summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--drivers/edac/amd64_edac.c1251
-rw-r--r--drivers/edac/amd64_edac.h62
-rw-r--r--drivers/edac/edac_core.h1
-rw-r--r--drivers/edac/edac_mc.c24
-rw-r--r--drivers/edac/edac_mce_amd.c2
5 files changed, 621 insertions, 719 deletions
diff --git a/drivers/edac/amd64_edac.c b/drivers/edac/amd64_edac.c
index a38831c82649..5fdd6daa40ea 100644
--- a/drivers/edac/amd64_edac.c
+++ b/drivers/edac/amd64_edac.c
@@ -19,26 +19,48 @@ static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
/*
- * See F2x80 for K8 and F2x[1,0]80 for Fam10 and later. The table below is only
- * for DDR2 DRAM mapping.
+ * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
+ * later.
*/
-u32 revf_quad_ddr2_shift[] = {
- 0, /* 0000b NULL DIMM (128mb) */
- 28, /* 0001b 256mb */
- 29, /* 0010b 512mb */
- 29, /* 0011b 512mb */
- 29, /* 0100b 512mb */
- 30, /* 0101b 1gb */
- 30, /* 0110b 1gb */
- 31, /* 0111b 2gb */
- 31, /* 1000b 2gb */
- 32, /* 1001b 4gb */
- 32, /* 1010b 4gb */
- 33, /* 1011b 8gb */
- 0, /* 1100b future */
- 0, /* 1101b future */
- 0, /* 1110b future */
- 0 /* 1111b future */
+static int ddr2_dbam_revCG[] = {
+ [0] = 32,
+ [1] = 64,
+ [2] = 128,
+ [3] = 256,
+ [4] = 512,
+ [5] = 1024,
+ [6] = 2048,
+};
+
+static int ddr2_dbam_revD[] = {
+ [0] = 32,
+ [1] = 64,
+ [2 ... 3] = 128,
+ [4] = 256,
+ [5] = 512,
+ [6] = 256,
+ [7] = 512,
+ [8 ... 9] = 1024,
+ [10] = 2048,
+};
+
+static int ddr2_dbam[] = { [0] = 128,
+ [1] = 256,
+ [2 ... 4] = 512,
+ [5 ... 6] = 1024,
+ [7 ... 8] = 2048,
+ [9 ... 10] = 4096,
+ [11] = 8192,
+};
+
+static int ddr3_dbam[] = { [0] = -1,
+ [1] = 256,
+ [2] = 512,
+ [3 ... 4] = -1,
+ [5 ... 6] = 1024,
+ [7 ... 8] = 2048,
+ [9 ... 10] = 4096,
+ [11] = 8192,
};
/*
@@ -164,11 +186,9 @@ static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
{
struct amd64_pvt *pvt = mci->pvt_info;
u32 scrubval = 0;
- int status = -1, i, ret = 0;
+ int status = -1, i;
- ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
- if (ret)
- debugf0("Reading K8_SCRCTRL failed\n");
+ amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
scrubval = scrubval & 0x001F;
@@ -189,7 +209,7 @@ static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
/* Map from a CSROW entry to the mask entry that operates on it */
static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
{
- if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_F)
+ if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
return csrow;
else
return csrow >> 1;
@@ -437,7 +457,7 @@ int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
u64 base;
/* only revE and later have the DRAM Hole Address Register */
- if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
+ if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
debugf1(" revision %d for node %d does not support DHAR\n",
pvt->ext_model, pvt->mc_node_id);
return 1;
@@ -743,21 +763,6 @@ static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
*input_addr_max = base | mask | pvt->dcs_mask_notused;
}
-/*
- * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
- * Address High (section 3.6.4.6) register values and return the result. Address
- * is located in the info structure (nbeah and nbeal), the encoding is device
- * specific.
- */
-static u64 extract_error_address(struct mem_ctl_info *mci,
- struct err_regs *info)
-{
- struct amd64_pvt *pvt = mci->pvt_info;
-
- return pvt->ops->get_error_address(mci, info);
-}
-
-
/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
u32 *page, u32 *offset)
@@ -787,7 +792,7 @@ static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
return csrow;
}
-static int get_channel_from_ecc_syndrome(unsigned short syndrome);
+static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
static void amd64_cpu_display_info(struct amd64_pvt *pvt)
{
@@ -797,7 +802,7 @@ static void amd64_cpu_display_info(struct amd64_pvt *pvt)
edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
else if (boot_cpu_data.x86 == 0xf)
edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
- (pvt->ext_model >= OPTERON_CPU_REV_F) ?
+ (pvt->ext_model >= K8_REV_F) ?
"Rev F or later" : "Rev E or earlier");
else
/* we'll hardly ever ever get here */
@@ -813,7 +818,7 @@ static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
int bit;
enum dev_type edac_cap = EDAC_FLAG_NONE;
- bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
+ bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
? 19
: 17;
@@ -824,111 +829,86 @@ static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
}
-static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
- int ganged);
+static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
+
+static void amd64_dump_dramcfg_low(u32 dclr, int chan)
+{
+ debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
+
+ debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
+ (dclr & BIT(16)) ? "un" : "",
+ (dclr & BIT(19)) ? "yes" : "no");
+
+ debugf1(" PAR/ERR parity: %s\n",
+ (dclr & BIT(8)) ? "enabled" : "disabled");
+
+ debugf1(" DCT 128bit mode width: %s\n",
+ (dclr & BIT(11)) ? "128b" : "64b");
+
+ debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
+ (dclr & BIT(12)) ? "yes" : "no",
+ (dclr & BIT(13)) ? "yes" : "no",
+ (dclr & BIT(14)) ? "yes" : "no",
+ (dclr & BIT(15)) ? "yes" : "no");
+}
/* Display and decode various NB registers for debug purposes. */
static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
{
int ganged;
- debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
- pvt->nbcap,
- (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
- (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
- (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
- debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
- (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
- (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
- debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
- pvt->dclr0,
- (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
- (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
- (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
- debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
- (pvt->dclr0 & BIT(12)) ? "Y" : "N",
- (pvt->dclr0 & BIT(13)) ? "Y" : "N",
- (pvt->dclr0 & BIT(14)) ? "Y" : "N",
- (pvt->dclr0 & BIT(15)) ? "Y" : "N",
- (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
-
-
- debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
+ debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
- if (boot_cpu_data.x86 == 0xf) {
- debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
- pvt->dhar, dhar_base(pvt->dhar),
- k8_dhar_offset(pvt->dhar));
- debugf1(" DramHoleValid=%s\n",
- (pvt->dhar & DHAR_VALID) ? "True" : "False");
+ debugf1(" NB two channel DRAM capable: %s\n",
+ (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
- debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
+ debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
+ (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
+ (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
- /* everything below this point is Fam10h and above */
- return;
+ amd64_dump_dramcfg_low(pvt->dclr0, 0);
- } else {
- debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
- pvt->dhar, dhar_base(pvt->dhar),
- f10_dhar_offset(pvt->dhar));
- debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
- (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
- "True" : "False",
- (pvt->dhar & DHAR_VALID) ?
- "True" : "False");
- }
+ debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
- /* Only if NOT ganged does dcl1 have valid info */
- if (!dct_ganging_enabled(pvt)) {
- debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
- "Width=%s\n", pvt->dclr1,
- (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
- (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
- (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
- debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
- "DIMM Type=%s\n",
- (pvt->dclr1 & BIT(12)) ? "Y" : "N",
- (pvt->dclr1 & BIT(13)) ? "Y" : "N",
- (pvt->dclr1 & BIT(14)) ? "Y" : "N",
- (pvt->dclr1 & BIT(15)) ? "Y" : "N",
- (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
+ debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
+ "offset: 0x%08x\n",
+ pvt->dhar,
+ dhar_base(pvt->dhar),
+ (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
+ : f10_dhar_offset(pvt->dhar));
+
+ debugf1(" DramHoleValid: %s\n",
+ (pvt->dhar & DHAR_VALID) ? "yes" : "no");
+
+ /* everything below this point is Fam10h and above */
+ if (boot_cpu_data.x86 == 0xf) {
+ amd64_debug_display_dimm_sizes(0, pvt);
+ return;
}
+ /* Only if NOT ganged does dclr1 have valid info */
+ if (!dct_ganging_enabled(pvt))
+ amd64_dump_dramcfg_low(pvt->dclr1, 1);
+
/*
* Determine if ganged and then dump memory sizes for first controller,
* and if NOT ganged dump info for 2nd controller.
*/
ganged = dct_ganging_enabled(pvt);
- f10_debug_display_dimm_sizes(0, pvt, ganged);
+ amd64_debug_display_dimm_sizes(0, pvt);
if (!ganged)
- f10_debug_display_dimm_sizes(1, pvt, ganged);
+ amd64_debug_display_dimm_sizes(1, pvt);
}
/* Read in both of DBAM registers */
static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
{
- int err = 0;
- unsigned int reg;
-
- reg = DBAM0;
- err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
- if (err)
- goto err_reg;
+ amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
- if (boot_cpu_data.x86 >= 0x10) {
- reg = DBAM1;
- err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
-
- if (err)
- goto err_reg;
- }
-
- return;
-
-err_reg:
- debugf0("Error reading F2x%03x.\n", reg);
+ if (boot_cpu_data.x86 >= 0x10)
+ amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
}
/*
@@ -963,7 +943,7 @@ err_reg:
static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
{
- if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_F) {
+ if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
@@ -991,28 +971,21 @@ static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
*/
static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
{
- int cs, reg, err = 0;
+ int cs, reg;
amd64_set_dct_base_and_mask(pvt);
for (cs = 0; cs < pvt->cs_count; cs++) {
reg = K8_DCSB0 + (cs * 4);
- err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
- &pvt->dcsb0[cs]);
- if (unlikely(err))
- debugf0("Reading K8_DCSB0[%d] failed\n", cs);
- else
+ if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
cs, pvt->dcsb0[cs], reg);
/* If DCT are NOT ganged, then read in DCT1's base */
if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
reg = F10_DCSB1 + (cs * 4);
- err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
- &pvt->dcsb1[cs]);
- if (unlikely(err))
- debugf0("Reading F10_DCSB1[%d] failed\n", cs);
- else
+ if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
+ &pvt->dcsb1[cs]))
debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
cs, pvt->dcsb1[cs], reg);
} else {
@@ -1022,26 +995,20 @@ static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
for (cs = 0; cs < pvt->num_dcsm; cs++) {
reg = K8_DCSM0 + (cs * 4);
- err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
- &pvt->dcsm0[cs]);
- if (unlikely(err))
- debugf0("Reading K8_DCSM0 failed\n");
- else
+ if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
cs, pvt->dcsm0[cs], reg);
/* If DCT are NOT ganged, then read in DCT1's mask */
if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
reg = F10_DCSM1 + (cs * 4);
- err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
- &pvt->dcsm1[cs]);
- if (unlikely(err))
- debugf0("Reading F10_DCSM1[%d] failed\n", cs);
- else
+ if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
+ &pvt->dcsm1[cs]))
debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
cs, pvt->dcsm1[cs], reg);
- } else
+ } else {
pvt->dcsm1[cs] = 0;
+ }
}
}
@@ -1049,18 +1016,16 @@ static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
{
enum mem_type type;
- if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
- /* Rev F and later */
- type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
+ if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
+ if (pvt->dchr0 & DDR3_MODE)
+ type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
+ else
+ type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
} else {
- /* Rev E and earlier */
type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
}
- debugf1(" Memory type is: %s\n",
- (type == MEM_DDR2) ? "MEM_DDR2" :
- (type == MEM_RDDR2) ? "MEM_RDDR2" :
- (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
+ debugf1(" Memory type is: %s\n", edac_mem_types[type]);
return type;
}
@@ -1078,11 +1043,11 @@ static int k8_early_channel_count(struct amd64_pvt *pvt)
{
int flag, err = 0;
- err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
+ err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
if (err)
return err;
- if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
+ if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
/* RevF (NPT) and later */
flag = pvt->dclr0 & F10_WIDTH_128;
} else {
@@ -1114,22 +1079,15 @@ static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
{
u32 low;
u32 off = dram << 3; /* 8 bytes between DRAM entries */
- int err;
- err = pci_read_config_dword(pvt->addr_f1_ctl,
- K8_DRAM_BASE_LOW + off, &low);
- if (err)
- debugf0("Reading K8_DRAM_BASE_LOW failed\n");
+ amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
/* Extract parts into separate data entries */
pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
pvt->dram_rw_en[dram] = (low & 0x3);
- err = pci_read_config_dword(pvt->addr_f1_ctl,
- K8_DRAM_LIMIT_LOW + off, &low);
- if (err)
- debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
+ amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
/*
* Extract parts into separate data entries. Limit is the HIGHEST memory
@@ -1142,7 +1100,7 @@ static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
struct err_regs *info,
- u64 SystemAddress)
+ u64 sys_addr)
{
struct mem_ctl_info *src_mci;
unsigned short syndrome;
@@ -1155,7 +1113,7 @@ static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
/* CHIPKILL enabled */
if (info->nbcfg & K8_NBCFG_CHIPKILL) {
- channel = get_channel_from_ecc_syndrome(syndrome);
+ channel = get_channel_from_ecc_syndrome(mci, syndrome);
if (channel < 0) {
/*
* Syndrome didn't map, so we don't know which of the
@@ -1177,64 +1135,46 @@ static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
* was obtained from email communication with someone at AMD.
* (Wish the email was placed in this comment - norsk)
*/
- channel = ((SystemAddress & BIT(3)) != 0);
+ channel = ((sys_addr & BIT(3)) != 0);
}
/*
* Find out which node the error address belongs to. This may be
* different from the node that detected the error.
*/
- src_mci = find_mc_by_sys_addr(mci, SystemAddress);
+ src_mci = find_mc_by_sys_addr(mci, sys_addr);
if (!src_mci) {
amd64_mc_printk(mci, KERN_ERR,
"failed to map error address 0x%lx to a node\n",
- (unsigned long)SystemAddress);
+ (unsigned long)sys_addr);
edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
return;
}
- /* Now map the SystemAddress to a CSROW */
- csrow = sys_addr_to_csrow(src_mci, SystemAddress);
+ /* Now map the sys_addr to a CSROW */
+ csrow = sys_addr_to_csrow(src_mci, sys_addr);
if (csrow < 0) {
edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
} else {
- error_address_to_page_and_offset(SystemAddress, &page, &offset);
+ error_address_to_page_and_offset(sys_addr, &page, &offset);
edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
channel, EDAC_MOD_STR);
}
}
-/*
- * determrine the number of PAGES in for this DIMM's size based on its DRAM
- * Address Mapping.
- *
- * First step is to calc the number of bits to shift a value of 1 left to
- * indicate show many pages. Start with the DBAM value as the starting bits,
- * then proceed to adjust those shift bits, based on CPU rev and the table.
- * See BKDG on the DBAM
- */
-static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
+static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
{
- int nr_pages;
+ int *dbam_map;
- if (pvt->ext_model >= OPTERON_CPU_REV_F) {
- nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
- } else {
- /*
- * RevE and less section; this line is tricky. It collapses the
- * table used by RevD and later to one that matches revisions CG
- * and earlier.
- */
- dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
- (dram_map > 8 ? 4 : (dram_map > 5 ?
- 3 : (dram_map > 2 ? 1 : 0))) : 0;
-
- /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
- nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
- }
+ if (pvt->ext_model >= K8_REV_F)
+ dbam_map = ddr2_dbam;
+ else if (pvt->ext_model >= K8_REV_D)
+ dbam_map = ddr2_dbam_revD;
+ else
+ dbam_map = ddr2_dbam_revCG;
- return nr_pages;
+ return dbam_map[cs_mode];
}
/*
@@ -1248,34 +1188,24 @@ static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
static int f10_early_channel_count(struct amd64_pvt *pvt)
{
int dbams[] = { DBAM0, DBAM1 };
- int err = 0, channels = 0;
- int i, j;
+ int i, j, channels = 0;
u32 dbam;
- err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
- if (err)
- goto err_reg;
-
- err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
- if (err)
- goto err_reg;
-
/* If we are in 128 bit mode, then we are using 2 channels */
if (pvt->dclr0 & F10_WIDTH_128) {
- debugf0("Data WIDTH is 128 bits - 2 channels\n");
channels = 2;
return channels;
}
/*
- * Need to check if in UN-ganged mode: In such, there are 2 channels,
- * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
- * will be OFF.
+ * Need to check if in unganged mode: In such, there are 2 channels,
+ * but they are not in 128 bit mode and thus the above 'dclr0' status
+ * bit will be OFF.
*
* Need to check DCT0[0] and DCT1[0] to see if only one of them has
* their CSEnable bit on. If so, then SINGLE DIMM case.
*/
- debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
+ debugf0("Data width is not 128 bits - need more decoding\n");
/*
* Check DRAM Bank Address Mapping values for each DIMM to see if there
@@ -1283,8 +1213,7 @@ static int f10_early_channel_count(struct amd64_pvt *pvt)
* both controllers since DIMMs can be placed in either one.
*/
for (i = 0; i < ARRAY_SIZE(dbams); i++) {
- err = pci_read_config_dword(pvt->dram_f2_ctl, dbams[i], &dbam);
- if (err)
+ if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
goto err_reg;
for (j = 0; j < 4; j++) {
@@ -1295,6 +1224,9 @@ static int f10_early_channel_count(struct amd64_pvt *pvt)
}
}
+ if (channels > 2)
+ channels = 2;
+
debugf0("MCT channel count: %d\n", channels);
return channels;
@@ -1304,9 +1236,16 @@ err_reg:
}
-static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
+static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
{
- return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
+ int *dbam_map;
+
+ if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
+ dbam_map = ddr3_dbam;
+ else
+ dbam_map = ddr2_dbam;
+
+ return dbam_map[cs_mode];
}
/* Enable extended configuration access via 0xCF8 feature */
@@ -1314,7 +1253,7 @@ static void amd64_setup(struct amd64_pvt *pvt)
{
u32 reg;
- pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
+ amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
@@ -1326,7 +1265,7 @@ static void amd64_teardown(struct amd64_pvt *pvt)
{
u32 reg;
- pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
+ amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
if (pvt->flags.cf8_extcfg)
@@ -1355,10 +1294,10 @@ static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
/* read the 'raw' DRAM BASE Address register */
- pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
+ amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
/* Read from the ECS data register */
- pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
+ amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
/* Extract parts into separate data entries */
pvt->dram_rw_en[dram] = (low_base & 0x3);
@@ -1375,13 +1314,10 @@ static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
/* read the 'raw' LIMIT registers */
- pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
+ amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
/* Read from the ECS data register for the HIGH portion */
- pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
-
- debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
- high_base, low_base, high_limit, low_limit);
+ amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
pvt->dram_DstNode[dram] = (low_limit & 0x7);
pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
@@ -1397,32 +1333,35 @@ static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
{
- int err = 0;
- err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
- &pvt->dram_ctl_select_low);
- if (err) {
- debugf0("Reading F10_DCTL_SEL_LOW failed\n");
- } else {
- debugf0("DRAM_DCTL_SEL_LOW=0x%x DctSelBaseAddr=0x%x\n",
- pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));
-
- debugf0(" DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
- "sel-hi-range=%s\n",
- (dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
- (dct_dram_enabled(pvt) ? "Enabled" : "Disabled"),
- (dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));
-
- debugf0(" DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
- (dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
- (dct_memory_cleared(pvt) ? "True " : "False "),
+ if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
+ &pvt->dram_ctl_select_low)) {
+ debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
+ "High range addresses at: 0x%x\n",
+ pvt->dram_ctl_select_low,
+ dct_sel_baseaddr(pvt));
+
+ debugf0(" DCT mode: %s, All DCTs on: %s\n",
+ (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
+ (dct_dram_enabled(pvt) ? "yes" : "no"));
+
+ if (!dct_ganging_enabled(pvt))
+ debugf0(" Address range split per DCT: %s\n",
+ (dct_high_range_enabled(pvt) ? "yes" : "no"));
+
+ debugf0(" DCT data interleave for ECC: %s, "
+ "DRAM cleared since last warm reset: %s\n",
+ (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
+ (dct_memory_cleared(pvt) ? "yes" : "no"));
+
+ debugf0(" DCT channel interleave: %s, "
+ "DCT interleave bits selector: 0x%x\n",
+ (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
dct_sel_interleave_addr(pvt));
}
- err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
- &pvt->dram_ctl_select_high);
- if (err)
- debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
+ amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
+ &pvt->dram_ctl_select_high);
}
/*
@@ -1706,10 +1645,11 @@ static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
}
/*
- * This the F10h reference code from AMD to map a @sys_addr to NodeID,
- * CSROW, Channel.
+ * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
+ * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
*
- * The @sys_addr is usually an error address received from the hardware.
+ * The @sys_addr is usually an error address received from the hardware
+ * (MCX_ADDR).
*/
static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
struct err_regs *info,
@@ -1722,133 +1662,76 @@ static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
- if (csrow >= 0) {
- error_address_to_page_and_offset(sys_addr, &page, &offset);
-
- syndrome = HIGH_SYNDROME(info->nbsl) << 8;
- syndrome |= LOW_SYNDROME(info->nbsh);
-
- /*
- * Is CHIPKILL on? If so, then we can attempt to use the
- * syndrome to isolate which channel the error was on.
- */
- if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
- chan = get_channel_from_ecc_syndrome(syndrome);
-
- if (chan >= 0) {
- edac_mc_handle_ce(mci, page, offset, syndrome,
- csrow, chan, EDAC_MOD_STR);
- } else {
- /*
- * Channel unknown, report all channels on this
- * CSROW as failed.
- */
- for (chan = 0; chan < mci->csrows[csrow].nr_channels;
- chan++) {
- edac_mc_handle_ce(mci, page, offset,
- syndrome,
- csrow, chan,
- EDAC_MOD_STR);
- }
- }
-
- } else {
+ if (csrow < 0) {
edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+ return;
}
-}
-/*
- * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
- * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
- * indicates an empty DIMM slot, as reported by Hardware on empty slots.
- *
- * Normalize to 128MB by subracting 27 bit shift.
- */
-static int map_dbam_to_csrow_size(int index)
-{
- int mega_bytes = 0;
+ error_address_to_page_and_offset(sys_addr, &page, &offset);
- if (index > 0 && index <= DBAM_MAX_VALUE)
- mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
+ syndrome = HIGH_SYNDROME(info->nbsl) << 8;
+ syndrome |= LOW_SYNDROME(info->nbsh);
- return mega_bytes;
+ /*
+ * We need the syndromes for channel detection only when we're
+ * ganged. Otherwise @chan should already contain the channel at
+ * this point.
+ */
+ if (dct_ganging_enabled(pvt) && pvt->nbcfg & K8_NBCFG_CHIPKILL)
+ chan = get_channel_from_ecc_syndrome(mci, syndrome);
+
+ if (chan >= 0)
+ edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
+ EDAC_MOD_STR);
+ else
+ /*
+ * Channel unknown, report all channels on this CSROW as failed.
+ */
+ for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
+ edac_mc_handle_ce(mci, page, offset, syndrome,
+ csrow, chan, EDAC_MOD_STR);
}
/*
- * debug routine to display the memory sizes of a DIMM (ganged or not) and it
+ * debug routine to display the memory sizes of all logical DIMMs and its
* CSROWs as well
*/
-static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
- int ganged)
+static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
{
int dimm, size0, size1;
u32 dbam;
u32 *dcsb;
- debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl,
- ctrl ? pvt->dbam1 : pvt->dbam0,
- ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
+ if (boot_cpu_data.x86 == 0xf) {
+ /* K8 families < revF not supported yet */
+ if (pvt->ext_model < K8_REV_F)
+ return;
+ else
+ WARN_ON(ctrl != 0);
+ }
+
+ debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
+ ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
+ edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
+
/* Dump memory sizes for DIMM and its CSROWs */
for (dimm = 0; dimm < 4; dimm++) {
size0 = 0;
if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
- size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
+ size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
size1 = 0;
if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
- size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
-
- debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB "
- "CSROW-%d=%5dMB\n",
- ctrl,
- dimm,
- size0 + size1,
- dimm * 2,
- size0,
- dimm * 2 + 1,
- size1);
- }
-}
-
-/*
- * Very early hardware probe on pci_probe thread to determine if this module
- * supports the hardware.
- *
- * Return:
- * 0 for OK
- * 1 for error
- */
-static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
-{
- int ret = 0;
-
- /*
- * If we are on a DDR3 machine, we don't know yet if
- * we support that properly at this time
- */
- if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
- (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
-
- amd64_printk(KERN_WARNING,
- "%s() This machine is running with DDR3 memory. "
- "This is not currently supported. "
- "DCHR0=0x%x DCHR1=0x%x\n",
- __func__, pvt->dchr0, pvt->dchr1);
-
- amd64_printk(KERN_WARNING,
- " Contact '%s' module MAINTAINER to help add"
- " support.\n",
- EDAC_MOD_STR);
-
- ret = 1;
+ size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
+ edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
+ dimm * 2, size0, dimm * 2 + 1, size1);
}
- return ret;
}
/*
@@ -1868,11 +1751,11 @@ static struct amd64_family_type amd64_family_types[] = {
.addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
.misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
.ops = {
- .early_channel_count = k8_early_channel_count,
- .get_error_address = k8_get_error_address,
- .read_dram_base_limit = k8_read_dram_base_limit,
- .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
- .dbam_map_to_pages = k8_dbam_map_to_pages,
+ .early_channel_count = k8_early_channel_count,
+ .get_error_address = k8_get_error_address,
+ .read_dram_base_limit = k8_read_dram_base_limit,
+ .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
+ .dbam_to_cs = k8_dbam_to_chip_select,
}
},
[F10_CPUS] = {
@@ -1880,13 +1763,12 @@ static struct amd64_family_type amd64_family_types[] = {
.addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
.misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
.ops = {
- .probe_valid_hardware = f10_probe_valid_hardware,
- .early_channel_count = f10_early_channel_count,
- .get_error_address = f10_get_error_address,
- .read_dram_base_limit = f10_read_dram_base_limit,
- .read_dram_ctl_register = f10_read_dram_ctl_register,
- .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
- .dbam_map_to_pages = f10_dbam_map_to_pages,
+ .early_channel_count = f10_early_channel_count,
+ .get_error_address = f10_get_error_address,
+ .read_dram_base_limit = f10_read_dram_base_limit,
+ .read_dram_ctl_register = f10_read_dram_ctl_register,
+ .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
+ .dbam_to_cs = f10_dbam_to_chip_select,
}
},
[F11_CPUS] = {
@@ -1894,13 +1776,12 @@ static struct amd64_family_type amd64_family_types[] = {
.addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
.misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
.ops = {
- .probe_valid_hardware = f10_probe_valid_hardware,
- .early_channel_count = f10_early_channel_count,
- .get_error_address = f10_get_error_address,
- .read_dram_base_limit = f10_read_dram_base_limit,
- .read_dram_ctl_register = f10_read_dram_ctl_register,
- .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
- .dbam_map_to_pages = f10_dbam_map_to_pages,
+ .early_channel_count = f10_early_channel_count,
+ .get_error_address = f10_get_error_address,
+ .read_dram_base_limit = f10_read_dram_base_limit,
+ .read_dram_ctl_register = f10_read_dram_ctl_register,
+ .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
+ .dbam_to_cs = f10_dbam_to_chip_select,
}
},
};
@@ -1923,142 +1804,170 @@ static struct pci_dev *pci_get_related_function(unsigned int vendor,
}
/*
- * syndrome mapping table for ECC ChipKill devices
- *
- * The comment in each row is the token (nibble) number that is in error.
- * The least significant nibble of the syndrome is the mask for the bits
- * that are in error (need to be toggled) for the particular nibble.
- *
- * Each row contains 16 entries.
- * The first entry (0th) is the channel number for that row of syndromes.
- * The remaining 15 entries are the syndromes for the respective Error
- * bit mask index.
- *
- * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
- * bit in error.
- * The 2nd index entry is 0x0010 that the second bit is damaged.
- * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
- * are damaged.
- * Thus so on until index 15, 0x1111, whose entry has the syndrome
- * indicating that all 4 bits are damaged.
- *
- * A search is performed on this table looking for a given syndrome.
+ * These are tables of eigenvectors (one per line) which can be used for the
+ * construction of the syndrome tables. The modified syndrome search algorithm
+ * uses those to find the symbol in error and thus the DIMM.
*
- * See the AMD documentation for ECC syndromes. This ECC table is valid
- * across all the versions of the AMD64 processors.
- *
- * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
- * COLUMN index, then search all ROWS of that column, looking for a match
- * with the input syndrome. The ROW value will be the token number.
- *
- * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
- * error.
+ * Algorithm courtesy of Ross LaFetra from AMD.
*/
-#define NUMBER_ECC_ROWS 36
-static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
- /* Channel 0 syndromes */
- {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
- 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
- {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
- 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
- {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
- 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
- {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
- 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
- {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
- 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
- {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
- 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
- {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
- 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
- {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
- 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
- {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
- 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
- {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
- 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
- {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
- 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
- {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
- 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
- {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
- 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
- {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
- 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
- {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
- 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
- {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
- 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
-
- /* Channel 1 syndromes */
- {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
- 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
- {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
- 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
- {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
- 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
- {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
- 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
- {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
- 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
- {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
- 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
- {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
- 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
- {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
- 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
- {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
- 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
- {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
- 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
- {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
- 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
- {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
- 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
- {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
- 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
- {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
- 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
- {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
- 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
- {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
- 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
-
- /* ECC bits are also in the set of tokens and they too can go bad
- * first 2 cover channel 0, while the second 2 cover channel 1
- */
- {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
- 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
- {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
- 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
- {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
- 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
- {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
- 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
+static u16 x4_vectors[] = {
+ 0x2f57, 0x1afe, 0x66cc, 0xdd88,
+ 0x11eb, 0x3396, 0x7f4c, 0xeac8,
+ 0x0001, 0x0002, 0x0004, 0x0008,
+ 0x1013, 0x3032, 0x4044, 0x8088,
+ 0x106b, 0x30d6, 0x70fc, 0xe0a8,
+ 0x4857, 0xc4fe, 0x13cc, 0x3288,
+ 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
+ 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
+ 0x15c1, 0x2a42, 0x89ac, 0x4758,
+ 0x2b03, 0x1602, 0x4f0c, 0xca08,
+ 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
+ 0x8ba7, 0x465e, 0x244c, 0x1cc8,
+ 0x2b87, 0x164e, 0x642c, 0xdc18,
+ 0x40b9, 0x80de, 0x1094, 0x20e8,
+ 0x27db, 0x1eb6, 0x9dac, 0x7b58,
+ 0x11c1, 0x2242, 0x84ac, 0x4c58,
+ 0x1be5, 0x2d7a, 0x5e34, 0xa718,
+ 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
+ 0x4c97, 0xc87e, 0x11fc, 0x33a8,
+ 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
+ 0x16b3, 0x3d62, 0x4f34, 0x8518,
+ 0x1e2f, 0x391a, 0x5cac, 0xf858,
+ 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
+ 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
+ 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
+ 0x4397, 0xc27e, 0x17fc, 0x3ea8,
+ 0x1617, 0x3d3e, 0x6464, 0xb8b8,
+ 0x23ff, 0x12aa, 0xab6c, 0x56d8,
+ 0x2dfb, 0x1ba6, 0x913c, 0x7328,
+ 0x185d, 0x2ca6, 0x7914, 0x9e28,
+ 0x171b, 0x3e36, 0x7d7c, 0xebe8,
+ 0x4199, 0x82ee, 0x19f4, 0x2e58,
+ 0x4807, 0xc40e, 0x130c, 0x3208,
+ 0x1905, 0x2e0a, 0x5804, 0xac08,
+ 0x213f, 0x132a, 0xadfc, 0x5ba8,
+ 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
};
-/*
- * Given the syndrome argument, scan each of the channel tables for a syndrome
- * match. Depending on which table it is found, return the channel number.
- */
-static int get_channel_from_ecc_syndrome(unsigned short syndrome)
+static u16 x8_vectors[] = {
+ 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
+ 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
+ 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
+ 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
+ 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
+ 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
+ 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
+ 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
+ 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
+ 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
+ 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
+ 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
+ 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
+ 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
+ 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
+ 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
+ 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
+ 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
+ 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
+};
+
+static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
+ int v_dim)
{
- int row;
- int column;
+ unsigned int i, err_sym;
+
+ for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
+ u16 s = syndrome;
+ int v_idx = err_sym * v_dim;
+ int v_end = (err_sym + 1) * v_dim;
+
+ /* walk over all 16 bits of the syndrome */
+ for (i = 1; i < (1U << 16); i <<= 1) {
- /* Determine column to scan */
- column = syndrome & 0xF;
+ /* if bit is set in that eigenvector... */
+ if (v_idx < v_end && vectors[v_idx] & i) {
+ u16 ev_comp = vectors[v_idx++];
- /* Scan all rows, looking for syndrome, or end of table */
- for (row = 0; row < NUMBER_ECC_ROWS; row++) {
- if (ecc_chipkill_syndromes[row][column] == syndrome)
- return ecc_chipkill_syndromes[row][0];
+ /* ... and bit set in the modified syndrome, */
+ if (s & i) {
+ /* remove it. */
+ s ^= ev_comp;
+
+ if (!s)
+ return err_sym;
+ }
+
+ } else if (s & i)
+ /* can't get to zero, move to next symbol */
+ break;
+ }
}
debugf0("syndrome(%x) not found\n", syndrome);
return -1;
}
+static int map_err_sym_to_channel(int err_sym, int sym_size)
+{
+ if (sym_size == 4)
+ switch (err_sym) {
+ case 0x20:
+ case 0x21:
+ return 0;
+ break;
+ case 0x22:
+ case 0x23:
+ return 1;
+ break;
+ default:
+ return err_sym >> 4;
+ break;
+ }
+ /* x8 symbols */
+ else
+ switch (err_sym) {
+ /* imaginary bits not in a DIMM */
+ case 0x10:
+ WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
+ err_sym);
+ return -1;
+ break;
+
+ case 0x11:
+ return 0;
+ break;
+ case 0x12:
+ return 1;
+ break;
+ default:
+ return err_sym >> 3;
+ break;
+ }
+ return -1;
+}
+
+static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ u32 value = 0;
+ int err_sym = 0;
+
+ amd64_read_pci_cfg(pvt->misc_f3_ctl, 0x180, &value);
+
+ /* F3x180[EccSymbolSize]=1, x8 symbols */
+ if (boot_cpu_data.x86 == 0x10 &&
+ boot_cpu_data.x86_model > 7 &&
+ value & BIT(25)) {
+ err_sym = decode_syndrome(syndrome, x8_vectors,
+ ARRAY_SIZE(x8_vectors), 8);
+ return map_err_sym_to_channel(err_sym, 8);
+ } else {
+ err_sym = decode_syndrome(syndrome, x4_vectors,
+ ARRAY_SIZE(x4_vectors), 4);
+ return map_err_sym_to_channel(err_sym, 4);
+ }
+}
+
/*
* Check for valid error in the NB Status High register. If so, proceed to read
* NB Status Low, NB Address Low and NB Address High registers and store data
@@ -2073,40 +1982,24 @@ static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
{
struct amd64_pvt *pvt;
struct pci_dev *misc_f3_ctl;
- int err = 0;
pvt = mci->pvt_info;
misc_f3_ctl = pvt->misc_f3_ctl;
- err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, &regs->nbsh);
- if (err)
- goto err_reg;
+ if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSH, &regs->nbsh))
+ return 0;
if (!(regs->nbsh & K8_NBSH_VALID_BIT))
return 0;
/* valid error, read remaining error information registers */
- err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, &regs->nbsl);
- if (err)
- goto err_reg;
-
- err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, &regs->nbeal);
- if (err)
- goto err_reg;
-
- err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, &regs->nbeah);
- if (err)
- goto err_reg;
-
- err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, &regs->nbcfg);
- if (err)
- goto err_reg;
+ if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSL, &regs->nbsl) ||
+ amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAL, &regs->nbeal) ||
+ amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAH, &regs->nbeah) ||
+ amd64_read_pci_cfg(misc_f3_ctl, K8_NBCFG, &regs->nbcfg))
+ return 0;
return 1;
-
-err_reg:
- debugf0("Reading error info register failed\n");
- return 0;
}
/*
@@ -2184,7 +2077,7 @@ static void amd64_handle_ce(struct mem_ctl_info *mci,
struct err_regs *info)
{
struct amd64_pvt *pvt = mci->pvt_info;
- u64 SystemAddress;
+ u64 sys_addr;
/* Ensure that the Error Address is VALID */
if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
@@ -2194,22 +2087,23 @@ static void amd64_handle_ce(struct mem_ctl_info *mci,
return;
}
- SystemAddress = extract_error_address(mci, info);
+ sys_addr = pvt->ops->get_error_address(mci, info);
amd64_mc_printk(mci, KERN_ERR,
- "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
+ "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
- pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
+ pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
}
/* Handle any Un-correctable Errors (UEs) */
static void amd64_handle_ue(struct mem_ctl_info *mci,
struct err_regs *info)
{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ struct mem_ctl_info *log_mci, *src_mci = NULL;
int csrow;
- u64 SystemAddress;
+ u64 sys_addr;
u32 page, offset;
- struct mem_ctl_info *log_mci, *src_mci = NULL;
log_mci = mci;
@@ -2220,31 +2114,31 @@ static void amd64_handle_ue(struct mem_ctl_info *mci,
return;
}
- SystemAddress = extract_error_address(mci, info);
+ sys_addr = pvt->ops->get_error_address(mci, info);
/*
* Find out which node the error address belongs to. This may be
* different from the node that detected the error.
*/
- src_mci = find_mc_by_sys_addr(mci, SystemAddress);
+ src_mci = find_mc_by_sys_addr(mci, sys_addr);
if (!src_mci) {
amd64_mc_printk(mci, KERN_CRIT,
"ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
- (unsigned long)SystemAddress);
+ (unsigned long)sys_addr);
edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
return;
}
log_mci = src_mci;
- csrow = sys_addr_to_csrow(log_mci, SystemAddress);
+ csrow = sys_addr_to_csrow(log_mci, sys_addr);
if (csrow < 0) {
amd64_mc_printk(mci, KERN_CRIT,
"ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
- (unsigned long)SystemAddress);
+ (unsigned long)sys_addr);
edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
} else {
- error_address_to_page_and_offset(SystemAddress, &page, &offset);
+ error_address_to_page_and_offset(sys_addr, &page, &offset);
edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
}
}
@@ -2384,30 +2278,26 @@ static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
static void amd64_read_mc_registers(struct amd64_pvt *pvt)
{
u64 msr_val;
- int dram, err = 0;
+ int dram;
/*
* Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
* those are Read-As-Zero
*/
- rdmsrl(MSR_K8_TOP_MEM1, msr_val);
- pvt->top_mem = msr_val >> 23;
- debugf0(" TOP_MEM=0x%08llx\n", pvt->top_mem);
+ rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
+ debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
/* check first whether TOP_MEM2 is enabled */
rdmsrl(MSR_K8_SYSCFG, msr_val);
if (msr_val & (1U << 21)) {
- rdmsrl(MSR_K8_TOP_MEM2, msr_val);
- pvt->top_mem2 = msr_val >> 23;
- debugf0(" TOP_MEM2=0x%08llx\n", pvt->top_mem2);
+ rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
+ debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
} else
debugf0(" TOP_MEM2 disabled.\n");
amd64_cpu_display_info(pvt);
- err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
- if (err)
- goto err_reg;
+ amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
if (pvt->ops->read_dram_ctl_register)
pvt->ops->read_dram_ctl_register(pvt);
@@ -2425,13 +2315,12 @@ static void amd64_read_mc_registers(struct amd64_pvt *pvt)
* debug output block away.
*/
if (pvt->dram_rw_en[dram] != 0) {
- debugf1(" DRAM_BASE[%d]: 0x%8.08x-%8.08x "
- "DRAM_LIMIT: 0x%8.08x-%8.08x\n",
+ debugf1(" DRAM-BASE[%d]: 0x%016llx "
+ "DRAM-LIMIT: 0x%016llx\n",
dram,
- (u32)(pvt->dram_base[dram] >> 32),
- (u32)(pvt->dram_base[dram] & 0xFFFFFFFF),
- (u32)(pvt->dram_limit[dram] >> 32),
- (u32)(pvt->dram_limit[dram] & 0xFFFFFFFF));
+ pvt->dram_base[dram],
+ pvt->dram_limit[dram]);
+
debugf1(" IntlvEn=%s %s %s "
"IntlvSel=%d DstNode=%d\n",
pvt->dram_IntlvEn[dram] ?
@@ -2445,44 +2334,20 @@ static void amd64_read_mc_registers(struct amd64_pvt *pvt)
amd64_read_dct_base_mask(pvt);
- err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
- if (err)
- goto err_reg;
-
+ amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
amd64_read_dbam_reg(pvt);
- err = pci_read_config_dword(pvt->misc_f3_ctl,
- F10_ONLINE_SPARE, &pvt->online_spare);
- if (err)
- goto err_reg;
-
- err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
- if (err)
- goto err_reg;
+ amd64_read_pci_cfg(pvt->misc_f3_ctl,
+ F10_ONLINE_SPARE, &pvt->online_spare);
- err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
- if (err)
- goto err_reg;
+ amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
+ amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
if (!dct_ganging_enabled(pvt)) {
- err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1,
- &pvt->dclr1);
- if (err)
- goto err_reg;
-
- err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1,
- &pvt->dchr1);
- if (err)
- goto err_reg;
+ amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
+ amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
}
-
amd64_dump_misc_regs(pvt);
-
- return;
-
-err_reg:
- debugf0("Reading an MC register failed\n");
-
}
/*
@@ -2521,7 +2386,7 @@ err_reg:
*/
static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
{
- u32 dram_map, nr_pages;
+ u32 cs_mode, nr_pages;
/*
* The math on this doesn't look right on the surface because x/2*4 can
@@ -2530,9 +2395,9 @@ static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
* number of bits to shift the DBAM register to extract the proper CSROW
* field.
*/
- dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
+ cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
- nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
+ nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
/*
* If dual channel then double the memory size of single channel.
@@ -2540,7 +2405,7 @@ static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
*/
nr_pages <<= (pvt->channel_count - 1);
- debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
+ debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
debugf0(" nr_pages= %u channel-count = %d\n",
nr_pages, pvt->channel_count);
@@ -2556,13 +2421,11 @@ static int amd64_init_csrows(struct mem_ctl_info *mci)
struct csrow_info *csrow;
struct amd64_pvt *pvt;
u64 input_addr_min, input_addr_max, sys_addr;
- int i, err = 0, empty = 1;
+ int i, empty = 1;
pvt = mci->pvt_info;
- err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
- if (err)
- debugf0("Reading K8_NBCFG failed\n");
+ amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
(pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
@@ -2618,6 +2481,109 @@ static int amd64_init_csrows(struct mem_ctl_info *mci)
return empty;
}
+/* get all cores on this DCT */
+static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
+{
+ int cpu;
+
+ for_each_online_cpu(cpu)
+ if (amd_get_nb_id(cpu) == nid)
+ cpumask_set_cpu(cpu, mask);
+}
+
+/* check MCG_CTL on all the cpus on this node */
+static bool amd64_nb_mce_bank_enabled_on_node(int nid)
+{
+ cpumask_var_t mask;
+ struct msr *msrs;
+ int cpu, nbe, idx = 0;
+ bool ret = false;
+
+ if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
+ amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
+ __func__);
+ return false;
+ }
+
+ get_cpus_on_this_dct_cpumask(mask, nid);
+
+ msrs = kzalloc(sizeof(struct msr) * cpumask_weight(mask), GFP_KERNEL);
+ if (!msrs) {
+ amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
+ __func__);
+ free_cpumask_var(mask);
+ return false;
+ }
+
+ rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
+
+ for_each_cpu(cpu, mask) {
+ nbe = msrs[idx].l & K8_MSR_MCGCTL_NBE;
+
+ debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
+ cpu, msrs[idx].q,
+ (nbe ? "enabled" : "disabled"));
+
+ if (!nbe)
+ goto out;
+
+ idx++;
+ }
+ ret = true;
+
+out:
+ kfree(msrs);
+ free_cpumask_var(mask);
+ return ret;
+}
+
+static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
+{
+ cpumask_var_t cmask;
+ struct msr *msrs = NULL;
+ int cpu, idx = 0;
+
+ if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
+ amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
+ __func__);
+ return false;
+ }
+
+ get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
+
+ msrs = kzalloc(sizeof(struct msr) * cpumask_weight(cmask), GFP_KERNEL);
+ if (!msrs) {
+ amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
+ __func__);
+ return -ENOMEM;
+ }
+
+ rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
+
+ for_each_cpu(cpu, cmask) {
+
+ if (on) {
+ if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
+ pvt->flags.ecc_report = 1;
+
+ msrs[idx].l |= K8_MSR_MCGCTL_NBE;
+ } else {
+ /*
+ * Turn off ECC reporting only when it was off before
+ */
+ if (!pvt->flags.ecc_report)
+ msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
+ }
+ idx++;
+ }
+ wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
+
+ kfree(msrs);
+ free_cpumask_var(cmask);
+
+ return 0;
+}
+
/*
* Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
* enable it.
@@ -2625,24 +2591,16 @@ static int amd64_init_csrows(struct mem_ctl_info *mci)
static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
{
struct amd64_pvt *pvt = mci->pvt_info;
- const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
- int cpu, idx = 0, err = 0;
- struct msr msrs[cpumask_weight(cpumask)];
- u32 value;
- u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
+ u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
if (!ecc_enable_override)
return;
- memset(msrs, 0, sizeof(msrs));
-
amd64_printk(KERN_WARNING,
"'ecc_enable_override' parameter is active, "
"Enabling AMD ECC hardware now: CAUTION\n");
- err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
- if (err)
- debugf0("Reading K8_NBCTL failed\n");
+ amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
/* turn on UECCn and CECCEn bits */
pvt->old_nbctl = value & mask;
@@ -2651,20 +2609,11 @@ static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
value |= mask;
pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
- rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
-
- for_each_cpu(cpu, cpumask) {
- if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
- set_bit(idx, &pvt->old_mcgctl);
+ if (amd64_toggle_ecc_err_reporting(pvt, ON))
+ amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
+ "MCGCTL!\n");
- msrs[idx].l |= K8_MSR_MCGCTL_NBE;
- idx++;
- }
- wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
-
- err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
- if (err)
- debugf0("Reading K8_NBCFG failed\n");
+ amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
@@ -2679,9 +2628,7 @@ static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
value |= K8_NBCFG_ECC_ENABLE;
pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
- err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
- if (err)
- debugf0("Reading K8_NBCFG failed\n");
+ amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
if (!(value & K8_NBCFG_ECC_ENABLE)) {
amd64_printk(KERN_WARNING,
@@ -2701,86 +2648,21 @@ static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
{
- const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
- int cpu, idx = 0, err = 0;
- struct msr msrs[cpumask_weight(cpumask)];
- u32 value;
- u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
+ u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
if (!pvt->nbctl_mcgctl_saved)
return;
- memset(msrs, 0, sizeof(msrs));
-
- err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
- if (err)
- debugf0("Reading K8_NBCTL failed\n");
+ amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
value &= ~mask;
value |= pvt->old_nbctl;
/* restore the NB Enable MCGCTL bit */
pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
- rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
-
- for_each_cpu(cpu, cpumask) {
- msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
- msrs[idx].l |=
- test_bit(idx, &pvt->old_mcgctl) << K8_MSR_MCGCTL_NBE;
- idx++;
- }
-
- wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
-}
-
-/* get all cores on this DCT */
-static void get_cpus_on_this_dct_cpumask(cpumask_t *mask, int nid)
-{
- int cpu;
-
- for_each_online_cpu(cpu)
- if (amd_get_nb_id(cpu) == nid)
- cpumask_set_cpu(cpu, mask);
-}
-
-/* check MCG_CTL on all the cpus on this node */
-static bool amd64_nb_mce_bank_enabled_on_node(int nid)
-{
- cpumask_t mask;
- struct msr *msrs;
- int cpu, nbe, idx = 0;
- bool ret = false;
-
- cpumask_clear(&mask);
-
- get_cpus_on_this_dct_cpumask(&mask, nid);
-
- msrs = kzalloc(sizeof(struct msr) * cpumask_weight(&mask), GFP_KERNEL);
- if (!msrs) {
- amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
- __func__);
- return false;
- }
-
- rdmsr_on_cpus(&mask, MSR_IA32_MCG_CTL, msrs);
-
- for_each_cpu(cpu, &mask) {
- nbe = msrs[idx].l & K8_MSR_MCGCTL_NBE;
-
- debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
- cpu, msrs[idx].q,
- (nbe ? "enabled" : "disabled"));
-
- if (!nbe)
- goto out;
-
- idx++;
- }
- ret = true;
-
-out:
- kfree(msrs);
- return ret;
+ if (amd64_toggle_ecc_err_reporting(pvt, OFF))
+ amd64_printk(KERN_WARNING, "Error restoring ECC reporting over "
+ "MCGCTL!\n");
}
/*
@@ -2797,13 +2679,10 @@ static const char *ecc_warning =
static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
{
u32 value;
- int err = 0;
u8 ecc_enabled = 0;
bool nb_mce_en = false;
- err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
- if (err)
- debugf0("Reading K8_NBCTL failed\n");
+ amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
if (!ecc_enabled)
@@ -2909,7 +2788,6 @@ static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
pvt->ext_model = boot_cpu_data.x86_model >> 4;
pvt->mc_type_index = mc_type_index;
pvt->ops = family_ops(mc_type_index);
- pvt->old_mcgctl = 0;
/*
* We have the dram_f2_ctl device as an argument, now go reserve its
@@ -2959,17 +2837,10 @@ static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
{
int node_id = pvt->mc_node_id;
struct mem_ctl_info *mci;
- int ret, err = 0;
+ int ret = -ENODEV;
amd64_read_mc_registers(pvt);
- ret = -ENODEV;
- if (pvt->ops->probe_valid_hardware) {
- err = pvt->ops->probe_valid_hardware(pvt);
- if (err)
- goto err_exit;
- }
-
/*
* We need to determine how many memory channels there are. Then use
* that information for calculating the size of the dynamic instance
diff --git a/drivers/edac/amd64_edac.h b/drivers/edac/amd64_edac.h
index c6f359a85207..41bc561e5981 100644
--- a/drivers/edac/amd64_edac.h
+++ b/drivers/edac/amd64_edac.h
@@ -129,24 +129,22 @@
* sections 3.5.4 and 3.5.5 for more information.
*/
-#define EDAC_AMD64_VERSION " Ver: 3.2.0 " __DATE__
+#define EDAC_AMD64_VERSION " Ver: 3.3.0 " __DATE__
#define EDAC_MOD_STR "amd64_edac"
#define EDAC_MAX_NUMNODES 8
/* Extended Model from CPUID, for CPU Revision numbers */
-#define OPTERON_CPU_LE_REV_C 0
-#define OPTERON_CPU_REV_D 1
-#define OPTERON_CPU_REV_E 2
-
-/* NPT processors have the following Extended Models */
-#define OPTERON_CPU_REV_F 4
-#define OPTERON_CPU_REV_FA 5
+#define K8_REV_D 1
+#define K8_REV_E 2
+#define K8_REV_F 4
/* Hardware limit on ChipSelect rows per MC and processors per system */
#define MAX_CS_COUNT 8
#define DRAM_REG_COUNT 8
+#define ON true
+#define OFF false
/*
* PCI-defined configuration space registers
@@ -241,7 +239,7 @@
#define F10_DCHR_1 0x194
#define F10_DCHR_FOUR_RANK_DIMM BIT(18)
-#define F10_DCHR_Ddr3Mode BIT(8)
+#define DDR3_MODE BIT(8)
#define F10_DCHR_MblMode BIT(6)
@@ -382,14 +380,9 @@ enum {
#define K8_NBCAP_CORES (BIT(12)|BIT(13))
#define K8_NBCAP_CHIPKILL BIT(4)
#define K8_NBCAP_SECDED BIT(3)
-#define K8_NBCAP_8_NODE BIT(2)
-#define K8_NBCAP_DUAL_NODE BIT(1)
#define K8_NBCAP_DCT_DUAL BIT(0)
-/*
- * MSR Regs
- */
-#define K8_MSR_MCGCTL 0x017b
+/* MSRs */
#define K8_MSR_MCGCTL_NBE BIT(4)
#define K8_MSR_MC4CTL 0x0410
@@ -487,7 +480,6 @@ struct amd64_pvt {
/* Save old hw registers' values before we modified them */
u32 nbctl_mcgctl_saved; /* When true, following 2 are valid */
u32 old_nbctl;
- unsigned long old_mcgctl; /* per core on this node */
/* MC Type Index value: socket F vs Family 10h */
u32 mc_type_index;
@@ -495,6 +487,7 @@ struct amd64_pvt {
/* misc settings */
struct flags {
unsigned long cf8_extcfg:1;
+ unsigned long ecc_report:1;
} flags;
};
@@ -504,7 +497,6 @@ struct scrubrate {
};
extern struct scrubrate scrubrates[23];
-extern u32 revf_quad_ddr2_shift[16];
extern const char *tt_msgs[4];
extern const char *ll_msgs[4];
extern const char *rrrr_msgs[16];
@@ -534,17 +526,15 @@ extern struct mcidev_sysfs_attribute amd64_dbg_attrs[NUM_DBG_ATTRS],
* functions and per device encoding/decoding logic.
*/
struct low_ops {
- int (*probe_valid_hardware)(struct amd64_pvt *pvt);
- int (*early_channel_count)(struct amd64_pvt *pvt);
-
- u64 (*get_error_address)(struct mem_ctl_info *mci,
- struct err_regs *info);
- void (*read_dram_base_limit)(struct amd64_pvt *pvt, int dram);
- void (*read_dram_ctl_register)(struct amd64_pvt *pvt);
- void (*map_sysaddr_to_csrow)(struct mem_ctl_info *mci,
- struct err_regs *info,
- u64 SystemAddr);
- int (*dbam_map_to_pages)(struct amd64_pvt *pvt, int dram_map);
+ int (*early_channel_count) (struct amd64_pvt *pvt);
+
+ u64 (*get_error_address) (struct mem_ctl_info *mci,
+ struct err_regs *info);
+ void (*read_dram_base_limit) (struct amd64_pvt *pvt, int dram);
+ void (*read_dram_ctl_register) (struct amd64_pvt *pvt);
+ void (*map_sysaddr_to_csrow) (struct mem_ctl_info *mci,
+ struct err_regs *info, u64 SystemAddr);
+ int (*dbam_to_cs) (struct amd64_pvt *pvt, int cs_mode);
};
struct amd64_family_type {
@@ -566,6 +556,22 @@ static inline struct low_ops *family_ops(int index)
return &amd64_family_types[index].ops;
}
+static inline int amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
+ u32 *val, const char *func)
+{
+ int err = 0;
+
+ err = pci_read_config_dword(pdev, offset, val);
+ if (err)
+ amd64_printk(KERN_WARNING, "%s: error reading F%dx%x.\n",
+ func, PCI_FUNC(pdev->devfn), offset);
+
+ return err;
+}
+
+#define amd64_read_pci_cfg(pdev, offset, val) \
+ amd64_read_pci_cfg_dword(pdev, offset, val, __func__)
+
/*
* For future CPU versions, verify the following as new 'slow' rates appear and
* modify the necessary skip values for the supported CPU.
diff --git a/drivers/edac/edac_core.h b/drivers/edac/edac_core.h
index 12f355cafdbe..001b2e797fb3 100644
--- a/drivers/edac/edac_core.h
+++ b/drivers/edac/edac_core.h
@@ -74,6 +74,7 @@
#ifdef CONFIG_EDAC_DEBUG
extern int edac_debug_level;
+extern const char *edac_mem_types[];
#ifndef CONFIG_EDAC_DEBUG_VERBOSE
#define edac_debug_printk(level, fmt, arg...) \
diff --git a/drivers/edac/edac_mc.c b/drivers/edac/edac_mc.c
index b629c41756f0..3630308e7b81 100644
--- a/drivers/edac/edac_mc.c
+++ b/drivers/edac/edac_mc.c
@@ -76,6 +76,30 @@ static void edac_mc_dump_mci(struct mem_ctl_info *mci)
debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
}
+/*
+ * keep those in sync with the enum mem_type
+ */
+const char *edac_mem_types[] = {
+ "Empty csrow",
+ "Reserved csrow type",
+ "Unknown csrow type",
+ "Fast page mode RAM",
+ "Extended data out RAM",
+ "Burst Extended data out RAM",
+ "Single data rate SDRAM",
+ "Registered single data rate SDRAM",
+ "Double data rate SDRAM",
+ "Registered Double data rate SDRAM",
+ "Rambus DRAM",
+ "Unbuffered DDR2 RAM",
+ "Fully buffered DDR2",
+ "Registered DDR2 RAM",
+ "Rambus XDR",
+ "Unbuffered DDR3 RAM",
+ "Registered DDR3 RAM",
+};
+EXPORT_SYMBOL_GPL(edac_mem_types);
+
#endif /* CONFIG_EDAC_DEBUG */
/* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
diff --git a/drivers/edac/edac_mce_amd.c b/drivers/edac/edac_mce_amd.c
index 689cc6a6214d..c693fcc2213c 100644
--- a/drivers/edac/edac_mce_amd.c
+++ b/drivers/edac/edac_mce_amd.c
@@ -306,7 +306,7 @@ void amd_decode_nb_mce(int node_id, struct err_regs *regs, int handle_errors)
* value encoding has changed so interpret those differently
*/
if ((boot_cpu_data.x86 == 0x10) &&
- (boot_cpu_data.x86_model > 8)) {
+ (boot_cpu_data.x86_model > 7)) {
if (regs->nbsh & K8_NBSH_ERR_CPU_VAL)
pr_cont(", core: %u\n", (u8)(regs->nbsh & 0xf));
} else {