diff options
author | Daniel Borkmann <dborkman@redhat.com> | 2013-10-28 16:43:02 +0100 |
---|---|---|
committer | David S. Miller <davem@davemloft.net> | 2013-10-29 17:33:17 -0400 |
commit | 7d1d65cb84e1cfacba3f54c5934194785259e0d8 (patch) | |
tree | 24c802a6098532f795376e98174712ae75233f85 /net/sched/Kconfig | |
parent | d549c76bccc5405b0c8f5412730f043daab8d29e (diff) | |
download | linux-7d1d65cb84e1cfacba3f54c5934194785259e0d8.tar.bz2 |
net: sched: cls_bpf: add BPF-based classifier
This work contains a lightweight BPF-based traffic classifier that can
serve as a flexible alternative to ematch-based tree classification, i.e.
now that BPF filter engine can also be JITed in the kernel. Naturally, tc
actions and policies are supported as well with cls_bpf. Multiple BPF
programs/filter can be attached for a class, or they can just as well be
written within a single BPF program, that's really up to the user how he
wishes to run/optimize the code, e.g. also for inversion of verdicts etc.
The notion of a BPF program's return/exit codes is being kept as follows:
0: No match
-1: Select classid given in "tc filter ..." command
else: flowid, overwrite the default one
As a minimal usage example with iproute2, we use a 3 band prio root qdisc
on a router with sfq each as leave, and assign ssh and icmp bpf-based
filters to band 1, http traffic to band 2 and the rest to band 3. For the
first two bands we load the bytecode from a file, in the 2nd we load it
inline as an example:
echo 1 > /proc/sys/net/core/bpf_jit_enable
tc qdisc del dev em1 root
tc qdisc add dev em1 root handle 1: prio bands 3 priomap 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
tc qdisc add dev em1 parent 1:1 sfq perturb 16
tc qdisc add dev em1 parent 1:2 sfq perturb 16
tc qdisc add dev em1 parent 1:3 sfq perturb 16
tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/ssh.bpf flowid 1:1
tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/icmp.bpf flowid 1:1
tc filter add dev em1 parent 1: bpf run bytecode-file /etc/tc/http.bpf flowid 1:2
tc filter add dev em1 parent 1: bpf run bytecode "`bpfc -f tc -i misc.ops`" flowid 1:3
BPF programs can be easily created and passed to tc, either as inline
'bytecode' or 'bytecode-file'. There are a couple of front-ends that can
compile opcodes, for example:
1) People familiar with tcpdump-like filters:
tcpdump -iem1 -ddd port 22 | tr '\n' ',' > /etc/tc/ssh.bpf
2) People that want to low-level program their filters or use BPF
extensions that lack support by libpcap's compiler:
bpfc -f tc -i ssh.ops > /etc/tc/ssh.bpf
ssh.ops example code:
ldh [12]
jne #0x800, drop
ldb [23]
jneq #6, drop
ldh [20]
jset #0x1fff, drop
ldxb 4 * ([14] & 0xf)
ldh [%x + 14]
jeq #0x16, pass
ldh [%x + 16]
jne #0x16, drop
pass: ret #-1
drop: ret #0
It was chosen to load bytecode into tc, since the reverse operation,
tc filter list dev em1, is then able to show the exact commands again.
Possible follow-up work could also include a small expression compiler
for iproute2. Tested with the help of bmon. This idea came up during
the Netfilter Workshop 2013 in Copenhagen. Also thanks to feedback from
Eric Dumazet!
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'net/sched/Kconfig')
-rw-r--r-- | net/sched/Kconfig | 10 |
1 files changed, 10 insertions, 0 deletions
diff --git a/net/sched/Kconfig b/net/sched/Kconfig index c03a32a0418e..ad1f1d819203 100644 --- a/net/sched/Kconfig +++ b/net/sched/Kconfig @@ -443,6 +443,16 @@ config NET_CLS_CGROUP To compile this code as a module, choose M here: the module will be called cls_cgroup. +config NET_CLS_BPF + tristate "BPF-based classifier" + select NET_CLS + ---help--- + If you say Y here, you will be able to classify packets based on + programmable BPF (JIT'ed) filters as an alternative to ematches. + + To compile this code as a module, choose M here: the module will + be called cls_bpf. + config NET_EMATCH bool "Extended Matches" select NET_CLS |