diff options
-rw-r--r-- | mm/slab.c | 1132 |
1 files changed, 812 insertions, 320 deletions
diff --git a/mm/slab.c b/mm/slab.c index d7c4443991fe..a041c5378dfa 100644 --- a/mm/slab.c +++ b/mm/slab.c @@ -75,6 +75,15 @@ * * At present, each engine can be growing a cache. This should be blocked. * + * 15 March 2005. NUMA slab allocator. + * Shai Fultheim <shai@scalex86.org>. + * Shobhit Dayal <shobhit@calsoftinc.com> + * Alok N Kataria <alokk@calsoftinc.com> + * Christoph Lameter <christoph@lameter.com> + * + * Modified the slab allocator to be node aware on NUMA systems. + * Each node has its own list of partial, free and full slabs. + * All object allocations for a node occur from node specific slab lists. */ #include <linux/config.h> @@ -93,6 +102,7 @@ #include <linux/module.h> #include <linux/rcupdate.h> #include <linux/string.h> +#include <linux/nodemask.h> #include <asm/uaccess.h> #include <asm/cacheflush.h> @@ -212,6 +222,7 @@ struct slab { void *s_mem; /* including colour offset */ unsigned int inuse; /* num of objs active in slab */ kmem_bufctl_t free; + unsigned short nodeid; }; /* @@ -239,7 +250,6 @@ struct slab_rcu { /* * struct array_cache * - * Per cpu structures * Purpose: * - LIFO ordering, to hand out cache-warm objects from _alloc * - reduce the number of linked list operations @@ -254,6 +264,13 @@ struct array_cache { unsigned int limit; unsigned int batchcount; unsigned int touched; + spinlock_t lock; + void *entry[0]; /* + * Must have this definition in here for the proper + * alignment of array_cache. Also simplifies accessing + * the entries. + * [0] is for gcc 2.95. It should really be []. + */ }; /* bootstrap: The caches do not work without cpuarrays anymore, @@ -266,34 +283,83 @@ struct arraycache_init { }; /* - * The slab lists of all objects. - * Hopefully reduce the internal fragmentation - * NUMA: The spinlock could be moved from the kmem_cache_t - * into this structure, too. Figure out what causes - * fewer cross-node spinlock operations. + * The slab lists for all objects. */ struct kmem_list3 { struct list_head slabs_partial; /* partial list first, better asm code */ struct list_head slabs_full; struct list_head slabs_free; unsigned long free_objects; - int free_touched; unsigned long next_reap; - struct array_cache *shared; + int free_touched; + unsigned int free_limit; + spinlock_t list_lock; + struct array_cache *shared; /* shared per node */ + struct array_cache **alien; /* on other nodes */ }; -#define LIST3_INIT(parent) \ - { \ - .slabs_full = LIST_HEAD_INIT(parent.slabs_full), \ - .slabs_partial = LIST_HEAD_INIT(parent.slabs_partial), \ - .slabs_free = LIST_HEAD_INIT(parent.slabs_free) \ +/* + * Need this for bootstrapping a per node allocator. + */ +#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1) +struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; +#define CACHE_CACHE 0 +#define SIZE_AC 1 +#define SIZE_L3 (1 + MAX_NUMNODES) + +/* + * This function may be completely optimized away if + * a constant is passed to it. Mostly the same as + * what is in linux/slab.h except it returns an + * index. + */ +static inline int index_of(const size_t size) +{ + if (__builtin_constant_p(size)) { + int i = 0; + +#define CACHE(x) \ + if (size <=x) \ + return i; \ + else \ + i++; +#include "linux/kmalloc_sizes.h" +#undef CACHE + { + extern void __bad_size(void); + __bad_size(); + } } -#define list3_data(cachep) \ - (&(cachep)->lists) + return 0; +} + +#define INDEX_AC index_of(sizeof(struct arraycache_init)) +#define INDEX_L3 index_of(sizeof(struct kmem_list3)) + +static inline void kmem_list3_init(struct kmem_list3 *parent) +{ + INIT_LIST_HEAD(&parent->slabs_full); + INIT_LIST_HEAD(&parent->slabs_partial); + INIT_LIST_HEAD(&parent->slabs_free); + parent->shared = NULL; + parent->alien = NULL; + spin_lock_init(&parent->list_lock); + parent->free_objects = 0; + parent->free_touched = 0; +} -/* NUMA: per-node */ -#define list3_data_ptr(cachep, ptr) \ - list3_data(cachep) +#define MAKE_LIST(cachep, listp, slab, nodeid) \ + do { \ + INIT_LIST_HEAD(listp); \ + list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ + } while (0) + +#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ + do { \ + MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ + MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ + MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ + } while (0) /* * kmem_cache_t @@ -306,13 +372,12 @@ struct kmem_cache_s { struct array_cache *array[NR_CPUS]; unsigned int batchcount; unsigned int limit; -/* 2) touched by every alloc & free from the backend */ - struct kmem_list3 lists; - /* NUMA: kmem_3list_t *nodelists[MAX_NUMNODES] */ + unsigned int shared; unsigned int objsize; +/* 2) touched by every alloc & free from the backend */ + struct kmem_list3 *nodelists[MAX_NUMNODES]; unsigned int flags; /* constant flags */ unsigned int num; /* # of objs per slab */ - unsigned int free_limit; /* upper limit of objects in the lists */ spinlock_t spinlock; /* 3) cache_grow/shrink */ @@ -349,6 +414,7 @@ struct kmem_cache_s { unsigned long errors; unsigned long max_freeable; unsigned long node_allocs; + unsigned long node_frees; atomic_t allochit; atomic_t allocmiss; atomic_t freehit; @@ -384,6 +450,7 @@ struct kmem_cache_s { } while (0) #define STATS_INC_ERR(x) ((x)->errors++) #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) +#define STATS_INC_NODEFREES(x) ((x)->node_frees++) #define STATS_SET_FREEABLE(x, i) \ do { if ((x)->max_freeable < i) \ (x)->max_freeable = i; \ @@ -402,6 +469,7 @@ struct kmem_cache_s { #define STATS_SET_HIGH(x) do { } while (0) #define STATS_INC_ERR(x) do { } while (0) #define STATS_INC_NODEALLOCS(x) do { } while (0) +#define STATS_INC_NODEFREES(x) do { } while (0) #define STATS_SET_FREEABLE(x, i) \ do { } while (0) @@ -534,9 +602,9 @@ static struct arraycache_init initarray_generic = /* internal cache of cache description objs */ static kmem_cache_t cache_cache = { - .lists = LIST3_INIT(cache_cache.lists), .batchcount = 1, .limit = BOOT_CPUCACHE_ENTRIES, + .shared = 1, .objsize = sizeof(kmem_cache_t), .flags = SLAB_NO_REAP, .spinlock = SPIN_LOCK_UNLOCKED, @@ -557,7 +625,6 @@ static struct list_head cache_chain; * SLAB_RECLAIM_ACCOUNT turns this on per-slab */ atomic_t slab_reclaim_pages; -EXPORT_SYMBOL(slab_reclaim_pages); /* * chicken and egg problem: delay the per-cpu array allocation @@ -565,7 +632,8 @@ EXPORT_SYMBOL(slab_reclaim_pages); */ static enum { NONE, - PARTIAL, + PARTIAL_AC, + PARTIAL_L3, FULL } g_cpucache_up; @@ -574,11 +642,7 @@ static DEFINE_PER_CPU(struct work_struct, reap_work); static void free_block(kmem_cache_t* cachep, void** objpp, int len); static void enable_cpucache (kmem_cache_t *cachep); static void cache_reap (void *unused); - -static inline void **ac_entry(struct array_cache *ac) -{ - return (void**)(ac+1); -} +static int __node_shrink(kmem_cache_t *cachep, int node); static inline struct array_cache *ac_data(kmem_cache_t *cachep) { @@ -676,48 +740,160 @@ static void __devinit start_cpu_timer(int cpu) } } -static struct array_cache *alloc_arraycache(int cpu, int entries, +static struct array_cache *alloc_arraycache(int node, int entries, int batchcount) { int memsize = sizeof(void*)*entries+sizeof(struct array_cache); struct array_cache *nc = NULL; - if (cpu == -1) - nc = kmalloc(memsize, GFP_KERNEL); - else - nc = kmalloc_node(memsize, GFP_KERNEL, cpu_to_node(cpu)); - + nc = kmalloc_node(memsize, GFP_KERNEL, node); if (nc) { nc->avail = 0; nc->limit = entries; nc->batchcount = batchcount; nc->touched = 0; + spin_lock_init(&nc->lock); } return nc; } +#ifdef CONFIG_NUMA +static inline struct array_cache **alloc_alien_cache(int node, int limit) +{ + struct array_cache **ac_ptr; + int memsize = sizeof(void*)*MAX_NUMNODES; + int i; + + if (limit > 1) + limit = 12; + ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node); + if (ac_ptr) { + for_each_node(i) { + if (i == node || !node_online(i)) { + ac_ptr[i] = NULL; + continue; + } + ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d); + if (!ac_ptr[i]) { + for (i--; i <=0; i--) + kfree(ac_ptr[i]); + kfree(ac_ptr); + return NULL; + } + } + } + return ac_ptr; +} + +static inline void free_alien_cache(struct array_cache **ac_ptr) +{ + int i; + + if (!ac_ptr) + return; + + for_each_node(i) + kfree(ac_ptr[i]); + + kfree(ac_ptr); +} + +static inline void __drain_alien_cache(kmem_cache_t *cachep, struct array_cache *ac, int node) +{ + struct kmem_list3 *rl3 = cachep->nodelists[node]; + + if (ac->avail) { + spin_lock(&rl3->list_lock); + free_block(cachep, ac->entry, ac->avail); + ac->avail = 0; + spin_unlock(&rl3->list_lock); + } +} + +static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3) +{ + int i=0; + struct array_cache *ac; + unsigned long flags; + + for_each_online_node(i) { + ac = l3->alien[i]; + if (ac) { + spin_lock_irqsave(&ac->lock, flags); + __drain_alien_cache(cachep, ac, i); + spin_unlock_irqrestore(&ac->lock, flags); + } + } +} +#else +#define alloc_alien_cache(node, limit) do { } while (0) +#define free_alien_cache(ac_ptr) do { } while (0) +#define drain_alien_cache(cachep, l3) do { } while (0) +#endif + static int __devinit cpuup_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { long cpu = (long)hcpu; kmem_cache_t* cachep; + struct kmem_list3 *l3 = NULL; + int node = cpu_to_node(cpu); + int memsize = sizeof(struct kmem_list3); + struct array_cache *nc = NULL; switch (action) { case CPU_UP_PREPARE: down(&cache_chain_sem); + /* we need to do this right in the beginning since + * alloc_arraycache's are going to use this list. + * kmalloc_node allows us to add the slab to the right + * kmem_list3 and not this cpu's kmem_list3 + */ + list_for_each_entry(cachep, &cache_chain, next) { - struct array_cache *nc; + /* setup the size64 kmemlist for cpu before we can + * begin anything. Make sure some other cpu on this + * node has not already allocated this + */ + if (!cachep->nodelists[node]) { + if (!(l3 = kmalloc_node(memsize, + GFP_KERNEL, node))) + goto bad; + kmem_list3_init(l3); + l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + + ((unsigned long)cachep)%REAPTIMEOUT_LIST3; + + cachep->nodelists[node] = l3; + } + + spin_lock_irq(&cachep->nodelists[node]->list_lock); + cachep->nodelists[node]->free_limit = + (1 + nr_cpus_node(node)) * + cachep->batchcount + cachep->num; + spin_unlock_irq(&cachep->nodelists[node]->list_lock); + } - nc = alloc_arraycache(cpu, cachep->limit, cachep->batchcount); + /* Now we can go ahead with allocating the shared array's + & array cache's */ + list_for_each_entry(cachep, &cache_chain, next) { + nc = alloc_arraycache(node, cachep->limit, + cachep->batchcount); if (!nc) goto bad; - - spin_lock_irq(&cachep->spinlock); cachep->array[cpu] = nc; - cachep->free_limit = (1+num_online_cpus())*cachep->batchcount - + cachep->num; - spin_unlock_irq(&cachep->spinlock); + l3 = cachep->nodelists[node]; + BUG_ON(!l3); + if (!l3->shared) { + if (!(nc = alloc_arraycache(node, + cachep->shared*cachep->batchcount, + 0xbaadf00d))) + goto bad; + + /* we are serialised from CPU_DEAD or + CPU_UP_CANCELLED by the cpucontrol lock */ + l3->shared = nc; + } } up(&cache_chain_sem); break; @@ -732,13 +908,51 @@ static int __devinit cpuup_callback(struct notifier_block *nfb, list_for_each_entry(cachep, &cache_chain, next) { struct array_cache *nc; + cpumask_t mask; + mask = node_to_cpumask(node); spin_lock_irq(&cachep->spinlock); /* cpu is dead; no one can alloc from it. */ nc = cachep->array[cpu]; cachep->array[cpu] = NULL; - cachep->free_limit -= cachep->batchcount; - free_block(cachep, ac_entry(nc), nc->avail); + l3 = cachep->nodelists[node]; + + if (!l3) + goto unlock_cache; + + spin_lock(&l3->list_lock); + + /* Free limit for this kmem_list3 */ + l3->free_limit -= cachep->batchcount; + if (nc) + free_block(cachep, nc->entry, nc->avail); + + if (!cpus_empty(mask)) { + spin_unlock(&l3->list_lock); + goto unlock_cache; + } + + if (l3->shared) { + free_block(cachep, l3->shared->entry, + l3->shared->avail); + kfree(l3->shared); + l3->shared = NULL; + } + if (l3->alien) { + drain_alien_cache(cachep, l3); + free_alien_cache(l3->alien); + l3->alien = NULL; + } + + /* free slabs belonging to this node */ + if (__node_shrink(cachep, node)) { + cachep->nodelists[node] = NULL; + spin_unlock(&l3->list_lock); + kfree(l3); + } else { + spin_unlock(&l3->list_lock); + } +unlock_cache: spin_unlock_irq(&cachep->spinlock); kfree(nc); } @@ -754,6 +968,25 @@ bad: static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 }; +/* + * swap the static kmem_list3 with kmalloced memory + */ +static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list, + int nodeid) +{ + struct kmem_list3 *ptr; + + BUG_ON(cachep->nodelists[nodeid] != list); + ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid); + BUG_ON(!ptr); + + local_irq_disable(); + memcpy(ptr, list, sizeof(struct kmem_list3)); + MAKE_ALL_LISTS(cachep, ptr, nodeid); + cachep->nodelists[nodeid] = ptr; + local_irq_enable(); +} + /* Initialisation. * Called after the gfp() functions have been enabled, and before smp_init(). */ @@ -762,6 +995,13 @@ void __init kmem_cache_init(void) size_t left_over; struct cache_sizes *sizes; struct cache_names *names; + int i; + + for (i = 0; i < NUM_INIT_LISTS; i++) { + kmem_list3_init(&initkmem_list3[i]); + if (i < MAX_NUMNODES) + cache_cache.nodelists[i] = NULL; + } /* * Fragmentation resistance on low memory - only use bigger @@ -770,21 +1010,24 @@ void __init kmem_cache_init(void) if (num_physpages > (32 << 20) >> PAGE_SHIFT) slab_break_gfp_order = BREAK_GFP_ORDER_HI; - /* Bootstrap is tricky, because several objects are allocated * from caches that do not exist yet: * 1) initialize the cache_cache cache: it contains the kmem_cache_t * structures of all caches, except cache_cache itself: cache_cache * is statically allocated. - * Initially an __init data area is used for the head array, it's - * replaced with a kmalloc allocated array at the end of the bootstrap. + * Initially an __init data area is used for the head array and the + * kmem_list3 structures, it's replaced with a kmalloc allocated + * array at the end of the bootstrap. * 2) Create the first kmalloc cache. - * The kmem_cache_t for the new cache is allocated normally. An __init - * data area is used for the head array. - * 3) Create the remaining kmalloc caches, with minimally sized head arrays. + * The kmem_cache_t for the new cache is allocated normally. + * An __init data area is used for the head array. + * 3) Create the remaining kmalloc caches, with minimally sized + * head arrays. * 4) Replace the __init data head arrays for cache_cache and the first * kmalloc cache with kmalloc allocated arrays. - * 5) Resize the head arrays of the kmalloc caches to their final sizes. + * 5) Replace the __init data for kmem_list3 for cache_cache and + * the other cache's with kmalloc allocated memory. + * 6) Resize the head arrays of the kmalloc caches to their final sizes. */ /* 1) create the cache_cache */ @@ -793,6 +1036,7 @@ void __init kmem_cache_init(void) list_add(&cache_cache.next, &cache_chain); cache_cache.colour_off = cache_line_size(); cache_cache.array[smp_processor_id()] = &initarray_cache.cache; + cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE]; cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size()); @@ -810,15 +1054,33 @@ void __init kmem_cache_init(void) sizes = malloc_sizes; names = cache_names; + /* Initialize the caches that provide memory for the array cache + * and the kmem_list3 structures first. + * Without this, further allocations will bug + */ + + sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, + sizes[INDEX_AC].cs_size, ARCH_KMALLOC_MINALIGN, + (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); + + if (INDEX_AC != INDEX_L3) + sizes[INDEX_L3].cs_cachep = + kmem_cache_create(names[INDEX_L3].name, + sizes[INDEX_L3].cs_size, ARCH_KMALLOC_MINALIGN, + (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); + while (sizes->cs_size != ULONG_MAX) { - /* For performance, all the general caches are L1 aligned. + /* + * For performance, all the general caches are L1 aligned. * This should be particularly beneficial on SMP boxes, as it * eliminates "false sharing". * Note for systems short on memory removing the alignment will - * allow tighter packing of the smaller caches. */ - sizes->cs_cachep = kmem_cache_create(names->name, - sizes->cs_size, ARCH_KMALLOC_MINALIGN, - (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); + * allow tighter packing of the smaller caches. + */ + if(!sizes->cs_cachep) + sizes->cs_cachep = kmem_cache_create(names->name, + sizes->cs_size, ARCH_KMALLOC_MINALIGN, + (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); /* Inc off-slab bufctl limit until the ceiling is hit. */ if (!(OFF_SLAB(sizes->cs_cachep))) { @@ -837,24 +1099,47 @@ void __init kmem_cache_init(void) /* 4) Replace the bootstrap head arrays */ { void * ptr; - + ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); + local_irq_disable(); BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache); - memcpy(ptr, ac_data(&cache_cache), sizeof(struct arraycache_init)); + memcpy(ptr, ac_data(&cache_cache), + sizeof(struct arraycache_init)); cache_cache.array[smp_processor_id()] = ptr; local_irq_enable(); - + ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); + local_irq_disable(); - BUG_ON(ac_data(malloc_sizes[0].cs_cachep) != &initarray_generic.cache); - memcpy(ptr, ac_data(malloc_sizes[0].cs_cachep), + BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep) + != &initarray_generic.cache); + memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep), sizeof(struct arraycache_init)); - malloc_sizes[0].cs_cachep->array[smp_processor_id()] = ptr; + malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = + ptr; local_irq_enable(); } + /* 5) Replace the bootstrap kmem_list3's */ + { + int node; + /* Replace the static kmem_list3 structures for the boot cpu */ + init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], + numa_node_id()); + + for_each_online_node(node) { + init_list(malloc_sizes[INDEX_AC].cs_cachep, + &initkmem_list3[SIZE_AC+node], node); + + if (INDEX_AC != INDEX_L3) { + init_list(malloc_sizes[INDEX_L3].cs_cachep, + &initkmem_list3[SIZE_L3+node], + node); + } + } + } - /* 5) resize the head arrays to their final sizes */ + /* 6) resize the head arrays to their final sizes */ { kmem_cache_t *cachep; down(&cache_chain_sem); @@ -870,7 +1155,6 @@ void __init kmem_cache_init(void) * that initializes ac_data for all new cpus */ register_cpu_notifier(&cpucache_notifier); - /* The reap timers are started later, with a module init call: * That part of the kernel is not yet operational. @@ -885,10 +1169,8 @@ static int __init cpucache_init(void) * Register the timers that return unneeded * pages to gfp. */ - for (cpu = 0; cpu < NR_CPUS; cpu++) { - if (cpu_online(cpu)) - start_cpu_timer(cpu); - } + for_each_online_cpu(cpu) + start_cpu_timer(cpu); return 0; } @@ -1167,6 +1449,20 @@ static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp) } } +/* For setting up all the kmem_list3s for cache whose objsize is same + as size of kmem_list3. */ +static inline void set_up_list3s(kmem_cache_t *cachep, int index) +{ + int node; + + for_each_online_node(node) { + cachep->nodelists[node] = &initkmem_list3[index+node]; + cachep->nodelists[node]->next_reap = jiffies + + REAPTIMEOUT_LIST3 + + ((unsigned long)cachep)%REAPTIMEOUT_LIST3; + } +} + /** * kmem_cache_create - Create a cache. * @name: A string which is used in /proc/slabinfo to identify this cache. @@ -1320,7 +1616,7 @@ kmem_cache_create (const char *name, size_t size, size_t align, size += BYTES_PER_WORD; } #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) - if (size > 128 && cachep->reallen > cache_line_size() && size < PAGE_SIZE) { + if (size >= malloc_sizes[INDEX_L3+1].cs_size && cachep->reallen > cache_line_size() && size < PAGE_SIZE) { cachep->dbghead += PAGE_SIZE - size; size = PAGE_SIZE; } @@ -1422,10 +1718,6 @@ next: cachep->gfpflags |= GFP_DMA; spin_lock_init(&cachep->spinlock); cachep->objsize = size; - /* NUMA */ - INIT_LIST_HEAD(&cachep->lists.slabs_full); - INIT_LIST_HEAD(&cachep->lists.slabs_partial); - INIT_LIST_HEAD(&cachep->lists.slabs_free); if (flags & CFLGS_OFF_SLAB) cachep->slabp_cache = kmem_find_general_cachep(slab_size,0); @@ -1444,11 +1736,43 @@ next: * the cache that's used by kmalloc(24), otherwise * the creation of further caches will BUG(). */ - cachep->array[smp_processor_id()] = &initarray_generic.cache; - g_cpucache_up = PARTIAL; + cachep->array[smp_processor_id()] = + &initarray_generic.cache; + + /* If the cache that's used by + * kmalloc(sizeof(kmem_list3)) is the first cache, + * then we need to set up all its list3s, otherwise + * the creation of further caches will BUG(). + */ + set_up_list3s(cachep, SIZE_AC); + if (INDEX_AC == INDEX_L3) + g_cpucache_up = PARTIAL_L3; + else + g_cpucache_up = PARTIAL_AC; } else { - cachep->array[smp_processor_id()] = kmalloc(sizeof(struct arraycache_init),GFP_KERNEL); + cachep->array[smp_processor_id()] = + kmalloc(sizeof(struct arraycache_init), + GFP_KERNEL); + + if (g_cpucache_up == PARTIAL_AC) { + set_up_list3s(cachep, SIZE_L3); + g_cpucache_up = PARTIAL_L3; + } else { + int node; + for_each_online_node(node) { + + cachep->nodelists[node] = + kmalloc_node(sizeof(struct kmem_list3), + GFP_KERNEL, node); + BUG_ON(!cachep->nodelists[node]); + kmem_list3_init(cachep->nodelists[node]); + } + } } + cachep->nodelists[numa_node_id()]->next_reap = + jiffies + REAPTIMEOUT_LIST3 + + ((unsigned long)cachep)%REAPTIMEOUT_LIST3; + BUG_ON(!ac_data(cachep)); ac_data(cachep)->avail = 0; ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES; @@ -1456,13 +1780,8 @@ next: ac_data(cachep)->touched = 0; cachep->batchcount = 1; cachep->limit = BOOT_CPUCACHE_ENTRIES; - cachep->free_limit = (1+num_online_cpus())*cachep->batchcount - + cachep->num; } - cachep->lists.next_reap = jiffies + REAPTIMEOUT_LIST3 + - ((unsigned long)cachep)%REAPTIMEOUT_LIST3; - /* Need the semaphore to access the chain. */ down(&cache_chain_sem); { @@ -1519,13 +1838,23 @@ static void check_spinlock_acquired(kmem_cache_t *cachep) { #ifdef CONFIG_SMP check_irq_off(); - BUG_ON(spin_trylock(&cachep->spinlock)); + assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock); #endif } + +static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node) +{ +#ifdef CONFIG_SMP + check_irq_off(); + assert_spin_locked(&cachep->nodelists[node]->list_lock); +#endif +} + #else #define check_irq_off() do { } while(0) #define check_irq_on() do { } while(0) #define check_spinlock_acquired(x) do { } while(0) +#define check_spinlock_acquired_node(x, y) do { } while(0) #endif /* @@ -1547,7 +1876,7 @@ static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg) } static void drain_array_locked(kmem_cache_t* cachep, - struct array_cache *ac, int force); + struct array_cache *ac, int force, int node); static void do_drain(void *arg) { @@ -1556,59 +1885,82 @@ static void do_drain(void *arg) check_irq_off(); ac = ac_data(cachep); - spin_lock(&cachep->spinlock); - free_block(cachep, &ac_entry(ac)[0], ac->avail); - spin_unlock(&cachep->spinlock); + spin_lock(&cachep->nodelists[numa_node_id()]->list_lock); + free_block(cachep, ac->entry, ac->avail); + spin_unlock(&cachep->nodelists[numa_node_id()]->list_lock); ac->avail = 0; } static void drain_cpu_caches(kmem_cache_t *cachep) { + struct kmem_list3 *l3; + int node; + smp_call_function_all_cpus(do_drain, cachep); check_irq_on(); spin_lock_irq(&cachep->spinlock); - if (cachep->lists.shared) - drain_array_locked(cachep, cachep->lists.shared, 1); + for_each_online_node(node) { + l3 = cachep->nodelists[node]; + if (l3) { + spin_lock(&l3->list_lock); + drain_array_locked(cachep, l3->shared, 1, node); + spin_unlock(&l3->list_lock); + if (l3->alien) + drain_alien_cache(cachep, l3); + } + } spin_unlock_irq(&cachep->spinlock); } - -/* NUMA shrink all list3s */ -static int __cache_shrink(kmem_cache_t *cachep) +static int __node_shrink(kmem_cache_t *cachep, int node) { struct slab *slabp; + struct kmem_list3 *l3 = cachep->nodelists[node]; int ret; - drain_cpu_caches(cachep); - - check_irq_on(); - spin_lock_irq(&cachep->spinlock); - - for(;;) { + for (;;) { struct list_head *p; - p = cachep->lists.slabs_free.prev; - if (p == &cachep->lists.slabs_free) + p = l3->slabs_free.prev; + if (p == &l3->slabs_free) break; - slabp = list_entry(cachep->lists.slabs_free.prev, struct slab, list); + slabp = list_entry(l3->slabs_free.prev, struct slab, list); #if DEBUG if (slabp->inuse) BUG(); #endif list_del(&slabp->list); - cachep->lists.free_objects -= cachep->num; - spin_unlock_irq(&cachep->spinlock); + l3->free_objects -= cachep->num; + spin_unlock_irq(&l3->list_lock); slab_destroy(cachep, slabp); - spin_lock_irq(&cachep->spinlock); + spin_lock_irq(&l3->list_lock); } - ret = !list_empty(&cachep->lists.slabs_full) || - !list_empty(&cachep->lists.slabs_partial); - spin_unlock_irq(&cachep->spinlock); + ret = !list_empty(&l3->slabs_full) || + !list_empty(&l3->slabs_partial); return ret; } +static int __cache_shrink(kmem_cache_t *cachep) +{ + int ret = 0, i = 0; + struct kmem_list3 *l3; + + drain_cpu_caches(cachep); + + check_irq_on(); + for_each_online_node(i) { + l3 = cachep->nodelists[i]; + if (l3) { + spin_lock_irq(&l3->list_lock); + ret += __node_shrink(cachep, i); + spin_unlock_irq(&l3->list_lock); + } + } + return (ret ? 1 : 0); +} + /** * kmem_cache_shrink - Shrink a cache. * @cachep: The cache to shrink. @@ -1645,6 +1997,7 @@ EXPORT_SYMBOL(kmem_cache_shrink); int kmem_cache_destroy(kmem_cache_t * cachep) { int i; + struct kmem_list3 *l3; if (!cachep || in_interrupt()) BUG(); @@ -1672,15 +2025,17 @@ int kmem_cache_destroy(kmem_cache_t * cachep) if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) synchronize_rcu(); - /* no cpu_online check required here since we clear the percpu - * array on cpu offline and set this to NULL. - */ - for (i = 0; i < NR_CPUS; i++) + for_each_online_cpu(i) kfree(cachep->array[i]); /* NUMA: free the list3 structures */ - kfree(cachep->lists.shared); - cachep->lists.shared = NULL; + for_each_online_node(i) { + if ((l3 = cachep->nodelists[i])) { + kfree(l3->shared); + free_alien_cache(l3->alien); + kfree(l3); + } + } kmem_cache_free(&cache_cache, cachep); unlock_cpu_hotplug(); @@ -1690,8 +2045,8 @@ int kmem_cache_destroy(kmem_cache_t * cachep) EXPORT_SYMBOL(kmem_cache_destroy); /* Get the memory for a slab management obj. */ -static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, - void *objp, int colour_off, unsigned int __nocast local_flags) +static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, void *objp, + int colour_off, unsigned int __nocast local_flags) { struct slab *slabp; @@ -1722,7 +2077,7 @@ static void cache_init_objs(kmem_cache_t *cachep, int i; for (i = 0; i < cachep->num; i++) { - void* objp = slabp->s_mem+cachep->objsize*i; + void *objp = slabp->s_mem+cachep->objsize*i; #if DEBUG /* need to poison the objs? */ if (cachep->flags & SLAB_POISON) @@ -1799,6 +2154,7 @@ static int cache_grow(kmem_cache_t *cachep, unsigned int __nocast flags, int nod size_t offset; unsigned int local_flags; unsigned long ctor_flags; + struct kmem_list3 *l3; /* Be lazy and only check for valid flags here, * keeping it out of the critical path in kmem_cache_alloc(). @@ -1830,6 +2186,7 @@ static int cache_grow(kmem_cache_t *cachep, unsigned int __nocast flags, int nod spin_unlock(&cachep->spinlock); + check_irq_off(); if (local_flags & __GFP_WAIT) local_irq_enable(); @@ -1841,8 +2198,9 @@ static int cache_grow(kmem_cache_t *cachep, unsigned int __nocast flags, int nod */ kmem_flagcheck(cachep, flags); - - /* Get mem for the objs. */ + /* Get mem for the objs. + * Attempt to allocate a physical page from 'nodeid', + */ if (!(objp = kmem_getpages(cachep, flags, nodeid))) goto failed; @@ -1850,6 +2208,7 @@ static int cache_grow(kmem_cache_t *cachep, unsigned int __nocast flags, int nod if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags))) goto opps1; + slabp->nodeid = nodeid; set_slab_attr(cachep, slabp, objp); cache_init_objs(cachep, slabp, ctor_flags); @@ -1857,13 +2216,14 @@ static int cache_grow(kmem_cache_t *cachep, unsigned int __nocast flags, int nod if (local_flags & __GFP_WAIT) local_irq_disable(); check_irq_off(); - spin_lock(&cachep->spinlock); + l3 = cachep->nodelists[nodeid]; + spin_lock(&l3->list_lock); /* Make slab active. */ - list_add_tail(&slabp->list, &(list3_data(cachep)->slabs_free)); + list_add_tail(&slabp->list, &(l3->slabs_free)); STATS_INC_GROWN(cachep); - list3_data(cachep)->free_objects += cachep->num; - spin_unlock(&cachep->spinlock); + l3->free_objects += cachep->num; + spin_unlock(&l3->list_lock); return 1; opps1: kmem_freepages(cachep, objp); @@ -1969,7 +2329,6 @@ static void check_slabp(kmem_cache_t *cachep, struct slab *slabp) kmem_bufctl_t i; int entries = 0; - check_spinlock_acquired(cachep); /* Check slab's freelist to see if this obj is there. */ for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { entries++; @@ -2012,10 +2371,11 @@ retry: */ batchcount = BATCHREFILL_LIMIT; } - l3 = list3_data(cachep); + l3 = cachep->nodelists[numa_node_id()]; + + BUG_ON(ac->avail > 0 || !l3); + spin_lock(&l3->list_lock); - BUG_ON(ac->avail > 0); - spin_lock(&cachep->spinlock); if (l3->shared) { struct array_cache *shared_array = l3->shared; if (shared_array->avail) { @@ -2023,8 +2383,9 @@ retry: batchcount = shared_array->avail; shared_array->avail -= batchcount; ac->avail = batchcount; - memcpy(ac_entry(ac), &ac_entry(shared_array)[shared_array->avail], - sizeof(void*)*batchcount); + memcpy(ac->entry, + &(shared_array->entry[shared_array->avail]), + sizeof(void*)*batchcount); shared_array->touched = 1; goto alloc_done; } @@ -2051,7 +2412,8 @@ retry: STATS_SET_HIGH(cachep); /* get obj pointer */ - ac_entry(ac)[ac->avail++] = slabp->s_mem + slabp->free*cachep->objsize; + ac->entry[ac->avail++] = slabp->s_mem + + slabp->free*cachep->objsize; slabp->inuse++; next = slab_bufctl(slabp)[slabp->free]; @@ -2073,12 +2435,12 @@ retry: must_grow: l3->free_objects -= ac->avail; alloc_done: - spin_unlock(&cachep->spinlock); + spin_unlock(&l3->list_lock); if (unlikely(!ac->avail)) { int x; - x = cache_grow(cachep, flags, -1); - + x = cache_grow(cachep, flags, numa_node_id()); + // cache_grow can reenable interrupts, then ac could change. ac = ac_data(cachep); if (!x && ac->avail == 0) // no objects in sight? abort @@ -2088,7 +2450,7 @@ alloc_done: goto retry; } ac->touched = 1; - return ac_entry(ac)[--ac->avail]; + return ac->entry[--ac->avail]; } static inline void @@ -2160,7 +2522,7 @@ static inline void *__cache_alloc(kmem_cache_t *cachep, unsigned int __nocast fl if (likely(ac->avail)) { STATS_INC_ALLOCHIT(cachep); ac->touched = 1; - objp = ac_entry(ac)[--ac->avail]; + objp = ac->entry[--ac->avail]; } else { STATS_INC_ALLOCMISS(cachep); objp = cache_alloc_refill(cachep, flags); @@ -2172,33 +2534,104 @@ static inline void *__cache_alloc(kmem_cache_t *cachep, unsigned int __nocast fl return objp; } -/* - * NUMA: different approach needed if the spinlock is moved into - * the l3 structure +#ifdef CONFIG_NUMA +/* + * A interface to enable slab creation on nodeid */ +static void *__cache_alloc_node(kmem_cache_t *cachep, int flags, int nodeid) +{ + struct list_head *entry; + struct slab *slabp; + struct kmem_list3 *l3; + void *obj; + kmem_bufctl_t next; + int x; + + l3 = cachep->nodelists[nodeid]; + BUG_ON(!l3); + +retry: + spin_lock(&l3->list_lock); + entry = l3->slabs_partial.next; + if (entry == &l3->slabs_partial) { + l3->free_touched = 1; + entry = l3->slabs_free.next; + if (entry == &l3->slabs_free) + goto must_grow; + } + + slabp = list_entry(entry, struct slab, list); + check_spinlock_acquired_node(cachep, nodeid); + check_slabp(cachep, slabp); + + STATS_INC_NODEALLOCS(cachep); + STATS_INC_ACTIVE(cachep); + STATS_SET_HIGH(cachep); + + BUG_ON(slabp->inuse == cachep->num); + + /* get obj pointer */ + obj = slabp->s_mem + slabp->free*cachep->objsize; + slabp->inuse++; + next = slab_bufctl(slabp)[slabp->free]; +#if DEBUG + slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; +#endif + slabp->free = next; + check_slabp(cachep, slabp); + l3->free_objects--; + /* move slabp to correct slabp list: */ + list_del(&slabp->list); + + if (slabp->free == BUFCTL_END) { + list_add(&slabp->list, &l3->slabs_full); + } else { + list_add(&slabp->list, &l3->slabs_partial); + } + + spin_unlock(&l3->list_lock); + goto done; + +must_grow: + spin_unlock(&l3->list_lock); + x = cache_grow(cachep, flags, nodeid); + if (!x) + return NULL; + + goto retry; +done: + return obj; +} +#endif + +/* + * Caller needs to acquire correct kmem_list's list_lock + */ static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects) { int i; - - check_spinlock_acquired(cachep); - - /* NUMA: move add into loop */ - cachep->lists.free_objects += nr_objects; + struct kmem_list3 *l3; for (i = 0; i < nr_objects; i++) { void *objp = objpp[i]; struct slab *slabp; unsigned int objnr; + int nodeid = 0; slabp = GET_PAGE_SLAB(virt_to_page(objp)); + nodeid = slabp->nodeid; + l3 = cachep->nodelists[nodeid]; list_del(&slabp->list); objnr = (objp - slabp->s_mem) / cachep->objsize; + check_spinlock_acquired_node(cachep, nodeid); check_slabp(cachep, slabp); + + #if DEBUG if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) { - printk(KERN_ERR "slab: double free detected in cache '%s', objp %p.\n", - cachep->name, objp); + printk(KERN_ERR "slab: double free detected in cache " + "'%s', objp %p\n", cachep->name, objp); BUG(); } #endif @@ -2206,24 +2639,23 @@ static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects) slabp->free = objnr; STATS_DEC_ACTIVE(cachep); slabp->inuse--; + l3->free_objects++; check_slabp(cachep, slabp); /* fixup slab chains */ if (slabp->inuse == 0) { - if (cachep->lists.free_objects > cachep->free_limit) { - cachep->lists.free_objects -= cachep->num; + if (l3->free_objects > l3->free_limit) { + l3->free_objects -= cachep->num; slab_destroy(cachep, slabp); } else { - list_add(&slabp->list, - &list3_data_ptr(cachep, objp)->slabs_free); + list_add(&slabp->list, &l3->slabs_free); } } else { /* Unconditionally move a slab to the end of the * partial list on free - maximum time for the * other objects to be freed, too. */ - list_add_tail(&slabp->list, - &list3_data_ptr(cachep, objp)->slabs_partial); + list_add_tail(&slabp->list, &l3->slabs_partial); } } } @@ -2231,36 +2663,38 @@ static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects) static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac) { int batchcount; + struct kmem_list3 *l3; batchcount = ac->batchcount; #if DEBUG BUG_ON(!batchcount || batchcount > ac->avail); #endif check_irq_off(); - spin_lock(&cachep->spinlock); - if (cachep->lists.shared) { - struct array_cache *shared_array = cachep->lists.shared; + l3 = cachep->nodelists[numa_node_id()]; + spin_lock(&l3->list_lock); + if (l3->shared) { + struct array_cache *shared_array = l3->shared; int max = shared_array->limit-shared_array->avail; if (max) { if (batchcount > max) batchcount = max; - memcpy(&ac_entry(shared_array)[shared_array->avail], - &ac_entry(ac)[0], + memcpy(&(shared_array->entry[shared_array->avail]), + ac->entry, sizeof(void*)*batchcount); shared_array->avail += batchcount; goto free_done; } } - free_block(cachep, &ac_entry(ac)[0], batchcount); + free_block(cachep, ac->entry, batchcount); free_done: #if STATS { int i = 0; struct list_head *p; - p = list3_data(cachep)->slabs_free.next; - while (p != &(list3_data(cachep)->slabs_free)) { + p = l3->slabs_free.next; + while (p != &(l3->slabs_free)) { struct slab *slabp; slabp = list_entry(p, struct slab, list); @@ -2272,12 +2706,13 @@ free_done: STATS_SET_FREEABLE(cachep, i); } #endif - spin_unlock(&cachep->spinlock); + spin_unlock(&l3->list_lock); ac->avail -= batchcount; - memmove(&ac_entry(ac)[0], &ac_entry(ac)[batchcount], + memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void*)*ac->avail); } + /* * __cache_free * Release an obj back to its cache. If the obj has a constructed @@ -2292,14 +2727,46 @@ static inline void __cache_free(kmem_cache_t *cachep, void *objp) check_irq_off(); objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); + /* Make sure we are not freeing a object from another + * node to the array cache on this cpu. + */ +#ifdef CONFIG_NUMA + { + struct slab *slabp; + slabp = GET_PAGE_SLAB(virt_to_page(objp)); + if (unlikely(slabp->nodeid != numa_node_id())) { + struct array_cache *alien = NULL; + int nodeid = slabp->nodeid; + struct kmem_list3 *l3 = cachep->nodelists[numa_node_id()]; + + STATS_INC_NODEFREES(cachep); + if (l3->alien && l3->alien[nodeid]) { + alien = l3->alien[nodeid]; + spin_lock(&alien->lock); + if (unlikely(alien->avail == alien->limit)) + __drain_alien_cache(cachep, + alien, nodeid); + alien->entry[alien->avail++] = objp; + spin_unlock(&alien->lock); + } else { + spin_lock(&(cachep->nodelists[nodeid])-> + list_lock); + free_block(cachep, &objp, 1); + spin_unlock(&(cachep->nodelists[nodeid])-> + list_lock); + } + return; + } + } +#endif if (likely(ac->avail < ac->limit)) { STATS_INC_FREEHIT(cachep); - ac_entry(ac)[ac->avail++] = objp; + ac->entry[ac->avail++] = objp; return; } else { STATS_INC_FREEMISS(cachep); cache_flusharray(cachep, ac); - ac_entry(ac)[ac->avail++] = objp; + ac->entry[ac->avail++] = objp; } } @@ -2369,81 +2836,30 @@ out: * Identical to kmem_cache_alloc, except that this function is slow * and can sleep. And it will allocate memory on the given node, which * can improve the performance for cpu bound structures. + * New and improved: it will now make sure that the object gets + * put on the correct node list so that there is no false sharing. */ void *kmem_cache_alloc_node(kmem_cache_t *cachep, int flags, int nodeid) { - int loop; - void *objp; - struct slab *slabp; - kmem_bufctl_t next; - - if (nodeid == -1) - return kmem_cache_alloc(cachep, flags); - - for (loop = 0;;loop++) { - struct list_head *q; - - objp = NULL; - check_irq_on(); - spin_lock_irq(&cachep->spinlock); - /* walk through all partial and empty slab and find one - * from the right node */ - list_for_each(q,&cachep->lists.slabs_partial) { - slabp = list_entry(q, struct slab, list); - - if (page_to_nid(virt_to_page(slabp->s_mem)) == nodeid || - loop > 2) - goto got_slabp; - } - list_for_each(q, &cachep->lists.slabs_free) { - slabp = list_entry(q, struct slab, list); + unsigned long save_flags; + void *ptr; - if (page_to_nid(virt_to_page(slabp->s_mem)) == nodeid || - loop > 2) - goto got_slabp; - } - spin_unlock_irq(&cachep->spinlock); + if (nodeid == numa_node_id() || nodeid == -1) + return __cache_alloc(cachep, flags); - local_irq_disable(); - if (!cache_grow(cachep, flags, nodeid)) { - local_irq_enable(); - return NULL; - } - local_irq_enable(); + if (unlikely(!cachep->nodelists[nodeid])) { + /* Fall back to __cache_alloc if we run into trouble */ + printk(KERN_WARNING "slab: not allocating in inactive node %d for cache %s\n", nodeid, cachep->name); + return __cache_alloc(cachep,flags); } -got_slabp: - /* found one: allocate object */ - check_slabp(cachep, slabp); - check_spinlock_acquired(cachep); - STATS_INC_ALLOCED(cachep); - STATS_INC_ACTIVE(cachep); - STATS_SET_HIGH(cachep); - STATS_INC_NODEALLOCS(cachep); - - objp = slabp->s_mem + slabp->free*cachep->objsize; - - slabp->inuse++; - next = slab_bufctl(slabp)[slabp->free]; -#if DEBUG - slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; -#endif - slabp->free = next; - check_slabp(cachep, slabp); - - /* move slabp to correct slabp list: */ - list_del(&slabp->list); - if (slabp->free == BUFCTL_END) - list_add(&slabp->list, &cachep->lists.slabs_full); - else - list_add(&slabp->list, &cachep->lists.slabs_partial); - - list3_data(cachep)->free_objects--; - spin_unlock_irq(&cachep->spinlock); + cache_alloc_debugcheck_before(cachep, flags); + local_irq_save(save_flags); + ptr = __cache_alloc_node(cachep, flags, nodeid); + local_irq_restore(save_flags); + ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, __builtin_return_address(0)); - objp = cache_alloc_debugcheck_after(cachep, GFP_KERNEL, objp, - __builtin_return_address(0)); - return objp; + return ptr; } EXPORT_SYMBOL(kmem_cache_alloc_node); @@ -2513,11 +2929,18 @@ void *__alloc_percpu(size_t size, size_t align) if (!pdata) return NULL; - for (i = 0; i < NR_CPUS; i++) { - if (!cpu_possible(i)) - continue; - pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, - cpu_to_node(i)); + /* + * Cannot use for_each_online_cpu since a cpu may come online + * and we have no way of figuring out how to fix the array + * that we have allocated then.... + */ + for_each_cpu(i) { + int node = cpu_to_node(i); + + if (node_online(node)) + pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node); + else + pdata->ptrs[i] = kmalloc(size, GFP_KERNEL); if (!pdata->ptrs[i]) goto unwind_oom; @@ -2607,11 +3030,11 @@ free_percpu(const void *objp) int i; struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp); - for (i = 0; i < NR_CPUS; i++) { - if (!cpu_possible(i)) - continue; + /* + * We allocate for all cpus so we cannot use for online cpu here. + */ + for_each_cpu(i) kfree(p->ptrs[i]); - } kfree(p); } EXPORT_SYMBOL(free_percpu); @@ -2629,6 +3052,64 @@ const char *kmem_cache_name(kmem_cache_t *cachep) } EXPORT_SYMBOL_GPL(kmem_cache_name); +/* + * This initializes kmem_list3 for all nodes. + */ +static int alloc_kmemlist(kmem_cache_t *cachep) +{ + int node; + struct kmem_list3 *l3; + int err = 0; + + for_each_online_node(node) { + struct array_cache *nc = NULL, *new; + struct array_cache **new_alien = NULL; +#ifdef CONFIG_NUMA + if (!(new_alien = alloc_alien_cache(node, cachep->limit))) + goto fail; +#endif + if (!(new = alloc_arraycache(node, (cachep->shared* + cachep->batchcount), 0xbaadf00d))) + goto fail; + if ((l3 = cachep->nodelists[node])) { + + spin_lock_irq(&l3->list_lock); + + if ((nc = cachep->nodelists[node]->shared)) + free_block(cachep, nc->entry, + nc->avail); + + l3->shared = new; + if (!cachep->nodelists[node]->alien) { + l3->alien = new_alien; + new_alien = NULL; + } + l3->free_limit = (1 + nr_cpus_node(node))* + cachep->batchcount + cachep->num; + spin_unlock_irq(&l3->list_lock); + kfree(nc); + free_alien_cache(new_alien); + continue; + } + if (!(l3 = kmalloc_node(sizeof(struct kmem_list3), + GFP_KERNEL, node))) + goto fail; + + kmem_list3_init(l3); + l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + + ((unsigned long)cachep)%REAPTIMEOUT_LIST3; + l3->shared = new; + l3->alien = new_alien; + l3->free_limit = (1 + nr_cpus_node(node))* + cachep->batchcount + cachep->num; + cachep->nodelists[node] = l3; + } + return err; +fail: + err = -ENOMEM; + return err; +} + struct ccupdate_struct { kmem_cache_t *cachep; struct array_cache *new[NR_CPUS]; @@ -2641,7 +3122,7 @@ static void do_ccupdate_local(void *info) check_irq_off(); old = ac_data(new->cachep); - + new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; new->new[smp_processor_id()] = old; } @@ -2651,54 +3132,43 @@ static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount, int shared) { struct ccupdate_struct new; - struct array_cache *new_shared; - int i; + int i, err; memset(&new.new,0,sizeof(new.new)); - for (i = 0; i < NR_CPUS; i++) { - if (cpu_online(i)) { - new.new[i] = alloc_arraycache(i, limit, batchcount); - if (!new.new[i]) { - for (i--; i >= 0; i--) kfree(new.new[i]); - return -ENOMEM; - } - } else { - new.new[i] = NULL; + for_each_online_cpu(i) { + new.new[i] = alloc_arraycache(cpu_to_node(i), limit, batchcount); + if (!new.new[i]) { + for (i--; i >= 0; i--) kfree(new.new[i]); + return -ENOMEM; } } new.cachep = cachep; smp_call_function_all_cpus(do_ccupdate_local, (void *)&new); - + check_irq_on(); spin_lock_irq(&cachep->spinlock); cachep->batchcount = batchcount; cachep->limit = limit; - cachep->free_limit = (1+num_online_cpus())*cachep->batchcount + cachep->num; + cachep->shared = shared; spin_unlock_irq(&cachep->spinlock); - for (i = 0; i < NR_CPUS; i++) { + for_each_online_cpu(i) { struct array_cache *ccold = new.new[i]; if (!ccold) continue; - spin_lock_irq(&cachep->spinlock); - free_block(cachep, ac_entry(ccold), ccold->avail); - spin_unlock_irq(&cachep->spinlock); + spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); + free_block(cachep, ccold->entry, ccold->avail); + spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); kfree(ccold); } - new_shared = alloc_arraycache(-1, batchcount*shared, 0xbaadf00d); - if (new_shared) { - struct array_cache *old; - spin_lock_irq(&cachep->spinlock); - old = cachep->lists.shared; - cachep->lists.shared = new_shared; - if (old) - free_block(cachep, ac_entry(old), old->avail); - spin_unlock_irq(&cachep->spinlock); - kfree(old); + err = alloc_kmemlist(cachep); + if (err) { + printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n", + cachep->name, -err); + BUG(); } - return 0; } @@ -2756,11 +3226,11 @@ static void enable_cpucache(kmem_cache_t *cachep) } static void drain_array_locked(kmem_cache_t *cachep, - struct array_cache *ac, int force) + struct array_cache *ac, int force, int node) { int tofree; - check_spinlock_acquired(cachep); + check_spinlock_acquired_node(cachep, node); if (ac->touched && !force) { ac->touched = 0; } else if (ac->avail) { @@ -2768,9 +3238,9 @@ static void drain_array_locked(kmem_cache_t *cachep, if (tofree > ac->avail) { tofree = (ac->avail+1)/2; } - free_block(cachep, ac_entry(ac), tofree); + free_block(cachep, ac->entry, tofree); ac->avail -= tofree; - memmove(&ac_entry(ac)[0], &ac_entry(ac)[tofree], + memmove(ac->entry, &(ac->entry[tofree]), sizeof(void*)*ac->avail); } } @@ -2789,6 +3259,7 @@ static void drain_array_locked(kmem_cache_t *cachep, static void cache_reap(void *unused) { struct list_head *walk; + struct kmem_list3 *l3; if (down_trylock(&cache_chain_sem)) { /* Give up. Setup the next iteration. */ @@ -2809,27 +3280,32 @@ static void cache_reap(void *unused) check_irq_on(); - spin_lock_irq(&searchp->spinlock); + l3 = searchp->nodelists[numa_node_id()]; + if (l3->alien) + drain_alien_cache(searchp, l3); + spin_lock_irq(&l3->list_lock); - drain_array_locked(searchp, ac_data(searchp), 0); + drain_array_locked(searchp, ac_data(searchp), 0, + numa_node_id()); - if(time_after(searchp->lists.next_reap, jiffies)) + if (time_after(l3->next_reap, jiffies)) goto next_unlock; - searchp->lists.next_reap = jiffies + REAPTIMEOUT_LIST3; + l3->next_reap = jiffies + REAPTIMEOUT_LIST3; - if (searchp->lists.shared) - drain_array_locked(searchp, searchp->lists.shared, 0); + if (l3->shared) + drain_array_locked(searchp, l3->shared, 0, + numa_node_id()); - if (searchp->lists.free_touched) { - searchp->lists.free_touched = 0; + if (l3->free_touched) { + l3->free_touched = 0; goto next_unlock; } - tofree = (searchp->free_limit+5*searchp->num-1)/(5*searchp->num); + tofree = (l3->free_limit+5*searchp->num-1)/(5*searchp->num); do { - p = list3_data(searchp)->slabs_free.next; - if (p == &(list3_data(searchp)->slabs_free)) + p = l3->slabs_free.next; + if (p == &(l3->slabs_free)) break; slabp = list_entry(p, struct slab, list); @@ -2842,13 +3318,13 @@ static void cache_reap(void *unused) * searchp cannot disappear, we hold * cache_chain_lock */ - searchp->lists.free_objects -= searchp->num; - spin_unlock_irq(&searchp->spinlock); + l3->free_objects -= searchp->num; + spin_unlock_irq(&l3->list_lock); slab_destroy(searchp, slabp); - spin_lock_irq(&searchp->spinlock); + spin_lock_irq(&l3->list_lock); } while(--tofree > 0); next_unlock: - spin_unlock_irq(&searchp->spinlock); + spin_unlock_irq(&l3->list_lock); next: cond_resched(); } @@ -2882,7 +3358,7 @@ static void *s_start(struct seq_file *m, loff_t *pos) seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); #if STATS seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped>" - " <error> <maxfreeable> <freelimit> <nodeallocs>"); + " <error> <maxfreeable> <nodeallocs> <remotefrees>"); seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); #endif seq_putc(m, '\n'); @@ -2917,39 +3393,53 @@ static int s_show(struct seq_file *m, void *p) unsigned long active_objs; unsigned long num_objs; unsigned long active_slabs = 0; - unsigned long num_slabs; - const char *name; + unsigned long num_slabs, free_objects = 0, shared_avail = 0; + const char *name; char *error = NULL; + int node; + struct kmem_list3 *l3; check_irq_on(); spin_lock_irq(&cachep->spinlock); active_objs = 0; num_slabs = 0; - list_for_each(q,&cachep->lists.slabs_full) { - slabp = list_entry(q, struct slab, list); - if (slabp->inuse != cachep->num && !error) - error = "slabs_full accounting error"; - active_objs += cachep->num; - active_slabs++; - } - list_for_each(q,&cachep->lists.slabs_partial) { - slabp = list_entry(q, struct slab, list); - if (slabp->inuse == cachep->num && !error) - error = "slabs_partial inuse accounting error"; - if (!slabp->inuse && !error) - error = "slabs_partial/inuse accounting error"; - active_objs += slabp->inuse; - active_slabs++; - } - list_for_each(q,&cachep->lists.slabs_free) { - slabp = list_entry(q, struct slab, list); - if (slabp->inuse && !error) - error = "slabs_free/inuse accounting error"; - num_slabs++; + for_each_online_node(node) { + l3 = cachep->nodelists[node]; + if (!l3) + continue; + + spin_lock(&l3->list_lock); + + list_for_each(q,&l3->slabs_full) { + slabp = list_entry(q, struct slab, list); + if (slabp->inuse != cachep->num && !error) + error = "slabs_full accounting error"; + active_objs += cachep->num; + active_slabs++; + } + list_for_each(q,&l3->slabs_partial) { + slabp = list_entry(q, struct slab, list); + if (slabp->inuse == cachep->num && !error) + error = "slabs_partial inuse accounting error"; + if (!slabp->inuse && !error) + error = "slabs_partial/inuse accounting error"; + active_objs += slabp->inuse; + active_slabs++; + } + list_for_each(q,&l3->slabs_free) { + slabp = list_entry(q, struct slab, list); + if (slabp->inuse && !error) + error = "slabs_free/inuse accounting error"; + num_slabs++; + } + free_objects += l3->free_objects; + shared_avail += l3->shared->avail; + + spin_unlock(&l3->list_lock); } num_slabs+=active_slabs; num_objs = num_slabs*cachep->num; - if (num_objs - active_objs != cachep->lists.free_objects && !error) + if (num_objs - active_objs != free_objects && !error) error = "free_objects accounting error"; name = cachep->name; @@ -2961,9 +3451,9 @@ static int s_show(struct seq_file *m, void *p) cachep->num, (1<<cachep->gfporder)); seq_printf(m, " : tunables %4u %4u %4u", cachep->limit, cachep->batchcount, - cachep->lists.shared->limit/cachep->batchcount); - seq_printf(m, " : slabdata %6lu %6lu %6u", - active_slabs, num_slabs, cachep->lists.shared->avail); + cachep->shared); + seq_printf(m, " : slabdata %6lu %6lu %6lu", + active_slabs, num_slabs, shared_avail); #if STATS { /* list3 stats */ unsigned long high = cachep->high_mark; @@ -2972,12 +3462,13 @@ static int s_show(struct seq_file *m, void *p) unsigned long reaped = cachep->reaped; unsigned long errors = cachep->errors; unsigned long max_freeable = cachep->max_freeable; - unsigned long free_limit = cachep->free_limit; unsigned long node_allocs = cachep->node_allocs; + unsigned long node_frees = cachep->node_frees; - seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu", - allocs, high, grown, reaped, errors, - max_freeable, free_limit, node_allocs); + seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \ + %4lu %4lu %4lu %4lu", + allocs, high, grown, reaped, errors, + max_freeable, node_allocs, node_frees); } /* cpu stats */ { @@ -3056,9 +3547,10 @@ ssize_t slabinfo_write(struct file *file, const char __user *buffer, batchcount < 1 || batchcount > limit || shared < 0) { - res = -EINVAL; + res = 0; } else { - res = do_tune_cpucache(cachep, limit, batchcount, shared); + res = do_tune_cpucache(cachep, limit, + batchcount, shared); } break; } |