ALIAS_CRYPTO("sha256"); #include "crop_devid.c" diff --git a/arch/sparc/crypto/sha512_glue.c b/arch/sparc/crypto/sha512_glue.c index f04d1994d19a..11eb36c3fc8c 100644 --- a/arch/sparc/crypto/sha512_glue.c +++ b/arch/sparc/crypto/sha512_glue.c @@ -139,7 +139,7 @@ static int sha384_sparc64_final(struct shash_desc *desc, u8 *hash) sha512_sparc64_final(desc, D); memcpy(hash, D, 48); - memset(D, 0, 64); + memzero_explicit(D, 64); return 0; } @@ -222,7 +222,7 @@ module_exit(sha512_sparc64_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA-384 and SHA-512 Secure Hash Algorithm, sparc64 sha512 opcode accelerated"); -MODULE_ALIAS("sha384"); -MODULE_ALIAS("sha512"); +MODULE_ALIAS_CRYPTO("sha384"); +MODULE_ALIAS_CRYPTO("sha512"); #include "crop_devid.c" diff --git a/arch/x86/crypto/aes_glue.c b/arch/x86/crypto/aes_glue.c index aafe8ce0d65d..e26984f7ab8d 100644 --- a/arch/x86/crypto/aes_glue.c +++ b/arch/x86/crypto/aes_glue.c @@ -66,5 +66,5 @@ module_exit(aes_fini); MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, asm optimized"); MODULE_LICENSE("GPL"); -MODULE_ALIAS("aes"); -MODULE_ALIAS("aes-asm"); +MODULE_ALIAS_CRYPTO("aes"); +MODULE_ALIAS_CRYPTO("aes-asm"); diff --git a/arch/x86/crypto/aesni-intel_glue.c b/arch/x86/crypto/aesni-intel_glue.c index 888950f29fd9..ae855f4f64b7 100644 --- a/arch/x86/crypto/aesni-intel_glue.c +++ b/arch/x86/crypto/aesni-intel_glue.c @@ -43,10 +43,6 @@ #include <asm/crypto/glue_helper.h> #endif -#if defined(CONFIG_CRYPTO_PCBC) || defined(CONFIG_CRYPTO_PCBC_MODULE) -#define HAS_PCBC -#endif - /* This data is stored at the end of the crypto_tfm struct. * It's a type of per "session" data storage location. * This needs to be 16 byte aligned. @@ -547,7 +543,7 @@ static int ablk_ctr_init(struct crypto_tfm *tfm) #endif -#ifdef HAS_PCBC +#if IS_ENABLED(CONFIG_CRYPTO_PCBC) static int ablk_pcbc_init(struct crypto_tfm *tfm) { return ablk_init_common(tfm, "fpu(pcbc(__driver-aes-aesni))"); @@ -1377,7 +1373,7 @@ static struct crypto_alg aesni_algs[] = { { }, }, #endif -#ifdef HAS_PCBC +#if IS_ENABLED(CONFIG_CRYPTO_PCBC) }, { .cra_name = "pcbc(aes)", .cra_driver_name = "pcbc-aes-aesni", @@ -1550,4 +1546,4 @@ module_exit(aesni_exit); MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized"); MODULE_LICENSE("GPL"); -MODULE_ALIAS("aes"); +MODULE_ALIAS_CRYPTO("aes"); diff --git a/arch/x86/crypto/blowfish_glue.c b/arch/x86/crypto/blowfish_glue.c index 8af519ed73d1..17c05531dfd1 100644 --- a/arch/x86/crypto/blowfish_glue.c +++ b/arch/x86/crypto/blowfish_glue.c @@ -478,5 +478,5 @@ module_exit(fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Blowfish Cipher Algorithm, asm optimized"); -MODULE_ALIAS("blowfish"); -MODULE_ALIAS("blowfish-asm"); +MODULE_ALIAS_CRYPTO("blowfish"); +MODULE_ALIAS_CRYPTO("blowfish-asm"); diff --git a/arch/x86/crypto/camellia_aesni_avx2_glue.c b/arch/x86/crypto/camellia_aesni_avx2_glue.c index 4209a76fcdaa..9a07fafe3831 100644 --- a/arch/x86/crypto/camellia_aesni_avx2_glue.c +++ b/arch/x86/crypto/camellia_aesni_avx2_glue.c @@ -582,5 +582,5 @@ module_exit(camellia_aesni_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Camellia Cipher Algorithm, AES-NI/AVX2 optimized"); -MODULE_ALIAS("camellia"); -MODULE_ALIAS("camellia-asm"); +MODULE_ALIAS_CRYPTO("camellia"); +MODULE_ALIAS_CRYPTO("camellia-asm"); diff --git a/arch/x86/crypto/camellia_aesni_avx_glue.c b/arch/x86/crypto/camellia_aesni_avx_glue.c index 87a041a10f4a..ed38d959add6 100644 --- a/arch/x86/crypto/camellia_aesni_avx_glue.c +++ b/arch/x86/crypto/camellia_aesni_avx_glue.c @@ -574,5 +574,5 @@ module_exit(camellia_aesni_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Camellia Cipher Algorithm, AES-NI/AVX optimized"); -MODULE_ALIAS("camellia"); -MODULE_ALIAS("camellia-asm"); +MODULE_ALIAS_CRYPTO("camellia"); +MODULE_ALIAS_CRYPTO("camellia-asm"); diff --git a/arch/x86/crypto/camellia_glue.c b/arch/x86/crypto/camellia_glue.c index c171dcbf192d..5c8b6266a394 100644 --- a/arch/x86/crypto/camellia_glue.c +++ b/arch/x86/crypto/camellia_glue.c @@ -1725,5 +1725,5 @@ module_exit(fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Camellia Cipher Algorithm, asm optimized"); -MODULE_ALIAS("camellia"); -MODULE_ALIAS("camellia-asm"); +MODULE_ALIAS_CRYPTO("camellia"); +MODULE_ALIAS_CRYPTO("camellia-asm"); diff --git a/arch/x86/crypto/cast5_avx_glue.c b/arch/x86/crypto/cast5_avx_glue.c index e57e20ab5e0b..60ada677a928 100644 --- a/arch/x86/crypto/cast5_avx_glue.c +++ b/arch/x86/crypto/cast5_avx_glue.c @@ -491,4 +491,4 @@ module_exit(cast5_exit); MODULE_DESCRIPTION("Cast5 Cipher Algorithm, AVX optimized"); MODULE_LICENSE("GPL"); -MODULE_ALIAS("cast5"); +MODULE_ALIAS_CRYPTO("cast5"); diff --git a/arch/x86/crypto/cast6_avx_glue.c b/arch/x86/crypto/cast6_avx_glue.c index 09f3677393e4..0160f68a57ff 100644 --- a/arch/x86/crypto/cast6_avx_glue.c +++ b/arch/x86/crypto/cast6_avx_glue.c @@ -611,4 +611,4 @@ module_exit(cast6_exit); MODULE_DESCRIPTION("Cast6 Cipher Algorithm, AVX optimized"); MODULE_LICENSE("GPL"); -MODULE_ALIAS("cast6"); +MODULE_ALIAS_CRYPTO("cast6"); diff --git a/arch/x86/crypto/crc32-pclmul_glue.c b/arch/x86/crypto/crc32-pclmul_glue.c index 9d014a74ef96..1937fc1d8763 100644 --- a/arch/x86/crypto/crc32-pclmul_glue.c +++ b/arch/x86/crypto/crc32-pclmul_glue.c @@ -197,5 +197,5 @@ module_exit(crc32_pclmul_mod_fini); MODULE_AUTHOR("Alexander Boyko <alexander_boyko@xyratex.com>"); MODULE_LICENSE("GPL"); -MODULE_ALIAS("crc32"); -MODULE_ALIAS("crc32-pclmul"); +MODULE_ALIAS_CRYPTO("crc32"); +MODULE_ALIAS_CRYPTO("crc32-pclmul"); diff --git a/arch/x86/crypto/crc32c-intel_glue.c b/arch/x86/crypto/crc32c-intel_glue.c index 6812ad98355c..28640c3d6af7 100644 --- a/arch/x86/crypto/crc32c-intel_glue.c +++ b/arch/x86/crypto/crc32c-intel_glue.c @@ -280,5 +280,5 @@ MODULE_AUTHOR("Austin Zhang <austin.zhang@intel.com>, Kent Liu <kent.liu@intel.c MODULE_DESCRIPTION("CRC32c (Castagnoli) optimization using Intel Hardware."); MODULE_LICENSE("GPL"); -MODULE_ALIAS("crc32c"); -MODULE_ALIAS("crc32c-intel"); +MODULE_ALIAS_CRYPTO("crc32c"); +MODULE_ALIAS_CRYPTO("crc32c-intel"); diff --git a/arch/x86/crypto/crct10dif-pclmul_glue.c b/arch/x86/crypto/crct10dif-pclmul_glue.c index 7845d7fd54c0..b6c67bf30fdf 100644 --- a/arch/x86/crypto/crct10dif-pclmul_glue.c +++ b/arch/x86/crypto/crct10dif-pclmul_glue.c @@ -147,5 +147,5 @@ MODULE_AUTHOR("Tim Chen <tim.c.chen@linux.intel.com>"); MODULE_DESCRIPTION("T10 DIF CRC calculation accelerated with PCLMULQDQ."); MODULE_LICENSE("GPL"); -MODULE_ALIAS("crct10dif"); -MODULE_ALIAS("crct10dif-pclmul"); +MODULE_ALIAS_CRYPTO("crct10dif"); +MODULE_ALIAS_CRYPTO("crct10dif-pclmul"); diff --git a/arch/x86/crypto/des3_ede_glue.c b/arch/x86/crypto/des3_ede_glue.c index 0e9c0668fe4e..38a14f818ef1 100644 --- a/arch/x86/crypto/des3_ede_glue.c +++ b/arch/x86/crypto/des3_ede_glue.c @@ -502,8 +502,8 @@ module_exit(des3_ede_x86_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Triple DES EDE Cipher Algorithm, asm optimized"); -MODULE_ALIAS("des3_ede"); -MODULE_ALIAS("des3_ede-asm"); -MODULE_ALIAS("des"); -MODULE_ALIAS("des-asm"); +MODULE_ALIAS_CRYPTO("des3_ede"); +MODULE_ALIAS_CRYPTO("des3_ede-asm"); +MODULE_ALIAS_CRYPTO("des"); +MODULE_ALIAS_CRYPTO("des-asm"); MODULE_AUTHOR("Jussi Kivilinna <jussi.kivilinna@iki.fi>"); diff --git a/arch/x86/crypto/fpu.c b/arch/x86/crypto/fpu.c index 98d7a188f46b..f368ba261739 100644 --- a/arch/x86/crypto/fpu.c +++ b/arch/x86/crypto/fpu.c @@ -17,6 +17,7 @@ #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> +#include <linux/crypto.h> #include <asm/i387.h> struct crypto_fpu_ctx { @@ -159,3 +160,5 @@ void __exit crypto_fpu_exit(void) { crypto_unregister_template(&crypto_fpu_tmpl); } + +MODULE_ALIAS_CRYPTO("fpu"); diff --git a/arch/x86/crypto/ghash-clmulni-intel_glue.c b/arch/x86/crypto/ghash-clmulni-intel_glue.c index 88bb7ba8b175..8253d85aa165 100644 --- a/arch/x86/crypto/ghash-clmulni-intel_glue.c +++ b/arch/x86/crypto/ghash-clmulni-intel_glue.c @@ -341,4 +341,4 @@ module_exit(ghash_pclmulqdqni_mod_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("GHASH Message Digest Algorithm, " "acclerated by PCLMULQDQ-NI"); -MODULE_ALIAS("ghash"); +MODULE_ALIAS_CRYPTO("ghash"); diff --git a/arch/x86/crypto/salsa20_glue.c b/arch/x86/crypto/salsa20_glue.c index 5e8e67739bb5..399a29d067d6 100644 --- a/arch/x86/crypto/salsa20_glue.c +++ b/arch/x86/crypto/salsa20_glue.c @@ -119,5 +119,5 @@ module_exit(fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION ("Salsa20 stream cipher algorithm (optimized assembly version)"); -MODULE_ALIAS("salsa20"); -MODULE_ALIAS("salsa20-asm"); +MODULE_ALIAS_CRYPTO("salsa20"); +MODULE_ALIAS_CRYPTO("salsa20-asm"); diff --git a/arch/x86/crypto/serpent_avx2_glue.c b/arch/x86/crypto/serpent_avx2_glue.c index 2fae489b1524..437e47a4d302 100644 --- a/arch/x86/crypto/serpent_avx2_glue.c +++ b/arch/x86/crypto/serpent_avx2_glue.c @@ -558,5 +558,5 @@ module_exit(fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Serpent Cipher Algorithm, AVX2 optimized"); -MODULE_ALIAS("serpent"); -MODULE_ALIAS("serpent-asm"); +MODULE_ALIAS_CRYPTO("serpent"); +MODULE_ALIAS_CRYPTO("serpent-asm"); diff --git a/arch/x86/crypto/serpent_avx_glue.c b/arch/x86/crypto/serpent_avx_glue.c index ff4870870972..7e217398b4eb 100644 --- a/arch/x86/crypto/serpent_avx_glue.c +++ b/arch/x86/crypto/serpent_avx_glue.c @@ -617,4 +617,4 @@ module_exit(serpent_exit); MODULE_DESCRIPTION("Serpent Cipher Algorithm, AVX optimized"); MODULE_LICENSE("GPL"); -MODULE_ALIAS("serpent"); +MODULE_ALIAS_CRYPTO("serpent"); diff --git a/arch/x86/crypto/serpent_sse2_glue.c b/arch/x86/crypto/serpent_sse2_glue.c index 8c95f8637306..bf025adaea01 100644 --- a/arch/x86/crypto/serpent_sse2_glue.c +++ b/arch/x86/crypto/serpent_sse2_glue.c @@ -618,4 +618,4 @@ module_exit(serpent_sse2_exit); MODULE_DESCRIPTION("Serpent Cipher Algorithm, SSE2 optimized"); MODULE_LICENSE("GPL"); -MODULE_ALIAS("serpent"); +MODULE_ALIAS_CRYPTO("serpent"); diff --git a/arch/x86/crypto/sha-mb/sha1_mb.c b/arch/x86/crypto/sha-mb/sha1_mb.c index 99eefd812958..a225a5ca1037 100644 --- a/arch/x86/crypto/sha-mb/sha1_mb.c +++ b/arch/x86/crypto/sha-mb/sha1_mb.c @@ -204,8 +204,7 @@ static struct sha1_hash_ctx *sha1_ctx_mgr_resubmit(struct sha1_ctx_mgr *mgr, str continue; } - if (ctx) - ctx->status = HASH_CTX_STS_IDLE; + ctx->status = HASH_CTX_STS_IDLE; return ctx; } diff --git a/arch/x86/crypto/sha1_ssse3_glue.c b/arch/x86/crypto/sha1_ssse3_glue.c index 74d16ef707c7..6c20fe04a738 100644 --- a/arch/x86/crypto/sha1_ssse3_glue.c +++ b/arch/x86/crypto/sha1_ssse3_glue.c @@ -278,4 +278,4 @@ module_exit(sha1_ssse3_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, Supplemental SSE3 accelerated"); -MODULE_ALIAS("sha1"); +MODULE_ALIAS_CRYPTO("sha1"); diff --git a/arch/x86/crypto/sha256_ssse3_glue.c b/arch/x86/crypto/sha256_ssse3_glue.c index f248546da1ca..8fad72f4dfd2 100644 --- a/arch/x86/crypto/sha256_ssse3_glue.c +++ b/arch/x86/crypto/sha256_ssse3_glue.c @@ -211,7 +211,7 @@ static int sha224_ssse3_final(struct shash_desc *desc, u8 *hash) sha256_ssse3_final(desc, D); memcpy(hash, D, SHA224_DIGEST_SIZE); - memset(D, 0, SHA256_DIGEST_SIZE); + memzero_explicit(D, SHA256_DIGEST_SIZE); return 0; } @@ -318,5 +318,5 @@ module_exit(sha256_ssse3_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA256 Secure Hash Algorithm, Supplemental SSE3 accelerated"); -MODULE_ALIAS("sha256"); -MODULE_ALIAS("sha224"); +MODULE_ALIAS_CRYPTO("sha256"); +MODULE_ALIAS_CRYPTO("sha224"); diff --git a/arch/x86/crypto/sha512_ssse3_glue.c b/arch/x86/crypto/sha512_ssse3_glue.c index 8626b03e83b7..0b6af26832bf 100644 --- a/arch/x86/crypto/sha512_ssse3_glue.c +++ b/arch/x86/crypto/sha512_ssse3_glue.c @@ -219,7 +219,7 @@ static int sha384_ssse3_final(struct shash_desc *desc, u8 *hash) sha512_ssse3_final(desc, D); memcpy(hash, D, SHA384_DIGEST_SIZE); - memset(D, 0, SHA512_DIGEST_SIZE); + memzero_explicit(D, SHA512_DIGEST_SIZE); return 0; } @@ -326,5 +326,5 @@ module_exit(sha512_ssse3_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA512 Secure Hash Algorithm, Supplemental SSE3 accelerated"); -MODULE_ALIAS("sha512"); -MODULE_ALIAS("sha384"); +MODULE_ALIAS_CRYPTO("sha512"); +MODULE_ALIAS_CRYPTO("sha384"); diff --git a/arch/x86/crypto/twofish_avx_glue.c b/arch/x86/crypto/twofish_avx_glue.c index 4e3c665be129..1ac531ea9bcc 100644 --- a/arch/x86/crypto/twofish_avx_glue.c +++ b/arch/x86/crypto/twofish_avx_glue.c @@ -579,4 +579,4 @@ module_exit(twofish_exit); MODULE_DESCRIPTION("Twofish Cipher Algorithm, AVX optimized"); MODULE_LICENSE("GPL"); -MODULE_ALIAS("twofish"); +MODULE_ALIAS_CRYPTO("twofish"); diff --git a/arch/x86/crypto/twofish_glue.c b/arch/x86/crypto/twofish_glue.c index 0a5202303501..77e06c2da83d 100644 --- a/arch/x86/crypto/twofish_glue.c +++ b/arch/x86/crypto/twofish_glue.c @@ -96,5 +96,5 @@ module_exit(fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION ("Twofish Cipher Algorithm, asm optimized"); -MODULE_ALIAS("twofish"); -MODULE_ALIAS("twofish-asm"); +MODULE_ALIAS_CRYPTO("twofish"); +MODULE_ALIAS_CRYPTO("twofish-asm"); diff --git a/arch/x86/crypto/twofish_glue_3way.c b/arch/x86/crypto/twofish_glue_3way.c index 13e63b3e1dfb..56d8a08ee479 100644 --- a/arch/x86/crypto/twofish_glue_3way.c +++ b/arch/x86/crypto/twofish_glue_3way.c @@ -495,5 +495,5 @@ module_exit(fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Twofish Cipher Algorithm, 3-way parallel asm optimized"); -MODULE_ALIAS("twofish"); -MODULE_ALIAS("twofish-asm"); +MODULE_ALIAS_CRYPTO("twofish"); +MODULE_ALIAS_CRYPTO("twofish-asm"); diff --git a/crypto/842.c b/crypto/842.c index 65c7a89cfa09..b48f4f108c47 100644 --- a/crypto/842.c +++ b/crypto/842.c @@ -180,3 +180,4 @@ module_exit(nx842_mod_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("842 Compression Algorithm"); +MODULE_ALIAS_CRYPTO("842"); diff --git a/crypto/aes_generic.c b/crypto/aes_generic.c index fd0d6b454975..9b3c54c1cbe8 100644 --- a/crypto/aes_generic.c +++ b/crypto/aes_generic.c @@ -1474,4 +1474,4 @@ module_exit(aes_fini); MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm"); MODULE_LICENSE("Dual BSD/GPL"); -MODULE_ALIAS("aes"); +MODULE_ALIAS_CRYPTO("aes"); diff --git a/crypto/af_alg.c b/crypto/af_alg.c index bc21f520d489..1fa7bc31be63 100644 --- a/crypto/af_alg.c +++ b/crypto/af_alg.c @@ -421,6 +421,12 @@ int af_alg_cmsg_send(struct msghdr *msg, struct af_alg_control *con) con->op = *(u32 *)CMSG_DATA(cmsg); break; + case ALG_SET_AEAD_ASSOCLEN: + if (cmsg->cmsg_len < CMSG_LEN(sizeof(u32))) + return -EINVAL; + con->aead_assoclen = *(u32 *)CMSG_DATA(cmsg); + break; + default: return -EINVAL; } diff --git a/crypto/algapi.c b/crypto/algapi.c index e8d3a7dca8c4..71a8143e23b1 100644 --- a/crypto/algapi.c +++ b/crypto/algapi.c @@ -509,8 +509,8 @@ static struct crypto_template *__crypto_lookup_template(const char *name) struct crypto_template *crypto_lookup_template(const char *name) { - return try_then_request_module(__crypto_lookup_template(name), "%s", - name); + return try_then_request_module(__crypto_lookup_template(name), + "crypto-%s", name); } EXPORT_SYMBOL_GPL(crypto_lookup_template); diff --git a/crypto/algif_hash.c b/crypto/algif_hash.c index 83cd2cc49c9f..01f56eb7816e 100644 --- a/crypto/algif_hash.c +++ b/crypto/algif_hash.c @@ -258,8 +258,8 @@ static void hash_sock_destruct(struct sock *sk) struct alg_sock *ask = alg_sk(sk); struct hash_ctx *ctx = ask->private; - sock_kfree_s(sk, ctx->result, - crypto_ahash_digestsize(crypto_ahash_reqtfm(&ctx->req))); + sock_kzfree_s(sk, ctx->result, + crypto_ahash_digestsize(crypto_ahash_reqtfm(&ctx->req))); sock_kfree_s(sk, ctx, ctx->len); af_alg_release_parent(sk); } diff --git a/crypto/algif_skcipher.c b/crypto/algif_skcipher.c index 4f45dab24648..c12207c8dde9 100644 --- a/crypto/algif_skcipher.c +++ b/crypto/algif_skcipher.c @@ -251,6 +251,7 @@ static int skcipher_sendmsg(struct kiocb *unused, struct socket *sock, struct af_alg_control con = {}; long copied = 0; bool enc = 0; + bool init = 0; int err; int i; @@ -259,6 +260,7 @@ static int skcipher_sendmsg(struct kiocb *unused, struct socket *sock, if (err) return err; + init = 1; switch (con.op) { case ALG_OP_ENCRYPT: enc = 1; @@ -280,7 +282,7 @@ static int skcipher_sendmsg(struct kiocb *unused, struct socket *sock, if (!ctx->more && ctx->used) goto unlock; - if (!ctx->used) { + if (init) { ctx->enc = enc; if (con.iv) memcpy(ctx->iv, con.iv->iv, ivsize); @@ -359,8 +361,6 @@ static int skcipher_sendmsg(struct kiocb *unused, struct socket *sock, err = 0; ctx->more = msg->msg_flags & MSG_MORE; - if (!ctx->more && !list_empty(&ctx->tsgl)) - sgl = list_entry(ctx->tsgl.prev, struct skcipher_sg_list, list); unlock: skcipher_data_wakeup(sk); @@ -408,8 +408,6 @@ static ssize_t skcipher_sendpage(struct socket *sock, struct page *page, done: ctx->more = flags & MSG_MORE; - if (!ctx->more && !list_empty(&ctx->tsgl)) - sgl = list_entry(ctx->tsgl.prev, struct skcipher_sg_list, list); unlock: skcipher_data_wakeup(sk); @@ -448,14 +446,13 @@ static int skcipher_recvmsg(struct kiocb *unused, struct socket *sock, while (!sg->length) sg++; - used = ctx->used; - if (!used) { + if (!ctx->used) { err = skcipher_wait_for_data(sk, flags); if (err) goto unlock; } - used = min_t(unsigned long, used, seglen); + used = min_t(unsigned long, ctx->used, seglen); used = af_alg_make_sg(&ctx->rsgl, from, used, 1); err = used; @@ -566,7 +563,7 @@ static void skcipher_sock_destruct(struct sock *sk) struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(&ctx->req); skcipher_free_sgl(sk); - sock_kfree_s(sk, ctx->iv, crypto_ablkcipher_ivsize(tfm)); + sock_kzfree_s(sk, ctx->iv, crypto_ablkcipher_ivsize(tfm)); sock_kfree_s(sk, ctx, ctx->len); af_alg_release_parent(sk); } diff --git a/crypto/ansi_cprng.c b/crypto/ansi_cprng.c index 666f1962a160..b4485a108389 100644 --- a/crypto/ansi_cprng.c +++ b/crypto/ansi_cprng.c @@ -476,4 +476,4 @@ module_param(dbg, int, 0); MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)"); module_init(prng_mod_init); module_exit(prng_mod_fini); -MODULE_ALIAS("stdrng"); +MODULE_ALIAS_CRYPTO("stdrng"); diff --git a/crypto/anubis.c b/crypto/anubis.c index 008c8a4fb67c..4bb187c2a902 100644 --- a/crypto/anubis.c +++ b/crypto/anubis.c @@ -704,3 +704,4 @@ module_exit(anubis_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Anubis Cryptographic Algorithm"); +MODULE_ALIAS_CRYPTO("anubis"); diff --git a/crypto/api.c b/crypto/api.c index a2b39c5f3649..2a81e98a0021 100644 --- a/crypto/api.c +++ b/crypto/api.c @@ -216,11 +216,11 @@ struct crypto_alg *crypto_larval_lookup(const char *name, u32 type, u32 mask) alg = crypto_alg_lookup(name, type, mask); if (!alg) { - request_module("%s", name); + request_module("crypto-%s", name); if (!((type ^ CRYPTO_ALG_NEED_FALLBACK) & mask & CRYPTO_ALG_NEED_FALLBACK)) - request_module("%s-all", name); + request_module("crypto-%s-all", name); alg = crypto_alg_lookup(name, type, mask); } diff --git a/crypto/arc4.c b/crypto/arc4.c index 5a772c3657d5..f1a81925558f 100644 --- a/crypto/arc4.c +++ b/crypto/arc4.c @@ -166,3 +166,4 @@ module_exit(arc4_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("ARC4 Cipher Algorithm"); MODULE_AUTHOR("Jon Oberheide <jon@oberheide.org>"); +MODULE_ALIAS_CRYPTO("arc4"); diff --git a/crypto/authenc.c b/crypto/authenc.c index e1223559d5df..78fb16cab13f 100644 --- a/crypto/authenc.c +++ b/crypto/authenc.c @@ -721,3 +721,4 @@ module_exit(crypto_authenc_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Simple AEAD wrapper for IPsec"); +MODULE_ALIAS_CRYPTO("authenc"); diff --git a/crypto/authencesn.c b/crypto/authencesn.c index 4be0dd4373a9..024bff2344fc 100644 --- a/crypto/authencesn.c +++ b/crypto/authencesn.c @@ -814,3 +814,4 @@ module_exit(crypto_authenc_esn_module_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Steffen Klassert <steffen.klassert@secunet.com>"); MODULE_DESCRIPTION("AEAD wrapper for IPsec with extended sequence numbers"); +MODULE_ALIAS_CRYPTO("authencesn"); diff --git a/crypto/blowfish_generic.c b/crypto/blowfish_generic.c index 8baf5447d35b..7bd71f02d0dd 100644 --- a/crypto/blowfish_generic.c +++ b/crypto/blowfish_generic.c @@ -138,4 +138,4 @@ module_exit(blowfish_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Blowfish Cipher Algorithm"); -MODULE_ALIAS("blowfish"); +MODULE_ALIAS_CRYPTO("blowfish"); diff --git a/crypto/camellia_generic.c b/crypto/camellia_generic.c index 26bcd7a2d6b4..1b74c5a3e891 100644 --- a/crypto/camellia_generic.c +++ b/crypto/camellia_generic.c @@ -1098,4 +1098,4 @@ module_exit(camellia_fini); MODULE_DESCRIPTION("Camellia Cipher Algorithm"); MODULE_LICENSE("GPL"); -MODULE_ALIAS("camellia"); +MODULE_ALIAS_CRYPTO("camellia"); diff --git a/crypto/cast5_generic.c b/crypto/cast5_generic.c index 5558f630a0eb..84c86db67ec7 100644 --- a/crypto/cast5_generic.c +++ b/crypto/cast5_generic.c @@ -549,4 +549,4 @@ module_exit(cast5_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Cast5 Cipher Algorithm"); -MODULE_ALIAS("cast5"); +MODULE_ALIAS_CRYPTO("cast5"); diff --git a/crypto/cast6_generic.c b/crypto/cast6_generic.c index de732528a430..f408f0bd8de2 100644 --- a/crypto/cast6_generic.c +++ b/crypto/cast6_generic.c @@ -291,4 +291,4 @@ module_exit(cast6_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Cast6 Cipher Algorithm"); -MODULE_ALIAS("cast6"); +MODULE_ALIAS_CRYPTO("cast6"); diff --git a/crypto/cbc.c b/crypto/cbc.c index 61ac42e1e32b..780ee27b2d43 100644 --- a/crypto/cbc.c +++ b/crypto/cbc.c @@ -289,3 +289,4 @@ module_exit(crypto_cbc_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("CBC block cipher algorithm"); +MODULE_ALIAS_CRYPTO("cbc"); diff --git a/crypto/ccm.c b/crypto/ccm.c index 1df84217f7c9..003bbbd21a2b 100644 --- a/crypto/ccm.c +++ b/crypto/ccm.c @@ -879,5 +879,6 @@ module_exit(crypto_ccm_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Counter with CBC MAC"); -MODULE_ALIAS("ccm_base"); -MODULE_ALIAS("rfc4309"); +MODULE_ALIAS_CRYPTO("ccm_base"); +MODULE_ALIAS_CRYPTO("rfc4309"); +MODULE_ALIAS_CRYPTO("ccm"); diff --git a/crypto/chainiv.c b/crypto/chainiv.c index 9c294c8f9a07..63c17d5992f7 100644 --- a/crypto/chainiv.c +++ b/crypto/chainiv.c @@ -359,3 +359,4 @@ module_exit(chainiv_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Chain IV Generator"); +MODULE_ALIAS_CRYPTO("chainiv"); diff --git a/crypto/cmac.c b/crypto/cmac.c index 50880cf17fad..7a8bfbd548f6 100644 --- a/crypto/cmac.c +++ b/crypto/cmac.c @@ -313,3 +313,4 @@ module_exit(crypto_cmac_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("CMAC keyed hash algorithm"); +MODULE_ALIAS_CRYPTO("cmac"); diff --git a/crypto/crc32.c b/crypto/crc32.c index 9d1c41569898..187ded28cb0b 100644 --- a/crypto/crc32.c +++ b/crypto/crc32.c @@ -156,3 +156,4 @@ module_exit(crc32_mod_fini); MODULE_AUTHOR("Alexander Boyko <alexander_boyko@xyratex.com>"); MODULE_DESCRIPTION("CRC32 calculations wrapper for lib/crc32"); MODULE_LICENSE("GPL"); +MODULE_ALIAS_CRYPTO("crc32"); diff --git a/crypto/crc32c_generic.c b/crypto/crc32c_generic.c index d9c7beba8e50..2a062025749d 100644 --- a/crypto/crc32c_generic.c +++ b/crypto/crc32c_generic.c @@ -170,5 +170,5 @@ module_exit(crc32c_mod_fini); MODULE_AUTHOR("Clay Haapala <chaapala@cisco.com>"); MODULE_DESCRIPTION("CRC32c (Castagnoli) calculations wrapper for lib/crc32c"); MODULE_LICENSE("GPL"); -MODULE_ALIAS("crc32c"); +MODULE_ALIAS_CRYPTO("crc32c"); MODULE_SOFTDEP("pre: crc32c"); diff --git a/crypto/crct10dif_generic.c b/crypto/crct10dif_generic.c index 877e7114ec5c..08bb4f504520 100644 --- a/crypto/crct10dif_generic.c +++ b/crypto/crct10dif_generic.c @@ -124,4 +124,4 @@ module_exit(crct10dif_mod_fini); MODULE_AUTHOR("Tim Chen <tim.c.chen@linux.intel.com>"); MODULE_DESCRIPTION("T10 DIF CRC calculation."); MODULE_LICENSE("GPL"); -MODULE_ALIAS("crct10dif"); +MODULE_ALIAS_CRYPTO("crct10dif"); diff --git a/crypto/cryptd.c b/crypto/cryptd.c index e592c90abebb..650afac10fd7 100644 --- a/crypto/cryptd.c +++ b/crypto/cryptd.c @@ -955,3 +955,4 @@ module_exit(cryptd_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Software async crypto daemon"); +MODULE_ALIAS_CRYPTO("cryptd"); diff --git a/crypto/crypto_null.c b/crypto/crypto_null.c index 1dc54bb95a87..a20319132e33 100644 --- a/crypto/crypto_null.c +++ b/crypto/crypto_null.c @@ -145,9 +145,9 @@ static struct crypto_alg null_algs[3] = { { .coa_decompress = null_compress } } } }; -MODULE_ALIAS("compress_null"); -MODULE_ALIAS("digest_null"); -MODULE_ALIAS("cipher_null"); +MODULE_ALIAS_CRYPTO("compress_null"); +MODULE_ALIAS_CRYPTO("digest_null"); +MODULE_ALIAS_CRYPTO("cipher_null"); static int __init crypto_null_mod_init(void) { diff --git a/crypto/crypto_user.c b/crypto/crypto_user.c index e2a34feec7a4..c5148a35ae0a 100644 --- a/crypto/crypto_user.c +++ b/crypto/crypto_user.c @@ -201,10 +201,7 @@ static int crypto_report(struct sk_buff *in_skb, struct nlmsghdr *in_nlh, if (!null_terminated(p->cru_name) || !null_terminated(p->cru_driver_name)) return -EINVAL; - if (!p->cru_driver_name[0]) - return -EINVAL; - - alg = crypto_alg_match(p, 1); + alg = crypto_alg_match(p, 0); if (!alg) return -ENOENT; @@ -537,3 +534,4 @@ module_exit(crypto_user_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Steffen Klassert <steffen.klassert@secunet.com>"); MODULE_DESCRIPTION("Crypto userspace configuration API"); +MODULE_ALIAS("net-pf-16-proto-21"); diff --git a/crypto/ctr.c b/crypto/ctr.c index f2b94f27bb2c..2386f7313952 100644 --- a/crypto/ctr.c +++ b/crypto/ctr.c @@ -466,4 +466,5 @@ module_exit(crypto_ctr_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("CTR Counter block mode"); -MODULE_ALIAS("rfc3686"); +MODULE_ALIAS_CRYPTO("rfc3686"); +MODULE_ALIAS_CRYPTO("ctr"); diff --git a/crypto/cts.c b/crypto/cts.c index 133f0874c95e..bd9405820e8a 100644 --- a/crypto/cts.c +++ b/crypto/cts.c @@ -351,3 +351,4 @@ module_exit(crypto_cts_module_exit); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("CTS-CBC CipherText Stealing for CBC"); +MODULE_ALIAS_CRYPTO("cts"); diff --git a/crypto/deflate.c b/crypto/deflate.c index b57d70eb156b..95d8d37c5021 100644 --- a/crypto/deflate.c +++ b/crypto/deflate.c @@ -222,4 +222,4 @@ module_exit(deflate_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Deflate Compression Algorithm for IPCOMP"); MODULE_AUTHOR("James Morris <jmorris@intercode.com.au>"); - +MODULE_ALIAS_CRYPTO("deflate"); diff --git a/crypto/des_generic.c b/crypto/des_generic.c index 298d464ab7d2..42912948776b 100644 --- a/crypto/des_generic.c +++ b/crypto/des_generic.c @@ -983,7 +983,7 @@ static struct crypto_alg des_algs[2] = { { .cia_decrypt = des3_ede_decrypt } } } }; -MODULE_ALIAS("des3_ede"); +MODULE_ALIAS_CRYPTO("des3_ede"); static int __init des_generic_mod_init(void) { diff --git a/crypto/drbg.c b/crypto/drbg.c index 54cfd4820abc..d748a1d0ca24 100644 --- a/crypto/drbg.c +++ b/crypto/drbg.c @@ -98,6 +98,7 @@ */ #include <crypto/drbg.h> +#include <linux/string.h> /*************************************************************** * Backend cipher definitions available to DRBG @@ -283,38 +284,6 @@ static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf) conversion->conv = cpu_to_be32(val); } - -/* - * Increment buffer - * - * @dst buffer to increment - * @add value to add - */ -static inline void drbg_add_buf(unsigned char *dst, size_t dstlen, - const unsigned char *add, size_t addlen) -{ - /* implied: dstlen > addlen */ - unsigned char *dstptr; - const unsigned char *addptr; - unsigned int remainder = 0; - size_t len = addlen; - - dstptr = dst + (dstlen-1); - addptr = add + (addlen-1); - while (len) { - remainder += *dstptr + *addptr; - *dstptr = remainder & 0xff; - remainder >>= 8; - len--; dstptr--; addptr--; - } - len = dstlen - addlen; - while (len && remainder > 0) { - remainder = *dstptr + 1; - *dstptr = remainder & 0xff; - remainder >>= 8; - len--; dstptr--; - } -} #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */ /****************************************************************** @@ -323,6 +292,13 @@ static inline void drbg_add_buf(unsigned char *dst, size_t dstlen, #ifdef CONFIG_CRYPTO_DRBG_CTR #define CRYPTO_DRBG_CTR_STRING "CTR " +MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256"); +MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256"); +MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192"); +MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192"); +MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128"); +MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128"); + static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key, unsigned char *outval, const struct drbg_string *in); static int drbg_init_sym_kernel(struct drbg_state *drbg); @@ -522,9 +498,9 @@ static int drbg_ctr_df(struct drbg_state *drbg, ret = 0; out: - memset(iv, 0, drbg_blocklen(drbg)); - memset(temp, 0, drbg_statelen(drbg)); - memset(pad, 0, drbg_blocklen(drbg)); + memzero_explicit(iv, drbg_blocklen(drbg)); + memzero_explicit(temp, drbg_statelen(drbg)); + memzero_explicit(pad, drbg_blocklen(drbg)); return ret; } @@ -554,7 +530,6 @@ static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed, unsigned char *temp_p, *df_data_p; /* pointer to iterate over buffers */ unsigned int len = 0; struct drbg_string cipherin; - unsigned char prefix = DRBG_PREFIX1; memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg)); if (3 > reseed) @@ -574,7 +549,7 @@ static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed, */ while (len < (drbg_statelen(drbg))) { /* 10.2.1.2 step 2.1 */ - drbg_add_buf(drbg->V, drbg_blocklen(drbg), &prefix, 1); + crypto_inc(drbg->V, drbg_blocklen(drbg)); /* * 10.2.1.2 step 2.2 */ ret = drbg_kcapi_sym(drbg, drbg->C, temp + len, &cipherin); @@ -599,9 +574,9 @@ static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed, ret = 0; out: - memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg)); + memzero_explicit(temp, drbg_statelen(drbg) + drbg_blocklen(drbg)); if (2 != reseed) - memset(df_data, 0, drbg_statelen(drbg)); + memzero_explicit(df_data, drbg_statelen(drbg)); return ret; } @@ -617,7 +592,6 @@ static int drbg_ctr_generate(struct drbg_state *drbg, int len = 0; int ret = 0; struct drbg_string data; - unsigned char prefix = DRBG_PREFIX1; memset(drbg->scratchpad, 0, drbg_blocklen(drbg)); @@ -629,7 +603,7 @@ static int drbg_ctr_generate(struct drbg_state *drbg, } /* 10.2.1.5.2 step 4.1 */ - drbg_add_buf(drbg->V, drbg_blocklen(drbg), &prefix, 1); + crypto_inc(drbg->V, drbg_blocklen(drbg)); drbg_string_fill(&data, drbg->V, drbg_blocklen(drbg)); while (len < buflen) { int outlen = 0; @@ -643,7 +617,7 @@ static int drbg_ctr_generate(struct drbg_state *drbg, drbg_blocklen(drbg) : (buflen - len); if (!drbg_fips_continuous_test(drbg, drbg->scratchpad)) { /* 10.2.1.5.2 step 6 */ - drbg_add_buf(drbg->V, drbg_blocklen(drbg), &prefix, 1); + crypto_inc(drbg->V, drbg_blocklen(drbg)); continue; } /* 10.2.1.5.2 step 4.3 */ @@ -651,7 +625,7 @@ static int drbg_ctr_generate(struct drbg_state *drbg, len += outlen; /* 10.2.1.5.2 step 6 */ if (len < buflen) - drbg_add_buf(drbg->V, drbg_blocklen(drbg), &prefix, 1); + crypto_inc(drbg->V, drbg_blocklen(drbg)); } /* 10.2.1.5.2 step 6 */ @@ -660,7 +634,7 @@ static int drbg_ctr_generate(struct drbg_state *drbg, len = ret; out: - memset(drbg->scratchpad, 0, drbg_blocklen(drbg)); + memzero_explicit(drbg->scratchpad, drbg_blocklen(drbg)); return len; } @@ -685,6 +659,15 @@ static int drbg_fini_hash_kernel(struct drbg_state *drbg); #ifdef CONFIG_CRYPTO_DRBG_HMAC #define CRYPTO_DRBG_HMAC_STRING "HMAC " +MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512"); +MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512"); +MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384"); +MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384"); +MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256"); +MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256"); +MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1"); +MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1"); + /* update function of HMAC DRBG as defined in 10.1.2.2 */ static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed, int reseed) @@ -796,6 +779,47 @@ static struct drbg_state_ops drbg_hmac_ops = { #ifdef CONFIG_CRYPTO_DRBG_HASH #define CRYPTO_DRBG_HASH_STRING "HASH " +MODULE_ALIAS_CRYPTO("drbg_pr_sha512"); +MODULE_ALIAS_CRYPTO("drbg_nopr_sha512"); +MODULE_ALIAS_CRYPTO("drbg_pr_sha384"); +MODULE_ALIAS_CRYPTO("drbg_nopr_sha384"); +MODULE_ALIAS_CRYPTO("drbg_pr_sha256"); +MODULE_ALIAS_CRYPTO("drbg_nopr_sha256"); +MODULE_ALIAS_CRYPTO("drbg_pr_sha1"); +MODULE_ALIAS_CRYPTO("drbg_nopr_sha1"); + +/* + * Increment buffer + * + * @dst buffer to increment + * @add value to add + */ +static inline void drbg_add_buf(unsigned char *dst, size_t dstlen, + const unsigned char *add, size_t addlen) +{ + /* implied: dstlen > addlen */ + unsigned char *dstptr; + const unsigned char *addptr; + unsigned int remainder = 0; + size_t len = addlen; + + dstptr = dst + (dstlen-1); + addptr = add + (addlen-1); + while (len) { + remainder += *dstptr + *addptr; + *dstptr = remainder & 0xff; + remainder >>= 8; + len--; dstptr--; addptr--; + } + len = dstlen - addlen; + while (len && remainder > 0) { + remainder = *dstptr + 1; + *dstptr = remainder & 0xff; + remainder >>= 8; + len--; dstptr--; + } +} + /* * scratchpad usage: as drbg_hash_update and drbg_hash_df are used * interlinked, the scratchpad is used as follows: @@ -848,7 +872,7 @@ static int drbg_hash_df(struct drbg_state *drbg, } out: - memset(tmp, 0, drbg_blocklen(drbg)); + memzero_explicit(tmp, drbg_blocklen(drbg)); return ret; } @@ -892,7 +916,7 @@ static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed, ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2); out: - memset(drbg->scratchpad, 0, drbg_statelen(drbg)); + memzero_explicit(drbg->scratchpad, drbg_statelen(drbg)); return ret; } @@ -927,7 +951,7 @@ static int drbg_hash_process_addtl(struct drbg_state *drbg, drbg->scratchpad, drbg_blocklen(drbg)); out: - memset(drbg->scratchpad, 0, drbg_blocklen(drbg)); + memzero_explicit(drbg->scratchpad, drbg_blocklen(drbg)); return ret; } @@ -942,7 +966,6 @@ static int drbg_hash_hashgen(struct drbg_state *drbg, unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg); struct drbg_string data; LIST_HEAD(datalist); - unsigned char prefix = DRBG_PREFIX1; memset(src, 0, drbg_statelen(drbg)); memset(dst, 0, drbg_blocklen(drbg)); @@ -963,7 +986,7 @@ static int drbg_hash_hashgen(struct drbg_state *drbg, outlen = (drbg_blocklen(drbg) < (buflen - len)) ? drbg_blocklen(drbg) : (buflen - len); if (!drbg_fips_continuous_test(drbg, dst)) { - drbg_add_buf(src, drbg_statelen(drbg), &prefix, 1); + crypto_inc(src, drbg_statelen(drbg)); continue; } /* 10.1.1.4 step hashgen 4.2 */ @@ -971,11 +994,11 @@ static int drbg_hash_hashgen(struct drbg_state *drbg, len += outlen; /* 10.1.1.4 hashgen step 4.3 */ if (len < buflen) - drbg_add_buf(src, drbg_statelen(drbg), &prefix, 1); + crypto_inc(src, drbg_statelen(drbg)); } out: - memset(drbg->scratchpad, 0, + memzero_explicit(drbg->scratchpad, (drbg_statelen(drbg) + drbg_blocklen(drbg))); return len; } @@ -1024,7 +1047,7 @@ static int drbg_hash_generate(struct drbg_state *drbg, drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8); out: - memset(drbg->scratchpad, 0, drbg_blocklen(drbg)); + memzero_explicit(drbg->scratchpad, drbg_blocklen(drbg)); return len; } diff --git a/crypto/ecb.c b/crypto/ecb.c index 935cfef4aa84..12011aff0971 100644 --- a/crypto/ecb.c +++ b/crypto/ecb.c @@ -185,3 +185,4 @@ module_exit(crypto_ecb_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("ECB block cipher algorithm"); +MODULE_ALIAS_CRYPTO("ecb"); diff --git a/crypto/eseqiv.c b/crypto/eseqiv.c index bf7ab4a89493..f116fae766f8 100644 --- a/crypto/eseqiv.c +++ b/crypto/eseqiv.c @@ -267,3 +267,4 @@ module_exit(eseqiv_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Encrypted Sequence Number IV Generator"); +MODULE_ALIAS_CRYPTO("eseqiv"); diff --git a/crypto/fcrypt.c b/crypto/fcrypt.c index 021d7fec6bc8..77286ea28865 100644 --- a/crypto/fcrypt.c +++ b/crypto/fcrypt.c @@ -420,3 +420,4 @@ module_exit(fcrypt_mod_fini); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("FCrypt Cipher Algorithm"); MODULE_AUTHOR("David Howells <dhowells@redhat.com>"); +MODULE_ALIAS_CRYPTO("fcrypt"); diff --git a/crypto/gcm.c b/crypto/gcm.c index 276cdac567b6..2e403f6138c1 100644 --- a/crypto/gcm.c +++ b/crypto/gcm.c @@ -1441,6 +1441,7 @@ module_exit(crypto_gcm_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Galois/Counter Mode"); MODULE_AUTHOR("Mikko Herranen <mh1@iki.fi>"); -MODULE_ALIAS("gcm_base"); -MODULE_ALIAS("rfc4106"); -MODULE_ALIAS("rfc4543"); +MODULE_ALIAS_CRYPTO("gcm_base"); +MODULE_ALIAS_CRYPTO("rfc4106"); +MODULE_ALIAS_CRYPTO("rfc4543"); +MODULE_ALIAS_CRYPTO("gcm"); diff --git a/crypto/ghash-generic.c b/crypto/ghash-generic.c index 9d3f0c69a86f..4e97fae9666f 100644 --- a/crypto/ghash-generic.c +++ b/crypto/ghash-generic.c @@ -172,4 +172,4 @@ module_exit(ghash_mod_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("GHASH Message Digest Algorithm"); -MODULE_ALIAS("ghash"); +MODULE_ALIAS_CRYPTO("ghash"); diff --git a/crypto/hmac.c b/crypto/hmac.c index e392219ddc61..72e38c098bb3 100644 --- a/crypto/hmac.c +++ b/crypto/hmac.c @@ -268,3 +268,4 @@ module_exit(hmac_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("HMAC hash algorithm"); +MODULE_ALIAS_CRYPTO("hmac"); diff --git a/crypto/khazad.c b/crypto/khazad.c index 60e7cd66facc..873eb5ded6d7 100644 --- a/crypto/khazad.c +++ b/crypto/khazad.c @@ -880,3 +880,4 @@ module_exit(khazad_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Khazad Cryptographic Algorithm"); +MODULE_ALIAS_CRYPTO("khazad"); diff --git a/crypto/krng.c b/crypto/krng.c index a2d2b72fc135..67c88b331210 100644 --- a/crypto/krng.c +++ b/crypto/krng.c @@ -62,4 +62,4 @@ module_exit(krng_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Kernel Random Number Generator"); -MODULE_ALIAS("stdrng"); +MODULE_ALIAS_CRYPTO("stdrng"); diff --git a/crypto/lrw.c b/crypto/lrw.c index ba42acc4deba..6f9908a7ebcb 100644 --- a/crypto/lrw.c +++ b/crypto/lrw.c @@ -400,3 +400,4 @@ module_exit(crypto_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("LRW block cipher mode"); +MODULE_ALIAS_CRYPTO("lrw"); diff --git a/crypto/lz4.c b/crypto/lz4.c index 34d072b72a73..aefbceaf3104 100644 --- a/crypto/lz4.c +++ b/crypto/lz4.c @@ -104,3 +104,4 @@ module_exit(lz4_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("LZ4 Compression Algorithm"); +MODULE_ALIAS_CRYPTO("lz4"); diff --git a/crypto/lz4hc.c b/crypto/lz4hc.c index 9218b3fed5e3..a1d3b5bd3d85 100644 --- a/crypto/lz4hc.c +++ b/crypto/lz4hc.c @@ -104,3 +104,4 @@ module_exit(lz4hc_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("LZ4HC Compression Algorithm"); +MODULE_ALIAS_CRYPTO("lz4hc"); diff --git a/crypto/lzo.c b/crypto/lzo.c index a8ff2f778dc4..4b3e92525dac 100644 --- a/crypto/lzo.c +++ b/crypto/lzo.c @@ -107,3 +107,4 @@ module_exit(lzo_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("LZO Compression Algorithm"); +MODULE_ALIAS_CRYPTO("lzo"); diff --git a/crypto/mcryptd.c b/crypto/mcryptd.c index b39fbd530102..a8e870444ea9 100644 --- a/crypto/mcryptd.c +++ b/crypto/mcryptd.c @@ -703,3 +703,4 @@ module_exit(mcryptd_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Software async multibuffer crypto daemon"); +MODULE_ALIAS_CRYPTO("mcryptd"); diff --git a/crypto/md4.c b/crypto/md4.c index 0477a6a01d58..3515af425cc9 100644 --- a/crypto/md4.c +++ b/crypto/md4.c @@ -255,4 +255,4 @@ module_exit(md4_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("MD4 Message Digest Algorithm"); - +MODULE_ALIAS_CRYPTO("md4"); diff --git a/crypto/md5.c b/crypto/md5.c index 7febeaab923b..36f5e5b103f3 100644 --- a/crypto/md5.c +++ b/crypto/md5.c @@ -168,3 +168,4 @@ module_exit(md5_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("MD5 Message Digest Algorithm"); +MODULE_ALIAS_CRYPTO("md5"); diff --git a/crypto/michael_mic.c b/crypto/michael_mic.c index 079b761bc70d..46195e0d0f4d 100644 --- a/crypto/michael_mic.c +++ b/crypto/michael_mic.c @@ -184,3 +184,4 @@ module_exit(michael_mic_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Michael MIC"); MODULE_AUTHOR("Jouni Malinen <j@w1.fi>"); +MODULE_ALIAS_CRYPTO("michael_mic"); diff --git a/crypto/pcbc.c b/crypto/pcbc.c index d1b8bdfb5855..f654965f0933 100644 --- a/crypto/pcbc.c +++ b/crypto/pcbc.c @@ -295,3 +295,4 @@ module_exit(crypto_pcbc_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("PCBC block cipher algorithm"); +MODULE_ALIAS_CRYPTO("pcbc"); diff --git a/crypto/pcrypt.c b/crypto/pcrypt.c index 309d345ead95..c305d4112735 100644 --- a/crypto/pcrypt.c +++ b/crypto/pcrypt.c @@ -565,3 +565,4 @@ module_exit(pcrypt_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Steffen Klassert <steffen.klassert@secunet.com>"); MODULE_DESCRIPTION("Parallel crypto wrapper"); +MODULE_ALIAS_CRYPTO("pcrypt"); diff --git a/crypto/rmd128.c b/crypto/rmd128.c index 8a0f68b7f257..049486ede938 100644 --- a/crypto/rmd128.c +++ b/crypto/rmd128.c @@ -327,3 +327,4 @@ module_exit(rmd128_mod_fini); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Adrian-Ken Rueegsegger <ken@codelabs.ch>"); MODULE_DESCRIPTION("RIPEMD-128 Message Digest"); +MODULE_ALIAS_CRYPTO("rmd128"); diff --git a/crypto/rmd160.c b/crypto/rmd160.c index 525d7bb752cf..de585e51d455 100644 --- a/crypto/rmd160.c +++ b/crypto/rmd160.c @@ -371,3 +371,4 @@ module_exit(rmd160_mod_fini); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Adrian-Ken Rueegsegger <ken@codelabs.ch>"); MODULE_DESCRIPTION("RIPEMD-160 Message Digest"); +MODULE_ALIAS_CRYPTO("rmd160"); diff --git a/crypto/rmd256.c b/crypto/rmd256.c index 69293d9b56e0..4ec02a754e09 100644 --- a/crypto/rmd256.c +++ b/crypto/rmd256.c @@ -346,3 +346,4 @@ module_exit(rmd256_mod_fini); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Adrian-Ken Rueegsegger <ken@codelabs.ch>"); MODULE_DESCRIPTION("RIPEMD-256 Message Digest"); +MODULE_ALIAS_CRYPTO("rmd256"); diff --git a/crypto/rmd320.c b/crypto/rmd320.c index 09f97dfdfbba..770f2cb369f8 100644 --- a/crypto/rmd320.c +++ b/crypto/rmd320.c @@ -395,3 +395,4 @@ module_exit(rmd320_mod_fini); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Adrian-Ken Rueegsegger <ken@codelabs.ch>"); MODULE_DESCRIPTION("RIPEMD-320 Message Digest"); +MODULE_ALIAS_CRYPTO("rmd320"); diff --git a/crypto/salsa20_generic.c b/crypto/salsa20_generic.c index 9a4770c02284..3d0f9df30ac9 100644 --- a/crypto/salsa20_generic.c +++ b/crypto/salsa20_generic.c @@ -248,4 +248,4 @@ module_exit(salsa20_generic_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION ("Salsa20 stream cipher algorithm"); -MODULE_ALIAS("salsa20"); +MODULE_ALIAS_CRYPTO("salsa20"); diff --git a/crypto/seed.c b/crypto/seed.c index 9c904d6d2151..c6ba8438be43 100644 --- a/crypto/seed.c +++ b/crypto/seed.c @@ -476,3 +476,4 @@ module_exit(seed_fini); MODULE_DESCRIPTION("SEED Cipher Algorithm"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Hye-Shik Chang <perky@FreeBSD.org>, Kim Hyun <hkim@kisa.or.kr>"); +MODULE_ALIAS_CRYPTO("seed"); diff --git a/crypto/seqiv.c b/crypto/seqiv.c index ee190fcedcd2..9daa854cc485 100644 --- a/crypto/seqiv.c +++ b/crypto/seqiv.c @@ -362,3 +362,4 @@ module_exit(seqiv_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Sequence Number IV Generator"); +MODULE_ALIAS_CRYPTO("seqiv"); diff --git a/crypto/serpent_generic.c b/crypto/serpent_generic.c index 7ddbd7e88859..a53b5e2af335 100644 --- a/crypto/serpent_generic.c +++ b/crypto/serpent_generic.c @@ -665,5 +665,5 @@ module_exit(serpent_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Serpent and tnepres (kerneli compatible serpent reversed) Cipher Algorithm"); MODULE_AUTHOR("Dag Arne Osvik <osvik@ii.uib.no>"); -MODULE_ALIAS("tnepres"); -MODULE_ALIAS("serpent"); +MODULE_ALIAS_CRYPTO("tnepres"); +MODULE_ALIAS_CRYPTO("serpent"); diff --git a/crypto/sha1_generic.c b/crypto/sha1_generic.c index 7bb047432782..039e58cfa155 100644 --- a/crypto/sha1_generic.c +++ b/crypto/sha1_generic.c @@ -153,4 +153,4 @@ module_exit(sha1_generic_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm"); -MODULE_ALIAS("sha1"); +MODULE_ALIAS_CRYPTO("sha1"); diff --git a/crypto/sha256_generic.c b/crypto/sha256_generic.c index 65e7b76b057f..5eb21b120033 100644 --- a/crypto/sha256_generic.c +++ b/crypto/sha256_generic.c @@ -384,5 +384,5 @@ module_exit(sha256_generic_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA-224 and SHA-256 Secure Hash Algorithm"); -MODULE_ALIAS("sha224"); -MODULE_ALIAS("sha256"); +MODULE_ALIAS_CRYPTO("sha224"); +MODULE_ALIAS_CRYPTO("sha256"); diff --git a/crypto/sha512_generic.c b/crypto/sha512_generic.c index 95db67197cd9..8d0b19ed4f4b 100644 --- a/crypto/sha512_generic.c +++ b/crypto/sha512_generic.c @@ -288,5 +288,5 @@ module_exit(sha512_generic_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA-512 and SHA-384 Secure Hash Algorithms"); -MODULE_ALIAS("sha384"); -MODULE_ALIAS("sha512"); +MODULE_ALIAS_CRYPTO("sha384"); +MODULE_ALIAS_CRYPTO("sha512"); diff --git a/crypto/tcrypt.c b/crypto/tcrypt.c index 890449e6e7ef..1d864e988ea9 100644 --- a/crypto/tcrypt.c +++ b/crypto/tcrypt.c @@ -1225,15 +1225,22 @@ static inline int tcrypt_test(const char *alg) return ret; } -static int do_test(int m) +static int do_test(const char *alg, u32 type, u32 mask, int m) { int i; int ret = 0; switch (m) { case 0: + if (alg) { + if (!crypto_has_alg(alg, type, + mask ?: CRYPTO_ALG_TYPE_MASK)) + ret = -ENOENT; + break; + } + for (i = 1; i < 200; i++) - ret += do_test(i); + ret += do_test(NULL, 0, 0, i); break; case 1: @@ -1752,6 +1759,11 @@ static int do_test(int m) break; case 300: + if (alg) { + test_hash_speed(alg, sec, generic_hash_speed_template); + break; + } + /* fall through */ case 301: @@ -1838,6 +1850,11 @@ static int do_test(int m) break; case 400: + if (alg) { + test_ahash_speed(alg, sec, generic_hash_speed_template); + break; + } + /* fall through */ case 401: @@ -2127,12 +2144,6 @@ static int do_test(int m) return ret; } -static int do_alg_test(const char *alg, u32 type, u32 mask) -{ - return crypto_has_alg(alg, type, mask ?: CRYPTO_ALG_TYPE_MASK) ? - 0 : -ENOENT; -} - static int __init tcrypt_mod_init(void) { int err = -ENOMEM; @@ -2144,10 +2155,7 @@ static int __init tcrypt_mod_init(void) goto err_free_tv; } - if (alg) - err = do_alg_test(alg, type, mask); - else - err = do_test(mode); + err = do_test(alg, type, mask, mode); if (err) { printk(KERN_ERR "tcrypt: one or more tests failed!\n"); diff --git a/crypto/tea.c b/crypto/tea.c index 0a572323ee4a..495be2d0077d 100644 --- a/crypto/tea.c +++ b/crypto/tea.c @@ -270,8 +270,8 @@ static void __exit tea_mod_fini(void) crypto_unregister_algs(tea_algs, ARRAY_SIZE(tea_algs)); } -MODULE_ALIAS("xtea"); -MODULE_ALIAS("xeta"); +MODULE_ALIAS_CRYPTO("xtea"); +MODULE_ALIAS_CRYPTO("xeta"); module_init(tea_mod_init); module_exit(tea_mod_fini); diff --git a/crypto/testmgr.c b/crypto/testmgr.c index 29a0cbdd0d19..037368d34586 100644 --- a/crypto/testmgr.c +++ b/crypto/testmgr.c @@ -3708,8 +3708,7 @@ test_done: panic("%s: %s alg self test failed in fips mode!\n", driver, alg); if (fips_enabled && !rc) - pr_info(KERN_INFO "alg: self-tests for %s (%s) passed\n", - driver, alg); + pr_info("alg: self-tests for %s (%s) passed\n", driver, alg); return rc; diff --git a/crypto/tgr192.c b/crypto/tgr192.c index 3c7af0d1ff7a..6e5651c66cf8 100644 --- a/crypto/tgr192.c +++ b/crypto/tgr192.c @@ -676,8 +676,8 @@ static void __exit tgr192_mod_fini(void) crypto_unregister_shashes(tgr_algs, ARRAY_SIZE(tgr_algs)); } -MODULE_ALIAS("tgr160"); -MODULE_ALIAS("tgr128"); +MODULE_ALIAS_CRYPTO("tgr160"); +MODULE_ALIAS_CRYPTO("tgr128"); module_init(tgr192_mod_init); module_exit(tgr192_mod_fini); diff --git a/crypto/twofish_generic.c b/crypto/twofish_generic.c index 2d5000552d0f..523ad8c4e359 100644 --- a/crypto/twofish_generic.c +++ b/crypto/twofish_generic.c @@ -211,4 +211,4 @@ module_exit(twofish_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION ("Twofish Cipher Algorithm"); -MODULE_ALIAS("twofish"); +MODULE_ALIAS_CRYPTO("twofish"); diff --git a/crypto/vmac.c b/crypto/vmac.c index d84c24bd7ff7..df76a816cfb2 100644 --- a/crypto/vmac.c +++ b/crypto/vmac.c @@ -713,3 +713,4 @@ module_exit(vmac_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("VMAC hash algorithm"); +MODULE_ALIAS_CRYPTO("vmac"); diff --git a/crypto/wp512.c b/crypto/wp512.c index ec64e7762fbb..0de42eb3d040 100644 --- a/crypto/wp512.c +++ b/crypto/wp512.c @@ -1167,8 +1167,8 @@ static void __exit wp512_mod_fini(void) crypto_unregister_shashes(wp_algs, ARRAY_SIZE(wp_algs)); } -MODULE_ALIAS("wp384"); -MODULE_ALIAS("wp256"); +MODULE_ALIAS_CRYPTO("wp384"); +MODULE_ALIAS_CRYPTO("wp256"); module_init(wp512_mod_init); module_exit(wp512_mod_fini); diff --git a/crypto/xcbc.c b/crypto/xcbc.c index a5fbdf3738cf..df90b332554c 100644 --- a/crypto/xcbc.c +++ b/crypto/xcbc.c @@ -286,3 +286,4 @@ module_exit(crypto_xcbc_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("XCBC keyed hash algorithm"); +MODULE_ALIAS_CRYPTO("xcbc"); diff --git a/crypto/xts.c b/crypto/xts.c index ca1608f44cb5..f6fd43f100c8 100644 --- a/crypto/xts.c +++ b/crypto/xts.c @@ -362,3 +362,4 @@ module_exit(crypto_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("XTS block cipher mode"); +MODULE_ALIAS_CRYPTO("xts"); diff --git a/crypto/zlib.c b/crypto/zlib.c index c9ee681d57fd..0eefa9d237ac 100644 --- a/crypto/zlib.c +++ b/crypto/zlib.c @@ -378,3 +378,4 @@ module_exit(zlib_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Zlib Compression Algorithm"); MODULE_AUTHOR("Sony Corporation"); +MODULE_ALIAS_CRYPTO("zlib"); diff --git a/drivers/char/hw_random/Kconfig b/drivers/char/hw_random/Kconfig index 91a04ae8003c..de57b38809c7 100644 --- a/drivers/char/hw_random/Kconfig +++ b/drivers/char/hw_random/Kconfig @@ -64,7 +64,7 @@ config HW_RANDOM_AMD config HW_RANDOM_ATMEL tristate "Atmel Random Number Generator support" - depends on ARCH_AT91 && HAVE_CLK + depends on ARCH_AT91 && HAVE_CLK && OF default HW_RANDOM ---help--- This driver provides kernel-side support for the Random Number diff --git a/drivers/char/hw_random/atmel-rng.c b/drivers/char/hw_random/atmel-rng.c index 851bc7e20ad2..0bb0b2120a63 100644 --- a/drivers/char/hw_random/atmel-rng.c +++ b/drivers/char/hw_random/atmel-rng.c @@ -67,7 +67,7 @@ static int atmel_trng_probe(struct platform_device *pdev) if (IS_ERR(trng->clk)) return PTR_ERR(trng->clk); - ret = clk_enable(trng->clk); + ret = clk_prepare_enable(trng->clk); if (ret) return ret; @@ -95,7 +95,7 @@ static int atmel_trng_remove(struct platform_device *pdev) hwrng_unregister(&trng->rng); writel(TRNG_KEY, trng->base + TRNG_CR); - clk_disable(trng->clk); + clk_disable_unprepare(trng->clk); return 0; } @@ -105,7 +105,7 @@ static int atmel_trng_suspend(struct device *dev) { struct atmel_trng *trng = dev_get_drvdata(dev); - clk_disable(trng->clk); + clk_disable_unprepare(trng->clk); return 0; } @@ -114,7 +114,7 @@ static int atmel_trng_resume(struct device *dev) { struct atmel_trng *trng = dev_get_drvdata(dev); - return clk_enable(trng->clk); + return clk_prepare_enable(trng->clk); } static const struct dev_pm_ops atmel_trng_pm_ops = { @@ -123,6 +123,12 @@ static const struct dev_pm_ops atmel_trng_pm_ops = { }; #endif /* CONFIG_PM */ +static const struct of_device_id atmel_trng_dt_ids[] = { + { .compatible = "atmel,at91sam9g45-trng" }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, atmel_trng_dt_ids); + static struct platform_driver atmel_trng_driver = { .probe = atmel_trng_probe, .remove = atmel_trng_remove, @@ -132,6 +138,7 @@ static struct platform_driver atmel_trng_driver = { #ifdef CONFIG_PM .pm = &atmel_trng_pm_ops, #endif /* CONFIG_PM */ + .of_match_table = atmel_trng_dt_ids, }, }; diff --git a/drivers/char/hw_random/core.c b/drivers/char/hw_random/core.c index aa30a25c8d49..1500cfd799a7 100644 --- a/drivers/char/hw_random/core.c +++ b/drivers/char/hw_random/core.c @@ -281,7 +281,6 @@ static ssize_t hwrng_attr_available_show(struct device *dev, char *buf) { int err; - ssize_t ret = 0; struct hwrng *rng; err = mutex_lock_interruptible(&rng_mutex); @@ -289,16 +288,13 @@ static ssize_t hwrng_attr_available_show(struct device *dev, return -ERESTARTSYS; buf[0] = '\0'; list_for_each_entry(rng, &rng_list, list) { - strncat(buf, rng->name, PAGE_SIZE - ret - 1); - ret += strlen(rng->name); - strncat(buf, " ", PAGE_SIZE - ret - 1); - ret++; + strlcat(buf, rng->name, PAGE_SIZE); + strlcat(buf, " ", PAGE_SIZE); } - strncat(buf, "\n", PAGE_SIZE - ret - 1); - ret++; + strlcat(buf, "\n", PAGE_SIZE); mutex_unlock(&rng_mutex); - return ret; + return strlen(buf); } static DEVICE_ATTR(rng_current, S_IRUGO | S_IWUSR, diff --git a/drivers/crypto/bfin_crc.c b/drivers/crypto/bfin_crc.c index b099e33cb073..e96eddc0e0b3 100644 --- a/drivers/crypto/bfin_crc.c +++ b/drivers/crypto/bfin_crc.c @@ -21,13 +21,13 @@ #include <linux/scatterlist.h> #include <linux/dma-mapping.h> #include <linux/delay.h> -#include <linux/unaligned/access_ok.h> #include <linux/crypto.h> #include <linux/cryptohash.h> #include <crypto/scatterwalk.h> #include <crypto/algapi.h> #include <crypto/hash.h> #include <crypto/internal/hash.h> +#include <asm/unaligned.h> #include <asm/dma.h> #include <asm/portmux.h> diff --git a/drivers/crypto/caam/caamalg.c b/drivers/crypto/caam/caamalg.c index a80ea853701d..3187400daf31 100644 --- a/drivers/crypto/caam/caamalg.c +++ b/drivers/crypto/caam/caamalg.c @@ -60,6 +60,7 @@ #define CAAM_CRA_PRIORITY 3000 /* max key is sum of AES_MAX_KEY_SIZE, max split key size */ #define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + \ + CTR_RFC3686_NONCE_SIZE + \ SHA512_DIGEST_SIZE * 2) /* max IV is max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */ #define CAAM_MAX_IV_LENGTH 16 @@ -70,17 +71,34 @@ #define DESC_AEAD_DEC_LEN (DESC_AEAD_BASE + 18 * CAAM_CMD_SZ) #define DESC_AEAD_GIVENC_LEN (DESC_AEAD_ENC_LEN + 7 * CAAM_CMD_SZ) +/* Note: Nonce is counted in enckeylen */ +#define DESC_AEAD_CTR_RFC3686_LEN (6 * CAAM_CMD_SZ) + #define DESC_AEAD_NULL_BASE (3 * CAAM_CMD_SZ) #define DESC_AEAD_NULL_ENC_LEN (DESC_AEAD_NULL_BASE + 14 * CAAM_CMD_SZ) #define DESC_AEAD_NULL_DEC_LEN (DESC_AEAD_NULL_BASE + 17 * CAAM_CMD_SZ) +#define DESC_GCM_BASE (3 * CAAM_CMD_SZ) +#define DESC_GCM_ENC_LEN (DESC_GCM_BASE + 23 * CAAM_CMD_SZ) +#define DESC_GCM_DEC_LEN (DESC_GCM_BASE + 19 * CAAM_CMD_SZ) + +#define DESC_RFC4106_BASE (3 * CAAM_CMD_SZ) +#define DESC_RFC4106_ENC_LEN (DESC_RFC4106_BASE + 15 * CAAM_CMD_SZ) +#define DESC_RFC4106_DEC_LEN (DESC_RFC4106_BASE + 14 * CAAM_CMD_SZ) +#define DESC_RFC4106_GIVENC_LEN (DESC_RFC4106_BASE + 21 * CAAM_CMD_SZ) + +#define DESC_RFC4543_BASE (3 * CAAM_CMD_SZ) +#define DESC_RFC4543_ENC_LEN (DESC_RFC4543_BASE + 25 * CAAM_CMD_SZ) +#define DESC_RFC4543_DEC_LEN (DESC_RFC4543_BASE + 27 * CAAM_CMD_SZ) +#define DESC_RFC4543_GIVENC_LEN (DESC_RFC4543_BASE + 30 * CAAM_CMD_SZ) + #define DESC_ABLKCIPHER_BASE (3 * CAAM_CMD_SZ) #define DESC_ABLKCIPHER_ENC_LEN (DESC_ABLKCIPHER_BASE + \ 20 * CAAM_CMD_SZ) #define DESC_ABLKCIPHER_DEC_LEN (DESC_ABLKCIPHER_BASE + \ 15 * CAAM_CMD_SZ) -#define DESC_MAX_USED_BYTES (DESC_AEAD_GIVENC_LEN + \ +#define DESC_MAX_USED_BYTES (DESC_RFC4543_GIVENC_LEN + \ CAAM_MAX_KEY_SIZE) #define DESC_MAX_USED_LEN (DESC_MAX_USED_BYTES / CAAM_CMD_SZ) @@ -128,11 +146,13 @@ static inline void aead_append_src_dst(u32 *desc, u32 msg_type) /* * For aead encrypt and decrypt, read iv for both classes */ -static inline void aead_append_ld_iv(u32 *desc, int ivsize) +static inline void aead_append_ld_iv(u32 *desc, int ivsize, int ivoffset) { - append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT | - LDST_CLASS_1_CCB | ivsize); - append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_CLASS2INFIFO | ivsize); + append_seq_load(desc, ivsize, LDST_CLASS_1_CCB | + LDST_SRCDST_BYTE_CONTEXT | + (ivoffset << LDST_OFFSET_SHIFT)); + append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_CLASS2INFIFO | + (ivoffset << MOVE_OFFSET_SHIFT) | ivsize); } /* @@ -178,35 +198,60 @@ struct caam_ctx { }; static void append_key_aead(u32 *desc, struct caam_ctx *ctx, - int keys_fit_inline) + int keys_fit_inline, bool is_rfc3686) { + u32 *nonce; + unsigned int enckeylen = ctx->enckeylen; + + /* + * RFC3686 specific: + * | ctx->key = {AUTH_KEY, ENC_KEY, NONCE} + * | enckeylen = encryption key size + nonce size + */ + if (is_rfc3686) + enckeylen -= CTR_RFC3686_NONCE_SIZE; + if (keys_fit_inline) { append_key_as_imm(desc, ctx->key, ctx->split_key_pad_len, ctx->split_key_len, CLASS_2 | KEY_DEST_MDHA_SPLIT | KEY_ENC); append_key_as_imm(desc, (void *)ctx->key + - ctx->split_key_pad_len, ctx->enckeylen, - ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); + ctx->split_key_pad_len, enckeylen, + enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); } else { append_key(desc, ctx->key_dma, ctx->split_key_len, CLASS_2 | KEY_DEST_MDHA_SPLIT | KEY_ENC); append_key(desc, ctx->key_dma + ctx->split_key_pad_len, - ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); + enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); + } + + /* Load Counter into CONTEXT1 reg */ + if (is_rfc3686) { + nonce = (u32 *)((void *)ctx->key + ctx->split_key_pad_len + + enckeylen); + append_load_imm_u32(desc, *nonce, LDST_CLASS_IND_CCB | + LDST_SRCDST_BYTE_OUTFIFO | LDST_IMM); + append_move(desc, + MOVE_SRC_OUTFIFO | + MOVE_DEST_CLASS1CTX | + (16 << MOVE_OFFSET_SHIFT) | + (CTR_RFC3686_NONCE_SIZE << MOVE_LEN_SHIFT)); } } static void init_sh_desc_key_aead(u32 *desc, struct caam_ctx *ctx, - int keys_fit_inline) + int keys_fit_inline, bool is_rfc3686) { u32 *key_jump_cmd; - init_sh_desc(desc, HDR_SHARE_SERIAL); + /* Note: Context registers are saved. */ + init_sh_desc(desc, HDR_SHARE_SERIAL | HDR_SAVECTX); /* Skip if already shared */ key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL | JUMP_COND_SHRD); - append_key_aead(desc, ctx, keys_fit_inline); + append_key_aead(desc, ctx, keys_fit_inline, is_rfc3686); set_jump_tgt_here(desc, key_jump_cmd); } @@ -406,10 +451,17 @@ static int aead_set_sh_desc(struct crypto_aead *aead) { struct aead_tfm *tfm = &aead->base.crt_aead; struct caam_ctx *ctx = crypto_aead_ctx(aead); + struct crypto_tfm *ctfm = crypto_aead_tfm(aead); + const char *alg_name = crypto_tfm_alg_name(ctfm); struct device *jrdev = ctx->jrdev; - bool keys_fit_inline = false; + bool keys_fit_inline; u32 geniv, moveiv; + u32 ctx1_iv_off = 0; u32 *desc; + const bool ctr_mode = ((ctx->class1_alg_type & OP_ALG_AAI_MASK) == + OP_ALG_AAI_CTR_MOD128); + const bool is_rfc3686 = (ctr_mode && + (strstr(alg_name, "rfc3686") != NULL)); if (!ctx->authsize) return 0; @@ -419,18 +471,36 @@ static int aead_set_sh_desc(struct crypto_aead *aead) return aead_null_set_sh_desc(aead); /* + * AES-CTR needs to load IV in CONTEXT1 reg + * at an offset of 128bits (16bytes) + * CONTEXT1[255:128] = IV + */ + if (ctr_mode) + ctx1_iv_off = 16; + + /* + * RFC3686 specific: + * CONTEXT1[255:128] = {NONCE, IV, COUNTER} + */ + if (is_rfc3686) + ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE; + + /* * Job Descriptor and Shared Descriptors * must all fit into the 64-word Descriptor h/w Buffer */ + keys_fit_inline = false; if (DESC_AEAD_ENC_LEN + DESC_JOB_IO_LEN + - ctx->split_key_pad_len + ctx->enckeylen <= + ctx->split_key_pad_len + ctx->enckeylen + + (is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0) <= CAAM_DESC_BYTES_MAX) keys_fit_inline = true; /* aead_encrypt shared descriptor */ desc = ctx->sh_desc_enc; - init_sh_desc_key_aead(desc, ctx, keys_fit_inline); + /* Note: Context registers are saved. */ + init_sh_desc_key_aead(desc, ctx, keys_fit_inline, is_rfc3686); /* Class 2 operation */ append_operation(desc, ctx->class2_alg_type | @@ -448,7 +518,15 @@ static int aead_set_sh_desc(struct crypto_aead *aead) /* read assoc before reading payload */ append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG | KEY_VLF); - aead_append_ld_iv(desc, tfm->ivsize); + aead_append_ld_iv(desc, tfm->ivsize, ctx1_iv_off); + + /* Load Counter into CONTEXT1 reg */ + if (is_rfc3686) + append_load_imm_u32(desc, be32_to_cpu(1), LDST_IMM | + LDST_CLASS_1_CCB | + LDST_SRCDST_BYTE_CONTEXT | + ((ctx1_iv_off + CTR_RFC3686_IV_SIZE) << + LDST_OFFSET_SHIFT)); /* Class 1 operation */ append_operation(desc, ctx->class1_alg_type | @@ -482,14 +560,16 @@ static int aead_set_sh_desc(struct crypto_aead *aead) */ keys_fit_inline = false; if (DESC_AEAD_DEC_LEN + DESC_JOB_IO_LEN + - ctx->split_key_pad_len + ctx->enckeylen <= + ctx->split_key_pad_len + ctx->enckeylen + + (is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0) <= CAAM_DESC_BYTES_MAX) keys_fit_inline = true; /* aead_decrypt shared descriptor */ desc = ctx->sh_desc_dec; - init_sh_desc_key_aead(desc, ctx, keys_fit_inline); + /* Note: Context registers are saved. */ + init_sh_desc_key_aead(desc, ctx, keys_fit_inline, is_rfc3686); /* Class 2 operation */ append_operation(desc, ctx->class2_alg_type | @@ -506,9 +586,22 @@ static int aead_set_sh_desc(struct crypto_aead *aead) append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG | KEY_VLF); - aead_append_ld_iv(desc, tfm->ivsize); + aead_append_ld_iv(desc, tfm->ivsize, ctx1_iv_off); - append_dec_op1(desc, ctx->class1_alg_type); + /* Load Counter into CONTEXT1 reg */ + if (is_rfc3686) + append_load_imm_u32(desc, be32_to_cpu(1), LDST_IMM | + LDST_CLASS_1_CCB | + LDST_SRCDST_BYTE_CONTEXT | + ((ctx1_iv_off + CTR_RFC3686_IV_SIZE) << + LDST_OFFSET_SHIFT)); + + /* Choose operation */ + if (ctr_mode) + append_operation(desc, ctx->class1_alg_type | + OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT); + else + append_dec_op1(desc, ctx->class1_alg_type); /* Read and write cryptlen bytes */ append_math_add(desc, VARSEQINLEN, ZERO, REG2, CAAM_CMD_SZ); @@ -538,14 +631,16 @@ static int aead_set_sh_desc(struct crypto_aead *aead) */ keys_fit_inline = false; if (DESC_AEAD_GIVENC_LEN + DESC_JOB_IO_LEN + - ctx->split_key_pad_len + ctx->enckeylen <= + ctx->split_key_pad_len + ctx->enckeylen + + (is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0) <= CAAM_DESC_BYTES_MAX) keys_fit_inline = true; /* aead_givencrypt shared descriptor */ desc = ctx->sh_desc_givenc; - init_sh_desc_key_aead(desc, ctx, keys_fit_inline); + /* Note: Context registers are saved. */ + init_sh_desc_key_aead(desc, ctx, keys_fit_inline, is_rfc3686); /* Generate IV */ geniv = NFIFOENTRY_STYPE_PAD | NFIFOENTRY_DEST_DECO | @@ -554,13 +649,16 @@ static int aead_set_sh_desc(struct crypto_aead *aead) append_load_imm_u32(desc, geniv, LDST_CLASS_IND_CCB | LDST_SRCDST_WORD_INFO_FIFO | LDST_IMM); append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO); - append_move(desc, MOVE_SRC_INFIFO | - MOVE_DEST_CLASS1CTX | (tfm->ivsize << MOVE_LEN_SHIFT)); + append_move(desc, MOVE_WAITCOMP | + MOVE_SRC_INFIFO | MOVE_DEST_CLASS1CTX | + (ctx1_iv_off << MOVE_OFFSET_SHIFT) | + (tfm->ivsize << MOVE_LEN_SHIFT)); append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO); /* Copy IV to class 1 context */ - append_move(desc, MOVE_SRC_CLASS1CTX | - MOVE_DEST_OUTFIFO | (tfm->ivsize << MOVE_LEN_SHIFT)); + append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_OUTFIFO | + (ctx1_iv_off << MOVE_OFFSET_SHIFT) | + (tfm->ivsize << MOVE_LEN_SHIFT)); /* Return to encryption */ append_operation(desc, ctx->class2_alg_type | @@ -576,7 +674,7 @@ static int aead_set_sh_desc(struct crypto_aead *aead) append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG | KEY_VLF); - /* Copy iv from class 1 ctx to class 2 fifo*/ + /* Copy iv from outfifo to class 2 fifo */ moveiv = NFIFOENTRY_STYPE_OFIFO | NFIFOENTRY_DEST_CLASS2 | NFIFOENTRY_DTYPE_MSG | (tfm->ivsize << NFIFOENTRY_DLEN_SHIFT); append_load_imm_u32(desc, moveiv, LDST_CLASS_IND_CCB | @@ -584,6 +682,14 @@ static int aead_set_sh_desc(struct crypto_aead *aead) append_load_imm_u32(desc, tfm->ivsize, LDST_CLASS_2_CCB | LDST_SRCDST_WORD_DATASZ_REG | LDST_IMM); + /* Load Counter into CONTEXT1 reg */ + if (is_rfc3686) + append_load_imm_u32(desc, be32_to_cpu(1), LDST_IMM | + LDST_CLASS_1_CCB | + LDST_SRCDST_BYTE_CONTEXT | + ((ctx1_iv_off + CTR_RFC3686_IV_SIZE) << + LDST_OFFSET_SHIFT)); + /* Class 1 operation */ append_operation(desc, ctx->class1_alg_type | OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT); @@ -630,6 +736,912 @@ static int aead_setauthsize(struct crypto_aead *authenc, return 0; } +static int gcm_set_sh_desc(struct crypto_aead *aead) +{ + struct aead_tfm *tfm = &aead->base.crt_aead; + struct caam_ctx *ctx = crypto_aead_ctx(aead); + struct device *jrdev = ctx->jrdev; + bool keys_fit_inline = false; + u32 *key_jump_cmd, *zero_payload_jump_cmd, + *zero_assoc_jump_cmd1, *zero_assoc_jump_cmd2; + u32 *desc; + + if (!ctx->enckeylen || !ctx->authsize) + return 0; + + /* + * AES GCM encrypt shared descriptor + * Job Descriptor and Shared Descriptor + * must fit into the 64-word Descriptor h/w Buffer + */ + if (DESC_GCM_ENC_LEN + DESC_JOB_IO_LEN + + ctx->enckeylen <= CAAM_DESC_BYTES_MAX) + keys_fit_inline = true; + + desc = ctx->sh_desc_enc; + + init_sh_desc(desc, HDR_SHARE_SERIAL); + + /* skip key loading if they are loaded due to sharing */ + key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL | + JUMP_COND_SHRD | JUMP_COND_SELF); + if (keys_fit_inline) + append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen, + ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); + else + append_key(desc, ctx->key_dma, ctx->enckeylen, + CLASS_1 | KEY_DEST_CLASS_REG); + set_jump_tgt_here(desc, key_jump_cmd); + + /* class 1 operation */ + append_operation(desc, ctx->class1_alg_type | + OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT); + + /* cryptlen = seqoutlen - authsize */ + append_math_sub_imm_u32(desc, REG3, SEQOUTLEN, IMM, ctx->authsize); + + /* assoclen + cryptlen = seqinlen - ivsize */ + append_math_sub_imm_u32(desc, REG2, SEQINLEN, IMM, tfm->ivsize); + + /* assoclen = (assoclen + cryptlen) - cryptlen */ + append_math_sub(desc, REG1, REG2, REG3, CAAM_CMD_SZ); + + /* if cryptlen is ZERO jump to zero-payload commands */ + append_math_add(desc, VARSEQOUTLEN, ZERO, REG3, CAAM_CMD_SZ); + zero_payload_jump_cmd = append_jump(desc, JUMP_TEST_ALL | + JUMP_COND_MATH_Z); + /* read IV */ + append_seq_fifo_load(desc, tfm->ivsize, FIFOLD_CLASS_CLASS1 | + FIFOLD_TYPE_IV | FIFOLD_TYPE_FLUSH1); + + /* if assoclen is ZERO, skip reading the assoc data */ + append_math_add(desc, VARSEQINLEN, ZERO, REG1, CAAM_CMD_SZ); + zero_assoc_jump_cmd1 = append_jump(desc, JUMP_TEST_ALL | + JUMP_COND_MATH_Z); + + /* read assoc data */ + append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF | + FIFOLD_TYPE_AAD | FIFOLD_TYPE_FLUSH1); + set_jump_tgt_here(desc, zero_assoc_jump_cmd1); + + append_math_add(desc, VARSEQINLEN, ZERO, REG3, CAAM_CMD_SZ); + + /* write encrypted data */ + append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | FIFOLDST_VLF); + + /* read payload data */ + append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF | + FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST1); + + /* jump the zero-payload commands */ + append_jump(desc, JUMP_TEST_ALL | 7); + + /* zero-payload commands */ + set_jump_tgt_here(desc, zero_payload_jump_cmd); + + /* if assoclen is ZERO, jump to IV reading - is the only input data */ + append_math_add(desc, VARSEQINLEN, ZERO, REG1, CAAM_CMD_SZ); + zero_assoc_jump_cmd2 = append_jump(desc, JUMP_TEST_ALL | + JUMP_COND_MATH_Z); + /* read IV */ + append_seq_fifo_load(desc, tfm->ivsize, FIFOLD_CLASS_CLASS1 | + FIFOLD_TYPE_IV | FIFOLD_TYPE_FLUSH1); + + /* read assoc data */ + append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF | + FIFOLD_TYPE_AAD | FIFOLD_TYPE_LAST1); + + /* jump to ICV writing */ + append_jump(desc, JUMP_TEST_ALL | 2); + + /* read IV - is the only input data */ + set_jump_tgt_here(desc, zero_assoc_jump_cmd2); + append_seq_fifo_load(desc, tfm->ivsize, FIFOLD_CLASS_CLASS1 | + FIFOLD_TYPE_IV | FIFOLD_TYPE_FLUSH1 | + FIFOLD_TYPE_LAST1); + + /* write ICV */ + append_seq_store(desc, ctx->authsize, LDST_CLASS_1_CCB | + LDST_SRCDST_BYTE_CONTEXT); + + ctx->sh_desc_enc_dma = dma_map_single(jrdev, desc, + desc_bytes(desc), + DMA_TO_DEVICE); + if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) { + dev_err(jrdev, "unable to map shared descriptor\n"); + return -ENOMEM; + } +#ifdef DEBUG + print_hex_dump(KERN_ERR, "gcm enc shdesc@"__stringify(__LINE__)": ", + DUMP_PREFIX_ADDRESS, 16, 4, desc, + desc_bytes(desc), 1); +#endif + + /* + * Job Descriptor and Shared Descriptors + * must all fit into the 64-word Descriptor h/w Buffer + */ + keys_fit_inline = false; + if (DESC_GCM_DEC_LEN + DESC_JOB_IO_LEN + + ctx->enckeylen <= CAAM_DESC_BYTES_MAX) + keys_fit_inline = true; + + desc = ctx->sh_desc_dec; + + init_sh_desc(desc, HDR_SHARE_SERIAL); + + /* skip key loading if they are loaded due to sharing */ + key_jump_cmd = append_jump(desc, JUMP_JSL | + JUMP_TEST_ALL | JUMP_COND_SHRD | + JUMP_COND_SELF); + if (keys_fit_inline) + append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen, + ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); + else + append_key(desc, ctx->key_dma, ctx->enckeylen, + CLASS_1 | KEY_DEST_CLASS_REG); + set_jump_tgt_here(desc, key_jump_cmd); + + /* class 1 operation */ + append_operation(desc, ctx->class1_alg_type | + OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT | OP_ALG_ICV_ON); + + /* assoclen + cryptlen = seqinlen - ivsize - icvsize */ + append_math_sub_imm_u32(desc, REG3, SEQINLEN, IMM, + ctx->authsize + tfm->ivsize); + + /* assoclen = (assoclen + cryptlen) - cryptlen */ + append_math_sub(desc, REG2, SEQOUTLEN, REG0, CAAM_CMD_SZ); + append_math_sub(desc, REG1, REG3, REG2, CAAM_CMD_SZ); + + /* read IV */ + append_seq_fifo_load(desc, tfm->ivsize, FIFOLD_CLASS_CLASS1 | + FIFOLD_TYPE_IV | FIFOLD_TYPE_FLUSH1); + + /* jump to zero-payload command if cryptlen is zero */ + append_math_add(desc, VARSEQOUTLEN, ZERO, REG2, CAAM_CMD_SZ); + zero_payload_jump_cmd = append_jump(desc, JUMP_TEST_ALL | + JUMP_COND_MATH_Z); + + append_math_add(desc, VARSEQINLEN, ZERO, REG1, CAAM_CMD_SZ); + /* if asoclen is ZERO, skip reading assoc data */ + zero_assoc_jump_cmd1 = append_jump(desc, JUMP_TEST_ALL | + JUMP_COND_MATH_Z); + /* read assoc data */ + append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF | + FIFOLD_TYPE_AAD | FIFOLD_TYPE_FLUSH1); + set_jump_tgt_here(desc, zero_assoc_jump_cmd1); + + append_math_add(desc, VARSEQINLEN, ZERO, REG2, CAAM_CMD_SZ); + + /* store encrypted data */ + append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | FIFOLDST_VLF); + + /* read payload data */ + append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF | + FIFOLD_TYPE_MSG | FIFOLD_TYPE_FLUSH1); + + /* jump the zero-payload commands */ + append_jump(desc, JUMP_TEST_ALL | 4); + + /* zero-payload command */ + set_jump_tgt_here(desc, zero_payload_jump_cmd); + + /* if assoclen is ZERO, jump to ICV reading */ + append_math_add(desc, VARSEQINLEN, ZERO, REG1, CAAM_CMD_SZ); + zero_assoc_jump_cmd2 = append_jump(desc, JUMP_TEST_ALL | + JUMP_COND_MATH_Z); + /* read assoc data */ + append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF | + FIFOLD_TYPE_AAD | FIFOLD_TYPE_FLUSH1); + set_jump_tgt_here(desc, zero_assoc_jump_cmd2); + + /* read ICV */ + append_seq_fifo_load(desc, ctx->authsize, FIFOLD_CLASS_CLASS1 | + FIFOLD_TYPE_ICV | FIFOLD_TYPE_LAST1); + + ctx->sh_desc_dec_dma = dma_map_single(jrdev, desc, + desc_bytes(desc), + DMA_TO_DEVICE); + if (dma_mapping_error(jrdev, ctx->sh_desc_dec_dma)) { + dev_err(jrdev, "unable to map shared descriptor\n"); + return -ENOMEM; + } +#ifdef DEBUG + print_hex_dump(KERN_ERR, "gcm dec shdesc@"__stringify(__LINE__)": ", + DUMP_PREFIX_ADDRESS, 16, 4, desc, + desc_bytes(desc), 1); +#endif + + return 0; +} + +static int gcm_setauthsize(struct crypto_aead *authenc, unsigned int authsize) +{ + struct caam_ctx *ctx = crypto_aead_ctx(authenc); + + ctx->authsize = authsize; + gcm_set_sh_desc(authenc); + + return 0; +} + +static int rfc4106_set_sh_desc(struct crypto_aead *aead) +{ + struct aead_tfm *tfm = &aead->base.crt_aead; + struct caam_ctx *ctx = crypto_aead_ctx(aead); + struct device *jrdev = ctx->jrdev; + bool keys_fit_inline = false; + u32 *key_jump_cmd, *move_cmd, *write_iv_cmd; + u32 *desc; + u32 geniv; + + if (!ctx->enckeylen || !ctx->authsize) + return 0; + + /* + * RFC4106 encrypt shared descriptor + * Job Descriptor and Shared Descriptor + * must fit into the 64-word Descriptor h/w Buffer + */ + if (DESC_RFC4106_ENC_LEN + DESC_JOB_IO_LEN + + ctx->enckeylen <= CAAM_DESC_BYTES_MAX) + keys_fit_inline = true; + + desc = ctx->sh_desc_enc; + + init_sh_desc(desc, HDR_SHARE_SERIAL); + + /* Skip key loading if it is loaded due to sharing */ + key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL | + JUMP_COND_SHRD); + if (keys_fit_inline) + append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen, + ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); + else + append_key(desc, ctx->key_dma, ctx->enckeylen, + CLASS_1 | KEY_DEST_CLASS_REG); + set_jump_tgt_here(desc, key_jump_cmd); + + /* Class 1 operation */ + append_operation(desc, ctx->class1_alg_type | + OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT); + + /* cryptlen = seqoutlen - authsize */ + append_math_sub_imm_u32(desc, REG3, SEQOUTLEN, IMM, ctx->authsize); + append_math_add(desc, VARSEQOUTLEN, ZERO, REG3, CAAM_CMD_SZ); + + /* assoclen + cryptlen = seqinlen - ivsize */ + append_math_sub_imm_u32(desc, REG2, SEQINLEN, IMM, tfm->ivsize); + + /* assoclen = (assoclen + cryptlen) - cryptlen */ + append_math_sub(desc, VARSEQINLEN, REG2, REG3, CAAM_CMD_SZ); + + /* Read Salt */ + append_fifo_load_as_imm(desc, (void *)(ctx->key + ctx->enckeylen), + 4, FIFOLD_CLASS_CLASS1 | FIFOLD_TYPE_IV); + /* Read AES-GCM-ESP IV */ + append_seq_fifo_load(desc, tfm->ivsize, FIFOLD_CLASS_CLASS1 | + FIFOLD_TYPE_IV | FIFOLD_TYPE_FLUSH1); + + /* Read assoc data */ + append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF | + FIFOLD_TYPE_AAD | FIFOLD_TYPE_FLUSH1); + + /* Will read cryptlen bytes */ + append_math_add(desc, VARSEQINLEN, ZERO, REG3, CAAM_CMD_SZ); + + /* Write encrypted data */ + append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | FIFOLDST_VLF); + + /* Read payload data */ + append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF | + FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST1); + + /* Write ICV */ + append_seq_store(desc, ctx->authsize, LDST_CLASS_1_CCB | + LDST_SRCDST_BYTE_CONTEXT); + + ctx->sh_desc_enc_dma = dma_map_single(jrdev, desc, + desc_bytes(desc), + DMA_TO_DEVICE); + if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) { + dev_err(jrdev, "unable to map shared descriptor\n"); + return -ENOMEM; + } +#ifdef DEBUG + print_hex_dump(KERN_ERR, "rfc4106 enc shdesc@"__stringify(__LINE__)": ", + DUMP_PREFIX_ADDRESS, 16, 4, desc, + desc_bytes(desc), 1); +#endif + + /* + * Job Descriptor and Shared Descriptors + * must all fit into the 64-word Descriptor h/w Buffer + */ + keys_fit_inline = false; + if (DESC_RFC4106_DEC_LEN + DESC_JOB_IO_LEN + + ctx->enckeylen <= CAAM_DESC_BYTES_MAX) + keys_fit_inline = true; + + desc = ctx->sh_desc_dec; + + init_sh_desc(desc, HDR_SHARE_SERIAL); + + /* Skip key loading if it is loaded due to sharing */ + key_jump_cmd = append_jump(desc, JUMP_JSL | + JUMP_TEST_ALL | JUMP_COND_SHRD); + if (keys_fit_inline) + append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen, + ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); + else + append_key(desc, ctx->key_dma, ctx->enckeylen, + CLASS_1 | KEY_DEST_CLASS_REG); + set_jump_tgt_here(desc, key_jump_cmd); + + /* Class 1 operation */ + append_operation(desc, ctx->class1_alg_type | + OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT | OP_ALG_ICV_ON); + + /* assoclen + cryptlen = seqinlen - ivsize - icvsize */ + append_math_sub_imm_u32(desc, REG3, SEQINLEN, IMM, + ctx->authsize + tfm->ivsize); + + /* assoclen = (assoclen + cryptlen) - cryptlen */ + append_math_sub(desc, REG2, SEQOUTLEN, REG0, CAAM_CMD_SZ); + append_math_sub(desc, VARSEQINLEN, REG3, REG2, CAAM_CMD_SZ); + + /* Will write cryptlen bytes */ + append_math_sub(desc, VARSEQOUTLEN, SEQOUTLEN, REG0, CAAM_CMD_SZ); + + /* Read Salt */ + append_fifo_load_as_imm(desc, (void *)(ctx->key + ctx->enckeylen), + 4, FIFOLD_CLASS_CLASS1 | FIFOLD_TYPE_IV); + /* Read AES-GCM-ESP IV */ + append_seq_fifo_load(desc, tfm->ivsize, FIFOLD_CLASS_CLASS1 | + FIFOLD_TYPE_IV | FIFOLD_TYPE_FLUSH1); + + /* Read assoc data */ + append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF | + FIFOLD_TYPE_AAD | FIFOLD_TYPE_FLUSH1); + + /* Will read cryptlen bytes */ + append_math_add(desc, VARSEQINLEN, ZERO, REG2, CAAM_CMD_SZ); + + /* Store payload data */ + append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | FIFOLDST_VLF); + + /* Read encrypted data */ + append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF | + FIFOLD_TYPE_MSG | FIFOLD_TYPE_FLUSH1); + + /* Read ICV */ + append_seq_fifo_load(desc, ctx->authsize, FIFOLD_CLASS_CLASS1 | + FIFOLD_TYPE_ICV | FIFOLD_TYPE_LAST1); + + ctx->sh_desc_dec_dma = dma_map_single(jrdev, desc, + desc_bytes(desc), + DMA_TO_DEVICE); + if (dma_mapping_error(jrdev, ctx->sh_desc_dec_dma)) { + dev_err(jrdev, "unable to map shared descriptor\n"); + return -ENOMEM; + } +#ifdef DEBUG + print_hex_dump(KERN_ERR, "rfc4106 dec shdesc@"__stringify(__LINE__)": ", + DUMP_PREFIX_ADDRESS, 16, 4, desc, + desc_bytes(desc), 1); +#endif + + /* + * Job Descriptor and Shared Descriptors + * must all fit into the 64-word Descriptor h/w Buffer + */ + keys_fit_inline = false; + if (DESC_RFC4106_GIVENC_LEN + DESC_JOB_IO_LEN + + ctx->split_key_pad_len + ctx->enckeylen <= + CAAM_DESC_BYTES_MAX) + keys_fit_inline = true; + + /* rfc4106_givencrypt shared descriptor */ + desc = ctx->sh_desc_givenc; + + init_sh_desc(desc, HDR_SHARE_SERIAL); + + /* Skip key loading if it is loaded due to sharing */ + key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL | + JUMP_COND_SHRD); + if (keys_fit_inline) + append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen, + ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); + else + append_key(desc, ctx->key_dma, ctx->enckeylen, + CLASS_1 | KEY_DEST_CLASS_REG); + set_jump_tgt_here(desc, key_jump_cmd); + + /* Generate IV */ + geniv = NFIFOENTRY_STYPE_PAD | NFIFOENTRY_DEST_DECO | + NFIFOENTRY_DTYPE_MSG | NFIFOENTRY_LC1 | + NFIFOENTRY_PTYPE_RND | (tfm->ivsize << NFIFOENTRY_DLEN_SHIFT); + append_load_imm_u32(desc, geniv, LDST_CLASS_IND_CCB | + LDST_SRCDST_WORD_INFO_FIFO | LDST_IMM); + append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO); + move_cmd = append_move(desc, MOVE_SRC_INFIFO | MOVE_DEST_DESCBUF | + (tfm->ivsize << MOVE_LEN_SHIFT)); + append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO); + + /* Copy generated IV to OFIFO */ + write_iv_cmd = append_move(desc, MOVE_SRC_DESCBUF | MOVE_DEST_OUTFIFO | + (tfm->ivsize << MOVE_LEN_SHIFT)); + + /* Class 1 operation */ + append_operation(desc, ctx->class1_alg_type | + OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT); + + /* ivsize + cryptlen = seqoutlen - authsize */ + append_math_sub_imm_u32(desc, REG3, SEQOUTLEN, IMM, ctx->authsize); + + /* assoclen = seqinlen - (ivsize + cryptlen) */ + append_math_sub(desc, VARSEQINLEN, SEQINLEN, REG3, CAAM_CMD_SZ); + + /* Will write ivsize + cryptlen */ + append_math_add(desc, VARSEQOUTLEN, REG3, REG0, CAAM_CMD_SZ); + + /* Read Salt and generated IV */ + append_cmd(desc, CMD_FIFO_LOAD | FIFOLD_CLASS_CLASS1 | FIFOLD_TYPE_IV | + FIFOLD_TYPE_FLUSH1 | IMMEDIATE | 12); + /* Append Salt */ + append_data(desc, (void *)(ctx->key + ctx->enckeylen), 4); + set_move_tgt_here(desc, move_cmd); + set_move_tgt_here(desc, write_iv_cmd); + /* Blank commands. Will be overwritten by generated IV. */ + append_cmd(desc, 0x00000000); + append_cmd(desc, 0x00000000); + /* End of blank commands */ + + /* No need to reload iv */ + append_seq_fifo_load(desc, tfm->ivsize, FIFOLD_CLASS_SKIP); + + /* Read assoc data */ + append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF | + FIFOLD_TYPE_AAD | FIFOLD_TYPE_FLUSH1); + + /* Will read cryptlen */ + append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ); + + /* Store generated IV and encrypted data */ + append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | FIFOLDST_VLF); + + /* Read payload data */ + append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF | + FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST1); + + /* Write ICV */ + append_seq_store(desc, ctx->authsize, LDST_CLASS_1_CCB | + LDST_SRCDST_BYTE_CONTEXT); + + ctx->sh_desc_givenc_dma = dma_map_single(jrdev, desc, + desc_bytes(desc), + DMA_TO_DEVICE); + if (dma_mapping_error(jrdev, ctx->sh_desc_givenc_dma)) { + dev_err(jrdev, "unable to map shared descriptor\n"); + return -ENOMEM; + } +#ifdef DEBUG + print_hex_dump(KERN_ERR, + "rfc4106 givenc shdesc@"__stringify(__LINE__)": ", + DUMP_PREFIX_ADDRESS, 16, 4, desc, + desc_bytes(desc), 1); +#endif + + return 0; +} + +static int rfc4106_setauthsize(struct crypto_aead *authenc, + unsigned int authsize) +{ + struct caam_ctx *ctx = crypto_aead_ctx(authenc); + + ctx->authsize = authsize; + rfc4106_set_sh_desc(authenc); + + return 0; +} + +static int rfc4543_set_sh_desc(struct crypto_aead *aead) +{ + struct aead_tfm *tfm = &aead->base.crt_aead; + struct caam_ctx *ctx = crypto_aead_ctx(aead); + struct device *jrdev = ctx->jrdev; + bool keys_fit_inline = false; + u32 *key_jump_cmd, *write_iv_cmd, *write_aad_cmd; + u32 *read_move_cmd, *write_move_cmd; + u32 *desc; + u32 geniv; + + if (!ctx->enckeylen || !ctx->authsize) + return 0; + + /* + * RFC4543 encrypt shared descriptor + * Job Descriptor and Shared Descriptor + * must fit into the 64-word Descriptor h/w Buffer + */ + if (DESC_RFC4543_ENC_LEN + DESC_JOB_IO_LEN + + ctx->enckeylen <= CAAM_DESC_BYTES_MAX) + keys_fit_inline = true; + + desc = ctx->sh_desc_enc; + + init_sh_desc(desc, HDR_SHARE_SERIAL); + + /* Skip key loading if it is loaded due to sharing */ + key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL | + JUMP_COND_SHRD); + if (keys_fit_inline) + append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen, + ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); + else + append_key(desc, ctx->key_dma, ctx->enckeylen, + CLASS_1 | KEY_DEST_CLASS_REG); + set_jump_tgt_here(desc, key_jump_cmd); + + /* Class 1 operation */ + append_operation(desc, ctx->class1_alg_type | + OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT); + + /* Load AES-GMAC ESP IV into Math1 register */ + append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_WORD_DECO_MATH1 | + LDST_CLASS_DECO | tfm->ivsize); + + /* Wait the DMA transaction to finish */ + append_jump(desc, JUMP_TEST_ALL | JUMP_COND_CALM | + (1 << JUMP_OFFSET_SHIFT)); + + /* Overwrite blank immediate AES-GMAC ESP IV data */ + write_iv_cmd = append_move(desc, MOVE_SRC_MATH1 | MOVE_DEST_DESCBUF | + (tfm->ivsize << MOVE_LEN_SHIFT)); + + /* Overwrite blank immediate AAD data */ + write_aad_cmd = append_move(desc, MOVE_SRC_MATH1 | MOVE_DEST_DESCBUF | + (tfm->ivsize << MOVE_LEN_SHIFT)); + + /* cryptlen = seqoutlen - authsize */ + append_math_sub_imm_u32(desc, REG3, SEQOUTLEN, IMM, ctx->authsize); + + /* assoclen = (seqinlen - ivsize) - cryptlen */ + append_math_sub(desc, VARSEQINLEN, SEQINLEN, REG3, CAAM_CMD_SZ); + + /* Read Salt and AES-GMAC ESP IV */ + append_cmd(desc, CMD_FIFO_LOAD | FIFOLD_CLASS_CLASS1 | IMMEDIATE | + FIFOLD_TYPE_IV | FIFOLD_TYPE_FLUSH1 | (4 + tfm->ivsize)); + /* Append Salt */ + append_data(desc, (void *)(ctx->key + ctx->enckeylen), 4); + set_move_tgt_here(desc, write_iv_cmd); + /* Blank commands. Will be overwritten by AES-GMAC ESP IV. */ + append_cmd(desc, 0x00000000); + append_cmd(desc, 0x00000000); + /* End of blank commands */ + + /* Read assoc data */ + append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF | + FIFOLD_TYPE_AAD); + + /* Will read cryptlen bytes */ + append_math_add(desc, VARSEQINLEN, ZERO, REG3, CAAM_CMD_SZ); + + /* Will write cryptlen bytes */ + append_math_add(desc, VARSEQOUTLEN, ZERO, REG3, CAAM_CMD_SZ); + + /* + * MOVE_LEN opcode is not available in all SEC HW revisions, + * thus need to do some magic, i.e. self-patch the descriptor + * buffer. + */ + read_move_cmd = append_move(desc, MOVE_SRC_DESCBUF | MOVE_DEST_MATH3 | + (0x6 << MOVE_LEN_SHIFT)); + write_move_cmd = append_move(desc, MOVE_SRC_MATH3 | MOVE_DEST_DESCBUF | + (0x8 << MOVE_LEN_SHIFT)); + + /* Authenticate AES-GMAC ESP IV */ + append_cmd(desc, CMD_FIFO_LOAD | FIFOLD_CLASS_CLASS1 | IMMEDIATE | + FIFOLD_TYPE_AAD | tfm->ivsize); + set_move_tgt_here(desc, write_aad_cmd); + /* Blank commands. Will be overwritten by AES-GMAC ESP IV. */ + append_cmd(desc, 0x00000000); + append_cmd(desc, 0x00000000); + /* End of blank commands */ + + /* Read and write cryptlen bytes */ + aead_append_src_dst(desc, FIFOLD_TYPE_AAD); + + set_move_tgt_here(desc, read_move_cmd); + set_move_tgt_here(desc, write_move_cmd); + append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO); + /* Move payload data to OFIFO */ + append_move(desc, MOVE_SRC_INFIFO_CL | MOVE_DEST_OUTFIFO); + + /* Write ICV */ + append_seq_store(desc, ctx->authsize, LDST_CLASS_1_CCB | + LDST_SRCDST_BYTE_CONTEXT); + + ctx->sh_desc_enc_dma = dma_map_single(jrdev, desc, + desc_bytes(desc), + DMA_TO_DEVICE); + if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) { + dev_err(jrdev, "unable to map shared descriptor\n"); + return -ENOMEM; + } +#ifdef DEBUG + print_hex_dump(KERN_ERR, "rfc4543 enc shdesc@"__stringify(__LINE__)": ", + DUMP_PREFIX_ADDRESS, 16, 4, desc, + desc_bytes(desc), 1); +#endif + + /* + * Job Descriptor and Shared Descriptors + * must all fit into the 64-word Descriptor h/w Buffer + */ + keys_fit_inline = false; + if (DESC_RFC4543_DEC_LEN + DESC_JOB_IO_LEN + + ctx->enckeylen <= CAAM_DESC_BYTES_MAX) + keys_fit_inline = true; + + desc = ctx->sh_desc_dec; + + init_sh_desc(desc, HDR_SHARE_SERIAL); + + /* Skip key loading if it is loaded due to sharing */ + key_jump_cmd = append_jump(desc, JUMP_JSL | + JUMP_TEST_ALL | JUMP_COND_SHRD); + if (keys_fit_inline) + append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen, + ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); + else + append_key(desc, ctx->key_dma, ctx->enckeylen, + CLASS_1 | KEY_DEST_CLASS_REG); + set_jump_tgt_here(desc, key_jump_cmd); + + /* Class 1 operation */ + append_operation(desc, ctx->class1_alg_type | + OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT | OP_ALG_ICV_ON); + + /* Load AES-GMAC ESP IV into Math1 register */ + append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_WORD_DECO_MATH1 | + LDST_CLASS_DECO | tfm->ivsize); + + /* Wait the DMA transaction to finish */ + append_jump(desc, JUMP_TEST_ALL | JUMP_COND_CALM | + (1 << JUMP_OFFSET_SHIFT)); + + /* assoclen + cryptlen = (seqinlen - ivsize) - icvsize */ + append_math_sub_imm_u32(desc, REG3, SEQINLEN, IMM, ctx->authsize); + + /* Overwrite blank immediate AES-GMAC ESP IV data */ + write_iv_cmd = append_move(desc, MOVE_SRC_MATH1 | MOVE_DEST_DESCBUF | + (tfm->ivsize << MOVE_LEN_SHIFT)); + + /* Overwrite blank immediate AAD data */ + write_aad_cmd = append_move(desc, MOVE_SRC_MATH1 | MOVE_DEST_DESCBUF | + (tfm->ivsize << MOVE_LEN_SHIFT)); + + /* assoclen = (assoclen + cryptlen) - cryptlen */ + append_math_sub(desc, REG2, SEQOUTLEN, REG0, CAAM_CMD_SZ); + append_math_sub(desc, VARSEQINLEN, REG3, REG2, CAAM_CMD_SZ); + + /* + * MOVE_LEN opcode is not available in all SEC HW revisions, + * thus need to do some magic, i.e. self-patch the descriptor + * buffer. + */ + read_move_cmd = append_move(desc, MOVE_SRC_DESCBUF | MOVE_DEST_MATH3 | + (0x6 << MOVE_LEN_SHIFT)); + write_move_cmd = append_move(desc, MOVE_SRC_MATH3 | MOVE_DEST_DESCBUF | + (0x8 << MOVE_LEN_SHIFT)); + + /* Read Salt and AES-GMAC ESP IV */ + append_cmd(desc, CMD_FIFO_LOAD | FIFOLD_CLASS_CLASS1 | IMMEDIATE | + FIFOLD_TYPE_IV | FIFOLD_TYPE_FLUSH1 | (4 + tfm->ivsize)); + /* Append Salt */ + append_data(desc, (void *)(ctx->key + ctx->enckeylen), 4); + set_move_tgt_here(desc, write_iv_cmd); + /* Blank commands. Will be overwritten by AES-GMAC ESP IV. */ + append_cmd(desc, 0x00000000); + append_cmd(desc, 0x00000000); + /* End of blank commands */ + + /* Read assoc data */ + append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF | + FIFOLD_TYPE_AAD); + + /* Will read cryptlen bytes */ + append_math_add(desc, VARSEQINLEN, ZERO, REG2, CAAM_CMD_SZ); + + /* Will write cryptlen bytes */ + append_math_add(desc, VARSEQOUTLEN, ZERO, REG2, CAAM_CMD_SZ); + + /* Authenticate AES-GMAC ESP IV */ + append_cmd(desc, CMD_FIFO_LOAD | FIFOLD_CLASS_CLASS1 | IMMEDIATE | + FIFOLD_TYPE_AAD | tfm->ivsize); + set_move_tgt_here(desc, write_aad_cmd); + /* Blank commands. Will be overwritten by AES-GMAC ESP IV. */ + append_cmd(desc, 0x00000000); + append_cmd(desc, 0x00000000); + /* End of blank commands */ + + /* Store payload data */ + append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | FIFOLDST_VLF); + + /* In-snoop cryptlen data */ + append_seq_fifo_load(desc, 0, FIFOLD_CLASS_BOTH | FIFOLDST_VLF | + FIFOLD_TYPE_AAD | FIFOLD_TYPE_LAST2FLUSH1); + + set_move_tgt_here(desc, read_move_cmd); + set_move_tgt_here(desc, write_move_cmd); + append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO); + /* Move payload data to OFIFO */ + append_move(desc, MOVE_SRC_INFIFO_CL | MOVE_DEST_OUTFIFO); + append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO); + + /* Read ICV */ + append_seq_fifo_load(desc, ctx->authsize, FIFOLD_CLASS_CLASS1 | + FIFOLD_TYPE_ICV | FIFOLD_TYPE_LAST1); + + ctx->sh_desc_dec_dma = dma_map_single(jrdev, desc, + desc_bytes(desc), + DMA_TO_DEVICE); + if (dma_mapping_error(jrdev, ctx->sh_desc_dec_dma)) { + dev_err(jrdev, "unable to map shared descriptor\n"); + return -ENOMEM; + } +#ifdef DEBUG + print_hex_dump(KERN_ERR, "rfc4543 dec shdesc@"__stringify(__LINE__)": ", + DUMP_PREFIX_ADDRESS, 16, 4, desc, + desc_bytes(desc), 1); +#endif + + /* + * Job Descriptor and Shared Descriptors + * must all fit into the 64-word Descriptor h/w Buffer + */ + keys_fit_inline = false; + if (DESC_RFC4543_GIVENC_LEN + DESC_JOB_IO_LEN + + ctx->enckeylen <= CAAM_DESC_BYTES_MAX) + keys_fit_inline = true; + + /* rfc4543_givencrypt shared descriptor */ + desc = ctx->sh_desc_givenc; + + init_sh_desc(desc, HDR_SHARE_SERIAL); + + /* Skip key loading if it is loaded due to sharing */ + key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL | + JUMP_COND_SHRD); + if (keys_fit_inline) + append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen, + ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); + else + append_key(desc, ctx->key_dma, ctx->enckeylen, + CLASS_1 | KEY_DEST_CLASS_REG); + set_jump_tgt_here(desc, key_jump_cmd); + + /* Generate IV */ + geniv = NFIFOENTRY_STYPE_PAD | NFIFOENTRY_DEST_DECO | + NFIFOENTRY_DTYPE_MSG | NFIFOENTRY_LC1 | + NFIFOENTRY_PTYPE_RND | (tfm->ivsize << NFIFOENTRY_DLEN_SHIFT); + append_load_imm_u32(desc, geniv, LDST_CLASS_IND_CCB | + LDST_SRCDST_WORD_INFO_FIFO | LDST_IMM); + append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO); + /* Move generated IV to Math1 register */ + append_move(desc, MOVE_SRC_INFIFO | MOVE_DEST_MATH1 | + (tfm->ivsize << MOVE_LEN_SHIFT)); + append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO); + + /* Overwrite blank immediate AES-GMAC IV data */ + write_iv_cmd = append_move(desc, MOVE_SRC_MATH1 | MOVE_DEST_DESCBUF | + (tfm->ivsize << MOVE_LEN_SHIFT)); + + /* Overwrite blank immediate AAD data */ + write_aad_cmd = append_move(desc, MOVE_SRC_MATH1 | MOVE_DEST_DESCBUF | + (tfm->ivsize << MOVE_LEN_SHIFT)); + + /* Copy generated IV to OFIFO */ + append_move(desc, MOVE_SRC_MATH1 | MOVE_DEST_OUTFIFO | + (tfm->ivsize << MOVE_LEN_SHIFT)); + + /* Class 1 operation */ + append_operation(desc, ctx->class1_alg_type | + OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT); + + /* ivsize + cryptlen = seqoutlen - authsize */ + append_math_sub_imm_u32(desc, REG3, SEQOUTLEN, IMM, ctx->authsize); + + /* assoclen = seqinlen - (ivsize + cryptlen) */ + append_math_sub(desc, VARSEQINLEN, SEQINLEN, REG3, CAAM_CMD_SZ); + + /* Will write ivsize + cryptlen */ + append_math_add(desc, VARSEQOUTLEN, REG3, REG0, CAAM_CMD_SZ); + + /* + * MOVE_LEN opcode is not available in all SEC HW revisions, + * thus need to do some magic, i.e. self-patch the descriptor + * buffer. + */ + read_move_cmd = append_move(desc, MOVE_SRC_DESCBUF | MOVE_DEST_MATH3 | + (0x6 << MOVE_LEN_SHIFT)); + write_move_cmd = append_move(desc, MOVE_SRC_MATH3 | MOVE_DEST_DESCBUF | + (0x8 << MOVE_LEN_SHIFT)); + + /* Read Salt and AES-GMAC generated IV */ + append_cmd(desc, CMD_FIFO_LOAD | FIFOLD_CLASS_CLASS1 | IMMEDIATE | + FIFOLD_TYPE_IV | FIFOLD_TYPE_FLUSH1 | (4 + tfm->ivsize)); + /* Append Salt */ + append_data(desc, (void *)(ctx->key + ctx->enckeylen), 4); + set_move_tgt_here(desc, write_iv_cmd); + /* Blank commands. Will be overwritten by AES-GMAC generated IV. */ + append_cmd(desc, 0x00000000); + append_cmd(desc, 0x00000000); + /* End of blank commands */ + + /* No need to reload iv */ + append_seq_fifo_load(desc, tfm->ivsize, FIFOLD_CLASS_SKIP); + + /* Read assoc data */ + append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLDST_VLF | + FIFOLD_TYPE_AAD); + + /* Will read cryptlen */ + append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ); + + /* Authenticate AES-GMAC IV */ + append_cmd(desc, CMD_FIFO_LOAD | FIFOLD_CLASS_CLASS1 | IMMEDIATE | + FIFOLD_TYPE_AAD | tfm->ivsize); + set_move_tgt_here(desc, write_aad_cmd); + /* Blank commands. Will be overwritten by AES-GMAC IV. */ + append_cmd(desc, 0x00000000); + append_cmd(desc, 0x00000000); + /* End of blank commands */ + + /* Read and write cryptlen bytes */ + aead_append_src_dst(desc, FIFOLD_TYPE_AAD); + + set_move_tgt_here(desc, read_move_cmd); + set_move_tgt_here(desc, write_move_cmd); + append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO); + /* Move payload data to OFIFO */ + append_move(desc, MOVE_SRC_INFIFO_CL | MOVE_DEST_OUTFIFO); + + /* Write ICV */ + append_seq_store(desc, ctx->authsize, LDST_CLASS_1_CCB | + LDST_SRCDST_BYTE_CONTEXT); + + ctx->sh_desc_givenc_dma = dma_map_single(jrdev, desc, + desc_bytes(desc), + DMA_TO_DEVICE); + if (dma_mapping_error(jrdev, ctx->sh_desc_givenc_dma)) { + dev_err(jrdev, "unable to map shared descriptor\n"); + return -ENOMEM; + } +#ifdef DEBUG + print_hex_dump(KERN_ERR, + "rfc4543 givenc shdesc@"__stringify(__LINE__)": ", + DUMP_PREFIX_ADDRESS, 16, 4, desc, + desc_bytes(desc), 1); +#endif + + return 0; +} + +static int rfc4543_setauthsize(struct crypto_aead *authenc, + unsigned int authsize) +{ + struct caam_ctx *ctx = crypto_aead_ctx(authenc); + + ctx->authsize = authsize; + rfc4543_set_sh_desc(authenc); + + return 0; +} + static u32 gen_split_aead_key(struct caam_ctx *ctx, const u8 *key_in, u32 authkeylen) { @@ -703,20 +1715,154 @@ badkey: return -EINVAL; } +static int gcm_setkey(struct crypto_aead *aead, + const u8 *key, unsigned int keylen) +{ + struct caam_ctx *ctx = crypto_aead_ctx(aead); + struct device *jrdev = ctx->jrdev; + int ret = 0; + +#ifdef DEBUG + print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ", + DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); +#endif + + memcpy(ctx->key, key, keylen); + ctx->key_dma = dma_map_single(jrdev, ctx->key, keylen, + DMA_TO_DEVICE); + if (dma_mapping_error(jrdev, ctx->key_dma)) { + dev_err(jrdev, "unable to map key i/o memory\n"); + return -ENOMEM; + } + ctx->enckeylen = keylen; + + ret = gcm_set_sh_desc(aead); + if (ret) { + dma_unmap_single(jrdev, ctx->key_dma, ctx->enckeylen, + DMA_TO_DEVICE); + } + + return ret; +} + +static int rfc4106_setkey(struct crypto_aead *aead, + const u8 *key, unsigned int keylen) +{ + struct caam_ctx *ctx = crypto_aead_ctx(aead); + struct device *jrdev = ctx->jrdev; + int ret = 0; + + if (keylen < 4) + return -EINVAL; + +#ifdef DEBUG + print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ", + DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); +#endif + + memcpy(ctx->key, key, keylen); + + /* + * The last four bytes of the key material are used as the salt value + * in the nonce. Update the AES key length. + */ + ctx->enckeylen = keylen - 4; + + ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->enckeylen, + DMA_TO_DEVICE); + if (dma_mapping_error(jrdev, ctx->key_dma)) { + dev_err(jrdev, "unable to map key i/o memory\n"); + return -ENOMEM; + } + + ret = rfc4106_set_sh_desc(aead); + if (ret) { + dma_unmap_single(jrdev, ctx->key_dma, ctx->enckeylen, + DMA_TO_DEVICE); + } + + return ret; +} + +static int rfc4543_setkey(struct crypto_aead *aead, + const u8 *key, unsigned int keylen) +{ + struct caam_ctx *ctx = crypto_aead_ctx(aead); + struct device *jrdev = ctx->jrdev; + int ret = 0; + + if (keylen < 4) + return -EINVAL; + +#ifdef DEBUG + print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ", + DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); +#endif + + memcpy(ctx->key, key, keylen); + + /* + * The last four bytes of the key material are used as the salt value + * in the nonce. Update the AES key length. + */ + ctx->enckeylen = keylen - 4; + + ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->enckeylen, + DMA_TO_DEVICE); + if (dma_mapping_error(jrdev, ctx->key_dma)) { + dev_err(jrdev, "unable to map key i/o memory\n"); + return -ENOMEM; + } + + ret = rfc4543_set_sh_desc(aead); + if (ret) { + dma_unmap_single(jrdev, ctx->key_dma, ctx->enckeylen, + DMA_TO_DEVICE); + } + + return ret; +} + static int ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher, const u8 *key, unsigned int keylen) { struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher); - struct ablkcipher_tfm *tfm = &ablkcipher->base.crt_ablkcipher; + struct ablkcipher_tfm *crt = &ablkcipher->base.crt_ablkcipher; + struct crypto_tfm *tfm = crypto_ablkcipher_tfm(ablkcipher); + const char *alg_name = crypto_tfm_alg_name(tfm); struct device *jrdev = ctx->jrdev; int ret = 0; u32 *key_jump_cmd; u32 *desc; + u32 *nonce; + u32 geniv; + u32 ctx1_iv_off = 0; + const bool ctr_mode = ((ctx->class1_alg_type & OP_ALG_AAI_MASK) == + OP_ALG_AAI_CTR_MOD128); + const bool is_rfc3686 = (ctr_mode && + (strstr(alg_name, "rfc3686") != NULL)); #ifdef DEBUG print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); #endif + /* + * AES-CTR needs to load IV in CONTEXT1 reg + * at an offset of 128bits (16bytes) + * CONTEXT1[255:128] = IV + */ + if (ctr_mode) + ctx1_iv_off = 16; + + /* + * RFC3686 specific: + * | CONTEXT1[255:128] = {NONCE, IV, COUNTER} + * | *key = {KEY, NONCE} + */ + if (is_rfc3686) { + ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE; + keylen -= CTR_RFC3686_NONCE_SIZE; + } memcpy(ctx->key, key, keylen); ctx->key_dma = dma_map_single(jrdev, ctx->key, keylen, @@ -729,7 +1875,7 @@ static int ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher, /* ablkcipher_encrypt shared descriptor */ desc = ctx->sh_desc_enc; - init_sh_desc(desc, HDR_SHARE_SERIAL); + init_sh_desc(desc, HDR_SHARE_SERIAL | HDR_SAVECTX); /* Skip if already shared */ key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL | JUMP_COND_SHRD); @@ -739,11 +1885,31 @@ static int ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher, ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); + /* Load nonce into CONTEXT1 reg */ + if (is_rfc3686) { + nonce = (u32 *)(key + keylen); + append_load_imm_u32(desc, *nonce, LDST_CLASS_IND_CCB | + LDST_SRCDST_BYTE_OUTFIFO | LDST_IMM); + append_move(desc, MOVE_WAITCOMP | + MOVE_SRC_OUTFIFO | + MOVE_DEST_CLASS1CTX | + (16 << MOVE_OFFSET_SHIFT) | + (CTR_RFC3686_NONCE_SIZE << MOVE_LEN_SHIFT)); + } + set_jump_tgt_here(desc, key_jump_cmd); /* Load iv */ - append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT | - LDST_CLASS_1_CCB | tfm->ivsize); + append_seq_load(desc, crt->ivsize, LDST_SRCDST_BYTE_CONTEXT | + LDST_CLASS_1_CCB | (ctx1_iv_off << LDST_OFFSET_SHIFT)); + + /* Load counter into CONTEXT1 reg */ + if (is_rfc3686) + append_load_imm_u32(desc, be32_to_cpu(1), LDST_IMM | + LDST_CLASS_1_CCB | + LDST_SRCDST_BYTE_CONTEXT | + ((ctx1_iv_off + CTR_RFC3686_IV_SIZE) << + LDST_OFFSET_SHIFT)); /* Load operation */ append_operation(desc, ctx->class1_alg_type | @@ -768,7 +1934,7 @@ static int ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher, /* ablkcipher_decrypt shared descriptor */ desc = ctx->sh_desc_dec; - init_sh_desc(desc, HDR_SHARE_SERIAL); + init_sh_desc(desc, HDR_SHARE_SERIAL | HDR_SAVECTX); /* Skip if already shared */ key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL | JUMP_COND_SHRD); @@ -778,14 +1944,38 @@ static int ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher, ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); + /* Load nonce into CONTEXT1 reg */ + if (is_rfc3686) { + nonce = (u32 *)(key + keylen); + append_load_imm_u32(desc, *nonce, LDST_CLASS_IND_CCB | + LDST_SRCDST_BYTE_OUTFIFO | LDST_IMM); + append_move(desc, MOVE_WAITCOMP | + MOVE_SRC_OUTFIFO | + MOVE_DEST_CLASS1CTX | + (16 << MOVE_OFFSET_SHIFT) | + (CTR_RFC3686_NONCE_SIZE << MOVE_LEN_SHIFT)); + } + set_jump_tgt_here(desc, key_jump_cmd); /* load IV */ - append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT | - LDST_CLASS_1_CCB | tfm->ivsize); + append_seq_load(desc, crt->ivsize, LDST_SRCDST_BYTE_CONTEXT | + LDST_CLASS_1_CCB | (ctx1_iv_off << LDST_OFFSET_SHIFT)); + + /* Load counter into CONTEXT1 reg */ + if (is_rfc3686) + append_load_imm_u32(desc, be32_to_cpu(1), LDST_IMM | + LDST_CLASS_1_CCB | + LDST_SRCDST_BYTE_CONTEXT | + ((ctx1_iv_off + CTR_RFC3686_IV_SIZE) << + LDST_OFFSET_SHIFT)); /* Choose operation */ - append_dec_op1(desc, ctx->class1_alg_type); + if (ctr_mode) + append_operation(desc, ctx->class1_alg_type | + OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT); + else + append_dec_op1(desc, ctx->class1_alg_type); /* Perform operation */ ablkcipher_append_src_dst(desc); @@ -804,6 +1994,83 @@ static int ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher, DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); #endif + /* ablkcipher_givencrypt shared descriptor */ + desc = ctx->sh_desc_givenc; + + init_sh_desc(desc, HDR_SHARE_SERIAL | HDR_SAVECTX); + /* Skip if already shared */ + key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL | + JUMP_COND_SHRD); + + /* Load class1 key only */ + append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen, + ctx->enckeylen, CLASS_1 | + KEY_DEST_CLASS_REG); + + /* Load Nonce into CONTEXT1 reg */ + if (is_rfc3686) { + nonce = (u32 *)(key + keylen); + append_load_imm_u32(desc, *nonce, LDST_CLASS_IND_CCB | + LDST_SRCDST_BYTE_OUTFIFO | LDST_IMM); + append_move(desc, MOVE_WAITCOMP | + MOVE_SRC_OUTFIFO | + MOVE_DEST_CLASS1CTX | + (16 << MOVE_OFFSET_SHIFT) | + (CTR_RFC3686_NONCE_SIZE << MOVE_LEN_SHIFT)); + } + set_jump_tgt_here(desc, key_jump_cmd); + + /* Generate IV */ + geniv = NFIFOENTRY_STYPE_PAD | NFIFOENTRY_DEST_DECO | + NFIFOENTRY_DTYPE_MSG | NFIFOENTRY_LC1 | + NFIFOENTRY_PTYPE_RND | (crt->ivsize << NFIFOENTRY_DLEN_SHIFT); + append_load_imm_u32(desc, geniv, LDST_CLASS_IND_CCB | + LDST_SRCDST_WORD_INFO_FIFO | LDST_IMM); + append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO); + append_move(desc, MOVE_WAITCOMP | + MOVE_SRC_INFIFO | + MOVE_DEST_CLASS1CTX | + (crt->ivsize << MOVE_LEN_SHIFT) | + (ctx1_iv_off << MOVE_OFFSET_SHIFT)); + append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO); + + /* Copy generated IV to memory */ + append_seq_store(desc, crt->ivsize, + LDST_SRCDST_BYTE_CONTEXT | LDST_CLASS_1_CCB | + (ctx1_iv_off << LDST_OFFSET_SHIFT)); + + /* Load Counter into CONTEXT1 reg */ + if (is_rfc3686) + append_load_imm_u32(desc, (u32)1, LDST_IMM | + LDST_CLASS_1_CCB | + LDST_SRCDST_BYTE_CONTEXT | + ((ctx1_iv_off + CTR_RFC3686_IV_SIZE) << + LDST_OFFSET_SHIFT)); + + if (ctx1_iv_off) + append_jump(desc, JUMP_JSL | JUMP_TEST_ALL | JUMP_COND_NCP | + (1 << JUMP_OFFSET_SHIFT)); + + /* Load operation */ + append_operation(desc, ctx->class1_alg_type | + OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT); + + /* Perform operation */ + ablkcipher_append_src_dst(desc); + + ctx->sh_desc_givenc_dma = dma_map_single(jrdev, desc, + desc_bytes(desc), + DMA_TO_DEVICE); + if (dma_mapping_error(jrdev, ctx->sh_desc_givenc_dma)) { + dev_err(jrdev, "unable to map shared descriptor\n"); + return -ENOMEM; + } +#ifdef DEBUG + print_hex_dump(KERN_ERR, + "ablkcipher givenc shdesc@" __stringify(__LINE__) ": ", + DUMP_PREFIX_ADDRESS, 16, 4, desc, + desc_bytes(desc), 1); +#endif return ret; } @@ -1088,6 +2355,7 @@ static void init_aead_job(u32 *sh_desc, dma_addr_t ptr, u32 out_options = 0, in_options; dma_addr_t dst_dma, src_dma; int len, sec4_sg_index = 0; + bool is_gcm = false; #ifdef DEBUG debug("assoclen %d cryptlen %d authsize %d\n", @@ -1106,11 +2374,19 @@ static void init_aead_job(u32 *sh_desc, dma_addr_t ptr, desc_bytes(sh_desc), 1); #endif + if (((ctx->class1_alg_type & OP_ALG_ALGSEL_MASK) == + OP_ALG_ALGSEL_AES) && + ((ctx->class1_alg_type & OP_ALG_AAI_MASK) == OP_ALG_AAI_GCM)) + is_gcm = true; + len = desc_len(sh_desc); init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE); if (all_contig) { - src_dma = sg_dma_address(req->assoc); + if (is_gcm) + src_dma = edesc->iv_dma; + else + src_dma = sg_dma_address(req->assoc); in_options = 0; } else { src_dma = edesc->sec4_sg_dma; @@ -1164,6 +2440,7 @@ static void init_aead_giv_job(u32 *sh_desc, dma_addr_t ptr, u32 out_options = 0, in_options; dma_addr_t dst_dma, src_dma; int len, sec4_sg_index = 0; + bool is_gcm = false; #ifdef DEBUG debug("assoclen %d cryptlen %d authsize %d\n", @@ -1181,11 +2458,19 @@ static void init_aead_giv_job(u32 *sh_desc, dma_addr_t ptr, desc_bytes(sh_desc), 1); #endif + if (((ctx->class1_alg_type & OP_ALG_ALGSEL_MASK) == + OP_ALG_ALGSEL_AES) && + ((ctx->class1_alg_type & OP_ALG_AAI_MASK) == OP_ALG_AAI_GCM)) + is_gcm = true; + len = desc_len(sh_desc); init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE); if (contig & GIV_SRC_CONTIG) { - src_dma = sg_dma_address(req->assoc); + if (is_gcm) + src_dma = edesc->iv_dma; + else + src_dma = sg_dma_address(req->assoc); in_options = 0; } else { src_dma = edesc->sec4_sg_dma; @@ -1200,7 +2485,8 @@ static void init_aead_giv_job(u32 *sh_desc, dma_addr_t ptr, } else { if (likely(req->src == req->dst)) { dst_dma = src_dma + sizeof(struct sec4_sg_entry) * - edesc->assoc_nents; + (edesc->assoc_nents + + (is_gcm ? 1 + edesc->src_nents : 0)); out_options = LDST_SGF; } else { dst_dma = edesc->sec4_sg_dma + @@ -1272,6 +2558,54 @@ static void init_ablkcipher_job(u32 *sh_desc, dma_addr_t ptr, } /* + * Fill in ablkcipher givencrypt job descriptor + */ +static void init_ablkcipher_giv_job(u32 *sh_desc, dma_addr_t ptr, + struct ablkcipher_edesc *edesc, + struct ablkcipher_request *req, + bool iv_contig) +{ + struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req); + int ivsize = crypto_ablkcipher_ivsize(ablkcipher); + u32 *desc = edesc->hw_desc; + u32 out_options, in_options; + dma_addr_t dst_dma, src_dma; + int len, sec4_sg_index = 0; + +#ifdef DEBUG + print_hex_dump(KERN_ERR, "presciv@" __stringify(__LINE__) ": ", + DUMP_PREFIX_ADDRESS, 16, 4, req->info, + ivsize, 1); + print_hex_dump(KERN_ERR, "src @" __stringify(__LINE__) ": ", + DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src), + edesc->src_nents ? 100 : req->nbytes, 1); +#endif + + len = desc_len(sh_desc); + init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE); + + if (!edesc->src_nents) { + src_dma = sg_dma_address(req->src); + in_options = 0; + } else { + src_dma = edesc->sec4_sg_dma; + sec4_sg_index += edesc->src_nents; + in_options = LDST_SGF; + } + append_seq_in_ptr(desc, src_dma, req->nbytes, in_options); + + if (iv_contig) { + dst_dma = edesc->iv_dma; + out_options = 0; + } else { + dst_dma = edesc->sec4_sg_dma + + sec4_sg_index * sizeof(struct sec4_sg_entry); + out_options = LDST_SGF; + } + append_seq_out_ptr(desc, dst_dma, req->nbytes + ivsize, out_options); +} + +/* * allocate and map the aead extended descriptor */ static struct aead_edesc *aead_edesc_alloc(struct aead_request *req, @@ -1292,6 +2626,7 @@ static struct aead_edesc *aead_edesc_alloc(struct aead_request *req, int ivsize = crypto_aead_ivsize(aead); int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes; unsigned int authsize = ctx->authsize; + bool is_gcm = false; assoc_nents = sg_count(req->assoc, req->assoclen, &assoc_chained); @@ -1326,15 +2661,31 @@ static struct aead_edesc *aead_edesc_alloc(struct aead_request *req, return ERR_PTR(-ENOMEM); } - /* Check if data are contiguous */ - if (assoc_nents || sg_dma_address(req->assoc) + req->assoclen != - iv_dma || src_nents || iv_dma + ivsize != - sg_dma_address(req->src)) { - all_contig = false; + if (((ctx->class1_alg_type & OP_ALG_ALGSEL_MASK) == + OP_ALG_ALGSEL_AES) && + ((ctx->class1_alg_type & OP_ALG_AAI_MASK) == OP_ALG_AAI_GCM)) + is_gcm = true; + + /* + * Check if data are contiguous. + * GCM expected input sequence: IV, AAD, text + * All other - expected input sequence: AAD, IV, text + */ + if (is_gcm) + all_contig = (!assoc_nents && + iv_dma + ivsize == sg_dma_address(req->assoc) && + !src_nents && sg_dma_address(req->assoc) + + req->assoclen == sg_dma_address(req->src)); + else + all_contig = (!assoc_nents && sg_dma_address(req->assoc) + + req->assoclen == iv_dma && !src_nents && + iv_dma + ivsize == sg_dma_address(req->src)); + if (!all_contig) { assoc_nents = assoc_nents ? : 1; src_nents = src_nents ? : 1; sec4_sg_len = assoc_nents + 1 + src_nents; } + sec4_sg_len += dst_nents; sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry); @@ -1361,14 +2712,26 @@ static struct aead_edesc *aead_edesc_alloc(struct aead_request *req, sec4_sg_index = 0; if (!all_contig) { - sg_to_sec4_sg(req->assoc, - (assoc_nents ? : 1), - edesc->sec4_sg + - sec4_sg_index, 0); - sec4_sg_index += assoc_nents ? : 1; + if (!is_gcm) { + sg_to_sec4_sg(req->assoc, + (assoc_nents ? : 1), + edesc->sec4_sg + + sec4_sg_index, 0); + sec4_sg_index += assoc_nents ? : 1; + } + dma_to_sec4_sg_one(edesc->sec4_sg + sec4_sg_index, iv_dma, ivsize, 0); sec4_sg_index += 1; + + if (is_gcm) { + sg_to_sec4_sg(req->assoc, + (assoc_nents ? : 1), + edesc->sec4_sg + + sec4_sg_index, 0); + sec4_sg_index += assoc_nents ? : 1; + } + sg_to_sec4_sg_last(req->src, (src_nents ? : 1), edesc->sec4_sg + @@ -1490,6 +2853,7 @@ static struct aead_edesc *aead_giv_edesc_alloc(struct aead_givcrypt_request int ivsize = crypto_aead_ivsize(aead); bool assoc_chained = false, src_chained = false, dst_chained = false; int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes; + bool is_gcm = false; assoc_nents = sg_count(req->assoc, req->assoclen, &assoc_chained); src_nents = sg_count(req->src, req->cryptlen, &src_chained); @@ -1516,24 +2880,53 @@ static struct aead_edesc *aead_giv_edesc_alloc(struct aead_givcrypt_request return ERR_PTR(-ENOMEM); } - /* Check if data are contiguous */ - if (assoc_nents || sg_dma_address(req->assoc) + req->assoclen != - iv_dma || src_nents || iv_dma + ivsize != sg_dma_address(req->src)) - contig &= ~GIV_SRC_CONTIG; + if (((ctx->class1_alg_type & OP_ALG_ALGSEL_MASK) == + OP_ALG_ALGSEL_AES) && + ((ctx->class1_alg_type & OP_ALG_AAI_MASK) == OP_ALG_AAI_GCM)) + is_gcm = true; + + /* + * Check if data are contiguous. + * GCM expected input sequence: IV, AAD, text + * All other - expected input sequence: AAD, IV, text + */ + + if (is_gcm) { + if (assoc_nents || iv_dma + ivsize != + sg_dma_address(req->assoc) || src_nents || + sg_dma_address(req->assoc) + req->assoclen != + sg_dma_address(req->src)) + contig &= ~GIV_SRC_CONTIG; + } else { + if (assoc_nents || + sg_dma_address(req->assoc) + req->assoclen != iv_dma || + src_nents || iv_dma + ivsize != sg_dma_address(req->src)) + contig &= ~GIV_SRC_CONTIG; + } + if (dst_nents || iv_dma + ivsize != sg_dma_address(req->dst)) contig &= ~GIV_DST_CONTIG; - if (unlikely(req->src != req->dst)) { - dst_nents = dst_nents ? : 1; - sec4_sg_len += 1; - } + if (!(contig & GIV_SRC_CONTIG)) { assoc_nents = assoc_nents ? : 1; src_nents = src_nents ? : 1; sec4_sg_len += assoc_nents + 1 + src_nents; - if (likely(req->src == req->dst)) + if (req->src == req->dst && + (src_nents || iv_dma + ivsize != sg_dma_address(req->src))) contig &= ~GIV_DST_CONTIG; } - sec4_sg_len += dst_nents; + + /* + * Add new sg entries for GCM output sequence. + * Expected output sequence: IV, encrypted text. + */ + if (is_gcm && req->src == req->dst && !(contig & GIV_DST_CONTIG)) + sec4_sg_len += 1 + src_nents; + + if (unlikely(req->src != req->dst)) { + dst_nents = dst_nents ? : 1; + sec4_sg_len += 1 + dst_nents; + } sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry); @@ -1559,18 +2952,36 @@ static struct aead_edesc *aead_giv_edesc_alloc(struct aead_givcrypt_request sec4_sg_index = 0; if (!(contig & GIV_SRC_CONTIG)) { - sg_to_sec4_sg(req->assoc, assoc_nents, - edesc->sec4_sg + - sec4_sg_index, 0); - sec4_sg_index += assoc_nents; + if (!is_gcm) { + sg_to_sec4_sg(req->assoc, assoc_nents, + edesc->sec4_sg + sec4_sg_index, 0); + sec4_sg_index += assoc_nents; + } + dma_to_sec4_sg_one(edesc->sec4_sg + sec4_sg_index, iv_dma, ivsize, 0); sec4_sg_index += 1; + + if (is_gcm) { + sg_to_sec4_sg(req->assoc, assoc_nents, + edesc->sec4_sg + sec4_sg_index, 0); + sec4_sg_index += assoc_nents; + } + sg_to_sec4_sg_last(req->src, src_nents, edesc->sec4_sg + sec4_sg_index, 0); sec4_sg_index += src_nents; } + + if (is_gcm && req->src == req->dst && !(contig & GIV_DST_CONTIG)) { + dma_to_sec4_sg_one(edesc->sec4_sg + sec4_sg_index, + iv_dma, ivsize, 0); + sec4_sg_index += 1; + sg_to_sec4_sg_last(req->src, src_nents, + edesc->sec4_sg + sec4_sg_index, 0); + } + if (unlikely(req->src != req->dst && !(contig & GIV_DST_CONTIG))) { dma_to_sec4_sg_one(edesc->sec4_sg + sec4_sg_index, iv_dma, ivsize, 0); @@ -1814,6 +3225,151 @@ static int ablkcipher_decrypt(struct ablkcipher_request *req) return ret; } +/* + * allocate and map the ablkcipher extended descriptor + * for ablkcipher givencrypt + */ +static struct ablkcipher_edesc *ablkcipher_giv_edesc_alloc( + struct skcipher_givcrypt_request *greq, + int desc_bytes, + bool *iv_contig_out) +{ + struct ablkcipher_request *req = &greq->creq; + struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req); + struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher); + struct device *jrdev = ctx->jrdev; + gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | + CRYPTO_TFM_REQ_MAY_SLEEP)) ? + GFP_KERNEL : GFP_ATOMIC; + int src_nents, dst_nents = 0, sec4_sg_bytes; + struct ablkcipher_edesc *edesc; + dma_addr_t iv_dma = 0; + bool iv_contig = false; + int sgc; + int ivsize = crypto_ablkcipher_ivsize(ablkcipher); + bool src_chained = false, dst_chained = false; + int sec4_sg_index; + + src_nents = sg_count(req->src, req->nbytes, &src_chained); + + if (unlikely(req->dst != req->src)) + dst_nents = sg_count(req->dst, req->nbytes, &dst_chained); + + if (likely(req->src == req->dst)) { + sgc = dma_map_sg_chained(jrdev, req->src, src_nents ? : 1, + DMA_BIDIRECTIONAL, src_chained); + } else { + sgc = dma_map_sg_chained(jrdev, req->src, src_nents ? : 1, + DMA_TO_DEVICE, src_chained); + sgc = dma_map_sg_chained(jrdev, req->dst, dst_nents ? : 1, + DMA_FROM_DEVICE, dst_chained); + } + + /* + * Check if iv can be contiguous with source and destination. + * If so, include it. If not, create scatterlist. + */ + iv_dma = dma_map_single(jrdev, greq->giv, ivsize, DMA_TO_DEVICE); + if (dma_mapping_error(jrdev, iv_dma)) { + dev_err(jrdev, "unable to map IV\n"); + return ERR_PTR(-ENOMEM); + } + + if (!dst_nents && iv_dma + ivsize == sg_dma_address(req->dst)) + iv_contig = true; + else + dst_nents = dst_nents ? : 1; + sec4_sg_bytes = ((iv_contig ? 0 : 1) + src_nents + dst_nents) * + sizeof(struct sec4_sg_entry); + + /* allocate space for base edesc and hw desc commands, link tables */ + edesc = kmalloc(sizeof(*edesc) + desc_bytes + + sec4_sg_bytes, GFP_DMA | flags); + if (!edesc) { + dev_err(jrdev, "could not allocate extended descriptor\n"); + return ERR_PTR(-ENOMEM); + } + + edesc->src_nents = src_nents; + edesc->src_chained = src_chained; + edesc->dst_nents = dst_nents; + edesc->dst_chained = dst_chained; + edesc->sec4_sg_bytes = sec4_sg_bytes; + edesc->sec4_sg = (void *)edesc + sizeof(struct ablkcipher_edesc) + + desc_bytes; + + sec4_sg_index = 0; + if (src_nents) { + sg_to_sec4_sg_last(req->src, src_nents, edesc->sec4_sg, 0); + sec4_sg_index += src_nents; + } + + if (!iv_contig) { + dma_to_sec4_sg_one(edesc->sec4_sg + sec4_sg_index, + iv_dma, ivsize, 0); + sec4_sg_index += 1; + sg_to_sec4_sg_last(req->dst, dst_nents, + edesc->sec4_sg + sec4_sg_index, 0); + } + + edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, + sec4_sg_bytes, DMA_TO_DEVICE); + if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) { + dev_err(jrdev, "unable to map S/G table\n"); + return ERR_PTR(-ENOMEM); + } + edesc->iv_dma = iv_dma; + +#ifdef DEBUG + print_hex_dump(KERN_ERR, + "ablkcipher sec4_sg@" __stringify(__LINE__) ": ", + DUMP_PREFIX_ADDRESS, 16, 4, edesc->sec4_sg, + sec4_sg_bytes, 1); +#endif + + *iv_contig_out = iv_contig; + return edesc; +} + +static int ablkcipher_givencrypt(struct skcipher_givcrypt_request *creq) +{ + struct ablkcipher_request *req = &creq->creq; + struct ablkcipher_edesc *edesc; + struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req); + struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher); + struct device *jrdev = ctx->jrdev; + bool iv_contig; + u32 *desc; + int ret = 0; + + /* allocate extended descriptor */ + edesc = ablkcipher_giv_edesc_alloc(creq, DESC_JOB_IO_LEN * + CAAM_CMD_SZ, &iv_contig); + if (IS_ERR(edesc)) + return PTR_ERR(edesc); + + /* Create and submit job descriptor*/ + init_ablkcipher_giv_job(ctx->sh_desc_givenc, ctx->sh_desc_givenc_dma, + edesc, req, iv_contig); +#ifdef DEBUG + print_hex_dump(KERN_ERR, + "ablkcipher jobdesc@" __stringify(__LINE__) ": ", + DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc, + desc_bytes(edesc->hw_desc), 1); +#endif + desc = edesc->hw_desc; + ret = caam_jr_enqueue(jrdev, desc, ablkcipher_encrypt_done, req); + + if (!ret) { + ret = -EINPROGRESS; + } else { + ablkcipher_unmap(jrdev, edesc, req); + kfree(edesc); + } + + return ret; +} + #define template_aead template_u.aead #define template_ablkcipher template_u.ablkcipher struct caam_alg_template { @@ -2309,17 +3865,188 @@ static struct caam_alg_template driver_algs[] = { OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC, }, + { + .name = "authenc(hmac(md5),rfc3686(ctr(aes)))", + .driver_name = "authenc-hmac-md5-rfc3686-ctr-aes-caam", + .blocksize = 1, + .type = CRYPTO_ALG_TYPE_AEAD, + .template_aead = { + .setkey = aead_setkey, + .setauthsize = aead_setauthsize, + .encrypt = aead_encrypt, + .decrypt = aead_decrypt, + .givencrypt = aead_givencrypt, + .geniv = "<built-in>", + .ivsize = CTR_RFC3686_IV_SIZE, + .maxauthsize = MD5_DIGEST_SIZE, + }, + .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, + .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, + .alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC, + }, + { + .name = "authenc(hmac(sha1),rfc3686(ctr(aes)))", + .driver_name = "authenc-hmac-sha1-rfc3686-ctr-aes-caam", + .blocksize = 1, + .type = CRYPTO_ALG_TYPE_AEAD, + .template_aead = { + .setkey = aead_setkey, + .setauthsize = aead_setauthsize, + .encrypt = aead_encrypt, + .decrypt = aead_decrypt, + .givencrypt = aead_givencrypt, + .geniv = "<built-in>", + .ivsize = CTR_RFC3686_IV_SIZE, + .maxauthsize = SHA1_DIGEST_SIZE, + }, + .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, + .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, + .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC, + }, + { + .name = "authenc(hmac(sha224),rfc3686(ctr(aes)))", + .driver_name = "authenc-hmac-sha224-rfc3686-ctr-aes-caam", + .blocksize = 1, + .type = CRYPTO_ALG_TYPE_AEAD, + .template_aead = { + .setkey = aead_setkey, + .setauthsize = aead_setauthsize, + .encrypt = aead_encrypt, + .decrypt = aead_decrypt, + .givencrypt = aead_givencrypt, + .geniv = "<built-in>", + .ivsize = CTR_RFC3686_IV_SIZE, + .maxauthsize = SHA224_DIGEST_SIZE, + }, + .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, + .class2_alg_type = OP_ALG_ALGSEL_SHA224 | + OP_ALG_AAI_HMAC_PRECOMP, + .alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC, + }, + { + .name = "authenc(hmac(sha256),rfc3686(ctr(aes)))", + .driver_name = "authenc-hmac-sha256-rfc3686-ctr-aes-caam", + .blocksize = 1, + .type = CRYPTO_ALG_TYPE_AEAD, + .template_aead = { + .setkey = aead_setkey, + .setauthsize = aead_setauthsize, + .encrypt = aead_encrypt, + .decrypt = aead_decrypt, + .givencrypt = aead_givencrypt, + .geniv = "<built-in>", + .ivsize = CTR_RFC3686_IV_SIZE, + .maxauthsize = SHA256_DIGEST_SIZE, + }, + .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, + .class2_alg_type = OP_ALG_ALGSEL_SHA256 | + OP_ALG_AAI_HMAC_PRECOMP, + .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC, + }, + { + .name = "authenc(hmac(sha384),rfc3686(ctr(aes)))", + .driver_name = "authenc-hmac-sha384-rfc3686-ctr-aes-caam", + .blocksize = 1, + .type = CRYPTO_ALG_TYPE_AEAD, + .template_aead = { + .setkey = aead_setkey, + .setauthsize = aead_setauthsize, + .encrypt = aead_encrypt, + .decrypt = aead_decrypt, + .givencrypt = aead_givencrypt, + .geniv = "<built-in>", + .ivsize = CTR_RFC3686_IV_SIZE, + .maxauthsize = SHA384_DIGEST_SIZE, + }, + .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, + .class2_alg_type = OP_ALG_ALGSEL_SHA384 | + OP_ALG_AAI_HMAC_PRECOMP, + .alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC, + }, + { + .name = "authenc(hmac(sha512),rfc3686(ctr(aes)))", + .driver_name = "authenc-hmac-sha512-rfc3686-ctr-aes-caam", + .blocksize = 1, + .type = CRYPTO_ALG_TYPE_AEAD, + .template_aead = { + .setkey = aead_setkey, + .setauthsize = aead_setauthsize, + .encrypt = aead_encrypt, + .decrypt = aead_decrypt, + .givencrypt = aead_givencrypt, + .geniv = "<built-in>", + .ivsize = CTR_RFC3686_IV_SIZE, + .maxauthsize = SHA512_DIGEST_SIZE, + }, + .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, + .class2_alg_type = OP_ALG_ALGSEL_SHA512 | + OP_ALG_AAI_HMAC_PRECOMP, + .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC, + }, + { + .name = "rfc4106(gcm(aes))", + .driver_name = "rfc4106-gcm-aes-caam", + .blocksize = 1, + .type = CRYPTO_ALG_TYPE_AEAD, + .template_aead = { + .setkey = rfc4106_setkey, + .setauthsize = rfc4106_setauthsize, + .encrypt = aead_encrypt, + .decrypt = aead_decrypt, + .givencrypt = aead_givencrypt, + .geniv = "<built-in>", + .ivsize = 8, + .maxauthsize = AES_BLOCK_SIZE, + }, + .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM, + }, + { + .name = "rfc4543(gcm(aes))", + .driver_name = "rfc4543-gcm-aes-caam", + .blocksize = 1, + .type = CRYPTO_ALG_TYPE_AEAD, + .template_aead = { + .setkey = rfc4543_setkey, + .setauthsize = rfc4543_setauthsize, + .encrypt = aead_encrypt, + .decrypt = aead_decrypt, + .givencrypt = aead_givencrypt, + .geniv = "<built-in>", + .ivsize = 8, + .maxauthsize = AES_BLOCK_SIZE, + }, + .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM, + }, + /* Galois Counter Mode */ + { + .name = "gcm(aes)", + .driver_name = "gcm-aes-caam", + .blocksize = 1, + .type = CRYPTO_ALG_TYPE_AEAD, + .template_aead = { + .setkey = gcm_setkey, + .setauthsize = gcm_setauthsize, + .encrypt = aead_encrypt, + .decrypt = aead_decrypt, + .givencrypt = NULL, + .geniv = "<built-in>", + .ivsize = 12, + .maxauthsize = AES_BLOCK_SIZE, + }, + .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM, + }, /* ablkcipher descriptor */ { .name = "cbc(aes)", .driver_name = "cbc-aes-caam", .blocksize = AES_BLOCK_SIZE, - .type = CRYPTO_ALG_TYPE_ABLKCIPHER, + .type = CRYPTO_ALG_TYPE_GIVCIPHER, .template_ablkcipher = { .setkey = ablkcipher_setkey, .encrypt = ablkcipher_encrypt, .decrypt = ablkcipher_decrypt, - .geniv = "eseqiv", + .givencrypt = ablkcipher_givencrypt, + .geniv = "<built-in>", .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, @@ -2330,12 +4057,13 @@ static struct caam_alg_template driver_algs[] = { .name = "cbc(des3_ede)", .driver_name = "cbc-3des-caam", .blocksize = DES3_EDE_BLOCK_SIZE, - .type = CRYPTO_ALG_TYPE_ABLKCIPHER, + .type = CRYPTO_ALG_TYPE_GIVCIPHER, .template_ablkcipher = { .setkey = ablkcipher_setkey, .encrypt = ablkcipher_encrypt, .decrypt = ablkcipher_decrypt, - .geniv = "eseqiv", + .givencrypt = ablkcipher_givencrypt, + .geniv = "<built-in>", .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, @@ -2346,17 +4074,53 @@ static struct caam_alg_template driver_algs[] = { .name = "cbc(des)", .driver_name = "cbc-des-caam", .blocksize = DES_BLOCK_SIZE, - .type = CRYPTO_ALG_TYPE_ABLKCIPHER, + .type = CRYPTO_ALG_TYPE_GIVCIPHER, .template_ablkcipher = { .setkey = ablkcipher_setkey, .encrypt = ablkcipher_encrypt, .decrypt = ablkcipher_decrypt, - .geniv = "eseqiv", + .givencrypt = ablkcipher_givencrypt, + .geniv = "<built-in>", .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, + }, + { + .name = "ctr(aes)", + .driver_name = "ctr-aes-caam", + .blocksize = 1, + .type = CRYPTO_ALG_TYPE_ABLKCIPHER, + .template_ablkcipher = { + .setkey = ablkcipher_setkey, + .encrypt = ablkcipher_encrypt, + .decrypt = ablkcipher_decrypt, + .geniv = "chainiv", + .min_keysize = AES_MIN_KEY_SIZE, + .max_keysize = AES_MAX_KEY_SIZE, + .ivsize = AES_BLOCK_SIZE, + }, + .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, + }, + { + .name = "rfc3686(ctr(aes))", + .driver_name = "rfc3686-ctr-aes-caam", + .blocksize = 1, + .type = CRYPTO_ALG_TYPE_GIVCIPHER, + .template_ablkcipher = { + .setkey = ablkcipher_setkey, + .encrypt = ablkcipher_encrypt, + .decrypt = ablkcipher_decrypt, + .givencrypt = ablkcipher_givencrypt, + .geniv = "<built-in>", + .min_keysize = AES_MIN_KEY_SIZE + + CTR_RFC3686_NONCE_SIZE, + .max_keysize = AES_MAX_KEY_SIZE + + CTR_RFC3686_NONCE_SIZE, + .ivsize = CTR_RFC3686_IV_SIZE, + }, + .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128, } }; @@ -2457,6 +4221,10 @@ static struct caam_crypto_alg *caam_alg_alloc(struct caam_alg_template alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | template->type; switch (template->type) { + case CRYPTO_ALG_TYPE_GIVCIPHER: + alg->cra_type = &crypto_givcipher_type; + alg->cra_ablkcipher = template->template_ablkcipher; + break; case CRYPTO_ALG_TYPE_ABLKCIPHER: alg->cra_type = &crypto_ablkcipher_type; alg->cra_ablkcipher = template->template_ablkcipher; diff --git a/drivers/crypto/caam/compat.h b/drivers/crypto/caam/compat.h index f227922cea38..acd7743e2603 100644 --- a/drivers/crypto/caam/compat.h +++ b/drivers/crypto/caam/compat.h @@ -28,6 +28,7 @@ #include <crypto/algapi.h> #include <crypto/null.h> #include <crypto/aes.h> +#include <crypto/ctr.h> #include <crypto/des.h> #include <crypto/sha.h> #include <crypto/md5.h> diff --git a/drivers/crypto/caam/desc_constr.h b/drivers/crypto/caam/desc_constr.h index 7eec20bb3849..9f79fd7bd4d7 100644 --- a/drivers/crypto/caam/desc_constr.h +++ b/drivers/crypto/caam/desc_constr.h @@ -192,6 +192,8 @@ static inline void append_##cmd(u32 *desc, unsigned int len, u32 options) \ PRINT_POS; \ append_cmd(desc, CMD_##op | len | options); \ } + +APPEND_CMD_LEN(seq_load, SEQ_LOAD) APPEND_CMD_LEN(seq_store, SEQ_STORE) APPEND_CMD_LEN(seq_fifo_load, SEQ_FIFO_LOAD) APPEND_CMD_LEN(seq_fifo_store, SEQ_FIFO_STORE) diff --git a/drivers/crypto/caam/error.c b/drivers/crypto/caam/error.c index 6531054a44c8..66d73bf54166 100644 --- a/drivers/crypto/caam/error.c +++ b/drivers/crypto/caam/error.c @@ -213,27 +213,36 @@ void caam_jr_strstatus(struct device *jrdev, u32 status) void (*report_ssed)(struct device *jrdev, const u32 status, const char *error); const char *error; - } status_src[] = { + } status_src[16] = { { NULL, "No error" }, { NULL, NULL }, { report_ccb_status, "CCB" }, { report_jump_status, "Jump" }, { report_deco_status, "DECO" }, - { NULL, NULL }, + { NULL, "Queue Manager Interface" }, { report_jr_status, "Job Ring" }, { report_cond_code_status, "Condition Code" }, + { NULL, NULL }, + { NULL, NULL }, + { NULL, NULL }, + { NULL, NULL }, + { NULL, NULL }, + { NULL, NULL }, + { NULL, NULL }, + { NULL, NULL }, }; u32 ssrc = status >> JRSTA_SSRC_SHIFT; const char *error = status_src[ssrc].error; /* - * If there is no further error handling function, just - * print the error code, error string and exit. Otherwise - * call the handler function. + * If there is an error handling function, call it to report the error. + * Otherwise print the error source name. */ - if (!status_src[ssrc].report_ssed) - dev_err(jrdev, "%08x: %s: \n", status, status_src[ssrc].error); - else + if (status_src[ssrc].report_ssed) status_src[ssrc].report_ssed(jrdev, status, error); + else if (error) + dev_err(jrdev, "%d: %s\n", ssrc, error); + else + dev_err(jrdev, "%d: unknown error source\n", ssrc); } EXPORT_SYMBOL(caam_jr_strstatus); diff --git a/drivers/crypto/caam/jr.c b/drivers/crypto/caam/jr.c index 4d18e27ffa9e..9207c907a128 100644 --- a/drivers/crypto/caam/jr.c +++ b/drivers/crypto/caam/jr.c @@ -181,8 +181,6 @@ static void caam_jr_dequeue(unsigned long devarg) for (i = 0; CIRC_CNT(head, tail + i, JOBR_DEPTH) >= 1; i++) { sw_idx = (tail + i) & (JOBR_DEPTH - 1); - smp_read_barrier_depends(); - if (jrp->outring[hw_idx].desc == jrp->entinfo[sw_idx].desc_addr_dma) break; /* found */ @@ -218,7 +216,6 @@ static void caam_jr_dequeue(unsigned long devarg) if (sw_idx == tail) { do { tail = (tail + 1) & (JOBR_DEPTH - 1); - smp_read_barrier_depends(); } while (CIRC_CNT(head, tail, JOBR_DEPTH) >= 1 && jrp->entinfo[tail].desc_addr_dma == 0); diff --git a/drivers/crypto/nx/nx-aes-cbc.c b/drivers/crypto/nx/nx-aes-cbc.c index cc00b52306ba..a066cc3450ae 100644 --- a/drivers/crypto/nx/nx-aes-cbc.c +++ b/drivers/crypto/nx/nx-aes-cbc.c @@ -72,27 +72,19 @@ static int cbc_aes_nx_crypt(struct blkcipher_desc *desc, struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; unsigned long irq_flags; unsigned int processed = 0, to_process; - u32 max_sg_len; int rc; spin_lock_irqsave(&nx_ctx->lock, irq_flags); - max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg), - nx_ctx->ap->sglen); - if (enc) NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT; else NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT; do { - to_process = min_t(u64, nbytes - processed, - nx_ctx->ap->databytelen); - to_process = min_t(u64, to_process, - NX_PAGE_SIZE * (max_sg_len - 1)); - to_process = to_process & ~(AES_BLOCK_SIZE - 1); + to_process = nbytes - processed; - rc = nx_build_sg_lists(nx_ctx, desc, dst, src, to_process, + rc = nx_build_sg_lists(nx_ctx, desc, dst, src, &to_process, processed, csbcpb->cpb.aes_cbc.iv); if (rc) goto out; diff --git a/drivers/crypto/nx/nx-aes-ccm.c b/drivers/crypto/nx/nx-aes-ccm.c index 5ecd4c2414aa..67f80813a06f 100644 --- a/drivers/crypto/nx/nx-aes-ccm.c +++ b/drivers/crypto/nx/nx-aes-ccm.c @@ -181,6 +181,7 @@ static int generate_pat(u8 *iv, unsigned int iauth_len = 0; u8 tmp[16], *b1 = NULL, *b0 = NULL, *result = NULL; int rc; + unsigned int max_sg_len; /* zero the ctr value */ memset(iv + 15 - iv[0], 0, iv[0] + 1); @@ -248,10 +249,19 @@ static int generate_pat(u8 *iv, if (!req->assoclen) { return rc; } else if (req->assoclen <= 14) { - nx_insg = nx_build_sg_list(nx_insg, b1, 16, nx_ctx->ap->sglen); - nx_outsg = nx_build_sg_list(nx_outsg, tmp, 16, + unsigned int len = 16; + + nx_insg = nx_build_sg_list(nx_insg, b1, &len, nx_ctx->ap->sglen); + + if (len != 16) + return -EINVAL; + + nx_outsg = nx_build_sg_list(nx_outsg, tmp, &len, nx_ctx->ap->sglen); + if (len != 16) + return -EINVAL; + /* inlen should be negative, indicating to phyp that its a * pointer to an sg list */ nx_ctx->op.inlen = (nx_ctx->in_sg - nx_insg) * @@ -273,21 +283,24 @@ static int generate_pat(u8 *iv, atomic64_add(req->assoclen, &(nx_ctx->stats->aes_bytes)); } else { - u32 max_sg_len; unsigned int processed = 0, to_process; - /* page_limit: number of sg entries that fit on one page */ - max_sg_len = min_t(u32, - nx_driver.of.max_sg_len/sizeof(struct nx_sg), - nx_ctx->ap->sglen); - processed += iauth_len; + /* page_limit: number of sg entries that fit on one page */ + max_sg_len = min_t(u64, nx_ctx->ap->sglen, + nx_driver.of.max_sg_len/sizeof(struct nx_sg)); + max_sg_len = min_t(u64, max_sg_len, + nx_ctx->ap->databytelen/NX_PAGE_SIZE); + do { to_process = min_t(u32, req->assoclen - processed, nx_ctx->ap->databytelen); - to_process = min_t(u64, to_process, - NX_PAGE_SIZE * (max_sg_len - 1)); + + nx_insg = nx_walk_and_build(nx_ctx->in_sg, + nx_ctx->ap->sglen, + req->assoc, processed, + &to_process); if ((to_process + processed) < req->assoclen) { NX_CPB_FDM(nx_ctx->csbcpb_aead) |= @@ -297,10 +310,6 @@ static int generate_pat(u8 *iv, ~NX_FDM_INTERMEDIATE; } - nx_insg = nx_walk_and_build(nx_ctx->in_sg, - nx_ctx->ap->sglen, - req->assoc, processed, - to_process); nx_ctx->op_aead.inlen = (nx_ctx->in_sg - nx_insg) * sizeof(struct nx_sg); @@ -343,7 +352,6 @@ static int ccm_nx_decrypt(struct aead_request *req, struct nx_ccm_priv *priv = &nx_ctx->priv.ccm; unsigned long irq_flags; unsigned int processed = 0, to_process; - u32 max_sg_len; int rc = -1; spin_lock_irqsave(&nx_ctx->lock, irq_flags); @@ -360,19 +368,12 @@ static int ccm_nx_decrypt(struct aead_request *req, if (rc) goto out; - /* page_limit: number of sg entries that fit on one page */ - max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg), - nx_ctx->ap->sglen); - do { /* to_process: the AES_BLOCK_SIZE data chunk to process in this * update. This value is bound by sg list limits. */ - to_process = min_t(u64, nbytes - processed, - nx_ctx->ap->databytelen); - to_process = min_t(u64, to_process, - NX_PAGE_SIZE * (max_sg_len - 1)); + to_process = nbytes - processed; if ((to_process + processed) < nbytes) NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; @@ -382,7 +383,7 @@ static int ccm_nx_decrypt(struct aead_request *req, NX_CPB_FDM(nx_ctx->csbcpb) &= ~NX_FDM_ENDE_ENCRYPT; rc = nx_build_sg_lists(nx_ctx, desc, req->dst, req->src, - to_process, processed, + &to_process, processed, csbcpb->cpb.aes_ccm.iv_or_ctr); if (rc) goto out; @@ -427,7 +428,6 @@ static int ccm_nx_encrypt(struct aead_request *req, unsigned int authsize = crypto_aead_authsize(crypto_aead_reqtfm(req)); unsigned long irq_flags; unsigned int processed = 0, to_process; - u32 max_sg_len; int rc = -1; spin_lock_irqsave(&nx_ctx->lock, irq_flags); @@ -437,18 +437,11 @@ static int ccm_nx_encrypt(struct aead_request *req, if (rc) goto out; - /* page_limit: number of sg entries that fit on one page */ - max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg), - nx_ctx->ap->sglen); - do { /* to process: the AES_BLOCK_SIZE data chunk to process in this * update. This value is bound by sg list limits. */ - to_process = min_t(u64, nbytes - processed, - nx_ctx->ap->databytelen); - to_process = min_t(u64, to_process, - NX_PAGE_SIZE * (max_sg_len - 1)); + to_process = nbytes - processed; if ((to_process + processed) < nbytes) NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; @@ -458,7 +451,7 @@ static int ccm_nx_encrypt(struct aead_request *req, NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT; rc = nx_build_sg_lists(nx_ctx, desc, req->dst, req->src, - to_process, processed, + &to_process, processed, csbcpb->cpb.aes_ccm.iv_or_ctr); if (rc) goto out; diff --git a/drivers/crypto/nx/nx-aes-ctr.c b/drivers/crypto/nx/nx-aes-ctr.c index a37d009dc75c..2617cd4d54dd 100644 --- a/drivers/crypto/nx/nx-aes-ctr.c +++ b/drivers/crypto/nx/nx-aes-ctr.c @@ -90,22 +90,14 @@ static int ctr_aes_nx_crypt(struct blkcipher_desc *desc, struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; unsigned long irq_flags; unsigned int processed = 0, to_process; - u32 max_sg_len; int rc; spin_lock_irqsave(&nx_ctx->lock, irq_flags); - max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg), - nx_ctx->ap->sglen); - do { - to_process = min_t(u64, nbytes - processed, - nx_ctx->ap->databytelen); - to_process = min_t(u64, to_process, - NX_PAGE_SIZE * (max_sg_len - 1)); - to_process = to_process & ~(AES_BLOCK_SIZE - 1); + to_process = nbytes - processed; - rc = nx_build_sg_lists(nx_ctx, desc, dst, src, to_process, + rc = nx_build_sg_lists(nx_ctx, desc, dst, src, &to_process, processed, csbcpb->cpb.aes_ctr.iv); if (rc) goto out; @@ -143,6 +135,7 @@ static int ctr3686_aes_nx_crypt(struct blkcipher_desc *desc, memcpy(iv + CTR_RFC3686_NONCE_SIZE, desc->info, CTR_RFC3686_IV_SIZE); + iv[12] = iv[13] = iv[14] = 0; iv[15] = 1; desc->info = nx_ctx->priv.ctr.iv; diff --git a/drivers/crypto/nx/nx-aes-ecb.c b/drivers/crypto/nx/nx-aes-ecb.c index 85a8d23cf29d..cfdde8b8bc76 100644 --- a/drivers/crypto/nx/nx-aes-ecb.c +++ b/drivers/crypto/nx/nx-aes-ecb.c @@ -72,27 +72,19 @@ static int ecb_aes_nx_crypt(struct blkcipher_desc *desc, struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; unsigned long irq_flags; unsigned int processed = 0, to_process; - u32 max_sg_len; int rc; spin_lock_irqsave(&nx_ctx->lock, irq_flags); - max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg), - nx_ctx->ap->sglen); - if (enc) NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT; else NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT; do { - to_process = min_t(u64, nbytes - processed, - nx_ctx->ap->databytelen); - to_process = min_t(u64, to_process, - NX_PAGE_SIZE * (max_sg_len - 1)); - to_process = to_process & ~(AES_BLOCK_SIZE - 1); + to_process = nbytes - processed; - rc = nx_build_sg_lists(nx_ctx, desc, dst, src, to_process, + rc = nx_build_sg_lists(nx_ctx, desc, dst, src, &to_process, processed, NULL); if (rc) goto out; diff --git a/drivers/crypto/nx/nx-aes-gcm.c b/drivers/crypto/nx/nx-aes-gcm.c index 025d9a8d5b19..88c562434bc0 100644 --- a/drivers/crypto/nx/nx-aes-gcm.c +++ b/drivers/crypto/nx/nx-aes-gcm.c @@ -131,7 +131,7 @@ static int nx_gca(struct nx_crypto_ctx *nx_ctx, struct nx_sg *nx_sg = nx_ctx->in_sg; unsigned int nbytes = req->assoclen; unsigned int processed = 0, to_process; - u32 max_sg_len; + unsigned int max_sg_len; if (nbytes <= AES_BLOCK_SIZE) { scatterwalk_start(&walk, req->assoc); @@ -143,8 +143,10 @@ static int nx_gca(struct nx_crypto_ctx *nx_ctx, NX_CPB_FDM(csbcpb_aead) &= ~NX_FDM_CONTINUATION; /* page_limit: number of sg entries that fit on one page */ - max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg), + max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg), nx_ctx->ap->sglen); + max_sg_len = min_t(u64, max_sg_len, + nx_ctx->ap->databytelen/NX_PAGE_SIZE); do { /* @@ -156,13 +158,14 @@ static int nx_gca(struct nx_crypto_ctx *nx_ctx, to_process = min_t(u64, to_process, NX_PAGE_SIZE * (max_sg_len - 1)); + nx_sg = nx_walk_and_build(nx_ctx->in_sg, max_sg_len, + req->assoc, processed, &to_process); + if ((to_process + processed) < nbytes) NX_CPB_FDM(csbcpb_aead) |= NX_FDM_INTERMEDIATE; else NX_CPB_FDM(csbcpb_aead) &= ~NX_FDM_INTERMEDIATE; - nx_sg = nx_walk_and_build(nx_ctx->in_sg, nx_ctx->ap->sglen, - req->assoc, processed, to_process); nx_ctx->op_aead.inlen = (nx_ctx->in_sg - nx_sg) * sizeof(struct nx_sg); @@ -195,7 +198,7 @@ static int gmac(struct aead_request *req, struct blkcipher_desc *desc) struct nx_sg *nx_sg; unsigned int nbytes = req->assoclen; unsigned int processed = 0, to_process; - u32 max_sg_len; + unsigned int max_sg_len; /* Set GMAC mode */ csbcpb->cpb.hdr.mode = NX_MODE_AES_GMAC; @@ -203,8 +206,10 @@ static int gmac(struct aead_request *req, struct blkcipher_desc *desc) NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION; /* page_limit: number of sg entries that fit on one page */ - max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg), + max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg), nx_ctx->ap->sglen); + max_sg_len = min_t(u64, max_sg_len, + nx_ctx->ap->databytelen/NX_PAGE_SIZE); /* Copy IV */ memcpy(csbcpb->cpb.aes_gcm.iv_or_cnt, desc->info, AES_BLOCK_SIZE); @@ -219,13 +224,14 @@ static int gmac(struct aead_request *req, struct blkcipher_desc *desc) to_process = min_t(u64, to_process, NX_PAGE_SIZE * (max_sg_len - 1)); + nx_sg = nx_walk_and_build(nx_ctx->in_sg, max_sg_len, + req->assoc, processed, &to_process); + if ((to_process + processed) < nbytes) NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; else NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; - nx_sg = nx_walk_and_build(nx_ctx->in_sg, nx_ctx->ap->sglen, - req->assoc, processed, to_process); nx_ctx->op.inlen = (nx_ctx->in_sg - nx_sg) * sizeof(struct nx_sg); @@ -264,6 +270,7 @@ static int gcm_empty(struct aead_request *req, struct blkcipher_desc *desc, struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; char out[AES_BLOCK_SIZE]; struct nx_sg *in_sg, *out_sg; + int len; /* For scenarios where the input message is zero length, AES CTR mode * may be used. Set the source data to be a single block (16B) of all @@ -279,11 +286,22 @@ static int gcm_empty(struct aead_request *req, struct blkcipher_desc *desc, else NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT; + len = AES_BLOCK_SIZE; + /* Encrypt the counter/IV */ in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) desc->info, - AES_BLOCK_SIZE, nx_ctx->ap->sglen); - out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) out, sizeof(out), + &len, nx_ctx->ap->sglen); + + if (len != AES_BLOCK_SIZE) + return -EINVAL; + + len = sizeof(out); + out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) out, &len, nx_ctx->ap->sglen); + + if (len != sizeof(out)) + return -EINVAL; + nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); @@ -317,7 +335,6 @@ static int gcm_aes_nx_crypt(struct aead_request *req, int enc) unsigned int nbytes = req->cryptlen; unsigned int processed = 0, to_process; unsigned long irq_flags; - u32 max_sg_len; int rc = -EINVAL; spin_lock_irqsave(&nx_ctx->lock, irq_flags); @@ -354,33 +371,24 @@ static int gcm_aes_nx_crypt(struct aead_request *req, int enc) nbytes -= crypto_aead_authsize(crypto_aead_reqtfm(req)); } - /* page_limit: number of sg entries that fit on one page */ - max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg), - nx_ctx->ap->sglen); - do { - /* - * to_process: the data chunk to process in this update. - * This value is bound by sg list limits. - */ - to_process = min_t(u64, nbytes - processed, - nx_ctx->ap->databytelen); - to_process = min_t(u64, to_process, - NX_PAGE_SIZE * (max_sg_len - 1)); - - if ((to_process + processed) < nbytes) - NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; - else - NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; + to_process = nbytes - processed; csbcpb->cpb.aes_gcm.bit_length_data = nbytes * 8; desc.tfm = (struct crypto_blkcipher *) req->base.tfm; rc = nx_build_sg_lists(nx_ctx, &desc, req->dst, - req->src, to_process, processed, + req->src, &to_process, processed, csbcpb->cpb.aes_gcm.iv_or_cnt); + if (rc) goto out; + if ((to_process + processed) < nbytes) + NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; + else + NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; + + rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP); if (rc) diff --git a/drivers/crypto/nx/nx-aes-xcbc.c b/drivers/crypto/nx/nx-aes-xcbc.c index 03c4bf57d066..8c2faffab4a3 100644 --- a/drivers/crypto/nx/nx-aes-xcbc.c +++ b/drivers/crypto/nx/nx-aes-xcbc.c @@ -75,6 +75,7 @@ static int nx_xcbc_empty(struct shash_desc *desc, u8 *out) u8 keys[2][AES_BLOCK_SIZE]; u8 key[32]; int rc = 0; + int len; /* Change to ECB mode */ csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB; @@ -86,11 +87,20 @@ static int nx_xcbc_empty(struct shash_desc *desc, u8 *out) memset(keys[0], 0x01, sizeof(keys[0])); memset(keys[1], 0x03, sizeof(keys[1])); + len = sizeof(keys); /* Generate K1 and K3 encrypting the patterns */ - in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, sizeof(keys), + in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, &len, nx_ctx->ap->sglen); - out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, sizeof(keys), + + if (len != sizeof(keys)) + return -EINVAL; + + out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, &len, nx_ctx->ap->sglen); + + if (len != sizeof(keys)) + return -EINVAL; + nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); @@ -103,12 +113,23 @@ static int nx_xcbc_empty(struct shash_desc *desc, u8 *out) /* XOr K3 with the padding for a 0 length message */ keys[1][0] ^= 0x80; + len = sizeof(keys[1]); + /* Encrypt the final result */ memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE); - in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], sizeof(keys[1]), + in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], &len, nx_ctx->ap->sglen); - out_sg = nx_build_sg_list(nx_ctx->out_sg, out, AES_BLOCK_SIZE, + + if (len != sizeof(keys[1])) + return -EINVAL; + + len = AES_BLOCK_SIZE; + out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len, nx_ctx->ap->sglen); + + if (len != AES_BLOCK_SIZE) + return -EINVAL; + nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); @@ -133,6 +154,7 @@ static int nx_xcbc_init(struct shash_desc *desc) struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; struct nx_sg *out_sg; + int len; nx_ctx_init(nx_ctx, HCOP_FC_AES); @@ -144,8 +166,13 @@ static int nx_xcbc_init(struct shash_desc *desc) memcpy(csbcpb->cpb.aes_xcbc.key, nx_ctx->priv.xcbc.key, AES_BLOCK_SIZE); memset(nx_ctx->priv.xcbc.key, 0, sizeof *nx_ctx->priv.xcbc.key); + len = AES_BLOCK_SIZE; out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state, - AES_BLOCK_SIZE, nx_ctx->ap->sglen); + &len, nx_ctx->ap->sglen); + + if (len != AES_BLOCK_SIZE) + return -EINVAL; + nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); return 0; @@ -159,10 +186,11 @@ static int nx_xcbc_update(struct shash_desc *desc, struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; struct nx_sg *in_sg; - u32 to_process, leftover, total; - u32 max_sg_len; + u32 to_process = 0, leftover, total; + unsigned int max_sg_len; unsigned long irq_flags; int rc = 0; + int data_len; spin_lock_irqsave(&nx_ctx->lock, irq_flags); @@ -180,17 +208,15 @@ static int nx_xcbc_update(struct shash_desc *desc, } in_sg = nx_ctx->in_sg; - max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg), + max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg), nx_ctx->ap->sglen); + max_sg_len = min_t(u64, max_sg_len, + nx_ctx->ap->databytelen/NX_PAGE_SIZE); do { - - /* to_process: the AES_BLOCK_SIZE data chunk to process in this - * update */ - to_process = min_t(u64, total, nx_ctx->ap->databytelen); - to_process = min_t(u64, to_process, - NX_PAGE_SIZE * (max_sg_len - 1)); + to_process = total - to_process; to_process = to_process & ~(AES_BLOCK_SIZE - 1); + leftover = total - to_process; /* the hardware will not accept a 0 byte operation for this @@ -204,15 +230,24 @@ static int nx_xcbc_update(struct shash_desc *desc, } if (sctx->count) { + data_len = sctx->count; in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) sctx->buffer, - sctx->count, + &data_len, max_sg_len); + if (data_len != sctx->count) + return -EINVAL; } + + data_len = to_process - sctx->count; in_sg = nx_build_sg_list(in_sg, (u8 *) data, - to_process - sctx->count, + &data_len, max_sg_len); + + if (data_len != to_process - sctx->count) + return -EINVAL; + nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); @@ -263,6 +298,7 @@ static int nx_xcbc_final(struct shash_desc *desc, u8 *out) struct nx_sg *in_sg, *out_sg; unsigned long irq_flags; int rc = 0; + int len; spin_lock_irqsave(&nx_ctx->lock, irq_flags); @@ -285,11 +321,20 @@ static int nx_xcbc_final(struct shash_desc *desc, u8 *out) * this is not an intermediate operation */ NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; + len = sctx->count; in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer, - sctx->count, nx_ctx->ap->sglen); - out_sg = nx_build_sg_list(nx_ctx->out_sg, out, AES_BLOCK_SIZE, + &len, nx_ctx->ap->sglen); + + if (len != sctx->count) + return -EINVAL; + + len = AES_BLOCK_SIZE; + out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len, nx_ctx->ap->sglen); + if (len != AES_BLOCK_SIZE) + return -EINVAL; + nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); diff --git a/drivers/crypto/nx/nx-sha256.c b/drivers/crypto/nx/nx-sha256.c index da0b24a7633f..23621da624c3 100644 --- a/drivers/crypto/nx/nx-sha256.c +++ b/drivers/crypto/nx/nx-sha256.c @@ -23,6 +23,7 @@ #include <crypto/sha.h> #include <linux/module.h> #include <asm/vio.h> +#include <asm/byteorder.h> #include "nx_csbcpb.h" #include "nx.h" @@ -32,7 +33,8 @@ static int nx_sha256_init(struct shash_desc *desc) { struct sha256_state *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); - struct nx_sg *out_sg; + int len; + int rc; nx_ctx_init(nx_ctx, HCOP_FC_SHA); @@ -41,10 +43,28 @@ static int nx_sha256_init(struct shash_desc *desc) nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256]; NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256); - out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state, - SHA256_DIGEST_SIZE, nx_ctx->ap->sglen); - nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); + len = SHA256_DIGEST_SIZE; + rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->out_sg, + &nx_ctx->op.outlen, + &len, + (u8 *) sctx->state, + NX_DS_SHA256); + + if (rc) + goto out; + + sctx->state[0] = __cpu_to_be32(SHA256_H0); + sctx->state[1] = __cpu_to_be32(SHA256_H1); + sctx->state[2] = __cpu_to_be32(SHA256_H2); + sctx->state[3] = __cpu_to_be32(SHA256_H3); + sctx->state[4] = __cpu_to_be32(SHA256_H4); + sctx->state[5] = __cpu_to_be32(SHA256_H5); + sctx->state[6] = __cpu_to_be32(SHA256_H6); + sctx->state[7] = __cpu_to_be32(SHA256_H7); + sctx->count = 0; + +out: return 0; } @@ -54,11 +74,11 @@ static int nx_sha256_update(struct shash_desc *desc, const u8 *data, struct sha256_state *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; - struct nx_sg *in_sg; - u64 to_process, leftover, total; - u32 max_sg_len; + u64 to_process = 0, leftover, total; unsigned long irq_flags; int rc = 0; + int data_len; + u64 buf_len = (sctx->count % SHA256_BLOCK_SIZE); spin_lock_irqsave(&nx_ctx->lock, irq_flags); @@ -66,16 +86,16 @@ static int nx_sha256_update(struct shash_desc *desc, const u8 *data, * 1: < SHA256_BLOCK_SIZE: copy into state, return 0 * 2: >= SHA256_BLOCK_SIZE: process X blocks, copy in leftover */ - total = sctx->count + len; + total = (sctx->count % SHA256_BLOCK_SIZE) + len; if (total < SHA256_BLOCK_SIZE) { - memcpy(sctx->buf + sctx->count, data, len); + memcpy(sctx->buf + buf_len, data, len); sctx->count += len; goto out; } - in_sg = nx_ctx->in_sg; - max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg), - nx_ctx->ap->sglen); + memcpy(csbcpb->cpb.sha256.message_digest, sctx->state, SHA256_DIGEST_SIZE); + NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; + NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; do { /* @@ -83,34 +103,42 @@ static int nx_sha256_update(struct shash_desc *desc, const u8 *data, * this update. This value is also restricted by the sg list * limits. */ - to_process = min_t(u64, total, nx_ctx->ap->databytelen); - to_process = min_t(u64, to_process, - NX_PAGE_SIZE * (max_sg_len - 1)); + to_process = total - to_process; to_process = to_process & ~(SHA256_BLOCK_SIZE - 1); - leftover = total - to_process; - if (sctx->count) { - in_sg = nx_build_sg_list(nx_ctx->in_sg, - (u8 *) sctx->buf, - sctx->count, max_sg_len); + if (buf_len) { + data_len = buf_len; + rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->in_sg, + &nx_ctx->op.inlen, + &data_len, + (u8 *) sctx->buf, + NX_DS_SHA256); + + if (rc || data_len != buf_len) + goto out; } - in_sg = nx_build_sg_list(in_sg, (u8 *) data, - to_process - sctx->count, - max_sg_len); - nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * - sizeof(struct nx_sg); - - if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { - /* - * we've hit the nx chip previously and we're updating - * again, so copy over the partial digest. - */ - memcpy(csbcpb->cpb.sha256.input_partial_digest, + + data_len = to_process - buf_len; + rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->in_sg, + &nx_ctx->op.inlen, + &data_len, + (u8 *) data, + NX_DS_SHA256); + + if (rc) + goto out; + + to_process = (data_len + buf_len); + leftover = total - to_process; + + /* + * we've hit the nx chip previously and we're updating + * again, so copy over the partial digest. + */ + memcpy(csbcpb->cpb.sha256.input_partial_digest, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); - } - NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) { rc = -EINVAL; goto out; @@ -122,22 +150,19 @@ static int nx_sha256_update(struct shash_desc *desc, const u8 *data, goto out; atomic_inc(&(nx_ctx->stats->sha256_ops)); - csbcpb->cpb.sha256.message_bit_length += (u64) - (csbcpb->cpb.sha256.spbc * 8); - - /* everything after the first update is continuation */ - NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; total -= to_process; - data += to_process - sctx->count; - sctx->count = 0; - in_sg = nx_ctx->in_sg; + data += to_process - buf_len; + buf_len = 0; + } while (leftover >= SHA256_BLOCK_SIZE); /* copy the leftover back into the state struct */ if (leftover) memcpy(sctx->buf, data, leftover); - sctx->count = leftover; + + sctx->count += len; + memcpy(sctx->state, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); out: spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); return rc; @@ -148,34 +173,46 @@ static int nx_sha256_final(struct shash_desc *desc, u8 *out) struct sha256_state *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; - struct nx_sg *in_sg, *out_sg; - u32 max_sg_len; unsigned long irq_flags; int rc; + int len; spin_lock_irqsave(&nx_ctx->lock, irq_flags); - max_sg_len = min_t(u32, nx_driver.of.max_sg_len, nx_ctx->ap->sglen); - - if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { + /* final is represented by continuing the operation and indicating that + * this is not an intermediate operation */ + if (sctx->count >= SHA256_BLOCK_SIZE) { /* we've hit the nx chip previously, now we're finalizing, * so copy over the partial digest */ - memcpy(csbcpb->cpb.sha256.input_partial_digest, - csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); + memcpy(csbcpb->cpb.sha256.input_partial_digest, sctx->state, SHA256_DIGEST_SIZE); + NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; + NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; + } else { + NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; + NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION; } - /* final is represented by continuing the operation and indicating that - * this is not an intermediate operation */ - NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; + csbcpb->cpb.sha256.message_bit_length = (u64) (sctx->count * 8); - csbcpb->cpb.sha256.message_bit_length += (u64)(sctx->count * 8); + len = sctx->count & (SHA256_BLOCK_SIZE - 1); + rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->in_sg, + &nx_ctx->op.inlen, + &len, + (u8 *) sctx->buf, + NX_DS_SHA256); - in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buf, - sctx->count, max_sg_len); - out_sg = nx_build_sg_list(nx_ctx->out_sg, out, SHA256_DIGEST_SIZE, - max_sg_len); - nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); - nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); + if (rc || len != (sctx->count & (SHA256_BLOCK_SIZE - 1))) + goto out; + + len = SHA256_DIGEST_SIZE; + rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->out_sg, + &nx_ctx->op.outlen, + &len, + out, + NX_DS_SHA256); + + if (rc || len != SHA256_DIGEST_SIZE) + goto out; if (!nx_ctx->op.outlen) { rc = -EINVAL; @@ -189,8 +226,7 @@ static int nx_sha256_final(struct shash_desc *desc, u8 *out) atomic_inc(&(nx_ctx->stats->sha256_ops)); - atomic64_add(csbcpb->cpb.sha256.message_bit_length / 8, - &(nx_ctx->stats->sha256_bytes)); + atomic64_add(sctx->count, &(nx_ctx->stats->sha256_bytes)); memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); out: spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); @@ -200,62 +236,18 @@ out: static int nx_sha256_export(struct shash_desc *desc, void *out) { struct sha256_state *sctx = shash_desc_ctx(desc); - struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); - struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; - struct sha256_state *octx = out; - unsigned long irq_flags; - - spin_lock_irqsave(&nx_ctx->lock, irq_flags); - octx->count = sctx->count + - (csbcpb->cpb.sha256.message_bit_length / 8); - memcpy(octx->buf, sctx->buf, sizeof(octx->buf)); - - /* if no data has been processed yet, we need to export SHA256's - * initial data, in case this context gets imported into a software - * context */ - if (csbcpb->cpb.sha256.message_bit_length) - memcpy(octx->state, csbcpb->cpb.sha256.message_digest, - SHA256_DIGEST_SIZE); - else { - octx->state[0] = SHA256_H0; - octx->state[1] = SHA256_H1; - octx->state[2] = SHA256_H2; - octx->state[3] = SHA256_H3; - octx->state[4] = SHA256_H4; - octx->state[5] = SHA256_H5; - octx->state[6] = SHA256_H6; - octx->state[7] = SHA256_H7; - } + memcpy(out, sctx, sizeof(*sctx)); - spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); return 0; } static int nx_sha256_import(struct shash_desc *desc, const void *in) { struct sha256_state *sctx = shash_desc_ctx(desc); - struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); - struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; - const struct sha256_state *ictx = in; - unsigned long irq_flags; - - spin_lock_irqsave(&nx_ctx->lock, irq_flags); - memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf)); + memcpy(sctx, in, sizeof(*sctx)); - sctx->count = ictx->count & 0x3f; - csbcpb->cpb.sha256.message_bit_length = (ictx->count & ~0x3f) * 8; - - if (csbcpb->cpb.sha256.message_bit_length) { - memcpy(csbcpb->cpb.sha256.message_digest, ictx->state, - SHA256_DIGEST_SIZE); - - NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; - NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; - } - - spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); return 0; } diff --git a/drivers/crypto/nx/nx-sha512.c b/drivers/crypto/nx/nx-sha512.c index 4ae5b0f221d5..b3adf1022673 100644 --- a/drivers/crypto/nx/nx-sha512.c +++ b/drivers/crypto/nx/nx-sha512.c @@ -32,7 +32,8 @@ static int nx_sha512_init(struct shash_desc *desc) { struct sha512_state *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); - struct nx_sg *out_sg; + int len; + int rc; nx_ctx_init(nx_ctx, HCOP_FC_SHA); @@ -41,10 +42,28 @@ static int nx_sha512_init(struct shash_desc *desc) nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA512]; NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA512); - out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state, - SHA512_DIGEST_SIZE, nx_ctx->ap->sglen); - nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); + len = SHA512_DIGEST_SIZE; + rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->out_sg, + &nx_ctx->op.outlen, + &len, + (u8 *)sctx->state, + NX_DS_SHA512); + + if (rc || len != SHA512_DIGEST_SIZE) + goto out; + + sctx->state[0] = __cpu_to_be64(SHA512_H0); + sctx->state[1] = __cpu_to_be64(SHA512_H1); + sctx->state[2] = __cpu_to_be64(SHA512_H2); + sctx->state[3] = __cpu_to_be64(SHA512_H3); + sctx->state[4] = __cpu_to_be64(SHA512_H4); + sctx->state[5] = __cpu_to_be64(SHA512_H5); + sctx->state[6] = __cpu_to_be64(SHA512_H6); + sctx->state[7] = __cpu_to_be64(SHA512_H7); + sctx->count[0] = 0; + +out: return 0; } @@ -54,11 +73,11 @@ static int nx_sha512_update(struct shash_desc *desc, const u8 *data, struct sha512_state *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; - struct nx_sg *in_sg; - u64 to_process, leftover, total, spbc_bits; - u32 max_sg_len; + u64 to_process, leftover = 0, total; unsigned long irq_flags; int rc = 0; + int data_len; + u64 buf_len = (sctx->count[0] % SHA512_BLOCK_SIZE); spin_lock_irqsave(&nx_ctx->lock, irq_flags); @@ -66,16 +85,16 @@ static int nx_sha512_update(struct shash_desc *desc, const u8 *data, * 1: < SHA512_BLOCK_SIZE: copy into state, return 0 * 2: >= SHA512_BLOCK_SIZE: process X blocks, copy in leftover */ - total = sctx->count[0] + len; + total = (sctx->count[0] % SHA512_BLOCK_SIZE) + len; if (total < SHA512_BLOCK_SIZE) { - memcpy(sctx->buf + sctx->count[0], data, len); + memcpy(sctx->buf + buf_len, data, len); sctx->count[0] += len; goto out; } - in_sg = nx_ctx->in_sg; - max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg), - nx_ctx->ap->sglen); + memcpy(csbcpb->cpb.sha512.message_digest, sctx->state, SHA512_DIGEST_SIZE); + NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; + NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; do { /* @@ -83,34 +102,43 @@ static int nx_sha512_update(struct shash_desc *desc, const u8 *data, * this update. This value is also restricted by the sg list * limits. */ - to_process = min_t(u64, total, nx_ctx->ap->databytelen); - to_process = min_t(u64, to_process, - NX_PAGE_SIZE * (max_sg_len - 1)); + to_process = total - leftover; to_process = to_process & ~(SHA512_BLOCK_SIZE - 1); leftover = total - to_process; - if (sctx->count[0]) { - in_sg = nx_build_sg_list(nx_ctx->in_sg, - (u8 *) sctx->buf, - sctx->count[0], max_sg_len); + if (buf_len) { + data_len = buf_len; + rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->in_sg, + &nx_ctx->op.inlen, + &data_len, + (u8 *) sctx->buf, + NX_DS_SHA512); + + if (rc || data_len != buf_len) + goto out; } - in_sg = nx_build_sg_list(in_sg, (u8 *) data, - to_process - sctx->count[0], - max_sg_len); - nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * - sizeof(struct nx_sg); - - if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { - /* - * we've hit the nx chip previously and we're updating - * again, so copy over the partial digest. - */ - memcpy(csbcpb->cpb.sha512.input_partial_digest, + + data_len = to_process - buf_len; + rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->in_sg, + &nx_ctx->op.inlen, + &data_len, + (u8 *) data, + NX_DS_SHA512); + + if (rc || data_len != (to_process - buf_len)) + goto out; + + to_process = (data_len + buf_len); + leftover = total - to_process; + + /* + * we've hit the nx chip previously and we're updating + * again, so copy over the partial digest. + */ + memcpy(csbcpb->cpb.sha512.input_partial_digest, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE); - } - NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) { rc = -EINVAL; goto out; @@ -122,24 +150,18 @@ static int nx_sha512_update(struct shash_desc *desc, const u8 *data, goto out; atomic_inc(&(nx_ctx->stats->sha512_ops)); - spbc_bits = csbcpb->cpb.sha512.spbc * 8; - csbcpb->cpb.sha512.message_bit_length_lo += spbc_bits; - if (csbcpb->cpb.sha512.message_bit_length_lo < spbc_bits) - csbcpb->cpb.sha512.message_bit_length_hi++; - - /* everything after the first update is continuation */ - NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; total -= to_process; - data += to_process - sctx->count[0]; - sctx->count[0] = 0; - in_sg = nx_ctx->in_sg; + data += to_process - buf_len; + buf_len = 0; + } while (leftover >= SHA512_BLOCK_SIZE); /* copy the leftover back into the state struct */ if (leftover) memcpy(sctx->buf, data, leftover); - sctx->count[0] = leftover; + sctx->count[0] += len; + memcpy(sctx->state, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE); out: spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); return rc; @@ -150,39 +172,52 @@ static int nx_sha512_final(struct shash_desc *desc, u8 *out) struct sha512_state *sctx = shash_desc_ctx(desc); struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; - struct nx_sg *in_sg, *out_sg; - u32 max_sg_len; u64 count0; unsigned long irq_flags; int rc; + int len; spin_lock_irqsave(&nx_ctx->lock, irq_flags); - max_sg_len = min_t(u32, nx_driver.of.max_sg_len, nx_ctx->ap->sglen); - - if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { + /* final is represented by continuing the operation and indicating that + * this is not an intermediate operation */ + if (sctx->count[0] >= SHA512_BLOCK_SIZE) { /* we've hit the nx chip previously, now we're finalizing, * so copy over the partial digest */ - memcpy(csbcpb->cpb.sha512.input_partial_digest, - csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE); + memcpy(csbcpb->cpb.sha512.input_partial_digest, sctx->state, + SHA512_DIGEST_SIZE); + NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; + NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; + } else { + NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; + NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION; } - /* final is represented by continuing the operation and indicating that - * this is not an intermediate operation */ NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; count0 = sctx->count[0] * 8; - csbcpb->cpb.sha512.message_bit_length_lo += count0; - if (csbcpb->cpb.sha512.message_bit_length_lo < count0) - csbcpb->cpb.sha512.message_bit_length_hi++; + csbcpb->cpb.sha512.message_bit_length_lo = count0; - in_sg = nx_build_sg_list(nx_ctx->in_sg, sctx->buf, sctx->count[0], - max_sg_len); - out_sg = nx_build_sg_list(nx_ctx->out_sg, out, SHA512_DIGEST_SIZE, - max_sg_len); - nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); - nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); + len = sctx->count[0] & (SHA512_BLOCK_SIZE - 1); + rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->in_sg, + &nx_ctx->op.inlen, + &len, + (u8 *)sctx->buf, + NX_DS_SHA512); + + if (rc || len != (sctx->count[0] & (SHA512_BLOCK_SIZE - 1))) + goto out; + + len = SHA512_DIGEST_SIZE; + rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->out_sg, + &nx_ctx->op.outlen, + &len, + out, + NX_DS_SHA512); + + if (rc) + goto out; if (!nx_ctx->op.outlen) { rc = -EINVAL; @@ -195,8 +230,7 @@ static int nx_sha512_final(struct shash_desc *desc, u8 *out) goto out; atomic_inc(&(nx_ctx->stats->sha512_ops)); - atomic64_add(csbcpb->cpb.sha512.message_bit_length_lo / 8, - &(nx_ctx->stats->sha512_bytes)); + atomic64_add(sctx->count[0], &(nx_ctx->stats->sha512_bytes)); memcpy(out, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE); out: @@ -207,74 +241,18 @@ out: static int nx_sha512_export(struct shash_desc *desc, void *out) { struct sha512_state *sctx = shash_desc_ctx(desc); - struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); - struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; - struct sha512_state *octx = out; - unsigned long irq_flags; - spin_lock_irqsave(&nx_ctx->lock, irq_flags); + memcpy(out, sctx, sizeof(*sctx)); - /* move message_bit_length (128 bits) into count and convert its value - * to bytes */ - octx->count[0] = csbcpb->cpb.sha512.message_bit_length_lo >> 3 | - ((csbcpb->cpb.sha512.message_bit_length_hi & 7) << 61); - octx->count[1] = csbcpb->cpb.sha512.message_bit_length_hi >> 3; - - octx->count[0] += sctx->count[0]; - if (octx->count[0] < sctx->count[0]) - octx->count[1]++; - - memcpy(octx->buf, sctx->buf, sizeof(octx->buf)); - - /* if no data has been processed yet, we need to export SHA512's - * initial data, in case this context gets imported into a software - * context */ - if (csbcpb->cpb.sha512.message_bit_length_hi || - csbcpb->cpb.sha512.message_bit_length_lo) - memcpy(octx->state, csbcpb->cpb.sha512.message_digest, - SHA512_DIGEST_SIZE); - else { - octx->state[0] = SHA512_H0; - octx->state[1] = SHA512_H1; - octx->state[2] = SHA512_H2; - octx->state[3] = SHA512_H3; - octx->state[4] = SHA512_H4; - octx->state[5] = SHA512_H5; - octx->state[6] = SHA512_H6; - octx->state[7] = SHA512_H7; - } - - spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); return 0; } static int nx_sha512_import(struct shash_desc *desc, const void *in) { struct sha512_state *sctx = shash_desc_ctx(desc); - struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); - struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; - const struct sha512_state *ictx = in; - unsigned long irq_flags; - - spin_lock_irqsave(&nx_ctx->lock, irq_flags); - - memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf)); - sctx->count[0] = ictx->count[0] & 0x3f; - csbcpb->cpb.sha512.message_bit_length_lo = (ictx->count[0] & ~0x3f) - << 3; - csbcpb->cpb.sha512.message_bit_length_hi = ictx->count[1] << 3 | - ictx->count[0] >> 61; - - if (csbcpb->cpb.sha512.message_bit_length_hi || - csbcpb->cpb.sha512.message_bit_length_lo) { - memcpy(csbcpb->cpb.sha512.message_digest, ictx->state, - SHA512_DIGEST_SIZE); - NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; - NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; - } + memcpy(sctx, in, sizeof(*sctx)); - spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); return 0; } diff --git a/drivers/crypto/nx/nx.c b/drivers/crypto/nx/nx.c index 5533fe31c90d..a392465d3e3f 100644 --- a/drivers/crypto/nx/nx.c +++ b/drivers/crypto/nx/nx.c @@ -90,7 +90,7 @@ int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx, */ struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head, u8 *start_addr, - unsigned int len, + unsigned int *len, u32 sgmax) { unsigned int sg_len = 0; @@ -106,7 +106,7 @@ struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head, else sg_addr = __pa(sg_addr); - end_addr = sg_addr + len; + end_addr = sg_addr + *len; /* each iteration will write one struct nx_sg element and add the * length of data described by that element to sg_len. Once @len bytes @@ -118,7 +118,7 @@ struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head, * Also when using vmalloc'ed data, every time that a system page * boundary is crossed the physical address needs to be re-calculated. */ - for (sg = sg_head; sg_len < len; sg++) { + for (sg = sg_head; sg_len < *len; sg++) { u64 next_page; sg->addr = sg_addr; @@ -133,15 +133,17 @@ struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head, is_vmalloc_addr(start_addr + sg_len)) { sg_addr = page_to_phys(vmalloc_to_page( start_addr + sg_len)); - end_addr = sg_addr + len - sg_len; + end_addr = sg_addr + *len - sg_len; } if ((sg - sg_head) == sgmax) { pr_err("nx: scatter/gather list overflow, pid: %d\n", current->pid); - return NULL; + sg++; + break; } } + *len = sg_len; /* return the moved sg_head pointer */ return sg; @@ -160,11 +162,11 @@ struct nx_sg *nx_walk_and_build(struct nx_sg *nx_dst, unsigned int sglen, struct scatterlist *sg_src, unsigned int start, - unsigned int src_len) + unsigned int *src_len) { struct scatter_walk walk; struct nx_sg *nx_sg = nx_dst; - unsigned int n, offset = 0, len = src_len; + unsigned int n, offset = 0, len = *src_len; char *dst; /* we need to fast forward through @start bytes first */ @@ -182,27 +184,101 @@ struct nx_sg *nx_walk_and_build(struct nx_sg *nx_dst, * element we're currently looking at */ scatterwalk_advance(&walk, start - offset); - while (len && nx_sg) { + while (len && (nx_sg - nx_dst) < sglen) { n = scatterwalk_clamp(&walk, len); if (!n) { - scatterwalk_start(&walk, sg_next(walk.sg)); + /* In cases where we have scatterlist chain scatterwalk_sg_next + * handles with it properly */ + scatterwalk_start(&walk, scatterwalk_sg_next(walk.sg)); n = scatterwalk_clamp(&walk, len); } dst = scatterwalk_map(&walk); - nx_sg = nx_build_sg_list(nx_sg, dst, n, sglen); + nx_sg = nx_build_sg_list(nx_sg, dst, &n, sglen - (nx_sg - nx_dst)); len -= n; scatterwalk_unmap(dst); scatterwalk_advance(&walk, n); scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len); } + /* update to_process */ + *src_len -= len; /* return the moved destination pointer */ return nx_sg; } /** + * trim_sg_list - ensures the bound in sg list. + * @sg: sg list head + * @end: sg lisg end + * @delta: is the amount we need to crop in order to bound the list. + * + */ +static long int trim_sg_list(struct nx_sg *sg, struct nx_sg *end, unsigned int delta) +{ + while (delta && end > sg) { + struct nx_sg *last = end - 1; + + if (last->len > delta) { + last->len -= delta; + delta = 0; + } else { + end--; + delta -= last->len; + } + } + return (sg - end) * sizeof(struct nx_sg); +} + +/** + * nx_sha_build_sg_list - walk and build sg list to sha modes + * using right bounds and limits. + * @nx_ctx: NX crypto context for the lists we're building + * @nx_sg: current sg list in or out list + * @op_len: current op_len to be used in order to build a sg list + * @nbytes: number or bytes to be processed + * @offset: buf offset + * @mode: SHA256 or SHA512 + */ +int nx_sha_build_sg_list(struct nx_crypto_ctx *nx_ctx, + struct nx_sg *nx_in_outsg, + s64 *op_len, + unsigned int *nbytes, + u8 *offset, + u32 mode) +{ + unsigned int delta = 0; + unsigned int total = *nbytes; + struct nx_sg *nx_insg = nx_in_outsg; + unsigned int max_sg_len; + + max_sg_len = min_t(u64, nx_ctx->ap->sglen, + nx_driver.of.max_sg_len/sizeof(struct nx_sg)); + max_sg_len = min_t(u64, max_sg_len, + nx_ctx->ap->databytelen/NX_PAGE_SIZE); + + *nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen); + nx_insg = nx_build_sg_list(nx_insg, offset, nbytes, max_sg_len); + + switch (mode) { + case NX_DS_SHA256: + if (*nbytes < total) + delta = *nbytes - (*nbytes & ~(SHA256_BLOCK_SIZE - 1)); + break; + case NX_DS_SHA512: + if (*nbytes < total) + delta = *nbytes - (*nbytes & ~(SHA512_BLOCK_SIZE - 1)); + break; + default: + return -EINVAL; + } + *op_len = trim_sg_list(nx_in_outsg, nx_insg, delta); + + return 0; +} + +/** * nx_build_sg_lists - walk the input scatterlists and build arrays of NX * scatterlists based on them. * @@ -223,26 +299,39 @@ int nx_build_sg_lists(struct nx_crypto_ctx *nx_ctx, struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, - unsigned int nbytes, + unsigned int *nbytes, unsigned int offset, u8 *iv) { + unsigned int delta = 0; + unsigned int total = *nbytes; struct nx_sg *nx_insg = nx_ctx->in_sg; struct nx_sg *nx_outsg = nx_ctx->out_sg; + unsigned int max_sg_len; + + max_sg_len = min_t(u64, nx_ctx->ap->sglen, + nx_driver.of.max_sg_len/sizeof(struct nx_sg)); + max_sg_len = min_t(u64, max_sg_len, + nx_ctx->ap->databytelen/NX_PAGE_SIZE); if (iv) memcpy(iv, desc->info, AES_BLOCK_SIZE); - nx_insg = nx_walk_and_build(nx_insg, nx_ctx->ap->sglen, src, - offset, nbytes); - nx_outsg = nx_walk_and_build(nx_outsg, nx_ctx->ap->sglen, dst, - offset, nbytes); + *nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen); + + nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst, + offset, nbytes); + nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src, + offset, nbytes); + + if (*nbytes < total) + delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1)); /* these lengths should be negative, which will indicate to phyp that * the input and output parameters are scatterlists, not linear * buffers */ - nx_ctx->op.inlen = (nx_ctx->in_sg - nx_insg) * sizeof(struct nx_sg); - nx_ctx->op.outlen = (nx_ctx->out_sg - nx_outsg) * sizeof(struct nx_sg); + nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta); + nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta); return 0; } @@ -540,10 +629,10 @@ static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode) /* we need an extra page for csbcpb_aead for these modes */ if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) - nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) + + nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) + sizeof(struct nx_csbcpb); else - nx_ctx->kmem_len = (3 * NX_PAGE_SIZE) + + nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) + sizeof(struct nx_csbcpb); nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL); diff --git a/drivers/crypto/nx/nx.h b/drivers/crypto/nx/nx.h index befda07ca1da..6c9ecaaead52 100644 --- a/drivers/crypto/nx/nx.h +++ b/drivers/crypto/nx/nx.h @@ -153,13 +153,15 @@ void nx_crypto_ctx_exit(struct crypto_tfm *tfm); void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function); int nx_hcall_sync(struct nx_crypto_ctx *ctx, struct vio_pfo_op *op, u32 may_sleep); -struct nx_sg *nx_build_sg_list(struct nx_sg *, u8 *, unsigned int, u32); +int nx_sha_build_sg_list(struct nx_crypto_ctx *, struct nx_sg *, + s64 *, unsigned int *, u8 *, u32); +struct nx_sg *nx_build_sg_list(struct nx_sg *, u8 *, unsigned int *, u32); int nx_build_sg_lists(struct nx_crypto_ctx *, struct blkcipher_desc *, - struct scatterlist *, struct scatterlist *, unsigned int, + struct scatterlist *, struct scatterlist *, unsigned int *, unsigned int, u8 *); struct nx_sg *nx_walk_and_build(struct nx_sg *, unsigned int, struct scatterlist *, unsigned int, - unsigned int); + unsigned int *); #ifdef CONFIG_DEBUG_FS #define NX_DEBUGFS_INIT(drv) nx_debugfs_init(drv) diff --git a/drivers/crypto/padlock-aes.c b/drivers/crypto/padlock-aes.c index 633ba945e153..c178ed8c3908 100644 --- a/drivers/crypto/padlock-aes.c +++ b/drivers/crypto/padlock-aes.c @@ -563,4 +563,4 @@ MODULE_DESCRIPTION("VIA PadLock AES algorithm support"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Michal Ludvig"); -MODULE_ALIAS("aes"); +MODULE_ALIAS_CRYPTO("aes"); diff --git a/drivers/crypto/padlock-sha.c b/drivers/crypto/padlock-sha.c index bace885634f2..95f7d27ce491 100644 --- a/drivers/crypto/padlock-sha.c +++ b/drivers/crypto/padlock-sha.c @@ -593,7 +593,7 @@ MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support."); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Michal Ludvig"); -MODULE_ALIAS("sha1-all"); -MODULE_ALIAS("sha256-all"); -MODULE_ALIAS("sha1-padlock"); -MODULE_ALIAS("sha256-padlock"); +MODULE_ALIAS_CRYPTO("sha1-all"); +MODULE_ALIAS_CRYPTO("sha256-all"); +MODULE_ALIAS_CRYPTO("sha1-padlock"); +MODULE_ALIAS_CRYPTO("sha256-padlock"); diff --git a/drivers/crypto/qat/qat_common/adf_accel_devices.h b/drivers/crypto/qat/qat_common/adf_accel_devices.h index fe7b3f06f6e6..2ed425664a16 100644 --- a/drivers/crypto/qat/qat_common/adf_accel_devices.h +++ b/drivers/crypto/qat/qat_common/adf_accel_devices.h @@ -56,8 +56,6 @@ #define PCI_VENDOR_ID_INTEL 0x8086 #define ADF_DH895XCC_DEVICE_NAME "dh895xcc" #define ADF_DH895XCC_PCI_DEVICE_ID 0x435 -#define ADF_DH895XCC_PMISC_BAR 1 -#define ADF_DH895XCC_ETR_BAR 2 #define ADF_PCI_MAX_BARS 3 #define ADF_DEVICE_NAME_LENGTH 32 #define ADF_ETR_MAX_RINGS_PER_BANK 16 diff --git a/drivers/crypto/qat/qat_common/adf_aer.c b/drivers/crypto/qat/qat_common/adf_aer.c index c29d4c3926bf..10ce4a2854ab 100644 --- a/drivers/crypto/qat/qat_common/adf_aer.c +++ b/drivers/crypto/qat/qat_common/adf_aer.c @@ -90,7 +90,7 @@ static void adf_dev_restore(struct adf_accel_dev *accel_dev) uint16_t ppdstat = 0, bridge_ctl = 0; int pending = 0; - pr_info("QAT: Reseting device qat_dev%d\n", accel_dev->accel_id); + pr_info("QAT: Resetting device qat_dev%d\n", accel_dev->accel_id); pci_read_config_word(pdev, PPDSTAT_OFFSET, &ppdstat); pending = ppdstat & PCI_EXP_DEVSTA_TRPND; if (pending) { diff --git a/drivers/crypto/qat/qat_common/adf_ctl_drv.c b/drivers/crypto/qat/qat_common/adf_ctl_drv.c index 244d73378f0e..7ee93f881db6 100644 --- a/drivers/crypto/qat/qat_common/adf_ctl_drv.c +++ b/drivers/crypto/qat/qat_common/adf_ctl_drv.c @@ -52,6 +52,7 @@ #include <linux/pci.h> #include <linux/cdev.h> #include <linux/uaccess.h> +#include <linux/crypto.h> #include "adf_accel_devices.h" #include "adf_common_drv.h" @@ -487,4 +488,4 @@ module_exit(adf_unregister_ctl_device_driver); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Intel"); MODULE_DESCRIPTION("Intel(R) QuickAssist Technology"); -MODULE_ALIAS("intel_qat"); +MODULE_ALIAS_CRYPTO("intel_qat"); diff --git a/drivers/crypto/qat/qat_common/adf_dev_mgr.c b/drivers/crypto/qat/qat_common/adf_dev_mgr.c index ae71555c0868..4a0a829d4500 100644 --- a/drivers/crypto/qat/qat_common/adf_dev_mgr.c +++ b/drivers/crypto/qat/qat_common/adf_dev_mgr.c @@ -129,12 +129,13 @@ struct adf_accel_dev *adf_devmgr_get_first(void) * Function returns acceleration device associated with the given pci device. * To be used by QAT device specific drivers. * - * Return: pinter to accel_dev or NULL if not found. + * Return: pointer to accel_dev or NULL if not found. */ struct adf_accel_dev *adf_devmgr_pci_to_accel_dev(struct pci_dev *pci_dev) { struct list_head *itr; + mutex_lock(&table_lock); list_for_each(itr, &accel_table) { struct adf_accel_dev *ptr = list_entry(itr, struct adf_accel_dev, list); @@ -144,6 +145,7 @@ struct adf_accel_dev *adf_devmgr_pci_to_accel_dev(struct pci_dev *pci_dev) return ptr; } } + mutex_unlock(&table_lock); return NULL; } EXPORT_SYMBOL_GPL(adf_devmgr_pci_to_accel_dev); @@ -152,6 +154,7 @@ struct adf_accel_dev *adf_devmgr_get_dev_by_id(uint32_t id) { struct list_head *itr; + mutex_lock(&table_lock); list_for_each(itr, &accel_table) { struct adf_accel_dev *ptr = list_entry(itr, struct adf_accel_dev, list); @@ -161,6 +164,7 @@ struct adf_accel_dev *adf_devmgr_get_dev_by_id(uint32_t id) return ptr; } } + mutex_unlock(&table_lock); return NULL; } diff --git a/drivers/crypto/qat/qat_common/adf_transport.c b/drivers/crypto/qat/qat_common/adf_transport.c index 9dd2cb72a4e8..7dd54aaee9fa 100644 --- a/drivers/crypto/qat/qat_common/adf_transport.c +++ b/drivers/crypto/qat/qat_common/adf_transport.c @@ -376,8 +376,9 @@ static inline int adf_get_cfg_int(struct adf_accel_dev *accel_dev, return 0; } -static void adf_enable_coalesc(struct adf_etr_bank_data *bank, - const char *section, uint32_t bank_num_in_accel) +static void adf_get_coalesc_timer(struct adf_etr_bank_data *bank, + const char *section, + uint32_t bank_num_in_accel) { if (adf_get_cfg_int(bank->accel_dev, section, ADF_ETRMGR_COALESCE_TIMER_FORMAT, @@ -396,7 +397,7 @@ static int adf_init_bank(struct adf_accel_dev *accel_dev, struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct adf_etr_ring_data *ring; struct adf_etr_ring_data *tx_ring; - uint32_t i, coalesc_enabled; + uint32_t i, coalesc_enabled = 0; memset(bank, 0, sizeof(*bank)); bank->bank_number = bank_num; @@ -407,10 +408,10 @@ static int adf_init_bank(struct adf_accel_dev *accel_dev, /* Enable IRQ coalescing always. This will allow to use * the optimised flag and coalesc register. * If it is disabled in the config file just use min time value */ - if (adf_get_cfg_int(accel_dev, "Accelerator0", - ADF_ETRMGR_COALESCING_ENABLED_FORMAT, - bank_num, &coalesc_enabled) && coalesc_enabled) - adf_enable_coalesc(bank, "Accelerator0", bank_num); + if ((adf_get_cfg_int(accel_dev, "Accelerator0", + ADF_ETRMGR_COALESCING_ENABLED_FORMAT, bank_num, + &coalesc_enabled) == 0) && coalesc_enabled) + adf_get_coalesc_timer(bank, "Accelerator0", bank_num); else bank->irq_coalesc_timer = ADF_COALESCING_MIN_TIME; diff --git a/drivers/crypto/qat/qat_common/adf_transport_access_macros.h b/drivers/crypto/qat/qat_common/adf_transport_access_macros.h index 91d88d676580..160c9a36c919 100644 --- a/drivers/crypto/qat/qat_common/adf_transport_access_macros.h +++ b/drivers/crypto/qat/qat_common/adf_transport_access_macros.h @@ -83,14 +83,14 @@ #define ADF_MAX_RING_SIZE ADF_RING_SIZE_4M #define ADF_DEFAULT_RING_SIZE ADF_RING_SIZE_16K -/* Valid internal msg size values internal */ +/* Valid internal msg size values */ #define ADF_MSG_SIZE_32 0x01 #define ADF_MSG_SIZE_64 0x02 #define ADF_MSG_SIZE_128 0x04 #define ADF_MIN_MSG_SIZE ADF_MSG_SIZE_32 #define ADF_MAX_MSG_SIZE ADF_MSG_SIZE_128 -/* Size to bytes conversion macros for ring and msg values */ +/* Size to bytes conversion macros for ring and msg size values */ #define ADF_MSG_SIZE_TO_BYTES(SIZE) (SIZE << 5) #define ADF_BYTES_TO_MSG_SIZE(SIZE) (SIZE >> 5) #define ADF_SIZE_TO_RING_SIZE_IN_BYTES(SIZE) ((1 << (SIZE - 1)) << 7) @@ -100,8 +100,11 @@ #define ADF_RING_SIZE_BYTES_MIN(SIZE) ((SIZE < ADF_RING_SIZE_4K) ? \ ADF_RING_SIZE_4K : SIZE) #define ADF_RING_SIZE_MODULO(SIZE) (SIZE + 0x6) +#define ADF_SIZE_TO_POW(SIZE) ((((SIZE & 0x4) >> 1) | ((SIZE & 0x4) >> 2) | \ + SIZE) & ~0x4) +/* Max outstanding requests */ #define ADF_MAX_INFLIGHTS(RING_SIZE, MSG_SIZE) \ - ((((1 << (RING_SIZE - 1)) << 4) >> MSG_SIZE) - 1) + ((((1 << (RING_SIZE - 1)) << 3) >> ADF_SIZE_TO_POW(MSG_SIZE)) - 1) #define BUILD_RING_CONFIG(size) \ ((ADF_RING_NEAR_WATERMARK_0 << ADF_RING_CONFIG_NEAR_FULL_WM) \ | (ADF_RING_NEAR_WATERMARK_0 << ADF_RING_CONFIG_NEAR_EMPTY_WM) \ diff --git a/drivers/crypto/qat/qat_common/qat_algs.c b/drivers/crypto/qat/qat_common/qat_algs.c index 9e9619cd4a79..19eea1c832ac 100644 --- a/drivers/crypto/qat/qat_common/qat_algs.c +++ b/drivers/crypto/qat/qat_common/qat_algs.c @@ -161,7 +161,7 @@ static int qat_alg_do_precomputes(struct icp_qat_hw_auth_algo_blk *hash, __be64 *hash512_state_out; int i, offset; - memset(auth_state.data, '\0', MAX_AUTH_STATE_SIZE + 64); + memzero_explicit(auth_state.data, MAX_AUTH_STATE_SIZE + 64); shash->tfm = ctx->hash_tfm; shash->flags = 0x0; @@ -174,13 +174,13 @@ static int qat_alg_do_precomputes(struct icp_qat_hw_auth_algo_blk *hash, memcpy(ipad, buff, digest_size); memcpy(opad, buff, digest_size); - memset(ipad + digest_size, 0, block_size - digest_size); - memset(opad + digest_size, 0, block_size - digest_size); + memzero_explicit(ipad + digest_size, block_size - digest_size); + memzero_explicit(opad + digest_size, block_size - digest_size); } else { memcpy(ipad, auth_key, auth_keylen); memcpy(opad, auth_key, auth_keylen); - memset(ipad + auth_keylen, 0, block_size - auth_keylen); - memset(opad + auth_keylen, 0, block_size - auth_keylen); + memzero_explicit(ipad + auth_keylen, block_size - auth_keylen); + memzero_explicit(opad + auth_keylen, block_size - auth_keylen); } for (i = 0; i < block_size; i++) { @@ -254,6 +254,8 @@ static int qat_alg_do_precomputes(struct icp_qat_hw_auth_algo_blk *hash, default: return -EFAULT; } + memzero_explicit(ipad, block_size); + memzero_explicit(opad, block_size); return 0; } @@ -466,7 +468,6 @@ static int qat_alg_init_sessions(struct qat_alg_session_ctx *ctx, break; default: goto bad_key; - break; } if (qat_alg_init_enc_session(ctx, alg, &keys)) @@ -493,12 +494,12 @@ static int qat_alg_setkey(struct crypto_aead *tfm, const uint8_t *key, if (ctx->enc_cd) { /* rekeying */ dev = &GET_DEV(ctx->inst->accel_dev); - memset(ctx->enc_cd, 0, sizeof(struct qat_alg_cd)); - memset(ctx->dec_cd, 0, sizeof(struct qat_alg_cd)); - memset(&ctx->enc_fw_req_tmpl, 0, - sizeof(struct icp_qat_fw_la_bulk_req)); - memset(&ctx->dec_fw_req_tmpl, 0, - sizeof(struct icp_qat_fw_la_bulk_req)); + memzero_explicit(ctx->enc_cd, sizeof(struct qat_alg_cd)); + memzero_explicit(ctx->dec_cd, sizeof(struct qat_alg_cd)); + memzero_explicit(&ctx->enc_fw_req_tmpl, + sizeof(struct icp_qat_fw_la_bulk_req)); + memzero_explicit(&ctx->dec_fw_req_tmpl, + sizeof(struct icp_qat_fw_la_bulk_req)); } else { /* new key */ int node = get_current_node(); @@ -535,10 +536,12 @@ static int qat_alg_setkey(struct crypto_aead *tfm, const uint8_t *key, return 0; out_free_all: + memzero_explicit(ctx->dec_cd, sizeof(struct qat_alg_cd)); dma_free_coherent(dev, sizeof(struct qat_alg_cd), ctx->dec_cd, ctx->dec_cd_paddr); ctx->dec_cd = NULL; out_free_enc: + memzero_explicit(ctx->enc_cd, sizeof(struct qat_alg_cd)); dma_free_coherent(dev, sizeof(struct qat_alg_cd), ctx->enc_cd, ctx->enc_cd_paddr); ctx->enc_cd = NULL; @@ -836,7 +839,7 @@ static int qat_alg_init(struct crypto_tfm *tfm, { struct qat_alg_session_ctx *ctx = crypto_tfm_ctx(tfm); - memset(ctx, '\0', sizeof(*ctx)); + memzero_explicit(ctx, sizeof(*ctx)); ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0); if (IS_ERR(ctx->hash_tfm)) return -EFAULT; @@ -876,12 +879,16 @@ static void qat_alg_exit(struct crypto_tfm *tfm) return; dev = &GET_DEV(inst->accel_dev); - if (ctx->enc_cd) + if (ctx->enc_cd) { + memzero_explicit(ctx->enc_cd, sizeof(struct qat_alg_cd)); dma_free_coherent(dev, sizeof(struct qat_alg_cd), ctx->enc_cd, ctx->enc_cd_paddr); - if (ctx->dec_cd) + } + if (ctx->dec_cd) { + memzero_explicit(ctx->dec_cd, sizeof(struct qat_alg_cd)); dma_free_coherent(dev, sizeof(struct qat_alg_cd), ctx->dec_cd, ctx->dec_cd_paddr); + } qat_crypto_put_instance(inst); } diff --git a/drivers/crypto/qat/qat_common/qat_hal.c b/drivers/crypto/qat/qat_common/qat_hal.c index 9b8a31521ff3..b818c19713bf 100644 --- a/drivers/crypto/qat/qat_common/qat_hal.c +++ b/drivers/crypto/qat/qat_common/qat_hal.c @@ -679,7 +679,8 @@ int qat_hal_init(struct adf_accel_dev *accel_dev) struct icp_qat_fw_loader_handle *handle; struct adf_accel_pci *pci_info = &accel_dev->accel_pci_dev; struct adf_hw_device_data *hw_data = accel_dev->hw_device; - struct adf_bar *bar = &pci_info->pci_bars[ADF_DH895XCC_PMISC_BAR]; + struct adf_bar *bar = + &pci_info->pci_bars[hw_data->get_misc_bar_id(hw_data)]; handle = kzalloc(sizeof(*handle), GFP_KERNEL); if (!handle) diff --git a/drivers/crypto/qat/qat_dh895xcc/adf_dh895xcc_hw_data.h b/drivers/crypto/qat/qat_dh895xcc/adf_dh895xcc_hw_data.h index 65dd1ff93d3b..01e0be21e93a 100644 --- a/drivers/crypto/qat/qat_dh895xcc/adf_dh895xcc_hw_data.h +++ b/drivers/crypto/qat/qat_dh895xcc/adf_dh895xcc_hw_data.h @@ -48,6 +48,8 @@ #define ADF_DH895x_HW_DATA_H_ /* PCIe configuration space */ +#define ADF_DH895XCC_PMISC_BAR 1 +#define ADF_DH895XCC_ETR_BAR 2 #define ADF_DH895XCC_RX_RINGS_OFFSET 8 #define ADF_DH895XCC_TX_RINGS_MASK 0xFF #define ADF_DH895XCC_FUSECTL_OFFSET 0x40 diff --git a/drivers/crypto/qat/qat_dh895xcc/adf_isr.c b/drivers/crypto/qat/qat_dh895xcc/adf_isr.c index d96ee21b9b77..fe8f89697ad8 100644 --- a/drivers/crypto/qat/qat_dh895xcc/adf_isr.c +++ b/drivers/crypto/qat/qat_dh895xcc/adf_isr.c @@ -186,10 +186,8 @@ static int adf_isr_alloc_msix_entry_table(struct adf_accel_dev *accel_dev) accel_dev->accel_pci_dev.msix_entries.names = names; return 0; err: - for (i = 0; i < msix_num_entries; i++) { - if (*(names + i)) - kfree(*(names + i)); - } + for (i = 0; i < msix_num_entries; i++) + kfree(*(names + i)); kfree(entries); kfree(names); return -ENOMEM; @@ -203,10 +201,8 @@ static void adf_isr_free_msix_entry_table(struct adf_accel_dev *accel_dev) int i; kfree(accel_dev->accel_pci_dev.msix_entries.entries); - for (i = 0; i < msix_num_entries; i++) { - if (*(names + i)) - kfree(*(names + i)); - } + for (i = 0; i < msix_num_entries; i++) + kfree(*(names + i)); kfree(names); } diff --git a/drivers/crypto/sahara.c b/drivers/crypto/sahara.c index 164e1ec624e3..579f539e5975 100644 --- a/drivers/crypto/sahara.c +++ b/drivers/crypto/sahara.c @@ -3,6 +3,7 @@ * * Support for SAHARA cryptographic accelerator. * + * Copyright (c) 2014 Steffen Trumtrar <s.trumtrar@pengutronix.de> * Copyright (c) 2013 Vista Silicon S.L. * Author: Javier Martin <javier.martin@vista-silicon.com> * @@ -15,6 +16,10 @@ #include <crypto/algapi.h> #include <crypto/aes.h> +#include <crypto/hash.h> +#include <crypto/internal/hash.h> +#include <crypto/scatterwalk.h> +#include <crypto/sha.h> #include <linux/clk.h> #include <linux/crypto.h> @@ -22,12 +27,19 @@ #include <linux/io.h> #include <linux/irq.h> #include <linux/kernel.h> +#include <linux/kthread.h> #include <linux/module.h> +#include <linux/mutex.h> #include <linux/of.h> +#include <linux/of_device.h> #include <linux/platform_device.h> +#define SHA_BUFFER_LEN PAGE_SIZE +#define SAHARA_MAX_SHA_BLOCK_SIZE SHA256_BLOCK_SIZE + #define SAHARA_NAME "sahara" #define SAHARA_VERSION_3 3 +#define SAHARA_VERSION_4 4 #define SAHARA_TIMEOUT_MS 1000 #define SAHARA_MAX_HW_DESC 2 #define SAHARA_MAX_HW_LINK 20 @@ -36,7 +48,6 @@ #define FLAGS_ENCRYPT BIT(0) #define FLAGS_CBC BIT(1) #define FLAGS_NEW_KEY BIT(3) -#define FLAGS_BUSY 4 #define SAHARA_HDR_BASE 0x00800000 #define SAHARA_HDR_SKHA_ALG_AES 0 @@ -50,6 +61,23 @@ #define SAHARA_HDR_CHA_MDHA (2 << 28) #define SAHARA_HDR_PARITY_BIT (1 << 31) +#define SAHARA_HDR_MDHA_SET_MODE_MD_KEY 0x20880000 +#define SAHARA_HDR_MDHA_SET_MODE_HASH 0x208D0000 +#define SAHARA_HDR_MDHA_HASH 0xA0850000 +#define SAHARA_HDR_MDHA_STORE_DIGEST 0x20820000 +#define SAHARA_HDR_MDHA_ALG_SHA1 0 +#define SAHARA_HDR_MDHA_ALG_MD5 1 +#define SAHARA_HDR_MDHA_ALG_SHA256 2 +#define SAHARA_HDR_MDHA_ALG_SHA224 3 +#define SAHARA_HDR_MDHA_PDATA (1 << 2) +#define SAHARA_HDR_MDHA_HMAC (1 << 3) +#define SAHARA_HDR_MDHA_INIT (1 << 5) +#define SAHARA_HDR_MDHA_IPAD (1 << 6) +#define SAHARA_HDR_MDHA_OPAD (1 << 7) +#define SAHARA_HDR_MDHA_SWAP (1 << 8) +#define SAHARA_HDR_MDHA_MAC_FULL (1 << 9) +#define SAHARA_HDR_MDHA_SSL (1 << 10) + /* SAHARA can only process one request at a time */ #define SAHARA_QUEUE_LENGTH 1 @@ -117,31 +145,74 @@ struct sahara_hw_link { }; struct sahara_ctx { - struct sahara_dev *dev; unsigned long flags; + + /* AES-specific context */ int keylen; u8 key[AES_KEYSIZE_128]; struct crypto_ablkcipher *fallback; + + /* SHA-specific context */ + struct crypto_shash *shash_fallback; }; struct sahara_aes_reqctx { unsigned long mode; }; +/* + * struct sahara_sha_reqctx - private data per request + * @buf: holds data for requests smaller than block_size + * @rembuf: used to prepare one block_size-aligned request + * @context: hw-specific context for request. Digest is extracted from this + * @mode: specifies what type of hw-descriptor needs to be built + * @digest_size: length of digest for this request + * @context_size: length of hw-context for this request. + * Always digest_size + 4 + * @buf_cnt: number of bytes saved in buf + * @sg_in_idx: number of hw links + * @in_sg: scatterlist for input data + * @in_sg_chain: scatterlists for chained input data + * @in_sg_chained: specifies if chained scatterlists are used or not + * @total: total number of bytes for transfer + * @last: is this the last block + * @first: is this the first block + * @active: inside a transfer + */ +struct sahara_sha_reqctx { + u8 buf[SAHARA_MAX_SHA_BLOCK_SIZE]; + u8 rembuf[SAHARA_MAX_SHA_BLOCK_SIZE]; + u8 context[SHA256_DIGEST_SIZE + 4]; + struct mutex mutex; + unsigned int mode; + unsigned int digest_size; + unsigned int context_size; + unsigned int buf_cnt; + unsigned int sg_in_idx; + struct scatterlist *in_sg; + struct scatterlist in_sg_chain[2]; + bool in_sg_chained; + size_t total; + unsigned int last; + unsigned int first; + unsigned int active; +}; + struct sahara_dev { struct device *device; + unsigned int version; void __iomem *regs_base; struct clk *clk_ipg; struct clk *clk_ahb; + struct mutex queue_mutex; + struct task_struct *kthread; + struct completion dma_completion; struct sahara_ctx *ctx; spinlock_t lock; struct crypto_queue queue; unsigned long flags; - struct tasklet_struct done_task; - struct tasklet_struct queue_task; - struct sahara_hw_desc *hw_desc[SAHARA_MAX_HW_DESC]; dma_addr_t hw_phys_desc[SAHARA_MAX_HW_DESC]; @@ -151,10 +222,12 @@ struct sahara_dev { u8 *iv_base; dma_addr_t iv_phys_base; + u8 *context_base; + dma_addr_t context_phys_base; + struct sahara_hw_link *hw_link[SAHARA_MAX_HW_LINK]; dma_addr_t hw_phys_link[SAHARA_MAX_HW_LINK]; - struct ablkcipher_request *req; size_t total; struct scatterlist *in_sg; unsigned int nb_in_sg; @@ -162,7 +235,6 @@ struct sahara_dev { unsigned int nb_out_sg; u32 error; - struct timer_list watchdog; }; static struct sahara_dev *dev_ptr; @@ -401,34 +473,6 @@ static void sahara_dump_links(struct sahara_dev *dev) dev_dbg(dev->device, "\n"); } -static void sahara_aes_done_task(unsigned long data) -{ - struct sahara_dev *dev = (struct sahara_dev *)data; - - dma_unmap_sg(dev->device, dev->out_sg, dev->nb_out_sg, - DMA_TO_DEVICE); - dma_unmap_sg(dev->device, dev->in_sg, dev->nb_in_sg, - DMA_FROM_DEVICE); - - spin_lock(&dev->lock); - clear_bit(FLAGS_BUSY, &dev->flags); - spin_unlock(&dev->lock); - - dev->req->base.complete(&dev->req->base, dev->error); -} - -static void sahara_watchdog(unsigned long data) -{ - struct sahara_dev *dev = (struct sahara_dev *)data; - unsigned int err = sahara_read(dev, SAHARA_REG_ERRSTATUS); - unsigned int stat = sahara_read(dev, SAHARA_REG_STATUS); - - sahara_decode_status(dev, stat); - sahara_decode_error(dev, err); - dev->error = -ETIMEDOUT; - sahara_aes_done_task(data); -} - static int sahara_hw_descriptor_create(struct sahara_dev *dev) { struct sahara_ctx *ctx = dev->ctx; @@ -512,9 +556,6 @@ static int sahara_hw_descriptor_create(struct sahara_dev *dev) sahara_dump_descriptors(dev); sahara_dump_links(dev); - /* Start processing descriptor chain. */ - mod_timer(&dev->watchdog, - jiffies + msecs_to_jiffies(SAHARA_TIMEOUT_MS)); sahara_write(dev, dev->hw_phys_desc[0], SAHARA_REG_DAR); return 0; @@ -529,37 +570,19 @@ unmap_in: return -EINVAL; } -static void sahara_aes_queue_task(unsigned long data) +static int sahara_aes_process(struct ablkcipher_request *req) { - struct sahara_dev *dev = (struct sahara_dev *)data; - struct crypto_async_request *async_req, *backlog; + struct sahara_dev *dev = dev_ptr; struct sahara_ctx *ctx; struct sahara_aes_reqctx *rctx; - struct ablkcipher_request *req; int ret; - spin_lock(&dev->lock); - backlog = crypto_get_backlog(&dev->queue); - async_req = crypto_dequeue_request(&dev->queue); - if (!async_req) - clear_bit(FLAGS_BUSY, &dev->flags); - spin_unlock(&dev->lock); - - if (!async_req) - return; - - if (backlog) - backlog->complete(backlog, -EINPROGRESS); - - req = ablkcipher_request_cast(async_req); - /* Request is ready to be dispatched by the device */ dev_dbg(dev->device, "dispatch request (nbytes=%d, src=%p, dst=%p)\n", req->nbytes, req->src, req->dst); /* assign new request to device */ - dev->req = req; dev->total = req->nbytes; dev->in_sg = req->src; dev->out_sg = req->dst; @@ -573,16 +596,25 @@ static void sahara_aes_queue_task(unsigned long data) memcpy(dev->iv_base, req->info, AES_KEYSIZE_128); /* assign new context to device */ - ctx->dev = dev; dev->ctx = ctx; + reinit_completion(&dev->dma_completion); + ret = sahara_hw_descriptor_create(dev); - if (ret < 0) { - spin_lock(&dev->lock); - clear_bit(FLAGS_BUSY, &dev->flags); - spin_unlock(&dev->lock); - dev->req->base.complete(&dev->req->base, ret); + + ret = wait_for_completion_timeout(&dev->dma_completion, + msecs_to_jiffies(SAHARA_TIMEOUT_MS)); + if (!ret) { + dev_err(dev->device, "AES timeout\n"); + return -ETIMEDOUT; } + + dma_unmap_sg(dev->device, dev->out_sg, dev->nb_out_sg, + DMA_TO_DEVICE); + dma_unmap_sg(dev->device, dev->in_sg, dev->nb_in_sg, + DMA_FROM_DEVICE); + + return 0; } static int sahara_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, @@ -624,12 +656,9 @@ static int sahara_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, static int sahara_aes_crypt(struct ablkcipher_request *req, unsigned long mode) { - struct sahara_ctx *ctx = crypto_ablkcipher_ctx( - crypto_ablkcipher_reqtfm(req)); struct sahara_aes_reqctx *rctx = ablkcipher_request_ctx(req); struct sahara_dev *dev = dev_ptr; int err = 0; - int busy; dev_dbg(dev->device, "nbytes: %d, enc: %d, cbc: %d\n", req->nbytes, !!(mode & FLAGS_ENCRYPT), !!(mode & FLAGS_CBC)); @@ -640,16 +669,13 @@ static int sahara_aes_crypt(struct ablkcipher_request *req, unsigned long mode) return -EINVAL; } - ctx->dev = dev; - rctx->mode = mode; - spin_lock_bh(&dev->lock); + + mutex_lock(&dev->queue_mutex); err = ablkcipher_enqueue_request(&dev->queue, req); - busy = test_and_set_bit(FLAGS_BUSY, &dev->flags); - spin_unlock_bh(&dev->lock); + mutex_unlock(&dev->queue_mutex); - if (!busy) - tasklet_schedule(&dev->queue_task); + wake_up_process(dev->kthread); return err; } @@ -752,6 +778,484 @@ static void sahara_aes_cra_exit(struct crypto_tfm *tfm) ctx->fallback = NULL; } +static u32 sahara_sha_init_hdr(struct sahara_dev *dev, + struct sahara_sha_reqctx *rctx) +{ + u32 hdr = 0; + + hdr = rctx->mode; + + if (rctx->first) { + hdr |= SAHARA_HDR_MDHA_SET_MODE_HASH; + hdr |= SAHARA_HDR_MDHA_INIT; + } else { + hdr |= SAHARA_HDR_MDHA_SET_MODE_MD_KEY; + } + + if (rctx->last) + hdr |= SAHARA_HDR_MDHA_PDATA; + + if (hweight_long(hdr) % 2 == 0) + hdr |= SAHARA_HDR_PARITY_BIT; + + return hdr; +} + +static int sahara_sha_hw_links_create(struct sahara_dev *dev, + struct sahara_sha_reqctx *rctx, + int start) +{ + struct scatterlist *sg; + unsigned int i; + int ret; + + dev->in_sg = rctx->in_sg; + + dev->nb_in_sg = sahara_sg_length(dev->in_sg, rctx->total); + if ((dev->nb_in_sg) > SAHARA_MAX_HW_LINK) { + dev_err(dev->device, "not enough hw links (%d)\n", + dev->nb_in_sg + dev->nb_out_sg); + return -EINVAL; + } + + if (rctx->in_sg_chained) { + i = start; + sg = dev->in_sg; + while (sg) { + ret = dma_map_sg(dev->device, sg, 1, + DMA_TO_DEVICE); + if (!ret) + return -EFAULT; + + dev->hw_link[i]->len = sg->length; + dev->hw_link[i]->p = sg->dma_address; + dev->hw_link[i]->next = dev->hw_phys_link[i + 1]; + sg = sg_next(sg); + i += 1; + } + dev->hw_link[i-1]->next = 0; + } else { + sg = dev->in_sg; + ret = dma_map_sg(dev->device, dev->in_sg, dev->nb_in_sg, + DMA_TO_DEVICE); + if (!ret) + return -EFAULT; + + for (i = start; i < dev->nb_in_sg + start; i++) { + dev->hw_link[i]->len = sg->length; + dev->hw_link[i]->p = sg->dma_address; + if (i == (dev->nb_in_sg + start - 1)) { + dev->hw_link[i]->next = 0; + } else { + dev->hw_link[i]->next = dev->hw_phys_link[i + 1]; + sg = sg_next(sg); + } + } + } + + return i; +} + +static int sahara_sha_hw_data_descriptor_create(struct sahara_dev *dev, + struct sahara_sha_reqctx *rctx, + struct ahash_request *req, + int index) +{ + unsigned result_len; + int i = index; + + if (rctx->first) + /* Create initial descriptor: #8*/ + dev->hw_desc[index]->hdr = sahara_sha_init_hdr(dev, rctx); + else + /* Create hash descriptor: #10. Must follow #6. */ + dev->hw_desc[index]->hdr = SAHARA_HDR_MDHA_HASH; + + dev->hw_desc[index]->len1 = rctx->total; + if (dev->hw_desc[index]->len1 == 0) { + /* if len1 is 0, p1 must be 0, too */ + dev->hw_desc[index]->p1 = 0; + rctx->sg_in_idx = 0; + } else { + /* Create input links */ + dev->hw_desc[index]->p1 = dev->hw_phys_link[index]; + i = sahara_sha_hw_links_create(dev, rctx, index); + + rctx->sg_in_idx = index; + if (i < 0) + return i; + } + + dev->hw_desc[index]->p2 = dev->hw_phys_link[i]; + + /* Save the context for the next operation */ + result_len = rctx->context_size; + dev->hw_link[i]->p = dev->context_phys_base; + + dev->hw_link[i]->len = result_len; + dev->hw_desc[index]->len2 = result_len; + + dev->hw_link[i]->next = 0; + + return 0; +} + +/* + * Load descriptor aka #6 + * + * To load a previously saved context back to the MDHA unit + * + * p1: Saved Context + * p2: NULL + * + */ +static int sahara_sha_hw_context_descriptor_create(struct sahara_dev *dev, + struct sahara_sha_reqctx *rctx, + struct ahash_request *req, + int index) +{ + dev->hw_desc[index]->hdr = sahara_sha_init_hdr(dev, rctx); + + dev->hw_desc[index]->len1 = rctx->context_size; + dev->hw_desc[index]->p1 = dev->hw_phys_link[index]; + dev->hw_desc[index]->len2 = 0; + dev->hw_desc[index]->p2 = 0; + + dev->hw_link[index]->len = rctx->context_size; + dev->hw_link[index]->p = dev->context_phys_base; + dev->hw_link[index]->next = 0; + + return 0; +} + +static int sahara_walk_and_recalc(struct scatterlist *sg, unsigned int nbytes) +{ + if (!sg || !sg->length) + return nbytes; + + while (nbytes && sg) { + if (nbytes <= sg->length) { + sg->length = nbytes; + sg_mark_end(sg); + break; + } + nbytes -= sg->length; + sg = scatterwalk_sg_next(sg); + } + + return nbytes; +} + +static int sahara_sha_prepare_request(struct ahash_request *req) +{ + struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); + struct sahara_sha_reqctx *rctx = ahash_request_ctx(req); + unsigned int hash_later; + unsigned int block_size; + unsigned int len; + + block_size = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); + + /* append bytes from previous operation */ + len = rctx->buf_cnt + req->nbytes; + + /* only the last transfer can be padded in hardware */ + if (!rctx->last && (len < block_size)) { + /* to few data, save for next operation */ + scatterwalk_map_and_copy(rctx->buf + rctx->buf_cnt, req->src, + 0, req->nbytes, 0); + rctx->buf_cnt += req->nbytes; + + return 0; + } + + /* add data from previous operation first */ + if (rctx->buf_cnt) + memcpy(rctx->rembuf, rctx->buf, rctx->buf_cnt); + + /* data must always be a multiple of block_size */ + hash_later = rctx->last ? 0 : len & (block_size - 1); + if (hash_later) { + unsigned int offset = req->nbytes - hash_later; + /* Save remaining bytes for later use */ + scatterwalk_map_and_copy(rctx->buf, req->src, offset, + hash_later, 0); + } + + /* nbytes should now be multiple of blocksize */ + req->nbytes = req->nbytes - hash_later; + + sahara_walk_and_recalc(req->src, req->nbytes); + + /* have data from previous operation and current */ + if (rctx->buf_cnt && req->nbytes) { + sg_init_table(rctx->in_sg_chain, 2); + sg_set_buf(rctx->in_sg_chain, rctx->rembuf, rctx->buf_cnt); + + scatterwalk_sg_chain(rctx->in_sg_chain, 2, req->src); + + rctx->total = req->nbytes + rctx->buf_cnt; + rctx->in_sg = rctx->in_sg_chain; + + rctx->in_sg_chained = true; + req->src = rctx->in_sg_chain; + /* only data from previous operation */ + } else if (rctx->buf_cnt) { + if (req->src) + rctx->in_sg = req->src; + else + rctx->in_sg = rctx->in_sg_chain; + /* buf was copied into rembuf above */ + sg_init_one(rctx->in_sg, rctx->rembuf, rctx->buf_cnt); + rctx->total = rctx->buf_cnt; + rctx->in_sg_chained = false; + /* no data from previous operation */ + } else { + rctx->in_sg = req->src; + rctx->total = req->nbytes; + req->src = rctx->in_sg; + rctx->in_sg_chained = false; + } + + /* on next call, we only have the remaining data in the buffer */ + rctx->buf_cnt = hash_later; + + return -EINPROGRESS; +} + +static void sahara_sha_unmap_sg(struct sahara_dev *dev, + struct sahara_sha_reqctx *rctx) +{ + struct scatterlist *sg; + + if (rctx->in_sg_chained) { + sg = dev->in_sg; + while (sg) { + dma_unmap_sg(dev->device, sg, 1, DMA_TO_DEVICE); + sg = sg_next(sg); + } + } else { + dma_unmap_sg(dev->device, dev->in_sg, dev->nb_in_sg, + DMA_TO_DEVICE); + } +} + +static int sahara_sha_process(struct ahash_request *req) +{ + struct sahara_dev *dev = dev_ptr; + struct sahara_sha_reqctx *rctx = ahash_request_ctx(req); + int ret = -EINPROGRESS; + + ret = sahara_sha_prepare_request(req); + if (!ret) + return ret; + + if (rctx->first) { + sahara_sha_hw_data_descriptor_create(dev, rctx, req, 0); + dev->hw_desc[0]->next = 0; + rctx->first = 0; + } else { + memcpy(dev->context_base, rctx->context, rctx->context_size); + + sahara_sha_hw_context_descriptor_create(dev, rctx, req, 0); + dev->hw_desc[0]->next = dev->hw_phys_desc[1]; + sahara_sha_hw_data_descriptor_create(dev, rctx, req, 1); + dev->hw_desc[1]->next = 0; + } + + sahara_dump_descriptors(dev); + sahara_dump_links(dev); + + reinit_completion(&dev->dma_completion); + + sahara_write(dev, dev->hw_phys_desc[0], SAHARA_REG_DAR); + + ret = wait_for_completion_timeout(&dev->dma_completion, + msecs_to_jiffies(SAHARA_TIMEOUT_MS)); + if (!ret) { + dev_err(dev->device, "SHA timeout\n"); + return -ETIMEDOUT; + } + + if (rctx->sg_in_idx) + sahara_sha_unmap_sg(dev, rctx); + + memcpy(rctx->context, dev->context_base, rctx->context_size); + + if (req->result) + memcpy(req->result, rctx->context, rctx->digest_size); + + return 0; +} + +static int sahara_queue_manage(void *data) +{ + struct sahara_dev *dev = (struct sahara_dev *)data; + struct crypto_async_request *async_req; + int ret = 0; + + do { + __set_current_state(TASK_INTERRUPTIBLE); + + mutex_lock(&dev->queue_mutex); + async_req = crypto_dequeue_request(&dev->queue); + mutex_unlock(&dev->queue_mutex); + + if (async_req) { + if (crypto_tfm_alg_type(async_req->tfm) == + CRYPTO_ALG_TYPE_AHASH) { + struct ahash_request *req = + ahash_request_cast(async_req); + + ret = sahara_sha_process(req); + } else { + struct ablkcipher_request *req = + ablkcipher_request_cast(async_req); + + ret = sahara_aes_process(req); + } + + async_req->complete(async_req, ret); + + continue; + } + + schedule(); + } while (!kthread_should_stop()); + + return 0; +} + +static int sahara_sha_enqueue(struct ahash_request *req, int last) +{ + struct sahara_sha_reqctx *rctx = ahash_request_ctx(req); + struct sahara_dev *dev = dev_ptr; + int ret; + + if (!req->nbytes && !last) + return 0; + + mutex_lock(&rctx->mutex); + rctx->last = last; + + if (!rctx->active) { + rctx->active = 1; + rctx->first = 1; + } + + mutex_lock(&dev->queue_mutex); + ret = crypto_enqueue_request(&dev->queue, &req->base); + mutex_unlock(&dev->queue_mutex); + + wake_up_process(dev->kthread); + mutex_unlock(&rctx->mutex); + + return ret; +} + +static int sahara_sha_init(struct ahash_request *req) +{ + struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); + struct sahara_sha_reqctx *rctx = ahash_request_ctx(req); + + memset(rctx, 0, sizeof(*rctx)); + + switch (crypto_ahash_digestsize(tfm)) { + case SHA1_DIGEST_SIZE: + rctx->mode |= SAHARA_HDR_MDHA_ALG_SHA1; + rctx->digest_size = SHA1_DIGEST_SIZE; + break; + case SHA256_DIGEST_SIZE: + rctx->mode |= SAHARA_HDR_MDHA_ALG_SHA256; + rctx->digest_size = SHA256_DIGEST_SIZE; + break; + default: + return -EINVAL; + } + + rctx->context_size = rctx->digest_size + 4; + rctx->active = 0; + + mutex_init(&rctx->mutex); + + return 0; +} + +static int sahara_sha_update(struct ahash_request *req) +{ + return sahara_sha_enqueue(req, 0); +} + +static int sahara_sha_final(struct ahash_request *req) +{ + req->nbytes = 0; + return sahara_sha_enqueue(req, 1); +} + +static int sahara_sha_finup(struct ahash_request *req) +{ + return sahara_sha_enqueue(req, 1); +} + +static int sahara_sha_digest(struct ahash_request *req) +{ + sahara_sha_init(req); + + return sahara_sha_finup(req); +} + +static int sahara_sha_export(struct ahash_request *req, void *out) +{ + struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); + struct sahara_ctx *ctx = crypto_ahash_ctx(ahash); + struct sahara_sha_reqctx *rctx = ahash_request_ctx(req); + + memcpy(out, ctx, sizeof(struct sahara_ctx)); + memcpy(out + sizeof(struct sahara_sha_reqctx), rctx, + sizeof(struct sahara_sha_reqctx)); + + return 0; +} + +static int sahara_sha_import(struct ahash_request *req, const void *in) +{ + struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); + struct sahara_ctx *ctx = crypto_ahash_ctx(ahash); + struct sahara_sha_reqctx *rctx = ahash_request_ctx(req); + + memcpy(ctx, in, sizeof(struct sahara_ctx)); + memcpy(rctx, in + sizeof(struct sahara_sha_reqctx), + sizeof(struct sahara_sha_reqctx)); + + return 0; +} + +static int sahara_sha_cra_init(struct crypto_tfm *tfm) +{ + const char *name = crypto_tfm_alg_name(tfm); + struct sahara_ctx *ctx = crypto_tfm_ctx(tfm); + + ctx->shash_fallback = crypto_alloc_shash(name, 0, + CRYPTO_ALG_NEED_FALLBACK); + if (IS_ERR(ctx->shash_fallback)) { + pr_err("Error allocating fallback algo %s\n", name); + return PTR_ERR(ctx->shash_fallback); + } + crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), + sizeof(struct sahara_sha_reqctx) + + SHA_BUFFER_LEN + SHA256_BLOCK_SIZE); + + return 0; +} + +static void sahara_sha_cra_exit(struct crypto_tfm *tfm) +{ + struct sahara_ctx *ctx = crypto_tfm_ctx(tfm); + + crypto_free_shash(ctx->shash_fallback); + ctx->shash_fallback = NULL; +} + static struct crypto_alg aes_algs[] = { { .cra_name = "ecb(aes)", @@ -797,14 +1301,66 @@ static struct crypto_alg aes_algs[] = { } }; +static struct ahash_alg sha_v3_algs[] = { +{ + .init = sahara_sha_init, + .update = sahara_sha_update, + .final = sahara_sha_final, + .finup = sahara_sha_finup, + .digest = sahara_sha_digest, + .export = sahara_sha_export, + .import = sahara_sha_import, + .halg.digestsize = SHA1_DIGEST_SIZE, + .halg.base = { + .cra_name = "sha1", + .cra_driver_name = "sahara-sha1", + .cra_priority = 300, + .cra_flags = CRYPTO_ALG_TYPE_AHASH | + CRYPTO_ALG_ASYNC | + CRYPTO_ALG_NEED_FALLBACK, + .cra_blocksize = SHA1_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct sahara_ctx), + .cra_alignmask = 0, + .cra_module = THIS_MODULE, + .cra_init = sahara_sha_cra_init, + .cra_exit = sahara_sha_cra_exit, + } +}, +}; + +static struct ahash_alg sha_v4_algs[] = { +{ + .init = sahara_sha_init, + .update = sahara_sha_update, + .final = sahara_sha_final, + .finup = sahara_sha_finup, + .digest = sahara_sha_digest, + .export = sahara_sha_export, + .import = sahara_sha_import, + .halg.digestsize = SHA256_DIGEST_SIZE, + .halg.base = { + .cra_name = "sha256", + .cra_driver_name = "sahara-sha256", + .cra_priority = 300, + .cra_flags = CRYPTO_ALG_TYPE_AHASH | + CRYPTO_ALG_ASYNC | + CRYPTO_ALG_NEED_FALLBACK, + .cra_blocksize = SHA256_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct sahara_ctx), + .cra_alignmask = 0, + .cra_module = THIS_MODULE, + .cra_init = sahara_sha_cra_init, + .cra_exit = sahara_sha_cra_exit, + } +}, +}; + static irqreturn_t sahara_irq_handler(int irq, void *data) { struct sahara_dev *dev = (struct sahara_dev *)data; unsigned int stat = sahara_read(dev, SAHARA_REG_STATUS); unsigned int err = sahara_read(dev, SAHARA_REG_ERRSTATUS); - del_timer(&dev->watchdog); - sahara_write(dev, SAHARA_CMD_CLEAR_INT | SAHARA_CMD_CLEAR_ERR, SAHARA_REG_CMD); @@ -819,7 +1375,7 @@ static irqreturn_t sahara_irq_handler(int irq, void *data) dev->error = -EINVAL; } - tasklet_schedule(&dev->done_task); + complete(&dev->dma_completion); return IRQ_HANDLED; } @@ -827,7 +1383,8 @@ static irqreturn_t sahara_irq_handler(int irq, void *data) static int sahara_register_algs(struct sahara_dev *dev) { - int err, i, j; + int err; + unsigned int i, j, k, l; for (i = 0; i < ARRAY_SIZE(aes_algs); i++) { INIT_LIST_HEAD(&aes_algs[i].cra_list); @@ -836,8 +1393,29 @@ static int sahara_register_algs(struct sahara_dev *dev) goto err_aes_algs; } + for (k = 0; k < ARRAY_SIZE(sha_v3_algs); k++) { + err = crypto_register_ahash(&sha_v3_algs[k]); + if (err) + goto err_sha_v3_algs; + } + + if (dev->version > SAHARA_VERSION_3) + for (l = 0; l < ARRAY_SIZE(sha_v4_algs); l++) { + err = crypto_register_ahash(&sha_v4_algs[l]); + if (err) + goto err_sha_v4_algs; + } + return 0; +err_sha_v4_algs: + for (j = 0; j < l; j++) + crypto_unregister_ahash(&sha_v4_algs[j]); + +err_sha_v3_algs: + for (j = 0; j < k; j++) + crypto_unregister_ahash(&sha_v4_algs[j]); + err_aes_algs: for (j = 0; j < i; j++) crypto_unregister_alg(&aes_algs[j]); @@ -847,10 +1425,17 @@ err_aes_algs: static void sahara_unregister_algs(struct sahara_dev *dev) { - int i; + unsigned int i; for (i = 0; i < ARRAY_SIZE(aes_algs); i++) crypto_unregister_alg(&aes_algs[i]); + + for (i = 0; i < ARRAY_SIZE(sha_v4_algs); i++) + crypto_unregister_ahash(&sha_v3_algs[i]); + + if (dev->version > SAHARA_VERSION_3) + for (i = 0; i < ARRAY_SIZE(sha_v4_algs); i++) + crypto_unregister_ahash(&sha_v4_algs[i]); } static struct platform_device_id sahara_platform_ids[] = { @@ -860,6 +1445,7 @@ static struct platform_device_id sahara_platform_ids[] = { MODULE_DEVICE_TABLE(platform, sahara_platform_ids); static struct of_device_id sahara_dt_ids[] = { + { .compatible = "fsl,imx53-sahara" }, { .compatible = "fsl,imx27-sahara" }, { /* sentinel */ } }; @@ -939,6 +1525,16 @@ static int sahara_probe(struct platform_device *pdev) dev->iv_base = dev->key_base + AES_KEYSIZE_128; dev->iv_phys_base = dev->key_phys_base + AES_KEYSIZE_128; + /* Allocate space for context: largest digest + message length field */ + dev->context_base = dma_alloc_coherent(&pdev->dev, + SHA256_DIGEST_SIZE + 4, + &dev->context_phys_base, GFP_KERNEL); + if (!dev->context_base) { + dev_err(&pdev->dev, "Could not allocate memory for MDHA context\n"); + err = -ENOMEM; + goto err_key; + } + /* Allocate space for HW links */ dev->hw_link[0] = dma_alloc_coherent(&pdev->dev, SAHARA_MAX_HW_LINK * sizeof(struct sahara_hw_link), @@ -956,28 +1552,40 @@ static int sahara_probe(struct platform_device *pdev) crypto_init_queue(&dev->queue, SAHARA_QUEUE_LENGTH); + spin_lock_init(&dev->lock); + mutex_init(&dev->queue_mutex); + dev_ptr = dev; - tasklet_init(&dev->queue_task, sahara_aes_queue_task, - (unsigned long)dev); - tasklet_init(&dev->done_task, sahara_aes_done_task, - (unsigned long)dev); + dev->kthread = kthread_run(sahara_queue_manage, dev, "sahara_crypto"); + if (IS_ERR(dev->kthread)) { + err = PTR_ERR(dev->kthread); + goto err_link; + } - init_timer(&dev->watchdog); - dev->watchdog.function = &sahara_watchdog; - dev->watchdog.data = (unsigned long)dev; + init_completion(&dev->dma_completion); clk_prepare_enable(dev->clk_ipg); clk_prepare_enable(dev->clk_ahb); version = sahara_read(dev, SAHARA_REG_VERSION); - if (version != SAHARA_VERSION_3) { + if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx27-sahara")) { + if (version != SAHARA_VERSION_3) + err = -ENODEV; + } else if (of_device_is_compatible(pdev->dev.of_node, + "fsl,imx53-sahara")) { + if (((version >> 8) & 0xff) != SAHARA_VERSION_4) + err = -ENODEV; + version = (version >> 8) & 0xff; + } + if (err == -ENODEV) { dev_err(&pdev->dev, "SAHARA version %d not supported\n", - version); - err = -ENODEV; + version); goto err_algs; } + dev->version = version; + sahara_write(dev, SAHARA_CMD_RESET | SAHARA_CMD_MODE_BATCH, SAHARA_REG_CMD); sahara_write(dev, SAHARA_CONTROL_SET_THROTTLE(0) | @@ -1000,11 +1608,15 @@ err_algs: dev->hw_link[0], dev->hw_phys_link[0]); clk_disable_unprepare(dev->clk_ipg); clk_disable_unprepare(dev->clk_ahb); + kthread_stop(dev->kthread); dev_ptr = NULL; err_link: dma_free_coherent(&pdev->dev, 2 * AES_KEYSIZE_128, dev->key_base, dev->key_phys_base); + dma_free_coherent(&pdev->dev, + SHA256_DIGEST_SIZE, + dev->context_base, dev->context_phys_base); err_key: dma_free_coherent(&pdev->dev, SAHARA_MAX_HW_DESC * sizeof(struct sahara_hw_desc), @@ -1027,8 +1639,7 @@ static int sahara_remove(struct platform_device *pdev) SAHARA_MAX_HW_DESC * sizeof(struct sahara_hw_desc), dev->hw_desc[0], dev->hw_phys_desc[0]); - tasklet_kill(&dev->done_task); - tasklet_kill(&dev->queue_task); + kthread_stop(dev->kthread); sahara_unregister_algs(dev); @@ -1055,4 +1666,5 @@ module_platform_driver(sahara_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Javier Martin <javier.martin@vista-silicon.com>"); +MODULE_AUTHOR("Steffen Trumtrar <s.trumtrar@pengutronix.de>"); MODULE_DESCRIPTION("SAHARA2 HW crypto accelerator"); diff --git a/drivers/crypto/ux500/cryp/cryp_core.c b/drivers/crypto/ux500/cryp/cryp_core.c index 92105f3dc8e0..7c035de9055e 100644 --- a/drivers/crypto/ux500/cryp/cryp_core.c +++ b/drivers/crypto/ux500/cryp/cryp_core.c @@ -1688,6 +1688,7 @@ static void ux500_cryp_shutdown(struct platform_device *pdev) } +#ifdef CONFIG_PM_SLEEP static int ux500_cryp_suspend(struct device *dev) { int ret; @@ -1768,6 +1769,7 @@ static int ux500_cryp_resume(struct device *dev) return ret; } +#endif static SIMPLE_DEV_PM_OPS(ux500_cryp_pm, ux500_cryp_suspend, ux500_cryp_resume); @@ -1810,7 +1812,7 @@ module_exit(ux500_cryp_mod_fini); module_param(cryp_mode, int, 0); MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 CRYP crypto engine."); -MODULE_ALIAS("aes-all"); -MODULE_ALIAS("des-all"); +MODULE_ALIAS_CRYPTO("aes-all"); +MODULE_ALIAS_CRYPTO("des-all"); MODULE_LICENSE("GPL"); diff --git a/drivers/crypto/ux500/hash/hash_core.c b/drivers/crypto/ux500/hash/hash_core.c index 1c73f4fbc252..76ecc8d143d0 100644 --- a/drivers/crypto/ux500/hash/hash_core.c +++ b/drivers/crypto/ux500/hash/hash_core.c @@ -1881,6 +1881,7 @@ static void ux500_hash_shutdown(struct platform_device *pdev) __func__); } +#ifdef CONFIG_PM_SLEEP /** * ux500_hash_suspend - Function that suspends the hash device. * @dev: Device to suspend. @@ -1949,6 +1950,7 @@ static int ux500_hash_resume(struct device *dev) return ret; } +#endif static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume); @@ -1995,7 +1997,7 @@ module_exit(ux500_hash_mod_fini); MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine."); MODULE_LICENSE("GPL"); -MODULE_ALIAS("sha1-all"); -MODULE_ALIAS("sha256-all"); -MODULE_ALIAS("hmac-sha1-all"); -MODULE_ALIAS("hmac-sha256-all"); +MODULE_ALIAS_CRYPTO("sha1-all"); +MODULE_ALIAS_CRYPTO("sha256-all"); +MODULE_ALIAS_CRYPTO("hmac-sha1-all"); +MODULE_ALIAS_CRYPTO("hmac-sha256-all"); diff --git a/drivers/s390/crypto/ap_bus.c b/drivers/s390/crypto/ap_bus.c index 99485415dcc2..91e97ec01418 100644 --- a/drivers/s390/crypto/ap_bus.c +++ b/drivers/s390/crypto/ap_bus.c @@ -44,6 +44,7 @@ #include <linux/hrtimer.h> #include <linux/ktime.h> #include <asm/facility.h> +#include <linux/crypto.h> #include "ap_bus.h" @@ -71,7 +72,7 @@ MODULE_AUTHOR("IBM Corporation"); MODULE_DESCRIPTION("Adjunct Processor Bus driver, " \ "Copyright IBM Corp. 2006, 2012"); MODULE_LICENSE("GPL"); -MODULE_ALIAS("z90crypt"); +MODULE_ALIAS_CRYPTO("z90crypt"); /* * Module parameter diff --git a/include/crypto/hash.h b/include/crypto/hash.h index 74b13ec1ebd4..98abda9ed3aa 100644 --- a/include/crypto/hash.h +++ b/include/crypto/hash.h @@ -17,6 +17,32 @@ struct crypto_ahash; +/** + * DOC: Message Digest Algorithm Definitions + * + * These data structures define modular message digest algorithm + * implementations, managed via crypto_register_ahash(), + * crypto_register_shash(), crypto_unregister_ahash() and + * crypto_unregister_shash(). + */ + +/** + * struct hash_alg_common - define properties of message digest + * @digestsize: Size of the result of the transformation. A buffer of this size + * must be available to the @final and @finup calls, so they can + * store the resulting hash into it. For various predefined sizes, + * search include/crypto/ using + * git grep _DIGEST_SIZE include/crypto. + * @statesize: Size of the block for partial state of the transformation. A + * buffer of this size must be passed to the @export function as it + * will save the partial state of the transformation into it. On the + * other side, the @import function will load the state from a + * buffer of this size as well. + * @base: Start of data structure of cipher algorithm. The common data + * structure of crypto_alg contains information common to all ciphers. + * The hash_alg_common data structure now adds the hash-specific + * information. + */ struct hash_alg_common { unsigned int digestsize; unsigned int statesize; @@ -37,6 +63,63 @@ struct ahash_request { void *__ctx[] CRYPTO_MINALIGN_ATTR; }; +/** + * struct ahash_alg - asynchronous message digest definition + * @init: Initialize the transformation context. Intended only to initialize the + * state of the HASH transformation at the begining. This shall fill in + * the internal structures used during the entire duration of the whole + * transformation. No data processing happens at this point. + * @update: Push a chunk of data into the driver for transformation. This + * function actually pushes blocks of data from upper layers into the + * driver, which then passes those to the hardware as seen fit. This + * function must not finalize the HASH transformation by calculating the + * final message digest as this only adds more data into the + * transformation. This function shall not modify the transformation + * context, as this function may be called in parallel with the same + * transformation object. Data processing can happen synchronously + * [SHASH] or asynchronously [AHASH] at this point. + * @final: Retrieve result from the driver. This function finalizes the + * transformation and retrieves the resulting hash from the driver and + * pushes it back to upper layers. No data processing happens at this + * point. + * @finup: Combination of @update and @final. This function is effectively a + * combination of @update and @final calls issued in sequence. As some + * hardware cannot do @update and @final separately, this callback was + * added to allow such hardware to be used at least by IPsec. Data + * processing can happen synchronously [SHASH] or asynchronously [AHASH] + * at this point. + * @digest: Combination of @init and @update and @final. This function + * effectively behaves as the entire chain of operations, @init, + * @update and @final issued in sequence. Just like @finup, this was + * added for hardware which cannot do even the @finup, but can only do + * the whole transformation in one run. Data processing can happen + * synchronously [SHASH] or asynchronously [AHASH] at this point. + * @setkey: Set optional key used by the hashing algorithm. Intended to push + * optional key used by the hashing algorithm from upper layers into + * the driver. This function can store the key in the transformation + * context or can outright program it into the hardware. In the former + * case, one must be careful to program the key into the hardware at + * appropriate time and one must be careful that .setkey() can be + * called multiple times during the existence of the transformation + * object. Not all hashing algorithms do implement this function as it + * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT + * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement + * this function. This function must be called before any other of the + * @init, @update, @final, @finup, @digest is called. No data + * processing happens at this point. + * @export: Export partial state of the transformation. This function dumps the + * entire state of the ongoing transformation into a provided block of + * data so it can be @import 'ed back later on. This is useful in case + * you want to save partial result of the transformation after + * processing certain amount of data and reload this partial result + * multiple times later on for multiple re-use. No data processing + * happens at this point. + * @import: Import partial state of the transformation. This function loads the + * entire state of the ongoing transformation from a provided block of + * data so the transformation can continue from this point onward. No + * data processing happens at this point. + * @halg: see struct hash_alg_common + */ struct ahash_alg { int (*init)(struct ahash_request *req); int (*update)(struct ahash_request *req); @@ -63,6 +146,23 @@ struct shash_desc { crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \ struct shash_desc *shash = (struct shash_desc *)__##shash##_desc +/** + * struct shash_alg - synchronous message digest definition + * @init: see struct ahash_alg + * @update: see struct ahash_alg + * @final: see struct ahash_alg + * @finup: see struct ahash_alg + * @digest: see struct ahash_alg + * @export: see struct ahash_alg + * @import: see struct ahash_alg + * @setkey: see struct ahash_alg + * @digestsize: see struct ahash_alg + * @statesize: see struct ahash_alg + * @descsize: Size of the operational state for the message digest. This state + * size is the memory size that needs to be allocated for + * shash_desc.__ctx + * @base: internally used + */ struct shash_alg { int (*init)(struct shash_desc *desc); int (*update)(struct shash_desc *desc, const u8 *data, @@ -107,11 +207,35 @@ struct crypto_shash { struct crypto_tfm base; }; +/** + * DOC: Asynchronous Message Digest API + * + * The asynchronous message digest API is used with the ciphers of type + * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto) + * + * The asynchronous cipher operation discussion provided for the + * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well. + */ + static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm) { return container_of(tfm, struct crypto_ahash, base); } +/** + * crypto_alloc_ahash() - allocate ahash cipher handle + * @alg_name: is the cra_name / name or cra_driver_name / driver name of the + * ahash cipher + * @type: specifies the type of the cipher + * @mask: specifies the mask for the cipher + * + * Allocate a cipher handle for an ahash. The returned struct + * crypto_ahash is the cipher handle that is required for any subsequent + * API invocation for that ahash. + * + * Return: allocated cipher handle in case of success; IS_ERR() is true in case + * of an error, PTR_ERR() returns the error code. + */ struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type, u32 mask); @@ -120,6 +244,10 @@ static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm) return &tfm->base; } +/** + * crypto_free_ahash() - zeroize and free the ahash handle + * @tfm: cipher handle to be freed + */ static inline void crypto_free_ahash(struct crypto_ahash *tfm) { crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm)); @@ -143,6 +271,16 @@ static inline struct hash_alg_common *crypto_hash_alg_common( return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg); } +/** + * crypto_ahash_digestsize() - obtain message digest size + * @tfm: cipher handle + * + * The size for the message digest created by the message digest cipher + * referenced with the cipher handle is returned. + * + * + * Return: message digest size of cipher + */ static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm) { return crypto_hash_alg_common(tfm)->digestsize; @@ -168,12 +306,32 @@ static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags) crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags); } +/** + * crypto_ahash_reqtfm() - obtain cipher handle from request + * @req: asynchronous request handle that contains the reference to the ahash + * cipher handle + * + * Return the ahash cipher handle that is registered with the asynchronous + * request handle ahash_request. + * + * Return: ahash cipher handle + */ static inline struct crypto_ahash *crypto_ahash_reqtfm( struct ahash_request *req) { return __crypto_ahash_cast(req->base.tfm); } +/** + * crypto_ahash_reqsize() - obtain size of the request data structure + * @tfm: cipher handle + * + * Return the size of the ahash state size. With the crypto_ahash_export + * function, the caller can export the state into a buffer whose size is + * defined with this function. + * + * Return: size of the ahash state + */ static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm) { return tfm->reqsize; @@ -184,38 +342,166 @@ static inline void *ahash_request_ctx(struct ahash_request *req) return req->__ctx; } +/** + * crypto_ahash_setkey - set key for cipher handle + * @tfm: cipher handle + * @key: buffer holding the key + * @keylen: length of the key in bytes + * + * The caller provided key is set for the ahash cipher. The cipher + * handle must point to a keyed hash in order for this function to succeed. + * + * Return: 0 if the setting of the key was successful; < 0 if an error occurred + */ int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen); + +/** + * crypto_ahash_finup() - update and finalize message digest + * @req: reference to the ahash_request handle that holds all information + * needed to perform the cipher operation + * + * This function is a "short-hand" for the function calls of + * crypto_ahash_update and crypto_shash_final. The parameters have the same + * meaning as discussed for those separate functions. + * + * Return: 0 if the message digest creation was successful; < 0 if an error + * occurred + */ int crypto_ahash_finup(struct ahash_request *req); + +/** + * crypto_ahash_final() - calculate message digest + * @req: reference to the ahash_request handle that holds all information + * needed to perform the cipher operation + * + * Finalize the message digest operation and create the message digest + * based on all data added to the cipher handle. The message digest is placed + * into the output buffer registered with the ahash_request handle. + * + * Return: 0 if the message digest creation was successful; < 0 if an error + * occurred + */ int crypto_ahash_final(struct ahash_request *req); + +/** + * crypto_ahash_digest() - calculate message digest for a buffer + * @req: reference to the ahash_request handle that holds all information + * needed to perform the cipher operation + * + * This function is a "short-hand" for the function calls of crypto_ahash_init, + * crypto_ahash_update and crypto_ahash_final. The parameters have the same + * meaning as discussed for those separate three functions. + * + * Return: 0 if the message digest creation was successful; < 0 if an error + * occurred + */ int crypto_ahash_digest(struct ahash_request *req); +/** + * crypto_ahash_export() - extract current message digest state + * @req: reference to the ahash_request handle whose state is exported + * @out: output buffer of sufficient size that can hold the hash state + * + * This function exports the hash state of the ahash_request handle into the + * caller-allocated output buffer out which must have sufficient size (e.g. by + * calling crypto_ahash_reqsize). + * + * Return: 0 if the export was successful; < 0 if an error occurred + */ static inline int crypto_ahash_export(struct ahash_request *req, void *out) { return crypto_ahash_reqtfm(req)->export(req, out); } +/** + * crypto_ahash_import() - import message digest state + * @req: reference to ahash_request handle the state is imported into + * @in: buffer holding the state + * + * This function imports the hash state into the ahash_request handle from the + * input buffer. That buffer should have been generated with the + * crypto_ahash_export function. + * + * Return: 0 if the import was successful; < 0 if an error occurred + */ static inline int crypto_ahash_import(struct ahash_request *req, const void *in) { return crypto_ahash_reqtfm(req)->import(req, in); } +/** + * crypto_ahash_init() - (re)initialize message digest handle + * @req: ahash_request handle that already is initialized with all necessary + * data using the ahash_request_* API functions + * + * The call (re-)initializes the message digest referenced by the ahash_request + * handle. Any potentially existing state created by previous operations is + * discarded. + * + * Return: 0 if the message digest initialization was successful; < 0 if an + * error occurred + */ static inline int crypto_ahash_init(struct ahash_request *req) { return crypto_ahash_reqtfm(req)->init(req); } +/** + * crypto_ahash_update() - add data to message digest for processing + * @req: ahash_request handle that was previously initialized with the + * crypto_ahash_init call. + * + * Updates the message digest state of the &ahash_request handle. The input data + * is pointed to by the scatter/gather list registered in the &ahash_request + * handle + * + * Return: 0 if the message digest update was successful; < 0 if an error + * occurred + */ static inline int crypto_ahash_update(struct ahash_request *req) { return crypto_ahash_reqtfm(req)->update(req); } +/** + * DOC: Asynchronous Hash Request Handle + * + * The &ahash_request data structure contains all pointers to data + * required for the asynchronous cipher operation. This includes the cipher + * handle (which can be used by multiple &ahash_request instances), pointer + * to plaintext and the message digest output buffer, asynchronous callback + * function, etc. It acts as a handle to the ahash_request_* API calls in a + * similar way as ahash handle to the crypto_ahash_* API calls. + */ + +/** + * ahash_request_set_tfm() - update cipher handle reference in request + * @req: request handle to be modified + * @tfm: cipher handle that shall be added to the request handle + * + * Allow the caller to replace the existing ahash handle in the request + * data structure with a different one. + */ static inline void ahash_request_set_tfm(struct ahash_request *req, struct crypto_ahash *tfm) { req->base.tfm = crypto_ahash_tfm(tfm); } +/** + * ahash_request_alloc() - allocate request data structure + * @tfm: cipher handle to be registered with the request + * @gfp: memory allocation flag that is handed to kmalloc by the API call. + * + * Allocate the request data structure that must be used with the ahash + * message digest API calls. During + * the allocation, the provided ahash handle + * is registered in the request data structure. + * + * Return: allocated request handle in case of success; IS_ERR() is true in case + * of an error, PTR_ERR() returns the error code. + */ static inline struct ahash_request *ahash_request_alloc( struct crypto_ahash *tfm, gfp_t gfp) { @@ -230,6 +516,10 @@ static inline struct ahash_request *ahash_request_alloc( return req; } +/** + * ahash_request_free() - zeroize and free the request data structure + * @req: request data structure cipher handle to be freed + */ static inline void ahash_request_free(struct ahash_request *req) { kzfree(req); @@ -241,6 +531,31 @@ static inline struct ahash_request *ahash_request_cast( return container_of(req, struct ahash_request, base); } +/** + * ahash_request_set_callback() - set asynchronous callback function + * @req: request handle + * @flags: specify zero or an ORing of the flags + * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and + * increase the wait queue beyond the initial maximum size; + * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep + * @compl: callback function pointer to be registered with the request handle + * @data: The data pointer refers to memory that is not used by the kernel + * crypto API, but provided to the callback function for it to use. Here, + * the caller can provide a reference to memory the callback function can + * operate on. As the callback function is invoked asynchronously to the + * related functionality, it may need to access data structures of the + * related functionality which can be referenced using this pointer. The + * callback function can access the memory via the "data" field in the + * &crypto_async_request data structure provided to the callback function. + * + * This function allows setting the callback function that is triggered once + * the cipher operation completes. + * + * The callback function is registered with the &ahash_request handle and + * must comply with the following template + * + * void callback_function(struct crypto_async_request *req, int error) + */ static inline void ahash_request_set_callback(struct ahash_request *req, u32 flags, crypto_completion_t compl, @@ -251,6 +566,19 @@ static inline void ahash_request_set_callback(struct ahash_request *req, req->base.flags = flags; } +/** + * ahash_request_set_crypt() - set data buffers + * @req: ahash_request handle to be updated + * @src: source scatter/gather list + * @result: buffer that is filled with the message digest -- the caller must + * ensure that the buffer has sufficient space by, for example, calling + * crypto_ahash_digestsize() + * @nbytes: number of bytes to process from the source scatter/gather list + * + * By using this call, the caller references the source scatter/gather list. + * The source scatter/gather list points to the data the message digest is to + * be calculated for. + */ static inline void ahash_request_set_crypt(struct ahash_request *req, struct scatterlist *src, u8 *result, unsigned int nbytes) @@ -260,6 +588,33 @@ static inline void ahash_request_set_crypt(struct ahash_request *req, req->result = result; } +/** + * DOC: Synchronous Message Digest API + * + * The synchronous message digest API is used with the ciphers of type + * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto) + * + * The message digest API is able to maintain state information for the + * caller. + * + * The synchronous message digest API can store user-related context in in its + * shash_desc request data structure. + */ + +/** + * crypto_alloc_shash() - allocate message digest handle + * @alg_name: is the cra_name / name or cra_driver_name / driver name of the + * message digest cipher + * @type: specifies the type of the cipher + * @mask: specifies the mask for the cipher + * + * Allocate a cipher handle for a message digest. The returned &struct + * crypto_shash is the cipher handle that is required for any subsequent + * API invocation for that message digest. + * + * Return: allocated cipher handle in case of success; IS_ERR() is true in case + * of an error, PTR_ERR() returns the error code. + */ struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type, u32 mask); @@ -268,6 +623,10 @@ static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm) return &tfm->base; } +/** + * crypto_free_shash() - zeroize and free the message digest handle + * @tfm: cipher handle to be freed + */ static inline void crypto_free_shash(struct crypto_shash *tfm) { crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm)); @@ -279,6 +638,15 @@ static inline unsigned int crypto_shash_alignmask( return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm)); } +/** + * crypto_shash_blocksize() - obtain block size for cipher + * @tfm: cipher handle + * + * The block size for the message digest cipher referenced with the cipher + * handle is returned. + * + * Return: block size of cipher + */ static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm) { return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm)); @@ -294,6 +662,15 @@ static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm) return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg); } +/** + * crypto_shash_digestsize() - obtain message digest size + * @tfm: cipher handle + * + * The size for the message digest created by the message digest cipher + * referenced with the cipher handle is returned. + * + * Return: digest size of cipher + */ static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm) { return crypto_shash_alg(tfm)->digestsize; @@ -319,6 +696,21 @@ static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags) crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags); } +/** + * crypto_shash_descsize() - obtain the operational state size + * @tfm: cipher handle + * + * The size of the operational state the cipher needs during operation is + * returned for the hash referenced with the cipher handle. This size is + * required to calculate the memory requirements to allow the caller allocating + * sufficient memory for operational state. + * + * The operational state is defined with struct shash_desc where the size of + * that data structure is to be calculated as + * sizeof(struct shash_desc) + crypto_shash_descsize(alg) + * + * Return: size of the operational state + */ static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm) { return tfm->descsize; @@ -329,29 +721,129 @@ static inline void *shash_desc_ctx(struct shash_desc *desc) return desc->__ctx; } +/** + * crypto_shash_setkey() - set key for message digest + * @tfm: cipher handle + * @key: buffer holding the key + * @keylen: length of the key in bytes + * + * The caller provided key is set for the keyed message digest cipher. The + * cipher handle must point to a keyed message digest cipher in order for this + * function to succeed. + * + * Return: 0 if the setting of the key was successful; < 0 if an error occurred + */ int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key, unsigned int keylen); + +/** + * crypto_shash_digest() - calculate message digest for buffer + * @desc: see crypto_shash_final() + * @data: see crypto_shash_update() + * @len: see crypto_shash_update() + * @out: see crypto_shash_final() + * + * This function is a "short-hand" for the function calls of crypto_shash_init, + * crypto_shash_update and crypto_shash_final. The parameters have the same + * meaning as discussed for those separate three functions. + * + * Return: 0 if the message digest creation was successful; < 0 if an error + * occurred + */ int crypto_shash_digest(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out); +/** + * crypto_shash_export() - extract operational state for message digest + * @desc: reference to the operational state handle whose state is exported + * @out: output buffer of sufficient size that can hold the hash state + * + * This function exports the hash state of the operational state handle into the + * caller-allocated output buffer out which must have sufficient size (e.g. by + * calling crypto_shash_descsize). + * + * Return: 0 if the export creation was successful; < 0 if an error occurred + */ static inline int crypto_shash_export(struct shash_desc *desc, void *out) { return crypto_shash_alg(desc->tfm)->export(desc, out); } +/** + * crypto_shash_import() - import operational state + * @desc: reference to the operational state handle the state imported into + * @in: buffer holding the state + * + * This function imports the hash state into the operational state handle from + * the input buffer. That buffer should have been generated with the + * crypto_ahash_export function. + * + * Return: 0 if the import was successful; < 0 if an error occurred + */ static inline int crypto_shash_import(struct shash_desc *desc, const void *in) { return crypto_shash_alg(desc->tfm)->import(desc, in); } +/** + * crypto_shash_init() - (re)initialize message digest + * @desc: operational state handle that is already filled + * + * The call (re-)initializes the message digest referenced by the + * operational state handle. Any potentially existing state created by + * previous operations is discarded. + * + * Return: 0 if the message digest initialization was successful; < 0 if an + * error occurred + */ static inline int crypto_shash_init(struct shash_desc *desc) { return crypto_shash_alg(desc->tfm)->init(desc); } +/** + * crypto_shash_update() - add data to message digest for processing + * @desc: operational state handle that is already initialized + * @data: input data to be added to the message digest + * @len: length of the input data + * + * Updates the message digest state of the operational state handle. + * + * Return: 0 if the message digest update was successful; < 0 if an error + * occurred + */ int crypto_shash_update(struct shash_desc *desc, const u8 *data, unsigned int len); + +/** + * crypto_shash_final() - calculate message digest + * @desc: operational state handle that is already filled with data + * @out: output buffer filled with the message digest + * + * Finalize the message digest operation and create the message digest + * based on all data added to the cipher handle. The message digest is placed + * into the output buffer. The caller must ensure that the output buffer is + * large enough by using crypto_shash_digestsize. + * + * Return: 0 if the message digest creation was successful; < 0 if an error + * occurred + */ int crypto_shash_final(struct shash_desc *desc, u8 *out); + +/** + * crypto_shash_finup() - calculate message digest of buffer + * @desc: see crypto_shash_final() + * @data: see crypto_shash_update() + * @len: see crypto_shash_update() + * @out: see crypto_shash_final() + * + * This function is a "short-hand" for the function calls of + * crypto_shash_update and crypto_shash_final. The parameters have the same + * meaning as discussed for those separate functions. + * + * Return: 0 if the message digest creation was successful; < 0 if an error + * occurred + */ int crypto_shash_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out); diff --git a/include/crypto/if_alg.h b/include/crypto/if_alg.h index d61c11170213..cd62bf4289e9 100644 --- a/include/crypto/if_alg.h +++ b/include/crypto/if_alg.h @@ -42,6 +42,7 @@ struct af_alg_completion { struct af_alg_control { struct af_alg_iv *iv; int op; + unsigned int aead_assoclen; }; struct af_alg_type { diff --git a/include/crypto/rng.h b/include/crypto/rng.h index c93f9b917925..a16fb10142bf 100644 --- a/include/crypto/rng.h +++ b/include/crypto/rng.h @@ -20,11 +20,38 @@ extern struct crypto_rng *crypto_default_rng; int crypto_get_default_rng(void); void crypto_put_default_rng(void); +/** + * DOC: Random number generator API + * + * The random number generator API is used with the ciphers of type + * CRYPTO_ALG_TYPE_RNG (listed as type "rng" in /proc/crypto) + */ + static inline struct crypto_rng *__crypto_rng_cast(struct crypto_tfm *tfm) { return (struct crypto_rng *)tfm; } +/** + * crypto_alloc_rng() -- allocate RNG handle + * @alg_name: is the cra_name / name or cra_driver_name / driver name of the + * message digest cipher + * @type: specifies the type of the cipher + * @mask: specifies the mask for the cipher + * + * Allocate a cipher handle for a random number generator. The returned struct + * crypto_rng is the cipher handle that is required for any subsequent + * API invocation for that random number generator. + * + * For all random number generators, this call creates a new private copy of + * the random number generator that does not share a state with other + * instances. The only exception is the "krng" random number generator which + * is a kernel crypto API use case for the get_random_bytes() function of the + * /dev/random driver. + * + * Return: allocated cipher handle in case of success; IS_ERR() is true in case + * of an error, PTR_ERR() returns the error code. + */ static inline struct crypto_rng *crypto_alloc_rng(const char *alg_name, u32 type, u32 mask) { @@ -40,6 +67,14 @@ static inline struct crypto_tfm *crypto_rng_tfm(struct crypto_rng *tfm) return &tfm->base; } +/** + * crypto_rng_alg - obtain name of RNG + * @tfm: cipher handle + * + * Return the generic name (cra_name) of the initialized random number generator + * + * Return: generic name string + */ static inline struct rng_alg *crypto_rng_alg(struct crypto_rng *tfm) { return &crypto_rng_tfm(tfm)->__crt_alg->cra_rng; @@ -50,23 +85,68 @@ static inline struct rng_tfm *crypto_rng_crt(struct crypto_rng *tfm) return &crypto_rng_tfm(tfm)->crt_rng; } +/** + * crypto_free_rng() - zeroize and free RNG handle + * @tfm: cipher handle to be freed + */ static inline void crypto_free_rng(struct crypto_rng *tfm) { crypto_free_tfm(crypto_rng_tfm(tfm)); } +/** + * crypto_rng_get_bytes() - get random number + * @tfm: cipher handle + * @rdata: output buffer holding the random numbers + * @dlen: length of the output buffer + * + * This function fills the caller-allocated buffer with random numbers using the + * random number generator referenced by the cipher handle. + * + * Return: > 0 function was successful and returns the number of generated + * bytes; < 0 if an error occurred + */ static inline int crypto_rng_get_bytes(struct crypto_rng *tfm, u8 *rdata, unsigned int dlen) { return crypto_rng_crt(tfm)->rng_gen_random(tfm, rdata, dlen); } +/** + * crypto_rng_reset() - re-initialize the RNG + * @tfm: cipher handle + * @seed: seed input data + * @slen: length of the seed input data + * + * The reset function completely re-initializes the random number generator + * referenced by the cipher handle by clearing the current state. The new state + * is initialized with the caller provided seed or automatically, depending + * on the random number generator type (the ANSI X9.31 RNG requires + * caller-provided seed, the SP800-90A DRBGs perform an automatic seeding). + * The seed is provided as a parameter to this function call. The provided seed + * should have the length of the seed size defined for the random number + * generator as defined by crypto_rng_seedsize. + * + * Return: 0 if the setting of the key was successful; < 0 if an error occurred + */ static inline int crypto_rng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen) { return crypto_rng_crt(tfm)->rng_reset(tfm, seed, slen); } +/** + * crypto_rng_seedsize() - obtain seed size of RNG + * @tfm: cipher handle + * + * The function returns the seed size for the random number generator + * referenced by the cipher handle. This value may be zero if the random + * number generator does not implement or require a reseeding. For example, + * the SP800-90A DRBGs implement an automated reseeding after reaching a + * pre-defined threshold. + * + * Return: seed size for the random number generator + */ static inline int crypto_rng_seedsize(struct crypto_rng *tfm) { return crypto_rng_alg(tfm)->seedsize; diff --git a/include/linux/crypto.h b/include/linux/crypto.h index d45e949699ea..9c8776d0ada8 100644 --- a/include/linux/crypto.h +++ b/include/linux/crypto.h @@ -26,6 +26,19 @@ #include <linux/uaccess.h> /* + * Autoloaded crypto modules should only use a prefixed name to avoid allowing + * arbitrary modules to be loaded. Loading from userspace may still need the + * unprefixed names, so retains those aliases as well. + * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 + * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro + * expands twice on the same line. Instead, use a separate base name for the + * alias. + */ +#define MODULE_ALIAS_CRYPTO(name) \ + __MODULE_INFO(alias, alias_userspace, name); \ + __MODULE_INFO(alias, alias_crypto, "crypto-" name) + +/* * Algorithm masks and types. */ #define CRYPTO_ALG_TYPE_MASK 0x0000000f @@ -127,6 +140,13 @@ struct skcipher_givcrypt_request; typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); +/** + * DOC: Block Cipher Context Data Structures + * + * These data structures define the operating context for each block cipher + * type. + */ + struct crypto_async_request { struct list_head list; crypto_completion_t complete; @@ -194,9 +214,63 @@ struct hash_desc { u32 flags; }; -/* - * Algorithms: modular crypto algorithm implementations, managed - * via crypto_register_alg() and crypto_unregister_alg(). +/** + * DOC: Block Cipher Algorithm Definitions + * + * These data structures define modular crypto algorithm implementations, + * managed via crypto_register_alg() and crypto_unregister_alg(). + */ + +/** + * struct ablkcipher_alg - asynchronous block cipher definition + * @min_keysize: Minimum key size supported by the transformation. This is the + * smallest key length supported by this transformation algorithm. + * This must be set to one of the pre-defined values as this is + * not hardware specific. Possible values for this field can be + * found via git grep "_MIN_KEY_SIZE" include/crypto/ + * @max_keysize: Maximum key size supported by the transformation. This is the + * largest key length supported by this transformation algorithm. + * This must be set to one of the pre-defined values as this is + * not hardware specific. Possible values for this field can be + * found via git grep "_MAX_KEY_SIZE" include/crypto/ + * @setkey: Set key for the transformation. This function is used to either + * program a supplied key into the hardware or store the key in the + * transformation context for programming it later. Note that this + * function does modify the transformation context. This function can + * be called multiple times during the existence of the transformation + * object, so one must make sure the key is properly reprogrammed into + * the hardware. This function is also responsible for checking the key + * length for validity. In case a software fallback was put in place in + * the @cra_init call, this function might need to use the fallback if + * the algorithm doesn't support all of the key sizes. + * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt + * the supplied scatterlist containing the blocks of data. The crypto + * API consumer is responsible for aligning the entries of the + * scatterlist properly and making sure the chunks are correctly + * sized. In case a software fallback was put in place in the + * @cra_init call, this function might need to use the fallback if + * the algorithm doesn't support all of the key sizes. In case the + * key was stored in transformation context, the key might need to be + * re-programmed into the hardware in this function. This function + * shall not modify the transformation context, as this function may + * be called in parallel with the same transformation object. + * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt + * and the conditions are exactly the same. + * @givencrypt: Update the IV for encryption. With this function, a cipher + * implementation may provide the function on how to update the IV + * for encryption. + * @givdecrypt: Update the IV for decryption. This is the reverse of + * @givencrypt . + * @geniv: The transformation implementation may use an "IV generator" provided + * by the kernel crypto API. Several use cases have a predefined + * approach how IVs are to be updated. For such use cases, the kernel + * crypto API provides ready-to-use implementations that can be + * referenced with this variable. + * @ivsize: IV size applicable for transformation. The consumer must provide an + * IV of exactly that size to perform the encrypt or decrypt operation. + * + * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are + * mandatory and must be filled. */ struct ablkcipher_alg { int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, @@ -213,6 +287,32 @@ struct ablkcipher_alg { unsigned int ivsize; }; +/** + * struct aead_alg - AEAD cipher definition + * @maxauthsize: Set the maximum authentication tag size supported by the + * transformation. A transformation may support smaller tag sizes. + * As the authentication tag is a message digest to ensure the + * integrity of the encrypted data, a consumer typically wants the + * largest authentication tag possible as defined by this + * variable. + * @setauthsize: Set authentication size for the AEAD transformation. This + * function is used to specify the consumer requested size of the + * authentication tag to be either generated by the transformation + * during encryption or the size of the authentication tag to be + * supplied during the decryption operation. This function is also + * responsible for checking the authentication tag size for + * validity. + * @setkey: see struct ablkcipher_alg + * @encrypt: see struct ablkcipher_alg + * @decrypt: see struct ablkcipher_alg + * @givencrypt: see struct ablkcipher_alg + * @givdecrypt: see struct ablkcipher_alg + * @geniv: see struct ablkcipher_alg + * @ivsize: see struct ablkcipher_alg + * + * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are + * mandatory and must be filled. + */ struct aead_alg { int (*setkey)(struct crypto_aead *tfm, const u8 *key, unsigned int keylen); @@ -228,6 +328,18 @@ struct aead_alg { unsigned int maxauthsize; }; +/** + * struct blkcipher_alg - synchronous block cipher definition + * @min_keysize: see struct ablkcipher_alg + * @max_keysize: see struct ablkcipher_alg + * @setkey: see struct ablkcipher_alg + * @encrypt: see struct ablkcipher_alg + * @decrypt: see struct ablkcipher_alg + * @geniv: see struct ablkcipher_alg + * @ivsize: see struct ablkcipher_alg + * + * All fields except @geniv and @ivsize are mandatory and must be filled. + */ struct blkcipher_alg { int (*setkey)(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen); @@ -245,6 +357,53 @@ struct blkcipher_alg { unsigned int ivsize; }; +/** + * struct cipher_alg - single-block symmetric ciphers definition + * @cia_min_keysize: Minimum key size supported by the transformation. This is + * the smallest key length supported by this transformation + * algorithm. This must be set to one of the pre-defined + * values as this is not hardware specific. Possible values + * for this field can be found via git grep "_MIN_KEY_SIZE" + * include/crypto/ + * @cia_max_keysize: Maximum key size supported by the transformation. This is + * the largest key length supported by this transformation + * algorithm. This must be set to one of the pre-defined values + * as this is not hardware specific. Possible values for this + * field can be found via git grep "_MAX_KEY_SIZE" + * include/crypto/ + * @cia_setkey: Set key for the transformation. This function is used to either + * program a supplied key into the hardware or store the key in the + * transformation context for programming it later. Note that this + * function does modify the transformation context. This function + * can be called multiple times during the existence of the + * transformation object, so one must make sure the key is properly + * reprogrammed into the hardware. This function is also + * responsible for checking the key length for validity. + * @cia_encrypt: Encrypt a single block. This function is used to encrypt a + * single block of data, which must be @cra_blocksize big. This + * always operates on a full @cra_blocksize and it is not possible + * to encrypt a block of smaller size. The supplied buffers must + * therefore also be at least of @cra_blocksize size. Both the + * input and output buffers are always aligned to @cra_alignmask. + * In case either of the input or output buffer supplied by user + * of the crypto API is not aligned to @cra_alignmask, the crypto + * API will re-align the buffers. The re-alignment means that a + * new buffer will be allocated, the data will be copied into the + * new buffer, then the processing will happen on the new buffer, + * then the data will be copied back into the original buffer and + * finally the new buffer will be freed. In case a software + * fallback was put in place in the @cra_init call, this function + * might need to use the fallback if the algorithm doesn't support + * all of the key sizes. In case the key was stored in + * transformation context, the key might need to be re-programmed + * into the hardware in this function. This function shall not + * modify the transformation context, as this function may be + * called in parallel with the same transformation object. + * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to + * @cia_encrypt, and the conditions are exactly the same. + * + * All fields are mandatory and must be filled. + */ struct cipher_alg { unsigned int cia_min_keysize; unsigned int cia_max_keysize; @@ -261,6 +420,25 @@ struct compress_alg { unsigned int slen, u8 *dst, unsigned int *dlen); }; +/** + * struct rng_alg - random number generator definition + * @rng_make_random: The function defined by this variable obtains a random + * number. The random number generator transform must generate + * the random number out of the context provided with this + * call. + * @rng_reset: Reset of the random number generator by clearing the entire state. + * With the invocation of this function call, the random number + * generator shall completely reinitialize its state. If the random + * number generator requires a seed for setting up a new state, + * the seed must be provided by the consumer while invoking this + * function. The required size of the seed is defined with + * @seedsize . + * @seedsize: The seed size required for a random number generator + * initialization defined with this variable. Some random number + * generators like the SP800-90A DRBG does not require a seed as the + * seeding is implemented internally without the need of support by + * the consumer. In this case, the seed size is set to zero. + */ struct rng_alg { int (*rng_make_random)(struct crypto_rng *tfm, u8 *rdata, unsigned int dlen); @@ -277,6 +455,81 @@ struct rng_alg { #define cra_compress cra_u.compress #define cra_rng cra_u.rng +/** + * struct crypto_alg - definition of a cryptograpic cipher algorithm + * @cra_flags: Flags describing this transformation. See include/linux/crypto.h + * CRYPTO_ALG_* flags for the flags which go in here. Those are + * used for fine-tuning the description of the transformation + * algorithm. + * @cra_blocksize: Minimum block size of this transformation. The size in bytes + * of the smallest possible unit which can be transformed with + * this algorithm. The users must respect this value. + * In case of HASH transformation, it is possible for a smaller + * block than @cra_blocksize to be passed to the crypto API for + * transformation, in case of any other transformation type, an + * error will be returned upon any attempt to transform smaller + * than @cra_blocksize chunks. + * @cra_ctxsize: Size of the operational context of the transformation. This + * value informs the kernel crypto API about the memory size + * needed to be allocated for the transformation context. + * @cra_alignmask: Alignment mask for the input and output data buffer. The data + * buffer containing the input data for the algorithm must be + * aligned to this alignment mask. The data buffer for the + * output data must be aligned to this alignment mask. Note that + * the Crypto API will do the re-alignment in software, but + * only under special conditions and there is a performance hit. + * The re-alignment happens at these occasions for different + * @cra_u types: cipher -- For both input data and output data + * buffer; ahash -- For output hash destination buf; shash -- + * For output hash destination buf. + * This is needed on hardware which is flawed by design and + * cannot pick data from arbitrary addresses. + * @cra_priority: Priority of this transformation implementation. In case + * multiple transformations with same @cra_name are available to + * the Crypto API, the kernel will use the one with highest + * @cra_priority. + * @cra_name: Generic name (usable by multiple implementations) of the + * transformation algorithm. This is the name of the transformation + * itself. This field is used by the kernel when looking up the + * providers of particular transformation. + * @cra_driver_name: Unique name of the transformation provider. This is the + * name of the provider of the transformation. This can be any + * arbitrary value, but in the usual case, this contains the + * name of the chip or provider and the name of the + * transformation algorithm. + * @cra_type: Type of the cryptographic transformation. This is a pointer to + * struct crypto_type, which implements callbacks common for all + * trasnformation types. There are multiple options: + * &crypto_blkcipher_type, &crypto_ablkcipher_type, + * &crypto_ahash_type, &crypto_aead_type, &crypto_rng_type. + * This field might be empty. In that case, there are no common + * callbacks. This is the case for: cipher, compress, shash. + * @cra_u: Callbacks implementing the transformation. This is a union of + * multiple structures. Depending on the type of transformation selected + * by @cra_type and @cra_flags above, the associated structure must be + * filled with callbacks. This field might be empty. This is the case + * for ahash, shash. + * @cra_init: Initialize the cryptographic transformation object. This function + * is used to initialize the cryptographic transformation object. + * This function is called only once at the instantiation time, right + * after the transformation context was allocated. In case the + * cryptographic hardware has some special requirements which need to + * be handled by software, this function shall check for the precise + * requirement of the transformation and put any software fallbacks + * in place. + * @cra_exit: Deinitialize the cryptographic transformation object. This is a + * counterpart to @cra_init, used to remove various changes set in + * @cra_init. + * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE + * @cra_list: internally used + * @cra_users: internally used + * @cra_refcnt: internally used + * @cra_destroy: internally used + * + * The struct crypto_alg describes a generic Crypto API algorithm and is common + * for all of the transformations. Any variable not documented here shall not + * be used by a cipher implementation as it is internal to the Crypto API. + */ struct crypto_alg { struct list_head cra_list; struct list_head cra_users; @@ -581,6 +834,50 @@ static inline u32 crypto_skcipher_mask(u32 mask) return mask; } +/** + * DOC: Asynchronous Block Cipher API + * + * Asynchronous block cipher API is used with the ciphers of type + * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto). + * + * Asynchronous cipher operations imply that the function invocation for a + * cipher request returns immediately before the completion of the operation. + * The cipher request is scheduled as a separate kernel thread and therefore + * load-balanced on the different CPUs via the process scheduler. To allow + * the kernel crypto API to inform the caller about the completion of a cipher + * request, the caller must provide a callback function. That function is + * invoked with the cipher handle when the request completes. + * + * To support the asynchronous operation, additional information than just the + * cipher handle must be supplied to the kernel crypto API. That additional + * information is given by filling in the ablkcipher_request data structure. + * + * For the asynchronous block cipher API, the state is maintained with the tfm + * cipher handle. A single tfm can be used across multiple calls and in + * parallel. For asynchronous block cipher calls, context data supplied and + * only used by the caller can be referenced the request data structure in + * addition to the IV used for the cipher request. The maintenance of such + * state information would be important for a crypto driver implementer to + * have, because when calling the callback function upon completion of the + * cipher operation, that callback function may need some information about + * which operation just finished if it invoked multiple in parallel. This + * state information is unused by the kernel crypto API. + */ + +/** + * crypto_alloc_ablkcipher() - allocate asynchronous block cipher handle + * @alg_name: is the cra_name / name or cra_driver_name / driver name of the + * ablkcipher cipher + * @type: specifies the type of the cipher + * @mask: specifies the mask for the cipher + * + * Allocate a cipher handle for an ablkcipher. The returned struct + * crypto_ablkcipher is the cipher handle that is required for any subsequent + * API invocation for that ablkcipher. + * + * Return: allocated cipher handle in case of success; IS_ERR() is true in case + * of an error, PTR_ERR() returns the error code. + */ struct crypto_ablkcipher *crypto_alloc_ablkcipher(const char *alg_name, u32 type, u32 mask); @@ -590,11 +887,25 @@ static inline struct crypto_tfm *crypto_ablkcipher_tfm( return &tfm->base; } +/** + * crypto_free_ablkcipher() - zeroize and free cipher handle + * @tfm: cipher handle to be freed + */ static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm) { crypto_free_tfm(crypto_ablkcipher_tfm(tfm)); } +/** + * crypto_has_ablkcipher() - Search for the availability of an ablkcipher. + * @alg_name: is the cra_name / name or cra_driver_name / driver name of the + * ablkcipher + * @type: specifies the type of the cipher + * @mask: specifies the mask for the cipher + * + * Return: true when the ablkcipher is known to the kernel crypto API; false + * otherwise + */ static inline int crypto_has_ablkcipher(const char *alg_name, u32 type, u32 mask) { @@ -608,12 +919,31 @@ static inline struct ablkcipher_tfm *crypto_ablkcipher_crt( return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher; } +/** + * crypto_ablkcipher_ivsize() - obtain IV size + * @tfm: cipher handle + * + * The size of the IV for the ablkcipher referenced by the cipher handle is + * returned. This IV size may be zero if the cipher does not need an IV. + * + * Return: IV size in bytes + */ static inline unsigned int crypto_ablkcipher_ivsize( struct crypto_ablkcipher *tfm) { return crypto_ablkcipher_crt(tfm)->ivsize; } +/** + * crypto_ablkcipher_blocksize() - obtain block size of cipher + * @tfm: cipher handle + * + * The block size for the ablkcipher referenced with the cipher handle is + * returned. The caller may use that information to allocate appropriate + * memory for the data returned by the encryption or decryption operation + * + * Return: block size of cipher + */ static inline unsigned int crypto_ablkcipher_blocksize( struct crypto_ablkcipher *tfm) { @@ -643,6 +973,22 @@ static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm, crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags); } +/** + * crypto_ablkcipher_setkey() - set key for cipher + * @tfm: cipher handle + * @key: buffer holding the key + * @keylen: length of the key in bytes + * + * The caller provided key is set for the ablkcipher referenced by the cipher + * handle. + * + * Note, the key length determines the cipher type. Many block ciphers implement + * different cipher modes depending on the key size, such as AES-128 vs AES-192 + * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 + * is performed. + * + * Return: 0 if the setting of the key was successful; < 0 if an error occurred + */ static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm, const u8 *key, unsigned int keylen) { @@ -651,12 +997,32 @@ static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm, return crt->setkey(crt->base, key, keylen); } +/** + * crypto_ablkcipher_reqtfm() - obtain cipher handle from request + * @req: ablkcipher_request out of which the cipher handle is to be obtained + * + * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request + * data structure. + * + * Return: crypto_ablkcipher handle + */ static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm( struct ablkcipher_request *req) { return __crypto_ablkcipher_cast(req->base.tfm); } +/** + * crypto_ablkcipher_encrypt() - encrypt plaintext + * @req: reference to the ablkcipher_request handle that holds all information + * needed to perform the cipher operation + * + * Encrypt plaintext data using the ablkcipher_request handle. That data + * structure and how it is filled with data is discussed with the + * ablkcipher_request_* functions. + * + * Return: 0 if the cipher operation was successful; < 0 if an error occurred + */ static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req) { struct ablkcipher_tfm *crt = @@ -664,6 +1030,17 @@ static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req) return crt->encrypt(req); } +/** + * crypto_ablkcipher_decrypt() - decrypt ciphertext + * @req: reference to the ablkcipher_request handle that holds all information + * needed to perform the cipher operation + * + * Decrypt ciphertext data using the ablkcipher_request handle. That data + * structure and how it is filled with data is discussed with the + * ablkcipher_request_* functions. + * + * Return: 0 if the cipher operation was successful; < 0 if an error occurred + */ static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req) { struct ablkcipher_tfm *crt = @@ -671,12 +1048,37 @@ static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req) return crt->decrypt(req); } +/** + * DOC: Asynchronous Cipher Request Handle + * + * The ablkcipher_request data structure contains all pointers to data + * required for the asynchronous cipher operation. This includes the cipher + * handle (which can be used by multiple ablkcipher_request instances), pointer + * to plaintext and ciphertext, asynchronous callback function, etc. It acts + * as a handle to the ablkcipher_request_* API calls in a similar way as + * ablkcipher handle to the crypto_ablkcipher_* API calls. + */ + +/** + * crypto_ablkcipher_reqsize() - obtain size of the request data structure + * @tfm: cipher handle + * + * Return: number of bytes + */ static inline unsigned int crypto_ablkcipher_reqsize( struct crypto_ablkcipher *tfm) { return crypto_ablkcipher_crt(tfm)->reqsize; } +/** + * ablkcipher_request_set_tfm() - update cipher handle reference in request + * @req: request handle to be modified + * @tfm: cipher handle that shall be added to the request handle + * + * Allow the caller to replace the existing ablkcipher handle in the request + * data structure with a different one. + */ static inline void ablkcipher_request_set_tfm( struct ablkcipher_request *req, struct crypto_ablkcipher *tfm) { @@ -689,6 +1091,18 @@ static inline struct ablkcipher_request *ablkcipher_request_cast( return container_of(req, struct ablkcipher_request, base); } +/** + * ablkcipher_request_alloc() - allocate request data structure + * @tfm: cipher handle to be registered with the request + * @gfp: memory allocation flag that is handed to kmalloc by the API call. + * + * Allocate the request data structure that must be used with the ablkcipher + * encrypt and decrypt API calls. During the allocation, the provided ablkcipher + * handle is registered in the request data structure. + * + * Return: allocated request handle in case of success; IS_ERR() is true in case + * of an error, PTR_ERR() returns the error code. + */ static inline struct ablkcipher_request *ablkcipher_request_alloc( struct crypto_ablkcipher *tfm, gfp_t gfp) { @@ -703,11 +1117,40 @@ static inline struct ablkcipher_request *ablkcipher_request_alloc( return req; } +/** + * ablkcipher_request_free() - zeroize and free request data structure + * @req: request data structure cipher handle to be freed + */ static inline void ablkcipher_request_free(struct ablkcipher_request *req) { kzfree(req); } +/** + * ablkcipher_request_set_callback() - set asynchronous callback function + * @req: request handle + * @flags: specify zero or an ORing of the flags + * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and + * increase the wait queue beyond the initial maximum size; + * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep + * @compl: callback function pointer to be registered with the request handle + * @data: The data pointer refers to memory that is not used by the kernel + * crypto API, but provided to the callback function for it to use. Here, + * the caller can provide a reference to memory the callback function can + * operate on. As the callback function is invoked asynchronously to the + * related functionality, it may need to access data structures of the + * related functionality which can be referenced using this pointer. The + * callback function can access the memory via the "data" field in the + * crypto_async_request data structure provided to the callback function. + * + * This function allows setting the callback function that is triggered once the + * cipher operation completes. + * + * The callback function is registered with the ablkcipher_request handle and + * must comply with the following template: + * + * void callback_function(struct crypto_async_request *req, int error) + */ static inline void ablkcipher_request_set_callback( struct ablkcipher_request *req, u32 flags, crypto_completion_t compl, void *data) @@ -717,6 +1160,22 @@ static inline void ablkcipher_request_set_callback( req->base.flags = flags; } +/** + * ablkcipher_request_set_crypt() - set data buffers + * @req: request handle + * @src: source scatter / gather list + * @dst: destination scatter / gather list + * @nbytes: number of bytes to process from @src + * @iv: IV for the cipher operation which must comply with the IV size defined + * by crypto_ablkcipher_ivsize + * + * This function allows setting of the source data and destination data + * scatter / gather lists. + * + * For encryption, the source is treated as the plaintext and the + * destination is the ciphertext. For a decryption operation, the use is + * reversed: the source is the ciphertext and the destination is the plaintext. + */ static inline void ablkcipher_request_set_crypt( struct ablkcipher_request *req, struct scatterlist *src, struct scatterlist *dst, @@ -728,11 +1187,55 @@ static inline void ablkcipher_request_set_crypt( req->info = iv; } +/** + * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API + * + * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD + * (listed as type "aead" in /proc/crypto) + * + * The most prominent examples for this type of encryption is GCM and CCM. + * However, the kernel supports other types of AEAD ciphers which are defined + * with the following cipher string: + * + * authenc(keyed message digest, block cipher) + * + * For example: authenc(hmac(sha256), cbc(aes)) + * + * The example code provided for the asynchronous block cipher operation + * applies here as well. Naturally all *ablkcipher* symbols must be exchanged + * the *aead* pendants discussed in the following. In addtion, for the AEAD + * operation, the aead_request_set_assoc function must be used to set the + * pointer to the associated data memory location before performing the + * encryption or decryption operation. In case of an encryption, the associated + * data memory is filled during the encryption operation. For decryption, the + * associated data memory must contain data that is used to verify the integrity + * of the decrypted data. Another deviation from the asynchronous block cipher + * operation is that the caller should explicitly check for -EBADMSG of the + * crypto_aead_decrypt. That error indicates an authentication error, i.e. + * a breach in the integrity of the message. In essence, that -EBADMSG error + * code is the key bonus an AEAD cipher has over "standard" block chaining + * modes. + */ + static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm) { return (struct crypto_aead *)tfm; } +/** + * crypto_alloc_aead() - allocate AEAD cipher handle + * @alg_name: is the cra_name / name or cra_driver_name / driver name of the + * AEAD cipher + * @type: specifies the type of the cipher + * @mask: specifies the mask for the cipher + * + * Allocate a cipher handle for an AEAD. The returned struct + * crypto_aead is the cipher handle that is required for any subsequent + * API invocation for that AEAD. + * + * Return: allocated cipher handle in case of success; IS_ERR() is true in case + * of an error, PTR_ERR() returns the error code. + */ struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm) @@ -740,6 +1243,10 @@ static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm) return &tfm->base; } +/** + * crypto_free_aead() - zeroize and free aead handle + * @tfm: cipher handle to be freed + */ static inline void crypto_free_aead(struct crypto_aead *tfm) { crypto_free_tfm(crypto_aead_tfm(tfm)); @@ -750,16 +1257,47 @@ static inline struct aead_tfm *crypto_aead_crt(struct crypto_aead *tfm) return &crypto_aead_tfm(tfm)->crt_aead; } +/** + * crypto_aead_ivsize() - obtain IV size + * @tfm: cipher handle + * + * The size of the IV for the aead referenced by the cipher handle is + * returned. This IV size may be zero if the cipher does not need an IV. + * + * Return: IV size in bytes + */ static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm) { return crypto_aead_crt(tfm)->ivsize; } +/** + * crypto_aead_authsize() - obtain maximum authentication data size + * @tfm: cipher handle + * + * The maximum size of the authentication data for the AEAD cipher referenced + * by the AEAD cipher handle is returned. The authentication data size may be + * zero if the cipher implements a hard-coded maximum. + * + * The authentication data may also be known as "tag value". + * + * Return: authentication data size / tag size in bytes + */ static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm) { return crypto_aead_crt(tfm)->authsize; } +/** + * crypto_aead_blocksize() - obtain block size of cipher + * @tfm: cipher handle + * + * The block size for the AEAD referenced with the cipher handle is returned. + * The caller may use that information to allocate appropriate memory for the + * data returned by the encryption or decryption operation + * + * Return: block size of cipher + */ static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm) { return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm)); @@ -785,6 +1323,22 @@ static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags) crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags); } +/** + * crypto_aead_setkey() - set key for cipher + * @tfm: cipher handle + * @key: buffer holding the key + * @keylen: length of the key in bytes + * + * The caller provided key is set for the AEAD referenced by the cipher + * handle. + * + * Note, the key length determines the cipher type. Many block ciphers implement + * different cipher modes depending on the key size, such as AES-128 vs AES-192 + * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 + * is performed. + * + * Return: 0 if the setting of the key was successful; < 0 if an error occurred + */ static inline int crypto_aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { @@ -793,6 +1347,16 @@ static inline int crypto_aead_setkey(struct crypto_aead *tfm, const u8 *key, return crt->setkey(crt->base, key, keylen); } +/** + * crypto_aead_setauthsize() - set authentication data size + * @tfm: cipher handle + * @authsize: size of the authentication data / tag in bytes + * + * Set the authentication data size / tag size. AEAD requires an authentication + * tag (or MAC) in addition to the associated data. + * + * Return: 0 if the setting of the key was successful; < 0 if an error occurred + */ int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize); static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req) @@ -800,27 +1364,105 @@ static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req) return __crypto_aead_cast(req->base.tfm); } +/** + * crypto_aead_encrypt() - encrypt plaintext + * @req: reference to the aead_request handle that holds all information + * needed to perform the cipher operation + * + * Encrypt plaintext data using the aead_request handle. That data structure + * and how it is filled with data is discussed with the aead_request_* + * functions. + * + * IMPORTANT NOTE The encryption operation creates the authentication data / + * tag. That data is concatenated with the created ciphertext. + * The ciphertext memory size is therefore the given number of + * block cipher blocks + the size defined by the + * crypto_aead_setauthsize invocation. The caller must ensure + * that sufficient memory is available for the ciphertext and + * the authentication tag. + * + * Return: 0 if the cipher operation was successful; < 0 if an error occurred + */ static inline int crypto_aead_encrypt(struct aead_request *req) { return crypto_aead_crt(crypto_aead_reqtfm(req))->encrypt(req); } +/** + * crypto_aead_decrypt() - decrypt ciphertext + * @req: reference to the ablkcipher_request handle that holds all information + * needed to perform the cipher operation + * + * Decrypt ciphertext data using the aead_request handle. That data structure + * and how it is filled with data is discussed with the aead_request_* + * functions. + * + * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the + * authentication data / tag. That authentication data / tag + * must have the size defined by the crypto_aead_setauthsize + * invocation. + * + * + * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD + * cipher operation performs the authentication of the data during the + * decryption operation. Therefore, the function returns this error if + * the authentication of the ciphertext was unsuccessful (i.e. the + * integrity of the ciphertext or the associated data was violated); + * < 0 if an error occurred. + */ static inline int crypto_aead_decrypt(struct aead_request *req) { return crypto_aead_crt(crypto_aead_reqtfm(req))->decrypt(req); } +/** + * DOC: Asynchronous AEAD Request Handle + * + * The aead_request data structure contains all pointers to data required for + * the AEAD cipher operation. This includes the cipher handle (which can be + * used by multiple aead_request instances), pointer to plaintext and + * ciphertext, asynchronous callback function, etc. It acts as a handle to the + * aead_request_* API calls in a similar way as AEAD handle to the + * crypto_aead_* API calls. + */ + +/** + * crypto_aead_reqsize() - obtain size of the request data structure + * @tfm: cipher handle + * + * Return: number of bytes + */ static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm) { return crypto_aead_crt(tfm)->reqsize; } +/** + * aead_request_set_tfm() - update cipher handle reference in request + * @req: request handle to be modified + * @tfm: cipher handle that shall be added to the request handle + * + * Allow the caller to replace the existing aead handle in the request + * data structure with a different one. + */ static inline void aead_request_set_tfm(struct aead_request *req, struct crypto_aead *tfm) { req->base.tfm = crypto_aead_tfm(crypto_aead_crt(tfm)->base); } +/** + * aead_request_alloc() - allocate request data structure + * @tfm: cipher handle to be registered with the request + * @gfp: memory allocation flag that is handed to kmalloc by the API call. + * + * Allocate the request data structure that must be used with the AEAD + * encrypt and decrypt API calls. During the allocation, the provided aead + * handle is registered in the request data structure. + * + * Return: allocated request handle in case of success; IS_ERR() is true in case + * of an error, PTR_ERR() returns the error code. + */ static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm, gfp_t gfp) { @@ -834,11 +1476,40 @@ static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm, return req; } +/** + * aead_request_free() - zeroize and free request data structure + * @req: request data structure cipher handle to be freed + */ static inline void aead_request_free(struct aead_request *req) { kzfree(req); } +/** + * aead_request_set_callback() - set asynchronous callback function + * @req: request handle + * @flags: specify zero or an ORing of the flags + * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and + * increase the wait queue beyond the initial maximum size; + * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep + * @compl: callback function pointer to be registered with the request handle + * @data: The data pointer refers to memory that is not used by the kernel + * crypto API, but provided to the callback function for it to use. Here, + * the caller can provide a reference to memory the callback function can + * operate on. As the callback function is invoked asynchronously to the + * related functionality, it may need to access data structures of the + * related functionality which can be referenced using this pointer. The + * callback function can access the memory via the "data" field in the + * crypto_async_request data structure provided to the callback function. + * + * Setting the callback function that is triggered once the cipher operation + * completes + * + * The callback function is registered with the aead_request handle and + * must comply with the following template: + * + * void callback_function(struct crypto_async_request *req, int error) + */ static inline void aead_request_set_callback(struct aead_request *req, u32 flags, crypto_completion_t compl, @@ -849,6 +1520,36 @@ static inline void aead_request_set_callback(struct aead_request *req, req->base.flags = flags; } +/** + * aead_request_set_crypt - set data buffers + * @req: request handle + * @src: source scatter / gather list + * @dst: destination scatter / gather list + * @cryptlen: number of bytes to process from @src + * @iv: IV for the cipher operation which must comply with the IV size defined + * by crypto_aead_ivsize() + * + * Setting the source data and destination data scatter / gather lists. + * + * For encryption, the source is treated as the plaintext and the + * destination is the ciphertext. For a decryption operation, the use is + * reversed: the source is the ciphertext and the destination is the plaintext. + * + * IMPORTANT NOTE AEAD requires an authentication tag (MAC). For decryption, + * the caller must concatenate the ciphertext followed by the + * authentication tag and provide the entire data stream to the + * decryption operation (i.e. the data length used for the + * initialization of the scatterlist and the data length for the + * decryption operation is identical). For encryption, however, + * the authentication tag is created while encrypting the data. + * The destination buffer must hold sufficient space for the + * ciphertext and the authentication tag while the encryption + * invocation must only point to the plaintext data size. The + * following code snippet illustrates the memory usage + * buffer = kmalloc(ptbuflen + (enc ? authsize : 0)); + * sg_init_one(&sg, buffer, ptbuflen + (enc ? authsize : 0)); + * aead_request_set_crypt(req, &sg, &sg, ptbuflen, iv); + */ static inline void aead_request_set_crypt(struct aead_request *req, struct scatterlist *src, struct scatterlist *dst, @@ -860,6 +1561,15 @@ static inline void aead_request_set_crypt(struct aead_request *req, req->iv = iv; } +/** + * aead_request_set_assoc() - set the associated data scatter / gather list + * @req: request handle + * @assoc: associated data scatter / gather list + * @assoclen: number of bytes to process from @assoc + * + * For encryption, the memory is filled with the associated data. For + * decryption, the memory must point to the associated data. + */ static inline void aead_request_set_assoc(struct aead_request *req, struct scatterlist *assoc, unsigned int assoclen) @@ -868,6 +1578,36 @@ static inline void aead_request_set_assoc(struct aead_request *req, req->assoclen = assoclen; } +/** + * DOC: Synchronous Block Cipher API + * + * The synchronous block cipher API is used with the ciphers of type + * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto) + * + * Synchronous calls, have a context in the tfm. But since a single tfm can be + * used in multiple calls and in parallel, this info should not be changeable + * (unless a lock is used). This applies, for example, to the symmetric key. + * However, the IV is changeable, so there is an iv field in blkcipher_tfm + * structure for synchronous blkcipher api. So, its the only state info that can + * be kept for synchronous calls without using a big lock across a tfm. + * + * The block cipher API allows the use of a complete cipher, i.e. a cipher + * consisting of a template (a block chaining mode) and a single block cipher + * primitive (e.g. AES). + * + * The plaintext data buffer and the ciphertext data buffer are pointed to + * by using scatter/gather lists. The cipher operation is performed + * on all segments of the provided scatter/gather lists. + * + * The kernel crypto API supports a cipher operation "in-place" which means that + * the caller may provide the same scatter/gather list for the plaintext and + * cipher text. After the completion of the cipher operation, the plaintext + * data is replaced with the ciphertext data in case of an encryption and vice + * versa for a decryption. The caller must ensure that the scatter/gather lists + * for the output data point to sufficiently large buffers, i.e. multiples of + * the block size of the cipher. + */ + static inline struct crypto_blkcipher *__crypto_blkcipher_cast( struct crypto_tfm *tfm) { @@ -881,6 +1621,20 @@ static inline struct crypto_blkcipher *crypto_blkcipher_cast( return __crypto_blkcipher_cast(tfm); } +/** + * crypto_alloc_blkcipher() - allocate synchronous block cipher handle + * @alg_name: is the cra_name / name or cra_driver_name / driver name of the + * blkcipher cipher + * @type: specifies the type of the cipher + * @mask: specifies the mask for the cipher + * + * Allocate a cipher handle for a block cipher. The returned struct + * crypto_blkcipher is the cipher handle that is required for any subsequent + * API invocation for that block cipher. + * + * Return: allocated cipher handle in case of success; IS_ERR() is true in case + * of an error, PTR_ERR() returns the error code. + */ static inline struct crypto_blkcipher *crypto_alloc_blkcipher( const char *alg_name, u32 type, u32 mask) { @@ -897,11 +1651,25 @@ static inline struct crypto_tfm *crypto_blkcipher_tfm( return &tfm->base; } +/** + * crypto_free_blkcipher() - zeroize and free the block cipher handle + * @tfm: cipher handle to be freed + */ static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm) { crypto_free_tfm(crypto_blkcipher_tfm(tfm)); } +/** + * crypto_has_blkcipher() - Search for the availability of a block cipher + * @alg_name: is the cra_name / name or cra_driver_name / driver name of the + * block cipher + * @type: specifies the type of the cipher + * @mask: specifies the mask for the cipher + * + * Return: true when the block cipher is known to the kernel crypto API; false + * otherwise + */ static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; @@ -911,6 +1679,12 @@ static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask) return crypto_has_alg(alg_name, type, mask); } +/** + * crypto_blkcipher_name() - return the name / cra_name from the cipher handle + * @tfm: cipher handle + * + * Return: The character string holding the name of the cipher + */ static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm) { return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm)); @@ -928,11 +1702,30 @@ static inline struct blkcipher_alg *crypto_blkcipher_alg( return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher; } +/** + * crypto_blkcipher_ivsize() - obtain IV size + * @tfm: cipher handle + * + * The size of the IV for the block cipher referenced by the cipher handle is + * returned. This IV size may be zero if the cipher does not need an IV. + * + * Return: IV size in bytes + */ static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm) { return crypto_blkcipher_alg(tfm)->ivsize; } +/** + * crypto_blkcipher_blocksize() - obtain block size of cipher + * @tfm: cipher handle + * + * The block size for the block cipher referenced with the cipher handle is + * returned. The caller may use that information to allocate appropriate + * memory for the data returned by the encryption or decryption operation. + * + * Return: block size of cipher + */ static inline unsigned int crypto_blkcipher_blocksize( struct crypto_blkcipher *tfm) { @@ -962,6 +1755,22 @@ static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm, crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags); } +/** + * crypto_blkcipher_setkey() - set key for cipher + * @tfm: cipher handle + * @key: buffer holding the key + * @keylen: length of the key in bytes + * + * The caller provided key is set for the block cipher referenced by the cipher + * handle. + * + * Note, the key length determines the cipher type. Many block ciphers implement + * different cipher modes depending on the key size, such as AES-128 vs AES-192 + * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 + * is performed. + * + * Return: 0 if the setting of the key was successful; < 0 if an error occurred + */ static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm, const u8 *key, unsigned int keylen) { @@ -969,6 +1778,24 @@ static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm, key, keylen); } +/** + * crypto_blkcipher_encrypt() - encrypt plaintext + * @desc: reference to the block cipher handle with meta data + * @dst: scatter/gather list that is filled by the cipher operation with the + * ciphertext + * @src: scatter/gather list that holds the plaintext + * @nbytes: number of bytes of the plaintext to encrypt. + * + * Encrypt plaintext data using the IV set by the caller with a preceding + * call of crypto_blkcipher_set_iv. + * + * The blkcipher_desc data structure must be filled by the caller and can + * reside on the stack. The caller must fill desc as follows: desc.tfm is filled + * with the block cipher handle; desc.flags is filled with either + * CRYPTO_TFM_REQ_MAY_SLEEP or 0. + * + * Return: 0 if the cipher operation was successful; < 0 if an error occurred + */ static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, @@ -978,6 +1805,25 @@ static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc, return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); } +/** + * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV + * @desc: reference to the block cipher handle with meta data + * @dst: scatter/gather list that is filled by the cipher operation with the + * ciphertext + * @src: scatter/gather list that holds the plaintext + * @nbytes: number of bytes of the plaintext to encrypt. + * + * Encrypt plaintext data with the use of an IV that is solely used for this + * cipher operation. Any previously set IV is not used. + * + * The blkcipher_desc data structure must be filled by the caller and can + * reside on the stack. The caller must fill desc as follows: desc.tfm is filled + * with the block cipher handle; desc.info is filled with the IV to be used for + * the current operation; desc.flags is filled with either + * CRYPTO_TFM_REQ_MAY_SLEEP or 0. + * + * Return: 0 if the cipher operation was successful; < 0 if an error occurred + */ static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, @@ -986,6 +1832,23 @@ static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc, return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); } +/** + * crypto_blkcipher_decrypt() - decrypt ciphertext + * @desc: reference to the block cipher handle with meta data + * @dst: scatter/gather list that is filled by the cipher operation with the + * plaintext + * @src: scatter/gather list that holds the ciphertext + * @nbytes: number of bytes of the ciphertext to decrypt. + * + * Decrypt ciphertext data using the IV set by the caller with a preceding + * call of crypto_blkcipher_set_iv. + * + * The blkcipher_desc data structure must be filled by the caller as documented + * for the crypto_blkcipher_encrypt call above. + * + * Return: 0 if the cipher operation was successful; < 0 if an error occurred + * + */ static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, @@ -995,6 +1858,22 @@ static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc, return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); } +/** + * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV + * @desc: reference to the block cipher handle with meta data + * @dst: scatter/gather list that is filled by the cipher operation with the + * plaintext + * @src: scatter/gather list that holds the ciphertext + * @nbytes: number of bytes of the ciphertext to decrypt. + * + * Decrypt ciphertext data with the use of an IV that is solely used for this + * cipher operation. Any previously set IV is not used. + * + * The blkcipher_desc data structure must be filled by the caller as documented + * for the crypto_blkcipher_encrypt_iv call above. + * + * Return: 0 if the cipher operation was successful; < 0 if an error occurred + */ static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, @@ -1003,18 +1882,54 @@ static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc, return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); } +/** + * crypto_blkcipher_set_iv() - set IV for cipher + * @tfm: cipher handle + * @src: buffer holding the IV + * @len: length of the IV in bytes + * + * The caller provided IV is set for the block cipher referenced by the cipher + * handle. + */ static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm, const u8 *src, unsigned int len) { memcpy(crypto_blkcipher_crt(tfm)->iv, src, len); } +/** + * crypto_blkcipher_get_iv() - obtain IV from cipher + * @tfm: cipher handle + * @dst: buffer filled with the IV + * @len: length of the buffer dst + * + * The caller can obtain the IV set for the block cipher referenced by the + * cipher handle and store it into the user-provided buffer. If the buffer + * has an insufficient space, the IV is truncated to fit the buffer. + */ static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm, u8 *dst, unsigned int len) { memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len); } +/** + * DOC: Single Block Cipher API + * + * The single block cipher API is used with the ciphers of type + * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). + * + * Using the single block cipher API calls, operations with the basic cipher + * primitive can be implemented. These cipher primitives exclude any block + * chaining operations including IV handling. + * + * The purpose of this single block cipher API is to support the implementation + * of templates or other concepts that only need to perform the cipher operation + * on one block at a time. Templates invoke the underlying cipher primitive + * block-wise and process either the input or the output data of these cipher + * operations. + */ + static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) { return (struct crypto_cipher *)tfm; @@ -1026,6 +1941,20 @@ static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm) return __crypto_cipher_cast(tfm); } +/** + * crypto_alloc_cipher() - allocate single block cipher handle + * @alg_name: is the cra_name / name or cra_driver_name / driver name of the + * single block cipher + * @type: specifies the type of the cipher + * @mask: specifies the mask for the cipher + * + * Allocate a cipher handle for a single block cipher. The returned struct + * crypto_cipher is the cipher handle that is required for any subsequent API + * invocation for that single block cipher. + * + * Return: allocated cipher handle in case of success; IS_ERR() is true in case + * of an error, PTR_ERR() returns the error code. + */ static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, u32 type, u32 mask) { @@ -1041,11 +1970,25 @@ static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) return &tfm->base; } +/** + * crypto_free_cipher() - zeroize and free the single block cipher handle + * @tfm: cipher handle to be freed + */ static inline void crypto_free_cipher(struct crypto_cipher *tfm) { crypto_free_tfm(crypto_cipher_tfm(tfm)); } +/** + * crypto_has_cipher() - Search for the availability of a single block cipher + * @alg_name: is the cra_name / name or cra_driver_name / driver name of the + * single block cipher + * @type: specifies the type of the cipher + * @mask: specifies the mask for the cipher + * + * Return: true when the single block cipher is known to the kernel crypto API; + * false otherwise + */ static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; @@ -1060,6 +2003,16 @@ static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm) return &crypto_cipher_tfm(tfm)->crt_cipher; } +/** + * crypto_cipher_blocksize() - obtain block size for cipher + * @tfm: cipher handle + * + * The block size for the single block cipher referenced with the cipher handle + * tfm is returned. The caller may use that information to allocate appropriate + * memory for the data returned by the encryption or decryption operation + * + * Return: block size of cipher + */ static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) { return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); @@ -1087,6 +2040,22 @@ static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); } +/** + * crypto_cipher_setkey() - set key for cipher + * @tfm: cipher handle + * @key: buffer holding the key + * @keylen: length of the key in bytes + * + * The caller provided key is set for the single block cipher referenced by the + * cipher handle. + * + * Note, the key length determines the cipher type. Many block ciphers implement + * different cipher modes depending on the key size, such as AES-128 vs AES-192 + * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 + * is performed. + * + * Return: 0 if the setting of the key was successful; < 0 if an error occurred + */ static inline int crypto_cipher_setkey(struct crypto_cipher *tfm, const u8 *key, unsigned int keylen) { @@ -1094,6 +2063,15 @@ static inline int crypto_cipher_setkey(struct crypto_cipher *tfm, key, keylen); } +/** + * crypto_cipher_encrypt_one() - encrypt one block of plaintext + * @tfm: cipher handle + * @dst: points to the buffer that will be filled with the ciphertext + * @src: buffer holding the plaintext to be encrypted + * + * Invoke the encryption operation of one block. The caller must ensure that + * the plaintext and ciphertext buffers are at least one block in size. + */ static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, u8 *dst, const u8 *src) { @@ -1101,6 +2079,15 @@ static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, dst, src); } +/** + * crypto_cipher_decrypt_one() - decrypt one block of ciphertext + * @tfm: cipher handle + * @dst: points to the buffer that will be filled with the plaintext + * @src: buffer holding the ciphertext to be decrypted + * + * Invoke the decryption operation of one block. The caller must ensure that + * the plaintext and ciphertext buffers are at least one block in size. + */ static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, u8 *dst, const u8 *src) { @@ -1108,6 +2095,13 @@ static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, dst, src); } +/** + * DOC: Synchronous Message Digest API + * + * The synchronous message digest API is used with the ciphers of type + * CRYPTO_ALG_TYPE_HASH (listed as type "hash" in /proc/crypto) + */ + static inline struct crypto_hash *__crypto_hash_cast(struct crypto_tfm *tfm) { return (struct crypto_hash *)tfm; @@ -1120,6 +2114,20 @@ static inline struct crypto_hash *crypto_hash_cast(struct crypto_tfm *tfm) return __crypto_hash_cast(tfm); } +/** + * crypto_alloc_hash() - allocate synchronous message digest handle + * @alg_name: is the cra_name / name or cra_driver_name / driver name of the + * message digest cipher + * @type: specifies the type of the cipher + * @mask: specifies the mask for the cipher + * + * Allocate a cipher handle for a message digest. The returned struct + * crypto_hash is the cipher handle that is required for any subsequent + * API invocation for that message digest. + * + * Return: allocated cipher handle in case of success; IS_ERR() is true in case + * of an error, PTR_ERR() returns the error code. + */ static inline struct crypto_hash *crypto_alloc_hash(const char *alg_name, u32 type, u32 mask) { @@ -1136,11 +2144,25 @@ static inline struct crypto_tfm *crypto_hash_tfm(struct crypto_hash *tfm) return &tfm->base; } +/** + * crypto_free_hash() - zeroize and free message digest handle + * @tfm: cipher handle to be freed + */ static inline void crypto_free_hash(struct crypto_hash *tfm) { crypto_free_tfm(crypto_hash_tfm(tfm)); } +/** + * crypto_has_hash() - Search for the availability of a message digest + * @alg_name: is the cra_name / name or cra_driver_name / driver name of the + * message digest cipher + * @type: specifies the type of the cipher + * @mask: specifies the mask for the cipher + * + * Return: true when the message digest cipher is known to the kernel crypto + * API; false otherwise + */ static inline int crypto_has_hash(const char *alg_name, u32 type, u32 mask) { type &= ~CRYPTO_ALG_TYPE_MASK; @@ -1156,6 +2178,15 @@ static inline struct hash_tfm *crypto_hash_crt(struct crypto_hash *tfm) return &crypto_hash_tfm(tfm)->crt_hash; } +/** + * crypto_hash_blocksize() - obtain block size for message digest + * @tfm: cipher handle + * + * The block size for the message digest cipher referenced with the cipher + * handle is returned. + * + * Return: block size of cipher + */ static inline unsigned int crypto_hash_blocksize(struct crypto_hash *tfm) { return crypto_tfm_alg_blocksize(crypto_hash_tfm(tfm)); @@ -1166,6 +2197,15 @@ static inline unsigned int crypto_hash_alignmask(struct crypto_hash *tfm) return crypto_tfm_alg_alignmask(crypto_hash_tfm(tfm)); } +/** + * crypto_hash_digestsize() - obtain message digest size + * @tfm: cipher handle + * + * The size for the message digest created by the message digest cipher + * referenced with the cipher handle is returned. + * + * Return: message digest size + */ static inline unsigned int crypto_hash_digestsize(struct crypto_hash *tfm) { return crypto_hash_crt(tfm)->digestsize; @@ -1186,11 +2226,38 @@ static inline void crypto_hash_clear_flags(struct crypto_hash *tfm, u32 flags) crypto_tfm_clear_flags(crypto_hash_tfm(tfm), flags); } +/** + * crypto_hash_init() - (re)initialize message digest handle + * @desc: cipher request handle that to be filled by caller -- + * desc.tfm is filled with the hash cipher handle; + * desc.flags is filled with either CRYPTO_TFM_REQ_MAY_SLEEP or 0. + * + * The call (re-)initializes the message digest referenced by the hash cipher + * request handle. Any potentially existing state created by previous + * operations is discarded. + * + * Return: 0 if the message digest initialization was successful; < 0 if an + * error occurred + */ static inline int crypto_hash_init(struct hash_desc *desc) { return crypto_hash_crt(desc->tfm)->init(desc); } +/** + * crypto_hash_update() - add data to message digest for processing + * @desc: cipher request handle + * @sg: scatter / gather list pointing to the data to be added to the message + * digest + * @nbytes: number of bytes to be processed from @sg + * + * Updates the message digest state of the cipher handle pointed to by the + * hash cipher request handle with the input data pointed to by the + * scatter/gather list. + * + * Return: 0 if the message digest update was successful; < 0 if an error + * occurred + */ static inline int crypto_hash_update(struct hash_desc *desc, struct scatterlist *sg, unsigned int nbytes) @@ -1198,11 +2265,39 @@ static inline int crypto_hash_update(struct hash_desc *desc, return crypto_hash_crt(desc->tfm)->update(desc, sg, nbytes); } +/** + * crypto_hash_final() - calculate message digest + * @desc: cipher request handle + * @out: message digest output buffer -- The caller must ensure that the out + * buffer has a sufficient size (e.g. by using the crypto_hash_digestsize + * function). + * + * Finalize the message digest operation and create the message digest + * based on all data added to the cipher handle. The message digest is placed + * into the output buffer. + * + * Return: 0 if the message digest creation was successful; < 0 if an error + * occurred + */ static inline int crypto_hash_final(struct hash_desc *desc, u8 *out) { return crypto_hash_crt(desc->tfm)->final(desc, out); } +/** + * crypto_hash_digest() - calculate message digest for a buffer + * @desc: see crypto_hash_final() + * @sg: see crypto_hash_update() + * @nbytes: see crypto_hash_update() + * @out: see crypto_hash_final() + * + * This function is a "short-hand" for the function calls of crypto_hash_init, + * crypto_hash_update and crypto_hash_final. The parameters have the same + * meaning as discussed for those separate three functions. + * + * Return: 0 if the message digest creation was successful; < 0 if an error + * occurred + */ static inline int crypto_hash_digest(struct hash_desc *desc, struct scatterlist *sg, unsigned int nbytes, u8 *out) @@ -1210,6 +2305,17 @@ static inline int crypto_hash_digest(struct hash_desc *desc, return crypto_hash_crt(desc->tfm)->digest(desc, sg, nbytes, out); } +/** + * crypto_hash_setkey() - set key for message digest + * @hash: cipher handle + * @key: buffer holding the key + * @keylen: length of the key in bytes + * + * The caller provided key is set for the message digest cipher. The cipher + * handle must point to a keyed hash in order for this function to succeed. + * + * Return: 0 if the setting of the key was successful; < 0 if an error occurred + */ static inline int crypto_hash_setkey(struct crypto_hash *hash, const u8 *key, unsigned int keylen) { diff --git a/include/net/sock.h b/include/net/sock.h index c3e83c9a8ab8..2210fec65669 100644 --- a/include/net/sock.h +++ b/include/net/sock.h @@ -1593,6 +1593,7 @@ struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, int *errcode, int max_page_order); void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); void sock_kfree_s(struct sock *sk, void *mem, int size); +void sock_kzfree_s(struct sock *sk, void *mem, int size); void sk_send_sigurg(struct sock *sk); /* diff --git a/include/uapi/linux/if_alg.h b/include/uapi/linux/if_alg.h index 0f9acce5b1ff..f2acd2fde1f3 100644 --- a/include/uapi/linux/if_alg.h +++ b/include/uapi/linux/if_alg.h @@ -32,6 +32,8 @@ struct af_alg_iv { #define ALG_SET_KEY 1 #define ALG_SET_IV 2 #define ALG_SET_OP 3 +#define ALG_SET_AEAD_ASSOCLEN 4 +#define ALG_SET_AEAD_AUTHSIZE 5 /* Operations */ #define ALG_OP_DECRYPT 0 diff --git a/net/core/sock.c b/net/core/sock.c index 9a56b2000c3f..1c7a33db1314 100644 --- a/net/core/sock.c +++ b/net/core/sock.c @@ -1731,18 +1731,34 @@ void *sock_kmalloc(struct sock *sk, int size, gfp_t priority) } EXPORT_SYMBOL(sock_kmalloc); -/* - * Free an option memory block. +/* Free an option memory block. Note, we actually want the inline + * here as this allows gcc to detect the nullify and fold away the + * condition entirely. */ -void sock_kfree_s(struct sock *sk, void *mem, int size) +static inline void __sock_kfree_s(struct sock *sk, void *mem, int size, + const bool nullify) { if (WARN_ON_ONCE(!mem)) return; - kfree(mem); + if (nullify) + kzfree(mem); + else + kfree(mem); atomic_sub(size, &sk->sk_omem_alloc); } + +void sock_kfree_s(struct sock *sk, void *mem, int size) +{ + __sock_kfree_s(sk, mem, size, false); +} EXPORT_SYMBOL(sock_kfree_s); +void sock_kzfree_s(struct sock *sk, void *mem, int size) +{ + __sock_kfree_s(sk, mem, size, true); +} +EXPORT_SYMBOL(sock_kzfree_s); + /* It is almost wait_for_tcp_memory minus release_sock/lock_sock. I think, these locks should be removed for datagram sockets. */ |