summaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
authorJiri Kosina <jkosina@suse.cz>2013-12-19 15:08:03 +0100
committerJiri Kosina <jkosina@suse.cz>2013-12-19 15:08:32 +0100
commite23c34bb41da65f354fb7eee04300c56ee48f60c (patch)
tree549fbe449d55273b81ef104a9755109bf4ae7817 /mm
parentb481c2cb3534c85dca625973b33eba15f9af3e4c (diff)
parent319e2e3f63c348a9b66db4667efa73178e18b17d (diff)
downloadlinux-e23c34bb41da65f354fb7eee04300c56ee48f60c.tar.bz2
Merge branch 'master' into for-next
Sync with Linus' tree to be able to apply fixes on top of newer things in tree (efi-stub). Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Diffstat (limited to 'mm')
-rw-r--r--mm/Kconfig27
-rw-r--r--mm/Makefile2
-rw-r--r--mm/backing-dev.c2
-rw-r--r--mm/bootmem.c8
-rw-r--r--mm/bounce.c2
-rw-r--r--mm/compaction.c17
-rw-r--r--mm/filemap.c60
-rw-r--r--mm/filemap_xip.c2
-rw-r--r--mm/huge_memory.c566
-rw-r--r--mm/hugetlb.c623
-rw-r--r--mm/hwpoison-inject.c9
-rw-r--r--mm/internal.h2
-rw-r--r--mm/kmemleak.c6
-rw-r--r--mm/ksm.c10
-rw-r--r--mm/list_lru.c140
-rw-r--r--mm/madvise.c38
-rw-r--r--mm/memblock.c142
-rw-r--r--mm/memcontrol.c554
-rw-r--r--mm/memory-failure.c206
-rw-r--r--mm/memory.c298
-rw-r--r--mm/memory_hotplug.c181
-rw-r--r--mm/mempolicy.c261
-rw-r--r--mm/mempool.c2
-rw-r--r--mm/migrate.c180
-rw-r--r--mm/mlock.c321
-rw-r--r--mm/mm_init.c18
-rw-r--r--mm/mmap.c82
-rw-r--r--mm/mmzone.c14
-rw-r--r--mm/mprotect.c76
-rw-r--r--mm/nobootmem.c25
-rw-r--r--mm/nommu.c5
-rw-r--r--mm/oom_kill.c13
-rw-r--r--mm/page-writeback.c294
-rw-r--r--mm/page_alloc.c326
-rw-r--r--mm/page_io.c1
-rw-r--r--mm/page_isolation.c14
-rw-r--r--mm/pagewalk.c2
-rw-r--r--mm/percpu.c5
-rw-r--r--mm/pgtable-generic.c40
-rw-r--r--mm/readahead.c16
-rw-r--r--mm/rmap.c37
-rw-r--r--mm/shmem.c42
-rw-r--r--mm/slab.c573
-rw-r--r--mm/slab.h6
-rw-r--r--mm/slab_common.c16
-rw-r--r--mm/slob.c28
-rw-r--r--mm/slub.c197
-rw-r--r--mm/sparse.c186
-rw-r--r--mm/swap.c117
-rw-r--r--mm/swap_state.c4
-rw-r--r--mm/swapfile.c616
-rw-r--r--mm/truncate.c9
-rw-r--r--mm/util.c18
-rw-r--r--mm/vmalloc.c77
-rw-r--r--mm/vmscan.c326
-rw-r--r--mm/vmstat.c117
-rw-r--r--mm/zbud.c4
-rw-r--r--mm/zswap.c215
58 files changed, 4476 insertions, 2702 deletions
diff --git a/mm/Kconfig b/mm/Kconfig
index 79ac9915d504..eb69f352401d 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -153,11 +153,18 @@ config MOVABLE_NODE
help
Allow a node to have only movable memory. Pages used by the kernel,
such as direct mapping pages cannot be migrated. So the corresponding
- memory device cannot be hotplugged. This option allows users to
- online all the memory of a node as movable memory so that the whole
- node can be hotplugged. Users who don't use the memory hotplug
- feature are fine with this option on since they don't online memory
- as movable.
+ memory device cannot be hotplugged. This option allows the following
+ two things:
+ - When the system is booting, node full of hotpluggable memory can
+ be arranged to have only movable memory so that the whole node can
+ be hot-removed. (need movable_node boot option specified).
+ - After the system is up, the option allows users to online all the
+ memory of a node as movable memory so that the whole node can be
+ hot-removed.
+
+ Users who don't use the memory hotplug feature are fine with this
+ option on since they don't specify movable_node boot option or they
+ don't online memory as movable.
Say Y here if you want to hotplug a whole node.
Say N here if you want kernel to use memory on all nodes evenly.
@@ -183,7 +190,7 @@ config MEMORY_HOTPLUG_SPARSE
config MEMORY_HOTREMOVE
bool "Allow for memory hot remove"
select MEMORY_ISOLATION
- select HAVE_BOOTMEM_INFO_NODE if X86_64
+ select HAVE_BOOTMEM_INFO_NODE if (X86_64 || PPC64)
depends on MEMORY_HOTPLUG && ARCH_ENABLE_MEMORY_HOTREMOVE
depends on MIGRATION
@@ -211,9 +218,11 @@ config SPLIT_PTLOCK_CPUS
int
default "999999" if ARM && !CPU_CACHE_VIPT
default "999999" if PARISC && !PA20
- default "999999" if DEBUG_SPINLOCK || DEBUG_LOCK_ALLOC
default "4"
+config ARCH_ENABLE_SPLIT_PMD_PTLOCK
+ boolean
+
#
# support for memory balloon compaction
config BALLOON_COMPACTION
@@ -245,7 +254,7 @@ config COMPACTION
config MIGRATION
bool "Page migration"
def_bool y
- depends on NUMA || ARCH_ENABLE_MEMORY_HOTREMOVE || COMPACTION || CMA
+ depends on (NUMA || ARCH_ENABLE_MEMORY_HOTREMOVE || COMPACTION || CMA) && MMU
help
Allows the migration of the physical location of pages of processes
while the virtual addresses are not changed. This is useful in
@@ -480,7 +489,7 @@ config FRONTSWAP
config CMA
bool "Contiguous Memory Allocator"
- depends on HAVE_MEMBLOCK
+ depends on HAVE_MEMBLOCK && MMU
select MIGRATION
select MEMORY_ISOLATION
help
diff --git a/mm/Makefile b/mm/Makefile
index f00803386a67..305d10acd081 100644
--- a/mm/Makefile
+++ b/mm/Makefile
@@ -17,7 +17,7 @@ obj-y := filemap.o mempool.o oom_kill.o fadvise.o \
util.o mmzone.o vmstat.o backing-dev.o \
mm_init.o mmu_context.o percpu.o slab_common.o \
compaction.o balloon_compaction.o \
- interval_tree.o $(mmu-y)
+ interval_tree.o list_lru.o $(mmu-y)
obj-y += init-mm.o
diff --git a/mm/backing-dev.c b/mm/backing-dev.c
index 37d9edcd14cf..ce682f7a4f29 100644
--- a/mm/backing-dev.c
+++ b/mm/backing-dev.c
@@ -652,7 +652,7 @@ int pdflush_proc_obsolete(struct ctl_table *table, int write,
{
char kbuf[] = "0\n";
- if (*ppos) {
+ if (*ppos || *lenp < sizeof(kbuf)) {
*lenp = 0;
return 0;
}
diff --git a/mm/bootmem.c b/mm/bootmem.c
index 6ab7744e692e..90bd3507b413 100644
--- a/mm/bootmem.c
+++ b/mm/bootmem.c
@@ -172,11 +172,12 @@ void __init free_bootmem_late(unsigned long physaddr, unsigned long size)
static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
{
struct page *page;
- unsigned long start, end, pages, count = 0;
+ unsigned long *map, start, end, pages, count = 0;
if (!bdata->node_bootmem_map)
return 0;
+ map = bdata->node_bootmem_map;
start = bdata->node_min_pfn;
end = bdata->node_low_pfn;
@@ -184,10 +185,9 @@ static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
bdata - bootmem_node_data, start, end);
while (start < end) {
- unsigned long *map, idx, vec;
+ unsigned long idx, vec;
unsigned shift;
- map = bdata->node_bootmem_map;
idx = start - bdata->node_min_pfn;
shift = idx & (BITS_PER_LONG - 1);
/*
@@ -784,7 +784,7 @@ void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
/* update goal according ...MAX_DMA32_PFN */
- end_pfn = pgdat->node_start_pfn + pgdat->node_spanned_pages;
+ end_pfn = pgdat_end_pfn(pgdat);
if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
(goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
diff --git a/mm/bounce.c b/mm/bounce.c
index c9f0a4339a7d..5a7d58fb883b 100644
--- a/mm/bounce.c
+++ b/mm/bounce.c
@@ -204,6 +204,8 @@ static void __blk_queue_bounce(struct request_queue *q, struct bio **bio_orig,
struct bio_vec *to, *from;
unsigned i;
+ if (force)
+ goto bounce;
bio_for_each_segment(from, *bio_orig, i)
if (page_to_pfn(from->bv_page) > queue_bounce_pfn(q))
goto bounce;
diff --git a/mm/compaction.c b/mm/compaction.c
index 05ccb4cc0bdb..805165bcd3dd 100644
--- a/mm/compaction.c
+++ b/mm/compaction.c
@@ -235,10 +235,9 @@ static bool suitable_migration_target(struct page *page)
}
/*
- * Isolate free pages onto a private freelist. Caller must hold zone->lock.
- * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
- * pages inside of the pageblock (even though it may still end up isolating
- * some pages).
+ * Isolate free pages onto a private freelist. If @strict is true, will abort
+ * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
+ * (even though it may still end up isolating some pages).
*/
static unsigned long isolate_freepages_block(struct compact_control *cc,
unsigned long blockpfn,
@@ -677,6 +676,13 @@ static void isolate_freepages(struct zone *zone,
pfn -= pageblock_nr_pages) {
unsigned long isolated;
+ /*
+ * This can iterate a massively long zone without finding any
+ * suitable migration targets, so periodically check if we need
+ * to schedule.
+ */
+ cond_resched();
+
if (!pfn_valid(pfn))
continue;
@@ -1131,6 +1137,9 @@ void compact_pgdat(pg_data_t *pgdat, int order)
.sync = false,
};
+ if (!order)
+ return;
+
__compact_pgdat(pgdat, &cc);
}
diff --git a/mm/filemap.c b/mm/filemap.c
index 731a2c24532d..b7749a92021c 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -467,32 +467,34 @@ int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
error = mem_cgroup_cache_charge(page, current->mm,
gfp_mask & GFP_RECLAIM_MASK);
if (error)
- goto out;
-
- error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
- if (error == 0) {
- page_cache_get(page);
- page->mapping = mapping;
- page->index = offset;
+ return error;
- spin_lock_irq(&mapping->tree_lock);
- error = radix_tree_insert(&mapping->page_tree, offset, page);
- if (likely(!error)) {
- mapping->nrpages++;
- __inc_zone_page_state(page, NR_FILE_PAGES);
- spin_unlock_irq(&mapping->tree_lock);
- trace_mm_filemap_add_to_page_cache(page);
- } else {
- page->mapping = NULL;
- /* Leave page->index set: truncation relies upon it */
- spin_unlock_irq(&mapping->tree_lock);
- mem_cgroup_uncharge_cache_page(page);
- page_cache_release(page);
- }
- radix_tree_preload_end();
- } else
+ error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
+ if (error) {
mem_cgroup_uncharge_cache_page(page);
-out:
+ return error;
+ }
+
+ page_cache_get(page);
+ page->mapping = mapping;
+ page->index = offset;
+
+ spin_lock_irq(&mapping->tree_lock);
+ error = radix_tree_insert(&mapping->page_tree, offset, page);
+ radix_tree_preload_end();
+ if (unlikely(error))
+ goto err_insert;
+ mapping->nrpages++;
+ __inc_zone_page_state(page, NR_FILE_PAGES);
+ spin_unlock_irq(&mapping->tree_lock);
+ trace_mm_filemap_add_to_page_cache(page);
+ return 0;
+err_insert:
+ page->mapping = NULL;
+ /* Leave page->index set: truncation relies upon it */
+ spin_unlock_irq(&mapping->tree_lock);
+ mem_cgroup_uncharge_cache_page(page);
+ page_cache_release(page);
return error;
}
EXPORT_SYMBOL(add_to_page_cache_locked);
@@ -1088,7 +1090,6 @@ static void shrink_readahead_size_eio(struct file *filp,
* @filp: the file to read
* @ppos: current file position
* @desc: read_descriptor
- * @actor: read method
*
* This is a generic file read routine, and uses the
* mapping->a_ops->readpage() function for the actual low-level stuff.
@@ -1097,7 +1098,7 @@ static void shrink_readahead_size_eio(struct file *filp,
* of the logic when it comes to error handling etc.
*/
static void do_generic_file_read(struct file *filp, loff_t *ppos,
- read_descriptor_t *desc, read_actor_t actor)
+ read_descriptor_t *desc)
{
struct address_space *mapping = filp->f_mapping;
struct inode *inode = mapping->host;
@@ -1198,13 +1199,14 @@ page_ok:
* Ok, we have the page, and it's up-to-date, so
* now we can copy it to user space...
*
- * The actor routine returns how many bytes were actually used..
+ * The file_read_actor routine returns how many bytes were
+ * actually used..
* NOTE! This may not be the same as how much of a user buffer
* we filled up (we may be padding etc), so we can only update
* "pos" here (the actor routine has to update the user buffer
* pointers and the remaining count).
*/
- ret = actor(desc, page, offset, nr);
+ ret = file_read_actor(desc, page, offset, nr);
offset += ret;
index += offset >> PAGE_CACHE_SHIFT;
offset &= ~PAGE_CACHE_MASK;
@@ -1477,7 +1479,7 @@ generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
if (desc.count == 0)
continue;
desc.error = 0;
- do_generic_file_read(filp, ppos, &desc, file_read_actor);
+ do_generic_file_read(filp, ppos, &desc);
retval += desc.written;
if (desc.error) {
retval = retval ?: desc.error;
diff --git a/mm/filemap_xip.c b/mm/filemap_xip.c
index 28fe26b64f8a..d8d9fe3f685c 100644
--- a/mm/filemap_xip.c
+++ b/mm/filemap_xip.c
@@ -26,7 +26,7 @@
* of ZERO_PAGE(), such as /dev/zero
*/
static DEFINE_MUTEX(xip_sparse_mutex);
-static seqcount_t xip_sparse_seq = SEQCNT_ZERO;
+static seqcount_t xip_sparse_seq = SEQCNT_ZERO(xip_sparse_seq);
static struct page *__xip_sparse_page;
/* called under xip_sparse_mutex */
diff --git a/mm/huge_memory.c b/mm/huge_memory.c
index a92012a71702..33a5dc492810 100644
--- a/mm/huge_memory.c
+++ b/mm/huge_memory.c
@@ -27,11 +27,12 @@
#include "internal.h"
/*
- * By default transparent hugepage support is enabled for all mappings
- * and khugepaged scans all mappings. Defrag is only invoked by
- * khugepaged hugepage allocations and by page faults inside
- * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
- * allocations.
+ * By default transparent hugepage support is disabled in order that avoid
+ * to risk increase the memory footprint of applications without a guaranteed
+ * benefit. When transparent hugepage support is enabled, is for all mappings,
+ * and khugepaged scans all mappings.
+ * Defrag is invoked by khugepaged hugepage allocations and by page faults
+ * for all hugepage allocations.
*/
unsigned long transparent_hugepage_flags __read_mostly =
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
@@ -211,24 +212,29 @@ static void put_huge_zero_page(void)
BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
}
-static int shrink_huge_zero_page(struct shrinker *shrink,
- struct shrink_control *sc)
+static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
+ struct shrink_control *sc)
{
- if (!sc->nr_to_scan)
- /* we can free zero page only if last reference remains */
- return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
+ /* we can free zero page only if last reference remains */
+ return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
+}
+static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
+ struct shrink_control *sc)
+{
if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
struct page *zero_page = xchg(&huge_zero_page, NULL);
BUG_ON(zero_page == NULL);
__free_page(zero_page);
+ return HPAGE_PMD_NR;
}
return 0;
}
static struct shrinker huge_zero_page_shrinker = {
- .shrink = shrink_huge_zero_page,
+ .count_objects = shrink_huge_zero_page_count,
+ .scan_objects = shrink_huge_zero_page_scan,
.seeks = DEFAULT_SEEKS,
};
@@ -417,7 +423,7 @@ static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
unsigned long msecs;
int err;
- err = strict_strtoul(buf, 10, &msecs);
+ err = kstrtoul(buf, 10, &msecs);
if (err || msecs > UINT_MAX)
return -EINVAL;
@@ -444,7 +450,7 @@ static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
unsigned long msecs;
int err;
- err = strict_strtoul(buf, 10, &msecs);
+ err = kstrtoul(buf, 10, &msecs);
if (err || msecs > UINT_MAX)
return -EINVAL;
@@ -470,7 +476,7 @@ static ssize_t pages_to_scan_store(struct kobject *kobj,
int err;
unsigned long pages;
- err = strict_strtoul(buf, 10, &pages);
+ err = kstrtoul(buf, 10, &pages);
if (err || !pages || pages > UINT_MAX)
return -EINVAL;
@@ -538,7 +544,7 @@ static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
int err;
unsigned long max_ptes_none;
- err = strict_strtoul(buf, 10, &max_ptes_none);
+ err = kstrtoul(buf, 10, &max_ptes_none);
if (err || max_ptes_none > HPAGE_PMD_NR-1)
return -EINVAL;
@@ -690,11 +696,10 @@ pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
return pmd;
}
-static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
+static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
{
pmd_t entry;
- entry = mk_pmd(page, vma->vm_page_prot);
- entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
+ entry = mk_pmd(page, prot);
entry = pmd_mkhuge(entry);
return entry;
}
@@ -705,6 +710,7 @@ static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
struct page *page)
{
pgtable_t pgtable;
+ spinlock_t *ptl;
VM_BUG_ON(!PageCompound(page));
pgtable = pte_alloc_one(mm, haddr);
@@ -719,21 +725,22 @@ static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
*/
__SetPageUptodate(page);
- spin_lock(&mm->page_table_lock);
+ ptl = pmd_lock(mm, pmd);
if (unlikely(!pmd_none(*pmd))) {
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
mem_cgroup_uncharge_page(page);
put_page(page);
pte_free(mm, pgtable);
} else {
pmd_t entry;
- entry = mk_huge_pmd(page, vma);
+ entry = mk_huge_pmd(page, vma->vm_page_prot);
+ entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
page_add_new_anon_rmap(page, vma, haddr);
pgtable_trans_huge_deposit(mm, pmd, pgtable);
set_pmd_at(mm, haddr, pmd, entry);
add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
- mm->nr_ptes++;
- spin_unlock(&mm->page_table_lock);
+ atomic_long_inc(&mm->nr_ptes);
+ spin_unlock(ptl);
}
return 0;
@@ -753,14 +760,7 @@ static inline struct page *alloc_hugepage_vma(int defrag,
HPAGE_PMD_ORDER, vma, haddr, nd);
}
-#ifndef CONFIG_NUMA
-static inline struct page *alloc_hugepage(int defrag)
-{
- return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
- HPAGE_PMD_ORDER);
-}
-#endif
-
+/* Caller must hold page table lock. */
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
struct page *zero_page)
@@ -773,7 +773,7 @@ static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
entry = pmd_mkhuge(entry);
pgtable_trans_huge_deposit(mm, pmd, pgtable);
set_pmd_at(mm, haddr, pmd, entry);
- mm->nr_ptes++;
+ atomic_long_inc(&mm->nr_ptes);
return true;
}
@@ -783,83 +783,65 @@ int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
{
struct page *page;
unsigned long haddr = address & HPAGE_PMD_MASK;
- pte_t *pte;
- if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
- if (unlikely(anon_vma_prepare(vma)))
- return VM_FAULT_OOM;
- if (unlikely(khugepaged_enter(vma)))
+ if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
+ return VM_FAULT_FALLBACK;
+ if (unlikely(anon_vma_prepare(vma)))
+ return VM_FAULT_OOM;
+ if (unlikely(khugepaged_enter(vma)))
+ return VM_FAULT_OOM;
+ if (!(flags & FAULT_FLAG_WRITE) &&
+ transparent_hugepage_use_zero_page()) {
+ spinlock_t *ptl;
+ pgtable_t pgtable;
+ struct page *zero_page;
+ bool set;
+ pgtable = pte_alloc_one(mm, haddr);
+ if (unlikely(!pgtable))
return VM_FAULT_OOM;
- if (!(flags & FAULT_FLAG_WRITE) &&
- transparent_hugepage_use_zero_page()) {
- pgtable_t pgtable;
- struct page *zero_page;
- bool set;
- pgtable = pte_alloc_one(mm, haddr);
- if (unlikely(!pgtable))
- return VM_FAULT_OOM;
- zero_page = get_huge_zero_page();
- if (unlikely(!zero_page)) {
- pte_free(mm, pgtable);
- count_vm_event(THP_FAULT_FALLBACK);
- goto out;
- }
- spin_lock(&mm->page_table_lock);
- set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
- zero_page);
- spin_unlock(&mm->page_table_lock);
- if (!set) {
- pte_free(mm, pgtable);
- put_huge_zero_page();
- }
- return 0;
- }
- page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
- vma, haddr, numa_node_id(), 0);
- if (unlikely(!page)) {
+ zero_page = get_huge_zero_page();
+ if (unlikely(!zero_page)) {
+ pte_free(mm, pgtable);
count_vm_event(THP_FAULT_FALLBACK);
- goto out;
- }
- count_vm_event(THP_FAULT_ALLOC);
- if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
- put_page(page);
- goto out;
+ return VM_FAULT_FALLBACK;
}
- if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
- page))) {
- mem_cgroup_uncharge_page(page);
- put_page(page);
- goto out;
+ ptl = pmd_lock(mm, pmd);
+ set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
+ zero_page);
+ spin_unlock(ptl);
+ if (!set) {
+ pte_free(mm, pgtable);
+ put_huge_zero_page();
}
-
return 0;
}
-out:
- /*
- * Use __pte_alloc instead of pte_alloc_map, because we can't
- * run pte_offset_map on the pmd, if an huge pmd could
- * materialize from under us from a different thread.
- */
- if (unlikely(pmd_none(*pmd)) &&
- unlikely(__pte_alloc(mm, vma, pmd, address)))
- return VM_FAULT_OOM;
- /* if an huge pmd materialized from under us just retry later */
- if (unlikely(pmd_trans_huge(*pmd)))
- return 0;
- /*
- * A regular pmd is established and it can't morph into a huge pmd
- * from under us anymore at this point because we hold the mmap_sem
- * read mode and khugepaged takes it in write mode. So now it's
- * safe to run pte_offset_map().
- */
- pte = pte_offset_map(pmd, address);
- return handle_pte_fault(mm, vma, address, pte, pmd, flags);
+ page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
+ vma, haddr, numa_node_id(), 0);
+ if (unlikely(!page)) {
+ count_vm_event(THP_FAULT_FALLBACK);
+ return VM_FAULT_FALLBACK;
+ }
+ if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
+ put_page(page);
+ count_vm_event(THP_FAULT_FALLBACK);
+ return VM_FAULT_FALLBACK;
+ }
+ if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
+ mem_cgroup_uncharge_page(page);
+ put_page(page);
+ count_vm_event(THP_FAULT_FALLBACK);
+ return VM_FAULT_FALLBACK;
+ }
+
+ count_vm_event(THP_FAULT_ALLOC);
+ return 0;
}
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
struct vm_area_struct *vma)
{
+ spinlock_t *dst_ptl, *src_ptl;
struct page *src_page;
pmd_t pmd;
pgtable_t pgtable;
@@ -870,8 +852,9 @@ int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
if (unlikely(!pgtable))
goto out;
- spin_lock(&dst_mm->page_table_lock);
- spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
+ dst_ptl = pmd_lock(dst_mm, dst_pmd);
+ src_ptl = pmd_lockptr(src_mm, src_pmd);
+ spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
ret = -EAGAIN;
pmd = *src_pmd;
@@ -880,7 +863,7 @@ int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
goto out_unlock;
}
/*
- * mm->page_table_lock is enough to be sure that huge zero pmd is not
+ * When page table lock is held, the huge zero pmd should not be
* under splitting since we don't split the page itself, only pmd to
* a page table.
*/
@@ -901,8 +884,8 @@ int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
}
if (unlikely(pmd_trans_splitting(pmd))) {
/* split huge page running from under us */
- spin_unlock(&src_mm->page_table_lock);
- spin_unlock(&dst_mm->page_table_lock);
+ spin_unlock(src_ptl);
+ spin_unlock(dst_ptl);
pte_free(dst_mm, pgtable);
wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
@@ -918,12 +901,12 @@ int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pmd = pmd_mkold(pmd_wrprotect(pmd));
pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
set_pmd_at(dst_mm, addr, dst_pmd, pmd);
- dst_mm->nr_ptes++;
+ atomic_long_inc(&dst_mm->nr_ptes);
ret = 0;
out_unlock:
- spin_unlock(&src_mm->page_table_lock);
- spin_unlock(&dst_mm->page_table_lock);
+ spin_unlock(src_ptl);
+ spin_unlock(dst_ptl);
out:
return ret;
}
@@ -934,10 +917,11 @@ void huge_pmd_set_accessed(struct mm_struct *mm,
pmd_t *pmd, pmd_t orig_pmd,
int dirty)
{
+ spinlock_t *ptl;
pmd_t entry;
unsigned long haddr;
- spin_lock(&mm->page_table_lock);
+ ptl = pmd_lock(mm, pmd);
if (unlikely(!pmd_same(*pmd, orig_pmd)))
goto unlock;
@@ -947,13 +931,14 @@ void huge_pmd_set_accessed(struct mm_struct *mm,
update_mmu_cache_pmd(vma, address, pmd);
unlock:
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
}
static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long address,
pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
{
+ spinlock_t *ptl;
pgtable_t pgtable;
pmd_t _pmd;
struct page *page;
@@ -980,7 +965,7 @@ static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
mmun_end = haddr + HPAGE_PMD_SIZE;
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
- spin_lock(&mm->page_table_lock);
+ ptl = pmd_lock(mm, pmd);
if (unlikely(!pmd_same(*pmd, orig_pmd)))
goto out_free_page;
@@ -1007,7 +992,7 @@ static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
}
smp_wmb(); /* make pte visible before pmd */
pmd_populate(mm, pmd, pgtable);
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
put_huge_zero_page();
inc_mm_counter(mm, MM_ANONPAGES);
@@ -1017,7 +1002,7 @@ static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
out:
return ret;
out_free_page:
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
mem_cgroup_uncharge_page(page);
put_page(page);
@@ -1031,6 +1016,7 @@ static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
struct page *page,
unsigned long haddr)
{
+ spinlock_t *ptl;
pgtable_t pgtable;
pmd_t _pmd;
int ret = 0, i;
@@ -1077,7 +1063,7 @@ static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
mmun_end = haddr + HPAGE_PMD_SIZE;
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
- spin_lock(&mm->page_table_lock);
+ ptl = pmd_lock(mm, pmd);
if (unlikely(!pmd_same(*pmd, orig_pmd)))
goto out_free_pages;
VM_BUG_ON(!PageHead(page));
@@ -1103,7 +1089,7 @@ static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
smp_wmb(); /* make pte visible before pmd */
pmd_populate(mm, pmd, pgtable);
page_remove_rmap(page);
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
@@ -1114,7 +1100,7 @@ out:
return ret;
out_free_pages:
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
mem_cgroup_uncharge_start();
for (i = 0; i < HPAGE_PMD_NR; i++) {
@@ -1129,17 +1115,19 @@ out_free_pages:
int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
{
+ spinlock_t *ptl;
int ret = 0;
struct page *page = NULL, *new_page;
unsigned long haddr;
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
+ ptl = pmd_lockptr(mm, pmd);
VM_BUG_ON(!vma->anon_vma);
haddr = address & HPAGE_PMD_MASK;
if (is_huge_zero_pmd(orig_pmd))
goto alloc;
- spin_lock(&mm->page_table_lock);
+ spin_lock(ptl);
if (unlikely(!pmd_same(*pmd, orig_pmd)))
goto out_unlock;
@@ -1155,7 +1143,7 @@ int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
goto out_unlock;
}
get_page(page);
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
alloc:
if (transparent_hugepage_enabled(vma) &&
!transparent_hugepage_debug_cow())
@@ -1165,7 +1153,6 @@ alloc:
new_page = NULL;
if (unlikely(!new_page)) {
- count_vm_event(THP_FAULT_FALLBACK);
if (is_huge_zero_pmd(orig_pmd)) {
ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
address, pmd, orig_pmd, haddr);
@@ -1176,9 +1163,9 @@ alloc:
split_huge_page(page);
put_page(page);
}
+ count_vm_event(THP_FAULT_FALLBACK);
goto out;
}
- count_vm_event(THP_FAULT_ALLOC);
if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
put_page(new_page);
@@ -1186,10 +1173,13 @@ alloc:
split_huge_page(page);
put_page(page);
}
+ count_vm_event(THP_FAULT_FALLBACK);
ret |= VM_FAULT_OOM;
goto out;
}
+ count_vm_event(THP_FAULT_ALLOC);
+
if (is_huge_zero_pmd(orig_pmd))
clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
else
@@ -1200,17 +1190,18 @@ alloc:
mmun_end = haddr + HPAGE_PMD_SIZE;
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
- spin_lock(&mm->page_table_lock);
+ spin_lock(ptl);
if (page)
put_page(page);
if (unlikely(!pmd_same(*pmd, orig_pmd))) {
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
mem_cgroup_uncharge_page(new_page);
put_page(new_page);
goto out_mn;
} else {
pmd_t entry;
- entry = mk_huge_pmd(new_page, vma);
+ entry = mk_huge_pmd(new_page, vma->vm_page_prot);
+ entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
pmdp_clear_flush(vma, haddr, pmd);
page_add_new_anon_rmap(new_page, vma, haddr);
set_pmd_at(mm, haddr, pmd, entry);
@@ -1225,13 +1216,13 @@ alloc:
}
ret |= VM_FAULT_WRITE;
}
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
out_mn:
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
out:
return ret;
out_unlock:
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
return ret;
}
@@ -1243,7 +1234,7 @@ struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
struct mm_struct *mm = vma->vm_mm;
struct page *page = NULL;
- assert_spin_locked(&mm->page_table_lock);
+ assert_spin_locked(pmd_lockptr(mm, pmd));
if (flags & FOLL_WRITE && !pmd_write(*pmd))
goto out;
@@ -1290,73 +1281,116 @@ out:
int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, pmd_t pmd, pmd_t *pmdp)
{
+ spinlock_t *ptl;
+ struct anon_vma *anon_vma = NULL;
struct page *page;
unsigned long haddr = addr & HPAGE_PMD_MASK;
- int target_nid;
- int current_nid = -1;
- bool migrated;
+ int page_nid = -1, this_nid = numa_node_id();
+ int target_nid, last_cpupid = -1;
+ bool page_locked;
+ bool migrated = false;
+ int flags = 0;
- spin_lock(&mm->page_table_lock);
+ ptl = pmd_lock(mm, pmdp);
if (unlikely(!pmd_same(pmd, *pmdp)))
goto out_unlock;
page = pmd_page(pmd);
- get_page(page);
- current_nid = page_to_nid(page);
+ BUG_ON(is_huge_zero_page(page));
+ page_nid = page_to_nid(page);
+ last_cpupid = page_cpupid_last(page);
count_vm_numa_event(NUMA_HINT_FAULTS);
- if (current_nid == numa_node_id())
+ if (page_nid == this_nid) {
count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
+ flags |= TNF_FAULT_LOCAL;
+ }
+ /*
+ * Avoid grouping on DSO/COW pages in specific and RO pages
+ * in general, RO pages shouldn't hurt as much anyway since
+ * they can be in shared cache state.
+ */
+ if (!pmd_write(pmd))
+ flags |= TNF_NO_GROUP;
+
+ /*
+ * Acquire the page lock to serialise THP migrations but avoid dropping
+ * page_table_lock if at all possible
+ */
+ page_locked = trylock_page(page);
target_nid = mpol_misplaced(page, vma, haddr);
if (target_nid == -1) {
- put_page(page);
- goto clear_pmdnuma;
+ /* If the page was locked, there are no parallel migrations */
+ if (page_locked)
+ goto clear_pmdnuma;
+
+ /*
+ * Otherwise wait for potential migrations and retry. We do
+ * relock and check_same as the page may no longer be mapped.
+ * As the fault is being retried, do not account for it.
+ */
+ spin_unlock(ptl);
+ wait_on_page_locked(page);
+ page_nid = -1;
+ goto out;
}
- /* Acquire the page lock to serialise THP migrations */
- spin_unlock(&mm->page_table_lock);
- lock_page(page);
+ /* Page is misplaced, serialise migrations and parallel THP splits */
+ get_page(page);
+ spin_unlock(ptl);
+ if (!page_locked)
+ lock_page(page);
+ anon_vma = page_lock_anon_vma_read(page);
- /* Confirm the PTE did not while locked */
- spin_lock(&mm->page_table_lock);
+ /* Confirm the PMD did not change while page_table_lock was released */
+ spin_lock(ptl);
if (unlikely(!pmd_same(pmd, *pmdp))) {
unlock_page(page);
put_page(page);
+ page_nid = -1;
goto out_unlock;
}
- spin_unlock(&mm->page_table_lock);
- /* Migrate the THP to the requested node */
+ /*
+ * Migrate the THP to the requested node, returns with page unlocked
+ * and pmd_numa cleared.
+ */
+ spin_unlock(ptl);
migrated = migrate_misplaced_transhuge_page(mm, vma,
pmdp, pmd, addr, page, target_nid);
- if (!migrated)
- goto check_same;
-
- task_numa_fault(target_nid, HPAGE_PMD_NR, true);
- return 0;
+ if (migrated) {
+ flags |= TNF_MIGRATED;
+ page_nid = target_nid;
+ }
-check_same:
- spin_lock(&mm->page_table_lock);
- if (unlikely(!pmd_same(pmd, *pmdp)))
- goto out_unlock;
+ goto out;
clear_pmdnuma:
+ BUG_ON(!PageLocked(page));
pmd = pmd_mknonnuma(pmd);
set_pmd_at(mm, haddr, pmdp, pmd);
VM_BUG_ON(pmd_numa(*pmdp));
update_mmu_cache_pmd(vma, addr, pmdp);
+ unlock_page(page);
out_unlock:
- spin_unlock(&mm->page_table_lock);
- if (current_nid != -1)
- task_numa_fault(current_nid, HPAGE_PMD_NR, false);
+ spin_unlock(ptl);
+
+out:
+ if (anon_vma)
+ page_unlock_anon_vma_read(anon_vma);
+
+ if (page_nid != -1)
+ task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
+
return 0;
}
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
pmd_t *pmd, unsigned long addr)
{
+ spinlock_t *ptl;
int ret = 0;
- if (__pmd_trans_huge_lock(pmd, vma) == 1) {
+ if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
struct page *page;
pgtable_t pgtable;
pmd_t orig_pmd;
@@ -1370,8 +1404,8 @@ int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
if (is_huge_zero_pmd(orig_pmd)) {
- tlb->mm->nr_ptes--;
- spin_unlock(&tlb->mm->page_table_lock);
+ atomic_long_dec(&tlb->mm->nr_ptes);
+ spin_unlock(ptl);
put_huge_zero_page();
} else {
page = pmd_page(orig_pmd);
@@ -1379,8 +1413,8 @@ int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
VM_BUG_ON(page_mapcount(page) < 0);
add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
VM_BUG_ON(!PageHead(page));
- tlb->mm->nr_ptes--;
- spin_unlock(&tlb->mm->page_table_lock);
+ atomic_long_dec(&tlb->mm->nr_ptes);
+ spin_unlock(ptl);
tlb_remove_page(tlb, page);
}
pte_free(tlb->mm, pgtable);
@@ -1393,14 +1427,15 @@ int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, unsigned long end,
unsigned char *vec)
{
+ spinlock_t *ptl;
int ret = 0;
- if (__pmd_trans_huge_lock(pmd, vma) == 1) {
+ if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
/*
* All logical pages in the range are present
* if backed by a huge page.
*/
- spin_unlock(&vma->vm_mm->page_table_lock);
+ spin_unlock(ptl);
memset(vec, 1, (end - addr) >> PAGE_SHIFT);
ret = 1;
}
@@ -1413,6 +1448,7 @@ int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
unsigned long new_addr, unsigned long old_end,
pmd_t *old_pmd, pmd_t *new_pmd)
{
+ spinlock_t *old_ptl, *new_ptl;
int ret = 0;
pmd_t pmd;
@@ -1433,41 +1469,79 @@ int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
goto out;
}
- ret = __pmd_trans_huge_lock(old_pmd, vma);
+ /*
+ * We don't have to worry about the ordering of src and dst
+ * ptlocks because exclusive mmap_sem prevents deadlock.
+ */
+ ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
if (ret == 1) {
+ new_ptl = pmd_lockptr(mm, new_pmd);
+ if (new_ptl != old_ptl)
+ spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
VM_BUG_ON(!pmd_none(*new_pmd));
set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
- spin_unlock(&mm->page_table_lock);
+ if (new_ptl != old_ptl) {
+ pgtable_t pgtable;
+
+ /*
+ * Move preallocated PTE page table if new_pmd is on
+ * different PMD page table.
+ */
+ pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
+ pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
+
+ spin_unlock(new_ptl);
+ }
+ spin_unlock(old_ptl);
}
out:
return ret;
}
+/*
+ * Returns
+ * - 0 if PMD could not be locked
+ * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
+ * - HPAGE_PMD_NR is protections changed and TLB flush necessary
+ */
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, pgprot_t newprot, int prot_numa)
{
struct mm_struct *mm = vma->vm_mm;
+ spinlock_t *ptl;
int ret = 0;
- if (__pmd_trans_huge_lock(pmd, vma) == 1) {
+ if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
pmd_t entry;
- entry = pmdp_get_and_clear(mm, addr, pmd);
+ ret = 1;
if (!prot_numa) {
+ entry = pmdp_get_and_clear(mm, addr, pmd);
entry = pmd_modify(entry, newprot);
+ ret = HPAGE_PMD_NR;
BUG_ON(pmd_write(entry));
} else {
struct page *page = pmd_page(*pmd);
- /* only check non-shared pages */
- if (page_mapcount(page) == 1 &&
+ /*
+ * Do not trap faults against the zero page. The
+ * read-only data is likely to be read-cached on the
+ * local CPU cache and it is less useful to know about
+ * local vs remote hits on the zero page.
+ */
+ if (!is_huge_zero_page(page) &&
!pmd_numa(*pmd)) {
+ entry = pmdp_get_and_clear(mm, addr, pmd);
entry = pmd_mknuma(entry);
+ ret = HPAGE_PMD_NR;
}
}
- set_pmd_at(mm, addr, pmd, entry);
- spin_unlock(&vma->vm_mm->page_table_lock);
- ret = 1;
+
+ /* Set PMD if cleared earlier */
+ if (ret == HPAGE_PMD_NR)
+ set_pmd_at(mm, addr, pmd, entry);
+
+ spin_unlock(ptl);
}
return ret;
@@ -1480,12 +1554,13 @@ int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
* Note that if it returns 1, this routine returns without unlocking page
* table locks. So callers must unlock them.
*/
-int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
+int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
+ spinlock_t **ptl)
{
- spin_lock(&vma->vm_mm->page_table_lock);
+ *ptl = pmd_lock(vma->vm_mm, pmd);
if (likely(pmd_trans_huge(*pmd))) {
if (unlikely(pmd_trans_splitting(*pmd))) {
- spin_unlock(&vma->vm_mm->page_table_lock);
+ spin_unlock(*ptl);
wait_split_huge_page(vma->anon_vma, pmd);
return -1;
} else {
@@ -1494,27 +1569,37 @@ int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
return 1;
}
}
- spin_unlock(&vma->vm_mm->page_table_lock);
+ spin_unlock(*ptl);
return 0;
}
+/*
+ * This function returns whether a given @page is mapped onto the @address
+ * in the virtual space of @mm.
+ *
+ * When it's true, this function returns *pmd with holding the page table lock
+ * and passing it back to the caller via @ptl.
+ * If it's false, returns NULL without holding the page table lock.
+ */
pmd_t *page_check_address_pmd(struct page *page,
struct mm_struct *mm,
unsigned long address,
- enum page_check_address_pmd_flag flag)
+ enum page_check_address_pmd_flag flag,
+ spinlock_t **ptl)
{
- pmd_t *pmd, *ret = NULL;
+ pmd_t *pmd;
if (address & ~HPAGE_PMD_MASK)
- goto out;
+ return NULL;
pmd = mm_find_pmd(mm, address);
if (!pmd)
- goto out;
+ return NULL;
+ *ptl = pmd_lock(mm, pmd);
if (pmd_none(*pmd))
- goto out;
+ goto unlock;
if (pmd_page(*pmd) != page)
- goto out;
+ goto unlock;
/*
* split_vma() may create temporary aliased mappings. There is
* no risk as long as all huge pmd are found and have their
@@ -1524,14 +1609,15 @@ pmd_t *page_check_address_pmd(struct page *page,
*/
if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
pmd_trans_splitting(*pmd))
- goto out;
+ goto unlock;
if (pmd_trans_huge(*pmd)) {
VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
!pmd_trans_splitting(*pmd));
- ret = pmd;
+ return pmd;
}
-out:
- return ret;
+unlock:
+ spin_unlock(*ptl);
+ return NULL;
}
static int __split_huge_page_splitting(struct page *page,
@@ -1539,6 +1625,7 @@ static int __split_huge_page_splitting(struct page *page,
unsigned long address)
{
struct mm_struct *mm = vma->vm_mm;
+ spinlock_t *ptl;
pmd_t *pmd;
int ret = 0;
/* For mmu_notifiers */
@@ -1546,9 +1633,8 @@ static int __split_huge_page_splitting(struct page *page,
const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
- spin_lock(&mm->page_table_lock);
pmd = page_check_address_pmd(page, mm, address,
- PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
+ PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
if (pmd) {
/*
* We can't temporarily set the pmd to null in order
@@ -1559,8 +1645,8 @@ static int __split_huge_page_splitting(struct page *page,
*/
pmdp_splitting_flush(vma, address, pmd);
ret = 1;
+ spin_unlock(ptl);
}
- spin_unlock(&mm->page_table_lock);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
return ret;
@@ -1648,7 +1734,7 @@ static void __split_huge_page_refcount(struct page *page,
page_tail->mapping = page->mapping;
page_tail->index = page->index + i;
- page_nid_xchg_last(page_tail, page_nid_last(page));
+ page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
BUG_ON(!PageAnon(page_tail));
BUG_ON(!PageUptodate(page_tail));
@@ -1661,7 +1747,6 @@ static void __split_huge_page_refcount(struct page *page,
BUG_ON(atomic_read(&page->_count) <= 0);
__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
- __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
ClearPageCompound(page);
compound_unlock(page);
@@ -1692,14 +1777,14 @@ static int __split_huge_page_map(struct page *page,
unsigned long address)
{
struct mm_struct *mm = vma->vm_mm;
+ spinlock_t *ptl;
pmd_t *pmd, _pmd;
int ret = 0, i;
pgtable_t pgtable;
unsigned long haddr;
- spin_lock(&mm->page_table_lock);
pmd = page_check_address_pmd(page, mm, address,
- PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
+ PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
if (pmd) {
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
pmd_populate(mm, &_pmd, pgtable);
@@ -1754,8 +1839,8 @@ static int __split_huge_page_map(struct page *page,
pmdp_invalidate(vma, address, pmd);
pmd_populate(mm, pmd, pgtable);
ret = 1;
+ spin_unlock(ptl);
}
- spin_unlock(&mm->page_table_lock);
return ret;
}
@@ -2152,7 +2237,34 @@ static void khugepaged_alloc_sleep(void)
msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
}
+static int khugepaged_node_load[MAX_NUMNODES];
+
#ifdef CONFIG_NUMA
+static int khugepaged_find_target_node(void)
+{
+ static int last_khugepaged_target_node = NUMA_NO_NODE;
+ int nid, target_node = 0, max_value = 0;
+
+ /* find first node with max normal pages hit */
+ for (nid = 0; nid < MAX_NUMNODES; nid++)
+ if (khugepaged_node_load[nid] > max_value) {
+ max_value = khugepaged_node_load[nid];
+ target_node = nid;
+ }
+
+ /* do some balance if several nodes have the same hit record */
+ if (target_node <= last_khugepaged_target_node)
+ for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
+ nid++)
+ if (max_value == khugepaged_node_load[nid]) {
+ target_node = nid;
+ break;
+ }
+
+ last_khugepaged_target_node = target_node;
+ return target_node;
+}
+
static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
{
if (IS_ERR(*hpage)) {
@@ -2186,9 +2298,8 @@ static struct page
* mmap_sem in read mode is good idea also to allow greater
* scalability.
*/
- *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
- node, __GFP_OTHER_NODE);
-
+ *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
+ khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
/*
* After allocating the hugepage, release the mmap_sem read lock in
* preparation for taking it in write mode.
@@ -2204,6 +2315,17 @@ static struct page
return *hpage;
}
#else
+static int khugepaged_find_target_node(void)
+{
+ return 0;
+}
+
+static inline struct page *alloc_hugepage(int defrag)
+{
+ return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
+ HPAGE_PMD_ORDER);
+}
+
static struct page *khugepaged_alloc_hugepage(bool *wait)
{
struct page *hpage;
@@ -2270,7 +2392,7 @@ static void collapse_huge_page(struct mm_struct *mm,
pte_t *pte;
pgtable_t pgtable;
struct page *new_page;
- spinlock_t *ptl;
+ spinlock_t *pmd_ptl, *pte_ptl;
int isolated;
unsigned long hstart, hend;
unsigned long mmun_start; /* For mmu_notifiers */
@@ -2296,6 +2418,8 @@ static void collapse_huge_page(struct mm_struct *mm,
goto out;
vma = find_vma(mm, address);
+ if (!vma)
+ goto out;
hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
hend = vma->vm_end & HPAGE_PMD_MASK;
if (address < hstart || address + HPAGE_PMD_SIZE > hend)
@@ -2311,12 +2435,12 @@ static void collapse_huge_page(struct mm_struct *mm,
anon_vma_lock_write(vma->anon_vma);
pte = pte_offset_map(pmd, address);
- ptl = pte_lockptr(mm, pmd);
+ pte_ptl = pte_lockptr(mm, pmd);
mmun_start = address;
mmun_end = address + HPAGE_PMD_SIZE;
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
- spin_lock(&mm->page_table_lock); /* probably unnecessary */
+ pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
/*
* After this gup_fast can't run anymore. This also removes
* any huge TLB entry from the CPU so we won't allow
@@ -2324,16 +2448,16 @@ static void collapse_huge_page(struct mm_struct *mm,
* to avoid the risk of CPU bugs in that area.
*/
_pmd = pmdp_clear_flush(vma, address, pmd);
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(pmd_ptl);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
- spin_lock(ptl);
+ spin_lock(pte_ptl);
isolated = __collapse_huge_page_isolate(vma, address, pte);
- spin_unlock(ptl);
+ spin_unlock(pte_ptl);
if (unlikely(!isolated)) {
pte_unmap(pte);
- spin_lock(&mm->page_table_lock);
+ spin_lock(pmd_ptl);
BUG_ON(!pmd_none(*pmd));
/*
* We can only use set_pmd_at when establishing
@@ -2341,7 +2465,7 @@ static void collapse_huge_page(struct mm_struct *mm,
* points to regular pagetables. Use pmd_populate for that
*/
pmd_populate(mm, pmd, pmd_pgtable(_pmd));
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(pmd_ptl);
anon_vma_unlock_write(vma->anon_vma);
goto out;
}
@@ -2352,12 +2476,13 @@ static void collapse_huge_page(struct mm_struct *mm,
*/
anon_vma_unlock_write(vma->anon_vma);
- __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
+ __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
pte_unmap(pte);
__SetPageUptodate(new_page);
pgtable = pmd_pgtable(_pmd);
- _pmd = mk_huge_pmd(new_page, vma);
+ _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
+ _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
/*
* spin_lock() below is not the equivalent of smp_wmb(), so
@@ -2366,13 +2491,13 @@ static void collapse_huge_page(struct mm_struct *mm,
*/
smp_wmb();
- spin_lock(&mm->page_table_lock);
+ spin_lock(pmd_ptl);
BUG_ON(!pmd_none(*pmd));
page_add_new_anon_rmap(new_page, vma, address);
pgtable_trans_huge_deposit(mm, pmd, pgtable);
set_pmd_at(mm, address, pmd, _pmd);
update_mmu_cache_pmd(vma, address, pmd);
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(pmd_ptl);
*hpage = NULL;
@@ -2407,6 +2532,7 @@ static int khugepaged_scan_pmd(struct mm_struct *mm,
if (pmd_trans_huge(*pmd))
goto out;
+ memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
pte = pte_offset_map_lock(mm, pmd, address, &ptl);
for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
_pte++, _address += PAGE_SIZE) {
@@ -2423,12 +2549,13 @@ static int khugepaged_scan_pmd(struct mm_struct *mm,
if (unlikely(!page))
goto out_unmap;
/*
- * Chose the node of the first page. This could
- * be more sophisticated and look at more pages,
- * but isn't for now.
+ * Record which node the original page is from and save this
+ * information to khugepaged_node_load[].
+ * Khupaged will allocate hugepage from the node has the max
+ * hit record.
*/
- if (node == NUMA_NO_NODE)
- node = page_to_nid(page);
+ node = page_to_nid(page);
+ khugepaged_node_load[node]++;
VM_BUG_ON(PageCompound(page));
if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
goto out_unmap;
@@ -2443,9 +2570,11 @@ static int khugepaged_scan_pmd(struct mm_struct *mm,
ret = 1;
out_unmap:
pte_unmap_unlock(pte, ptl);
- if (ret)
+ if (ret) {
+ node = khugepaged_find_target_node();
/* collapse_huge_page will return with the mmap_sem released */
collapse_huge_page(mm, address, hpage, vma, node);
+ }
out:
return ret;
}
@@ -2697,6 +2826,7 @@ static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmd)
{
+ spinlock_t *ptl;
struct page *page;
struct mm_struct *mm = vma->vm_mm;
unsigned long haddr = address & HPAGE_PMD_MASK;
@@ -2707,29 +2837,37 @@ void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
mmun_start = haddr;
mmun_end = haddr + HPAGE_PMD_SIZE;
+again:
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
- spin_lock(&mm->page_table_lock);
+ ptl = pmd_lock(mm, pmd);
if (unlikely(!pmd_trans_huge(*pmd))) {
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
return;
}
if (is_huge_zero_pmd(*pmd)) {
__split_huge_zero_page_pmd(vma, haddr, pmd);
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
return;
}
page = pmd_page(*pmd);
VM_BUG_ON(!page_count(page));
get_page(page);
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
split_huge_page(page);
put_page(page);
- BUG_ON(pmd_trans_huge(*pmd));
+
+ /*
+ * We don't always have down_write of mmap_sem here: a racing
+ * do_huge_pmd_wp_page() might have copied-on-write to another
+ * huge page before our split_huge_page() got the anon_vma lock.
+ */
+ if (unlikely(pmd_trans_huge(*pmd)))
+ goto again;
}
void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index b60f33080a28..dee6cf4e6d34 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -21,6 +21,7 @@
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
+#include <linux/page-isolation.h>
#include <asm/page.h>
#include <asm/pgtable.h>
@@ -33,7 +34,6 @@
#include "internal.h"
const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
-static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
int hugetlb_max_hstate __read_mostly;
@@ -48,7 +48,8 @@ static unsigned long __initdata default_hstate_max_huge_pages;
static unsigned long __initdata default_hstate_size;
/*
- * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
+ * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
+ * free_huge_pages, and surplus_huge_pages.
*/
DEFINE_SPINLOCK(hugetlb_lock);
@@ -135,9 +136,9 @@ static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
* across the pages in a mapping.
*
* The region data structures are protected by a combination of the mmap_sem
- * and the hugetlb_instantion_mutex. To access or modify a region the caller
+ * and the hugetlb_instantiation_mutex. To access or modify a region the caller
* must either hold the mmap_sem for write, or the mmap_sem for read and
- * the hugetlb_instantiation mutex:
+ * the hugetlb_instantiation_mutex:
*
* down_write(&mm->mmap_sem);
* or
@@ -434,25 +435,6 @@ static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
return (get_vma_private_data(vma) & flag) != 0;
}
-/* Decrement the reserved pages in the hugepage pool by one */
-static void decrement_hugepage_resv_vma(struct hstate *h,
- struct vm_area_struct *vma)
-{
- if (vma->vm_flags & VM_NORESERVE)
- return;
-
- if (vma->vm_flags & VM_MAYSHARE) {
- /* Shared mappings always use reserves */
- h->resv_huge_pages--;
- } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
- /*
- * Only the process that called mmap() has reserves for
- * private mappings.
- */
- h->resv_huge_pages--;
- }
-}
-
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
@@ -462,47 +444,36 @@ void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
}
/* Returns true if the VMA has associated reserve pages */
-static int vma_has_reserves(struct vm_area_struct *vma)
+static int vma_has_reserves(struct vm_area_struct *vma, long chg)
{
+ if (vma->vm_flags & VM_NORESERVE) {
+ /*
+ * This address is already reserved by other process(chg == 0),
+ * so, we should decrement reserved count. Without decrementing,
+ * reserve count remains after releasing inode, because this
+ * allocated page will go into page cache and is regarded as
+ * coming from reserved pool in releasing step. Currently, we
+ * don't have any other solution to deal with this situation
+ * properly, so add work-around here.
+ */
+ if (vma->vm_flags & VM_MAYSHARE && chg == 0)
+ return 1;
+ else
+ return 0;
+ }
+
+ /* Shared mappings always use reserves */
if (vma->vm_flags & VM_MAYSHARE)
return 1;
+
+ /*
+ * Only the process that called mmap() has reserves for
+ * private mappings.
+ */
if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
return 1;
- return 0;
-}
-
-static void copy_gigantic_page(struct page *dst, struct page *src)
-{
- int i;
- struct hstate *h = page_hstate(src);
- struct page *dst_base = dst;
- struct page *src_base = src;
-
- for (i = 0; i < pages_per_huge_page(h); ) {
- cond_resched();
- copy_highpage(dst, src);
- i++;
- dst = mem_map_next(dst, dst_base, i);
- src = mem_map_next(src, src_base, i);
- }
-}
-
-void copy_huge_page(struct page *dst, struct page *src)
-{
- int i;
- struct hstate *h = page_hstate(src);
-
- if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
- copy_gigantic_page(dst, src);
- return;
- }
-
- might_sleep();
- for (i = 0; i < pages_per_huge_page(h); i++) {
- cond_resched();
- copy_highpage(dst + i, src + i);
- }
+ return 0;
}
static void enqueue_huge_page(struct hstate *h, struct page *page)
@@ -517,9 +488,15 @@ static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
struct page *page;
- if (list_empty(&h->hugepage_freelists[nid]))
+ list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
+ if (!is_migrate_isolate_page(page))
+ break;
+ /*
+ * if 'non-isolated free hugepage' not found on the list,
+ * the allocation fails.
+ */
+ if (&h->hugepage_freelists[nid] == &page->lru)
return NULL;
- page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
list_move(&page->lru, &h->hugepage_activelist);
set_page_refcounted(page);
h->free_huge_pages--;
@@ -527,9 +504,19 @@ static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
return page;
}
+/* Movability of hugepages depends on migration support. */
+static inline gfp_t htlb_alloc_mask(struct hstate *h)
+{
+ if (hugepages_treat_as_movable || hugepage_migration_support(h))
+ return GFP_HIGHUSER_MOVABLE;
+ else
+ return GFP_HIGHUSER;
+}
+
static struct page *dequeue_huge_page_vma(struct hstate *h,
struct vm_area_struct *vma,
- unsigned long address, int avoid_reserve)
+ unsigned long address, int avoid_reserve,
+ long chg)
{
struct page *page = NULL;
struct mempolicy *mpol;
@@ -539,16 +526,12 @@ static struct page *dequeue_huge_page_vma(struct hstate *h,
struct zoneref *z;
unsigned int cpuset_mems_cookie;
-retry_cpuset:
- cpuset_mems_cookie = get_mems_allowed();
- zonelist = huge_zonelist(vma, address,
- htlb_alloc_mask, &mpol, &nodemask);
/*
* A child process with MAP_PRIVATE mappings created by their parent
* have no page reserves. This check ensures that reservations are
* not "stolen". The child may still get SIGKILLed
*/
- if (!vma_has_reserves(vma) &&
+ if (!vma_has_reserves(vma, chg) &&
h->free_huge_pages - h->resv_huge_pages == 0)
goto err;
@@ -556,13 +539,23 @@ retry_cpuset:
if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
goto err;
+retry_cpuset:
+ cpuset_mems_cookie = get_mems_allowed();
+ zonelist = huge_zonelist(vma, address,
+ htlb_alloc_mask(h), &mpol, &nodemask);
+
for_each_zone_zonelist_nodemask(zone, z, zonelist,
MAX_NR_ZONES - 1, nodemask) {
- if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
+ if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
page = dequeue_huge_page_node(h, zone_to_nid(zone));
if (page) {
- if (!avoid_reserve)
- decrement_hugepage_resv_vma(h, vma);
+ if (avoid_reserve)
+ break;
+ if (!vma_has_reserves(vma, chg))
+ break;
+
+ SetPagePrivate(page);
+ h->resv_huge_pages--;
break;
}
}
@@ -574,7 +567,6 @@ retry_cpuset:
return page;
err:
- mpol_cond_put(mpol);
return NULL;
}
@@ -620,15 +612,21 @@ static void free_huge_page(struct page *page)
int nid = page_to_nid(page);
struct hugepage_subpool *spool =
(struct hugepage_subpool *)page_private(page);
+ bool restore_reserve;
set_page_private(page, 0);
page->mapping = NULL;
BUG_ON(page_count(page));
BUG_ON(page_mapcount(page));
+ restore_reserve = PagePrivate(page);
+ ClearPagePrivate(page);
spin_lock(&hugetlb_lock);
hugetlb_cgroup_uncharge_page(hstate_index(h),
pages_per_huge_page(h), page);
+ if (restore_reserve)
+ h->resv_huge_pages++;
+
if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
/* remove the page from active list */
list_del(&page->lru);
@@ -664,8 +662,22 @@ static void prep_compound_gigantic_page(struct page *page, unsigned long order)
/* we rely on prep_new_huge_page to set the destructor */
set_compound_order(page, order);
__SetPageHead(page);
+ __ClearPageReserved(page);
for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
__SetPageTail(p);
+ /*
+ * For gigantic hugepages allocated through bootmem at
+ * boot, it's safer to be consistent with the not-gigantic
+ * hugepages and clear the PG_reserved bit from all tail pages
+ * too. Otherwse drivers using get_user_pages() to access tail
+ * pages may get the reference counting wrong if they see
+ * PG_reserved set on a tail page (despite the head page not
+ * having PG_reserved set). Enforcing this consistency between
+ * head and tail pages allows drivers to optimize away a check
+ * on the head page when they need know if put_page() is needed
+ * after get_user_pages().
+ */
+ __ClearPageReserved(p);
set_page_count(p, 0);
p->first_page = page;
}
@@ -690,6 +702,23 @@ int PageHuge(struct page *page)
}
EXPORT_SYMBOL_GPL(PageHuge);
+/*
+ * PageHeadHuge() only returns true for hugetlbfs head page, but not for
+ * normal or transparent huge pages.
+ */
+int PageHeadHuge(struct page *page_head)
+{
+ compound_page_dtor *dtor;
+
+ if (!PageHead(page_head))
+ return 0;
+
+ dtor = get_compound_page_dtor(page_head);
+
+ return dtor == free_huge_page;
+}
+EXPORT_SYMBOL_GPL(PageHeadHuge);
+
pgoff_t __basepage_index(struct page *page)
{
struct page *page_head = compound_head(page);
@@ -715,7 +744,7 @@ static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
return NULL;
page = alloc_pages_exact_node(nid,
- htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
+ htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
__GFP_REPEAT|__GFP_NOWARN,
huge_page_order(h));
if (page) {
@@ -772,33 +801,6 @@ static int hstate_next_node_to_alloc(struct hstate *h,
return nid;
}
-static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
-{
- struct page *page;
- int start_nid;
- int next_nid;
- int ret = 0;
-
- start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
- next_nid = start_nid;
-
- do {
- page = alloc_fresh_huge_page_node(h, next_nid);
- if (page) {
- ret = 1;
- break;
- }
- next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
- } while (next_nid != start_nid);
-
- if (ret)
- count_vm_event(HTLB_BUDDY_PGALLOC);
- else
- count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
-
- return ret;
-}
-
/*
* helper for free_pool_huge_page() - return the previously saved
* node ["this node"] from which to free a huge page. Advance the
@@ -817,6 +819,40 @@ static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
return nid;
}
+#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
+ for (nr_nodes = nodes_weight(*mask); \
+ nr_nodes > 0 && \
+ ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
+ nr_nodes--)
+
+#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
+ for (nr_nodes = nodes_weight(*mask); \
+ nr_nodes > 0 && \
+ ((node = hstate_next_node_to_free(hs, mask)) || 1); \
+ nr_nodes--)
+
+static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
+{
+ struct page *page;
+ int nr_nodes, node;
+ int ret = 0;
+
+ for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
+ page = alloc_fresh_huge_page_node(h, node);
+ if (page) {
+ ret = 1;
+ break;
+ }
+ }
+
+ if (ret)
+ count_vm_event(HTLB_BUDDY_PGALLOC);
+ else
+ count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
+
+ return ret;
+}
+
/*
* Free huge page from pool from next node to free.
* Attempt to keep persistent huge pages more or less
@@ -826,40 +862,73 @@ static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
bool acct_surplus)
{
- int start_nid;
- int next_nid;
+ int nr_nodes, node;
int ret = 0;
- start_nid = hstate_next_node_to_free(h, nodes_allowed);
- next_nid = start_nid;
-
- do {
+ for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
/*
* If we're returning unused surplus pages, only examine
* nodes with surplus pages.
*/
- if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
- !list_empty(&h->hugepage_freelists[next_nid])) {
+ if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
+ !list_empty(&h->hugepage_freelists[node])) {
struct page *page =
- list_entry(h->hugepage_freelists[next_nid].next,
+ list_entry(h->hugepage_freelists[node].next,
struct page, lru);
list_del(&page->lru);
h->free_huge_pages--;
- h->free_huge_pages_node[next_nid]--;
+ h->free_huge_pages_node[node]--;
if (acct_surplus) {
h->surplus_huge_pages--;
- h->surplus_huge_pages_node[next_nid]--;
+ h->surplus_huge_pages_node[node]--;
}
update_and_free_page(h, page);
ret = 1;
break;
}
- next_nid = hstate_next_node_to_free(h, nodes_allowed);
- } while (next_nid != start_nid);
+ }
return ret;
}
+/*
+ * Dissolve a given free hugepage into free buddy pages. This function does
+ * nothing for in-use (including surplus) hugepages.
+ */
+static void dissolve_free_huge_page(struct page *page)
+{
+ spin_lock(&hugetlb_lock);
+ if (PageHuge(page) && !page_count(page)) {
+ struct hstate *h = page_hstate(page);
+ int nid = page_to_nid(page);
+ list_del(&page->lru);
+ h->free_huge_pages--;
+ h->free_huge_pages_node[nid]--;
+ update_and_free_page(h, page);
+ }
+ spin_unlock(&hugetlb_lock);
+}
+
+/*
+ * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
+ * make specified memory blocks removable from the system.
+ * Note that start_pfn should aligned with (minimum) hugepage size.
+ */
+void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
+{
+ unsigned int order = 8 * sizeof(void *);
+ unsigned long pfn;
+ struct hstate *h;
+
+ /* Set scan step to minimum hugepage size */
+ for_each_hstate(h)
+ if (order > huge_page_order(h))
+ order = huge_page_order(h);
+ VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
+ for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
+ dissolve_free_huge_page(pfn_to_page(pfn));
+}
+
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
{
struct page *page;
@@ -902,12 +971,12 @@ static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
spin_unlock(&hugetlb_lock);
if (nid == NUMA_NO_NODE)
- page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
+ page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
__GFP_REPEAT|__GFP_NOWARN,
huge_page_order(h));
else
page = alloc_pages_exact_node(nid,
- htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
+ htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
if (page && arch_prepare_hugepage(page)) {
@@ -944,10 +1013,11 @@ static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
*/
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
- struct page *page;
+ struct page *page = NULL;
spin_lock(&hugetlb_lock);
- page = dequeue_huge_page_node(h, nid);
+ if (h->free_huge_pages - h->resv_huge_pages > 0)
+ page = dequeue_huge_page_node(h, nid);
spin_unlock(&hugetlb_lock);
if (!page)
@@ -1035,11 +1105,8 @@ free:
spin_unlock(&hugetlb_lock);
/* Free unnecessary surplus pages to the buddy allocator */
- if (!list_empty(&surplus_list)) {
- list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
- put_page(page);
- }
- }
+ list_for_each_entry_safe(page, tmp, &surplus_list, lru)
+ put_page(page);
spin_lock(&hugetlb_lock);
return ret;
@@ -1106,9 +1173,9 @@ static long vma_needs_reservation(struct hstate *h,
} else {
long err;
pgoff_t idx = vma_hugecache_offset(h, vma, addr);
- struct resv_map *reservations = vma_resv_map(vma);
+ struct resv_map *resv = vma_resv_map(vma);
- err = region_chg(&reservations->regions, idx, idx + 1);
+ err = region_chg(&resv->regions, idx, idx + 1);
if (err < 0)
return err;
return 0;
@@ -1126,10 +1193,10 @@ static void vma_commit_reservation(struct hstate *h,
} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
pgoff_t idx = vma_hugecache_offset(h, vma, addr);
- struct resv_map *reservations = vma_resv_map(vma);
+ struct resv_map *resv = vma_resv_map(vma);
/* Mark this page used in the map. */
- region_add(&reservations->regions, idx, idx + 1);
+ region_add(&resv->regions, idx, idx + 1);
}
}
@@ -1155,38 +1222,35 @@ static struct page *alloc_huge_page(struct vm_area_struct *vma,
chg = vma_needs_reservation(h, vma, addr);
if (chg < 0)
return ERR_PTR(-ENOMEM);
- if (chg)
- if (hugepage_subpool_get_pages(spool, chg))
+ if (chg || avoid_reserve)
+ if (hugepage_subpool_get_pages(spool, 1))
return ERR_PTR(-ENOSPC);
ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
if (ret) {
- hugepage_subpool_put_pages(spool, chg);
+ if (chg || avoid_reserve)
+ hugepage_subpool_put_pages(spool, 1);
return ERR_PTR(-ENOSPC);
}
spin_lock(&hugetlb_lock);
- page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
- if (page) {
- /* update page cgroup details */
- hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
- h_cg, page);
- spin_unlock(&hugetlb_lock);
- } else {
+ page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
+ if (!page) {
spin_unlock(&hugetlb_lock);
page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
if (!page) {
hugetlb_cgroup_uncharge_cgroup(idx,
pages_per_huge_page(h),
h_cg);
- hugepage_subpool_put_pages(spool, chg);
+ if (chg || avoid_reserve)
+ hugepage_subpool_put_pages(spool, 1);
return ERR_PTR(-ENOSPC);
}
spin_lock(&hugetlb_lock);
- hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
- h_cg, page);
list_move(&page->lru, &h->hugepage_activelist);
- spin_unlock(&hugetlb_lock);
+ /* Fall through */
}
+ hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
+ spin_unlock(&hugetlb_lock);
set_page_private(page, (unsigned long)spool);
@@ -1194,17 +1258,29 @@ static struct page *alloc_huge_page(struct vm_area_struct *vma,
return page;
}
+/*
+ * alloc_huge_page()'s wrapper which simply returns the page if allocation
+ * succeeds, otherwise NULL. This function is called from new_vma_page(),
+ * where no ERR_VALUE is expected to be returned.
+ */
+struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
+ unsigned long addr, int avoid_reserve)
+{
+ struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
+ if (IS_ERR(page))
+ page = NULL;
+ return page;
+}
+
int __weak alloc_bootmem_huge_page(struct hstate *h)
{
struct huge_bootmem_page *m;
- int nr_nodes = nodes_weight(node_states[N_MEMORY]);
+ int nr_nodes, node;
- while (nr_nodes) {
+ for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
void *addr;
- addr = __alloc_bootmem_node_nopanic(
- NODE_DATA(hstate_next_node_to_alloc(h,
- &node_states[N_MEMORY])),
+ addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
huge_page_size(h), huge_page_size(h), 0);
if (addr) {
@@ -1216,7 +1292,6 @@ int __weak alloc_bootmem_huge_page(struct hstate *h)
m = addr;
goto found;
}
- nr_nodes--;
}
return 0;
@@ -1252,9 +1327,9 @@ static void __init gather_bootmem_prealloc(void)
#else
page = virt_to_page(m);
#endif
- __ClearPageReserved(page);
WARN_ON(page_count(page) != 1);
prep_compound_huge_page(page, h->order);
+ WARN_ON(PageReserved(page));
prep_new_huge_page(h, page, page_to_nid(page));
/*
* If we had gigantic hugepages allocated at boot time, we need
@@ -1355,48 +1430,28 @@ static inline void try_to_free_low(struct hstate *h, unsigned long count,
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
int delta)
{
- int start_nid, next_nid;
- int ret = 0;
+ int nr_nodes, node;
VM_BUG_ON(delta != -1 && delta != 1);
- if (delta < 0)
- start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
- else
- start_nid = hstate_next_node_to_free(h, nodes_allowed);
- next_nid = start_nid;
-
- do {
- int nid = next_nid;
- if (delta < 0) {
- /*
- * To shrink on this node, there must be a surplus page
- */
- if (!h->surplus_huge_pages_node[nid]) {
- next_nid = hstate_next_node_to_alloc(h,
- nodes_allowed);
- continue;
- }
+ if (delta < 0) {
+ for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
+ if (h->surplus_huge_pages_node[node])
+ goto found;
}
- if (delta > 0) {
- /*
- * Surplus cannot exceed the total number of pages
- */
- if (h->surplus_huge_pages_node[nid] >=
- h->nr_huge_pages_node[nid]) {
- next_nid = hstate_next_node_to_free(h,
- nodes_allowed);
- continue;
- }
+ } else {
+ for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
+ if (h->surplus_huge_pages_node[node] <
+ h->nr_huge_pages_node[node])
+ goto found;
}
+ }
+ return 0;
- h->surplus_huge_pages += delta;
- h->surplus_huge_pages_node[nid] += delta;
- ret = 1;
- break;
- } while (next_nid != start_nid);
-
- return ret;
+found:
+ h->surplus_huge_pages += delta;
+ h->surplus_huge_pages_node[node] += delta;
+ return 1;
}
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
@@ -1526,7 +1581,7 @@ static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
struct hstate *h;
NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
- err = strict_strtoul(buf, 10, &count);
+ err = kstrtoul(buf, 10, &count);
if (err)
goto out;
@@ -1617,7 +1672,7 @@ static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
if (h->order >= MAX_ORDER)
return -EINVAL;
- err = strict_strtoul(buf, 10, &input);
+ err = kstrtoul(buf, 10, &input);
if (err)
return err;
@@ -2068,18 +2123,6 @@ int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
}
#endif /* CONFIG_NUMA */
-int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
- void __user *buffer,
- size_t *length, loff_t *ppos)
-{
- proc_dointvec(table, write, buffer, length, ppos);
- if (hugepages_treat_as_movable)
- htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
- else
- htlb_alloc_mask = GFP_HIGHUSER;
- return 0;
-}
-
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
void __user *buffer,
size_t *length, loff_t *ppos)
@@ -2207,7 +2250,7 @@ out:
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
- struct resv_map *reservations = vma_resv_map(vma);
+ struct resv_map *resv = vma_resv_map(vma);
/*
* This new VMA should share its siblings reservation map if present.
@@ -2217,34 +2260,34 @@ static void hugetlb_vm_op_open(struct vm_area_struct *vma)
* after this open call completes. It is therefore safe to take a
* new reference here without additional locking.
*/
- if (reservations)
- kref_get(&reservations->refs);
+ if (resv)
+ kref_get(&resv->refs);
}
static void resv_map_put(struct vm_area_struct *vma)
{
- struct resv_map *reservations = vma_resv_map(vma);
+ struct resv_map *resv = vma_resv_map(vma);
- if (!reservations)
+ if (!resv)
return;
- kref_put(&reservations->refs, resv_map_release);
+ kref_put(&resv->refs, resv_map_release);
}
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
struct hstate *h = hstate_vma(vma);
- struct resv_map *reservations = vma_resv_map(vma);
+ struct resv_map *resv = vma_resv_map(vma);
struct hugepage_subpool *spool = subpool_vma(vma);
unsigned long reserve;
unsigned long start;
unsigned long end;
- if (reservations) {
+ if (resv) {
start = vma_hugecache_offset(h, vma, vma->vm_start);
end = vma_hugecache_offset(h, vma, vma->vm_end);
reserve = (end - start) -
- region_count(&reservations->regions, start, end);
+ region_count(&resv->regions, start, end);
resv_map_put(vma);
@@ -2316,6 +2359,7 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
+ spinlock_t *src_ptl, *dst_ptl;
src_pte = huge_pte_offset(src, addr);
if (!src_pte)
continue;
@@ -2327,8 +2371,9 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
if (dst_pte == src_pte)
continue;
- spin_lock(&dst->page_table_lock);
- spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
+ dst_ptl = huge_pte_lock(h, dst, dst_pte);
+ src_ptl = huge_pte_lockptr(h, src, src_pte);
+ spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
if (!huge_pte_none(huge_ptep_get(src_pte))) {
if (cow)
huge_ptep_set_wrprotect(src, addr, src_pte);
@@ -2338,8 +2383,8 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
page_dup_rmap(ptepage);
set_huge_pte_at(dst, addr, dst_pte, entry);
}
- spin_unlock(&src->page_table_lock);
- spin_unlock(&dst->page_table_lock);
+ spin_unlock(src_ptl);
+ spin_unlock(dst_ptl);
}
return 0;
@@ -2382,6 +2427,7 @@ void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
unsigned long address;
pte_t *ptep;
pte_t pte;
+ spinlock_t *ptl;
struct page *page;
struct hstate *h = hstate_vma(vma);
unsigned long sz = huge_page_size(h);
@@ -2395,25 +2441,25 @@ void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
tlb_start_vma(tlb, vma);
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
again:
- spin_lock(&mm->page_table_lock);
for (address = start; address < end; address += sz) {
ptep = huge_pte_offset(mm, address);
if (!ptep)
continue;
+ ptl = huge_pte_lock(h, mm, ptep);
if (huge_pmd_unshare(mm, &address, ptep))
- continue;
+ goto unlock;
pte = huge_ptep_get(ptep);
if (huge_pte_none(pte))
- continue;
+ goto unlock;
/*
* HWPoisoned hugepage is already unmapped and dropped reference
*/
if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
huge_pte_clear(mm, address, ptep);
- continue;
+ goto unlock;
}
page = pte_page(pte);
@@ -2424,7 +2470,7 @@ again:
*/
if (ref_page) {
if (page != ref_page)
- continue;
+ goto unlock;
/*
* Mark the VMA as having unmapped its page so that
@@ -2441,13 +2487,18 @@ again:
page_remove_rmap(page);
force_flush = !__tlb_remove_page(tlb, page);
- if (force_flush)
+ if (force_flush) {
+ spin_unlock(ptl);
break;
+ }
/* Bail out after unmapping reference page if supplied */
- if (ref_page)
+ if (ref_page) {
+ spin_unlock(ptl);
break;
+ }
+unlock:
+ spin_unlock(ptl);
}
- spin_unlock(&mm->page_table_lock);
/*
* mmu_gather ran out of room to batch pages, we break out of
* the PTE lock to avoid doing the potential expensive TLB invalidate
@@ -2553,11 +2604,10 @@ static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
*/
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pte_t *ptep, pte_t pte,
- struct page *pagecache_page)
+ struct page *pagecache_page, spinlock_t *ptl)
{
struct hstate *h = hstate_vma(vma);
struct page *old_page, *new_page;
- int avoidcopy;
int outside_reserve = 0;
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
@@ -2567,10 +2617,8 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
retry_avoidcopy:
/* If no-one else is actually using this page, avoid the copy
* and just make the page writable */
- avoidcopy = (page_mapcount(old_page) == 1);
- if (avoidcopy) {
- if (PageAnon(old_page))
- page_move_anon_rmap(old_page, vma, address);
+ if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
+ page_move_anon_rmap(old_page, vma, address);
set_huge_ptep_writable(vma, address, ptep);
return 0;
}
@@ -2584,15 +2632,14 @@ retry_avoidcopy:
* at the time of fork() could consume its reserves on COW instead
* of the full address range.
*/
- if (!(vma->vm_flags & VM_MAYSHARE) &&
- is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
+ if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
old_page != pagecache_page)
outside_reserve = 1;
page_cache_get(old_page);
- /* Drop page_table_lock as buddy allocator may be called */
- spin_unlock(&mm->page_table_lock);
+ /* Drop page table lock as buddy allocator may be called */
+ spin_unlock(ptl);
new_page = alloc_huge_page(vma, address, outside_reserve);
if (IS_ERR(new_page)) {
@@ -2610,13 +2657,13 @@ retry_avoidcopy:
BUG_ON(huge_pte_none(pte));
if (unmap_ref_private(mm, vma, old_page, address)) {
BUG_ON(huge_pte_none(pte));
- spin_lock(&mm->page_table_lock);
+ spin_lock(ptl);
ptep = huge_pte_offset(mm, address & huge_page_mask(h));
if (likely(pte_same(huge_ptep_get(ptep), pte)))
goto retry_avoidcopy;
/*
- * race occurs while re-acquiring page_table_lock, and
- * our job is done.
+ * race occurs while re-acquiring page table
+ * lock, and our job is done.
*/
return 0;
}
@@ -2624,7 +2671,7 @@ retry_avoidcopy:
}
/* Caller expects lock to be held */
- spin_lock(&mm->page_table_lock);
+ spin_lock(ptl);
if (err == -ENOMEM)
return VM_FAULT_OOM;
else
@@ -2639,7 +2686,7 @@ retry_avoidcopy:
page_cache_release(new_page);
page_cache_release(old_page);
/* Caller expects lock to be held */
- spin_lock(&mm->page_table_lock);
+ spin_lock(ptl);
return VM_FAULT_OOM;
}
@@ -2651,12 +2698,14 @@ retry_avoidcopy:
mmun_end = mmun_start + huge_page_size(h);
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
/*
- * Retake the page_table_lock to check for racing updates
+ * Retake the page table lock to check for racing updates
* before the page tables are altered
*/
- spin_lock(&mm->page_table_lock);
+ spin_lock(ptl);
ptep = huge_pte_offset(mm, address & huge_page_mask(h));
if (likely(pte_same(huge_ptep_get(ptep), pte))) {
+ ClearPagePrivate(new_page);
+
/* Break COW */
huge_ptep_clear_flush(vma, address, ptep);
set_huge_pte_at(mm, address, ptep,
@@ -2666,12 +2715,13 @@ retry_avoidcopy:
/* Make the old page be freed below */
new_page = old_page;
}
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
- /* Caller expects lock to be held */
- spin_lock(&mm->page_table_lock);
page_cache_release(new_page);
page_cache_release(old_page);
+
+ /* Caller expects lock to be held */
+ spin_lock(ptl);
return 0;
}
@@ -2719,6 +2769,7 @@ static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
struct page *page;
struct address_space *mapping;
pte_t new_pte;
+ spinlock_t *ptl;
/*
* Currently, we are forced to kill the process in the event the
@@ -2767,6 +2818,7 @@ retry:
goto retry;
goto out;
}
+ ClearPagePrivate(page);
spin_lock(&inode->i_lock);
inode->i_blocks += blocks_per_huge_page(h);
@@ -2804,7 +2856,8 @@ retry:
goto backout_unlocked;
}
- spin_lock(&mm->page_table_lock);
+ ptl = huge_pte_lockptr(h, mm, ptep);
+ spin_lock(ptl);
size = i_size_read(mapping->host) >> huge_page_shift(h);
if (idx >= size)
goto backout;
@@ -2813,8 +2866,10 @@ retry:
if (!huge_pte_none(huge_ptep_get(ptep)))
goto backout;
- if (anon_rmap)
+ if (anon_rmap) {
+ ClearPagePrivate(page);
hugepage_add_new_anon_rmap(page, vma, address);
+ }
else
page_dup_rmap(page);
new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
@@ -2823,16 +2878,16 @@ retry:
if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
/* Optimization, do the COW without a second fault */
- ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
+ ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
}
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
unlock_page(page);
out:
return ret;
backout:
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
backout_unlocked:
unlock_page(page);
put_page(page);
@@ -2844,6 +2899,7 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
{
pte_t *ptep;
pte_t entry;
+ spinlock_t *ptl;
int ret;
struct page *page = NULL;
struct page *pagecache_page = NULL;
@@ -2856,7 +2912,7 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
if (ptep) {
entry = huge_ptep_get(ptep);
if (unlikely(is_hugetlb_entry_migration(entry))) {
- migration_entry_wait_huge(mm, ptep);
+ migration_entry_wait_huge(vma, mm, ptep);
return 0;
} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
return VM_FAULT_HWPOISON_LARGE |
@@ -2912,17 +2968,18 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
if (page != pagecache_page)
lock_page(page);
- spin_lock(&mm->page_table_lock);
+ ptl = huge_pte_lockptr(h, mm, ptep);
+ spin_lock(ptl);
/* Check for a racing update before calling hugetlb_cow */
if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
- goto out_page_table_lock;
+ goto out_ptl;
if (flags & FAULT_FLAG_WRITE) {
if (!huge_pte_write(entry)) {
ret = hugetlb_cow(mm, vma, address, ptep, entry,
- pagecache_page);
- goto out_page_table_lock;
+ pagecache_page, ptl);
+ goto out_ptl;
}
entry = huge_pte_mkdirty(entry);
}
@@ -2931,8 +2988,8 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
flags & FAULT_FLAG_WRITE))
update_mmu_cache(vma, address, ptep);
-out_page_table_lock:
- spin_unlock(&mm->page_table_lock);
+out_ptl:
+ spin_unlock(ptl);
if (pagecache_page) {
unlock_page(pagecache_page);
@@ -2958,9 +3015,9 @@ long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long remainder = *nr_pages;
struct hstate *h = hstate_vma(vma);
- spin_lock(&mm->page_table_lock);
while (vaddr < vma->vm_end && remainder) {
pte_t *pte;
+ spinlock_t *ptl = NULL;
int absent;
struct page *page;
@@ -2968,8 +3025,12 @@ long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
* Some archs (sparc64, sh*) have multiple pte_ts to
* each hugepage. We have to make sure we get the
* first, for the page indexing below to work.
+ *
+ * Note that page table lock is not held when pte is null.
*/
pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
+ if (pte)
+ ptl = huge_pte_lock(h, mm, pte);
absent = !pte || huge_pte_none(huge_ptep_get(pte));
/*
@@ -2981,6 +3042,8 @@ long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
*/
if (absent && (flags & FOLL_DUMP) &&
!hugetlbfs_pagecache_present(h, vma, vaddr)) {
+ if (pte)
+ spin_unlock(ptl);
remainder = 0;
break;
}
@@ -3000,10 +3063,10 @@ long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
!huge_pte_write(huge_ptep_get(pte)))) {
int ret;
- spin_unlock(&mm->page_table_lock);
+ if (pte)
+ spin_unlock(ptl);
ret = hugetlb_fault(mm, vma, vaddr,
(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
- spin_lock(&mm->page_table_lock);
if (!(ret & VM_FAULT_ERROR))
continue;
@@ -3034,8 +3097,8 @@ same_page:
*/
goto same_page;
}
+ spin_unlock(ptl);
}
- spin_unlock(&mm->page_table_lock);
*nr_pages = remainder;
*position = vaddr;
@@ -3056,13 +3119,15 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
flush_cache_range(vma, address, end);
mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
- spin_lock(&mm->page_table_lock);
for (; address < end; address += huge_page_size(h)) {
+ spinlock_t *ptl;
ptep = huge_pte_offset(mm, address);
if (!ptep)
continue;
+ ptl = huge_pte_lock(h, mm, ptep);
if (huge_pmd_unshare(mm, &address, ptep)) {
pages++;
+ spin_unlock(ptl);
continue;
}
if (!huge_pte_none(huge_ptep_get(ptep))) {
@@ -3072,8 +3137,8 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
set_huge_pte_at(mm, address, ptep, pte);
pages++;
}
+ spin_unlock(ptl);
}
- spin_unlock(&mm->page_table_lock);
/*
* Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
* may have cleared our pud entry and done put_page on the page table:
@@ -3236,6 +3301,7 @@ pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
unsigned long saddr;
pte_t *spte = NULL;
pte_t *pte;
+ spinlock_t *ptl;
if (!vma_shareable(vma, addr))
return (pte_t *)pmd_alloc(mm, pud, addr);
@@ -3258,13 +3324,14 @@ pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
if (!spte)
goto out;
- spin_lock(&mm->page_table_lock);
+ ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
+ spin_lock(ptl);
if (pud_none(*pud))
pud_populate(mm, pud,
(pmd_t *)((unsigned long)spte & PAGE_MASK));
else
put_page(virt_to_page(spte));
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
out:
pte = (pte_t *)pmd_alloc(mm, pud, addr);
mutex_unlock(&mapping->i_mmap_mutex);
@@ -3278,7 +3345,7 @@ out:
* indicated by page_count > 1, unmap is achieved by clearing pud and
* decrementing the ref count. If count == 1, the pte page is not shared.
*
- * called with vma->vm_mm->page_table_lock held.
+ * called with page table lock held.
*
* returns: 1 successfully unmapped a shared pte page
* 0 the underlying pte page is not shared, or it is the last user
@@ -3431,3 +3498,45 @@ int dequeue_hwpoisoned_huge_page(struct page *hpage)
return ret;
}
#endif
+
+bool isolate_huge_page(struct page *page, struct list_head *list)
+{
+ VM_BUG_ON(!PageHead(page));
+ if (!get_page_unless_zero(page))
+ return false;
+ spin_lock(&hugetlb_lock);
+ list_move_tail(&page->lru, list);
+ spin_unlock(&hugetlb_lock);
+ return true;
+}
+
+void putback_active_hugepage(struct page *page)
+{
+ VM_BUG_ON(!PageHead(page));
+ spin_lock(&hugetlb_lock);
+ list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
+ spin_unlock(&hugetlb_lock);
+ put_page(page);
+}
+
+bool is_hugepage_active(struct page *page)
+{
+ VM_BUG_ON(!PageHuge(page));
+ /*
+ * This function can be called for a tail page because the caller,
+ * scan_movable_pages, scans through a given pfn-range which typically
+ * covers one memory block. In systems using gigantic hugepage (1GB
+ * for x86_64,) a hugepage is larger than a memory block, and we don't
+ * support migrating such large hugepages for now, so return false
+ * when called for tail pages.
+ */
+ if (PageTail(page))
+ return false;
+ /*
+ * Refcount of a hwpoisoned hugepages is 1, but they are not active,
+ * so we should return false for them.
+ */
+ if (unlikely(PageHWPoison(page)))
+ return false;
+ return page_count(page) > 0;
+}
diff --git a/mm/hwpoison-inject.c b/mm/hwpoison-inject.c
index 3a61efc518d5..4c84678371eb 100644
--- a/mm/hwpoison-inject.c
+++ b/mm/hwpoison-inject.c
@@ -20,8 +20,6 @@ static int hwpoison_inject(void *data, u64 val)
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
- if (!hwpoison_filter_enable)
- goto inject;
if (!pfn_valid(pfn))
return -ENXIO;
@@ -33,6 +31,9 @@ static int hwpoison_inject(void *data, u64 val)
if (!get_page_unless_zero(hpage))
return 0;
+ if (!hwpoison_filter_enable)
+ goto inject;
+
if (!PageLRU(p) && !PageHuge(p))
shake_page(p, 0);
/*
@@ -88,12 +89,12 @@ static int pfn_inject_init(void)
* hardware status change, hence do not require hardware support.
* They are mainly for testing hwpoison in software level.
*/
- dentry = debugfs_create_file("corrupt-pfn", 0600, hwpoison_dir,
+ dentry = debugfs_create_file("corrupt-pfn", 0200, hwpoison_dir,
NULL, &hwpoison_fops);
if (!dentry)
goto fail;
- dentry = debugfs_create_file("unpoison-pfn", 0600, hwpoison_dir,
+ dentry = debugfs_create_file("unpoison-pfn", 0200, hwpoison_dir,
NULL, &unpoison_fops);
if (!dentry)
goto fail;
diff --git a/mm/internal.h b/mm/internal.h
index 4390ac6c106e..684f7aa9692a 100644
--- a/mm/internal.h
+++ b/mm/internal.h
@@ -85,6 +85,8 @@ extern unsigned long highest_memmap_pfn;
*/
extern int isolate_lru_page(struct page *page);
extern void putback_lru_page(struct page *page);
+extern unsigned long zone_reclaimable_pages(struct zone *zone);
+extern bool zone_reclaimable(struct zone *zone);
/*
* in mm/rmap.c:
diff --git a/mm/kmemleak.c b/mm/kmemleak.c
index c8d7f3110fd0..31f01c5011e5 100644
--- a/mm/kmemleak.c
+++ b/mm/kmemleak.c
@@ -753,7 +753,9 @@ static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
}
spin_lock_irqsave(&object->lock, flags);
- if (ptr + size > object->pointer + object->size) {
+ if (size == SIZE_MAX) {
+ size = object->pointer + object->size - ptr;
+ } else if (ptr + size > object->pointer + object->size) {
kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
dump_object_info(object);
kmem_cache_free(scan_area_cache, area);
@@ -1639,7 +1641,7 @@ static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
else if (strncmp(buf, "scan=", 5) == 0) {
unsigned long secs;
- ret = strict_strtoul(buf + 5, 0, &secs);
+ ret = kstrtoul(buf + 5, 0, &secs);
if (ret < 0)
goto out;
stop_scan_thread();
diff --git a/mm/ksm.c b/mm/ksm.c
index b6afe0c440d8..175fff79dc95 100644
--- a/mm/ksm.c
+++ b/mm/ksm.c
@@ -2194,7 +2194,7 @@ static ssize_t sleep_millisecs_store(struct kobject *kobj,
unsigned long msecs;
int err;
- err = strict_strtoul(buf, 10, &msecs);
+ err = kstrtoul(buf, 10, &msecs);
if (err || msecs > UINT_MAX)
return -EINVAL;
@@ -2217,7 +2217,7 @@ static ssize_t pages_to_scan_store(struct kobject *kobj,
int err;
unsigned long nr_pages;
- err = strict_strtoul(buf, 10, &nr_pages);
+ err = kstrtoul(buf, 10, &nr_pages);
if (err || nr_pages > UINT_MAX)
return -EINVAL;
@@ -2239,7 +2239,7 @@ static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
int err;
unsigned long flags;
- err = strict_strtoul(buf, 10, &flags);
+ err = kstrtoul(buf, 10, &flags);
if (err || flags > UINT_MAX)
return -EINVAL;
if (flags > KSM_RUN_UNMERGE)
@@ -2309,8 +2309,8 @@ static ssize_t merge_across_nodes_store(struct kobject *kobj,
* Allocate stable and unstable together:
* MAXSMP NODES_SHIFT 10 will use 16kB.
*/
- buf = kcalloc(nr_node_ids + nr_node_ids,
- sizeof(*buf), GFP_KERNEL | __GFP_ZERO);
+ buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
+ GFP_KERNEL);
/* Let us assume that RB_ROOT is NULL is zero */
if (!buf)
err = -ENOMEM;
diff --git a/mm/list_lru.c b/mm/list_lru.c
new file mode 100644
index 000000000000..72f9decb0104
--- /dev/null
+++ b/mm/list_lru.c
@@ -0,0 +1,140 @@
+/*
+ * Copyright (c) 2013 Red Hat, Inc. and Parallels Inc. All rights reserved.
+ * Authors: David Chinner and Glauber Costa
+ *
+ * Generic LRU infrastructure
+ */
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/mm.h>
+#include <linux/list_lru.h>
+#include <linux/slab.h>
+
+bool list_lru_add(struct list_lru *lru, struct list_head *item)
+{
+ int nid = page_to_nid(virt_to_page(item));
+ struct list_lru_node *nlru = &lru->node[nid];
+
+ spin_lock(&nlru->lock);
+ WARN_ON_ONCE(nlru->nr_items < 0);
+ if (list_empty(item)) {
+ list_add_tail(item, &nlru->list);
+ if (nlru->nr_items++ == 0)
+ node_set(nid, lru->active_nodes);
+ spin_unlock(&nlru->lock);
+ return true;
+ }
+ spin_unlock(&nlru->lock);
+ return false;
+}
+EXPORT_SYMBOL_GPL(list_lru_add);
+
+bool list_lru_del(struct list_lru *lru, struct list_head *item)
+{
+ int nid = page_to_nid(virt_to_page(item));
+ struct list_lru_node *nlru = &lru->node[nid];
+
+ spin_lock(&nlru->lock);
+ if (!list_empty(item)) {
+ list_del_init(item);
+ if (--nlru->nr_items == 0)
+ node_clear(nid, lru->active_nodes);
+ WARN_ON_ONCE(nlru->nr_items < 0);
+ spin_unlock(&nlru->lock);
+ return true;
+ }
+ spin_unlock(&nlru->lock);
+ return false;
+}
+EXPORT_SYMBOL_GPL(list_lru_del);
+
+unsigned long
+list_lru_count_node(struct list_lru *lru, int nid)
+{
+ unsigned long count = 0;
+ struct list_lru_node *nlru = &lru->node[nid];
+
+ spin_lock(&nlru->lock);
+ WARN_ON_ONCE(nlru->nr_items < 0);
+ count += nlru->nr_items;
+ spin_unlock(&nlru->lock);
+
+ return count;
+}
+EXPORT_SYMBOL_GPL(list_lru_count_node);
+
+unsigned long
+list_lru_walk_node(struct list_lru *lru, int nid, list_lru_walk_cb isolate,
+ void *cb_arg, unsigned long *nr_to_walk)
+{
+
+ struct list_lru_node *nlru = &lru->node[nid];
+ struct list_head *item, *n;
+ unsigned long isolated = 0;
+
+ spin_lock(&nlru->lock);
+restart:
+ list_for_each_safe(item, n, &nlru->list) {
+ enum lru_status ret;
+
+ /*
+ * decrement nr_to_walk first so that we don't livelock if we
+ * get stuck on large numbesr of LRU_RETRY items
+ */
+ if (!*nr_to_walk)
+ break;
+ --*nr_to_walk;
+
+ ret = isolate(item, &nlru->lock, cb_arg);
+ switch (ret) {
+ case LRU_REMOVED:
+ if (--nlru->nr_items == 0)
+ node_clear(nid, lru->active_nodes);
+ WARN_ON_ONCE(nlru->nr_items < 0);
+ isolated++;
+ break;
+ case LRU_ROTATE:
+ list_move_tail(item, &nlru->list);
+ break;
+ case LRU_SKIP:
+ break;
+ case LRU_RETRY:
+ /*
+ * The lru lock has been dropped, our list traversal is
+ * now invalid and so we have to restart from scratch.
+ */
+ goto restart;
+ default:
+ BUG();
+ }
+ }
+
+ spin_unlock(&nlru->lock);
+ return isolated;
+}
+EXPORT_SYMBOL_GPL(list_lru_walk_node);
+
+int list_lru_init(struct list_lru *lru)
+{
+ int i;
+ size_t size = sizeof(*lru->node) * nr_node_ids;
+
+ lru->node = kzalloc(size, GFP_KERNEL);
+ if (!lru->node)
+ return -ENOMEM;
+
+ nodes_clear(lru->active_nodes);
+ for (i = 0; i < nr_node_ids; i++) {
+ spin_lock_init(&lru->node[i].lock);
+ INIT_LIST_HEAD(&lru->node[i].list);
+ lru->node[i].nr_items = 0;
+ }
+ return 0;
+}
+EXPORT_SYMBOL_GPL(list_lru_init);
+
+void list_lru_destroy(struct list_lru *lru)
+{
+ kfree(lru->node);
+}
+EXPORT_SYMBOL_GPL(list_lru_destroy);
diff --git a/mm/madvise.c b/mm/madvise.c
index 7055883e6e25..539eeb96b323 100644
--- a/mm/madvise.c
+++ b/mm/madvise.c
@@ -42,11 +42,11 @@ static int madvise_need_mmap_write(int behavior)
* We can potentially split a vm area into separate
* areas, each area with its own behavior.
*/
-static long madvise_behavior(struct vm_area_struct * vma,
+static long madvise_behavior(struct vm_area_struct *vma,
struct vm_area_struct **prev,
unsigned long start, unsigned long end, int behavior)
{
- struct mm_struct * mm = vma->vm_mm;
+ struct mm_struct *mm = vma->vm_mm;
int error = 0;
pgoff_t pgoff;
unsigned long new_flags = vma->vm_flags;
@@ -215,8 +215,8 @@ static void force_shm_swapin_readahead(struct vm_area_struct *vma,
/*
* Schedule all required I/O operations. Do not wait for completion.
*/
-static long madvise_willneed(struct vm_area_struct * vma,
- struct vm_area_struct ** prev,
+static long madvise_willneed(struct vm_area_struct *vma,
+ struct vm_area_struct **prev,
unsigned long start, unsigned long end)
{
struct file *file = vma->vm_file;
@@ -270,8 +270,8 @@ static long madvise_willneed(struct vm_area_struct * vma,
* An interface that causes the system to free clean pages and flush
* dirty pages is already available as msync(MS_INVALIDATE).
*/
-static long madvise_dontneed(struct vm_area_struct * vma,
- struct vm_area_struct ** prev,
+static long madvise_dontneed(struct vm_area_struct *vma,
+ struct vm_area_struct **prev,
unsigned long start, unsigned long end)
{
*prev = vma;
@@ -343,29 +343,35 @@ static long madvise_remove(struct vm_area_struct *vma,
*/
static int madvise_hwpoison(int bhv, unsigned long start, unsigned long end)
{
- int ret = 0;
-
+ struct page *p;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
- for (; start < end; start += PAGE_SIZE) {
- struct page *p;
- int ret = get_user_pages_fast(start, 1, 0, &p);
+ for (; start < end; start += PAGE_SIZE <<
+ compound_order(compound_head(p))) {
+ int ret;
+
+ ret = get_user_pages_fast(start, 1, 0, &p);
if (ret != 1)
return ret;
+
+ if (PageHWPoison(p)) {
+ put_page(p);
+ continue;
+ }
if (bhv == MADV_SOFT_OFFLINE) {
- printk(KERN_INFO "Soft offlining page %lx at %lx\n",
+ pr_info("Soft offlining page %#lx at %#lx\n",
page_to_pfn(p), start);
ret = soft_offline_page(p, MF_COUNT_INCREASED);
if (ret)
- break;
+ return ret;
continue;
}
- printk(KERN_INFO "Injecting memory failure for page %lx at %lx\n",
+ pr_info("Injecting memory failure for page %#lx at %#lx\n",
page_to_pfn(p), start);
/* Ignore return value for now */
memory_failure(page_to_pfn(p), 0, MF_COUNT_INCREASED);
}
- return ret;
+ return 0;
}
#endif
@@ -459,7 +465,7 @@ madvise_behavior_valid(int behavior)
SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
{
unsigned long end, tmp;
- struct vm_area_struct * vma, *prev;
+ struct vm_area_struct *vma, *prev;
int unmapped_error = 0;
int error = -EINVAL;
int write;
diff --git a/mm/memblock.c b/mm/memblock.c
index a847bfe6f3ba..53e477bb5558 100644
--- a/mm/memblock.c
+++ b/mm/memblock.c
@@ -20,6 +20,8 @@
#include <linux/seq_file.h>
#include <linux/memblock.h>
+#include <asm-generic/sections.h>
+
static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
@@ -32,6 +34,7 @@ struct memblock memblock __initdata_memblock = {
.reserved.cnt = 1, /* empty dummy entry */
.reserved.max = INIT_MEMBLOCK_REGIONS,
+ .bottom_up = false,
.current_limit = MEMBLOCK_ALLOC_ANYWHERE,
};
@@ -82,6 +85,73 @@ static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
return (i < type->cnt) ? i : -1;
}
+/*
+ * __memblock_find_range_bottom_up - find free area utility in bottom-up
+ * @start: start of candidate range
+ * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
+ * @size: size of free area to find
+ * @align: alignment of free area to find
+ * @nid: nid of the free area to find, %MAX_NUMNODES for any node
+ *
+ * Utility called from memblock_find_in_range_node(), find free area bottom-up.
+ *
+ * RETURNS:
+ * Found address on success, 0 on failure.
+ */
+static phys_addr_t __init_memblock
+__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
+ phys_addr_t size, phys_addr_t align, int nid)
+{
+ phys_addr_t this_start, this_end, cand;
+ u64 i;
+
+ for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) {
+ this_start = clamp(this_start, start, end);
+ this_end = clamp(this_end, start, end);
+
+ cand = round_up(this_start, align);
+ if (cand < this_end && this_end - cand >= size)
+ return cand;
+ }
+
+ return 0;
+}
+
+/**
+ * __memblock_find_range_top_down - find free area utility, in top-down
+ * @start: start of candidate range
+ * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
+ * @size: size of free area to find
+ * @align: alignment of free area to find
+ * @nid: nid of the free area to find, %MAX_NUMNODES for any node
+ *
+ * Utility called from memblock_find_in_range_node(), find free area top-down.
+ *
+ * RETURNS:
+ * Found address on success, 0 on failure.
+ */
+static phys_addr_t __init_memblock
+__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
+ phys_addr_t size, phys_addr_t align, int nid)
+{
+ phys_addr_t this_start, this_end, cand;
+ u64 i;
+
+ for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
+ this_start = clamp(this_start, start, end);
+ this_end = clamp(this_end, start, end);
+
+ if (this_end < size)
+ continue;
+
+ cand = round_down(this_end - size, align);
+ if (cand >= this_start)
+ return cand;
+ }
+
+ return 0;
+}
+
/**
* memblock_find_in_range_node - find free area in given range and node
* @start: start of candidate range
@@ -92,15 +162,23 @@ static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
*
* Find @size free area aligned to @align in the specified range and node.
*
+ * When allocation direction is bottom-up, the @start should be greater
+ * than the end of the kernel image. Otherwise, it will be trimmed. The
+ * reason is that we want the bottom-up allocation just near the kernel
+ * image so it is highly likely that the allocated memory and the kernel
+ * will reside in the same node.
+ *
+ * If bottom-up allocation failed, will try to allocate memory top-down.
+ *
* RETURNS:
- * Found address on success, %0 on failure.
+ * Found address on success, 0 on failure.
*/
phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
phys_addr_t end, phys_addr_t size,
phys_addr_t align, int nid)
{
- phys_addr_t this_start, this_end, cand;
- u64 i;
+ int ret;
+ phys_addr_t kernel_end;
/* pump up @end */
if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
@@ -109,19 +187,39 @@ phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
/* avoid allocating the first page */
start = max_t(phys_addr_t, start, PAGE_SIZE);
end = max(start, end);
+ kernel_end = __pa_symbol(_end);
- for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
- this_start = clamp(this_start, start, end);
- this_end = clamp(this_end, start, end);
+ /*
+ * try bottom-up allocation only when bottom-up mode
+ * is set and @end is above the kernel image.
+ */
+ if (memblock_bottom_up() && end > kernel_end) {
+ phys_addr_t bottom_up_start;
- if (this_end < size)
- continue;
+ /* make sure we will allocate above the kernel */
+ bottom_up_start = max(start, kernel_end);
- cand = round_down(this_end - size, align);
- if (cand >= this_start)
- return cand;
+ /* ok, try bottom-up allocation first */
+ ret = __memblock_find_range_bottom_up(bottom_up_start, end,
+ size, align, nid);
+ if (ret)
+ return ret;
+
+ /*
+ * we always limit bottom-up allocation above the kernel,
+ * but top-down allocation doesn't have the limit, so
+ * retrying top-down allocation may succeed when bottom-up
+ * allocation failed.
+ *
+ * bottom-up allocation is expected to be fail very rarely,
+ * so we use WARN_ONCE() here to see the stack trace if
+ * fail happens.
+ */
+ WARN_ONCE(1, "memblock: bottom-up allocation failed, "
+ "memory hotunplug may be affected\n");
}
- return 0;
+
+ return __memblock_find_range_top_down(start, end, size, align, nid);
}
/**
@@ -134,7 +232,7 @@ phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
* Find @size free area aligned to @align in the specified range.
*
* RETURNS:
- * Found address on success, %0 on failure.
+ * Found address on success, 0 on failure.
*/
phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
phys_addr_t end, phys_addr_t size,
@@ -914,6 +1012,24 @@ int __init_memblock memblock_is_memory(phys_addr_t addr)
return memblock_search(&memblock.memory, addr) != -1;
}
+#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
+int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
+ unsigned long *start_pfn, unsigned long *end_pfn)
+{
+ struct memblock_type *type = &memblock.memory;
+ int mid = memblock_search(type, (phys_addr_t)pfn << PAGE_SHIFT);
+
+ if (mid == -1)
+ return -1;
+
+ *start_pfn = type->regions[mid].base >> PAGE_SHIFT;
+ *end_pfn = (type->regions[mid].base + type->regions[mid].size)
+ >> PAGE_SHIFT;
+
+ return type->regions[mid].nid;
+}
+#endif
+
/**
* memblock_is_region_memory - check if a region is a subset of memory
* @base: base of region to check
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 3b83957b6439..bf5e89457149 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -54,10 +54,12 @@
#include <linux/page_cgroup.h>
#include <linux/cpu.h>
#include <linux/oom.h>
+#include <linux/lockdep.h>
#include "internal.h"
#include <net/sock.h>
#include <net/ip.h>
#include <net/tcp_memcontrol.h>
+#include "slab.h"
#include <asm/uaccess.h>
@@ -85,26 +87,12 @@ static int really_do_swap_account __initdata = 0;
#endif
-/*
- * Statistics for memory cgroup.
- */
-enum mem_cgroup_stat_index {
- /*
- * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
- */
- MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
- MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
- MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
- MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
- MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
- MEM_CGROUP_STAT_NSTATS,
-};
-
static const char * const mem_cgroup_stat_names[] = {
"cache",
"rss",
"rss_huge",
"mapped_file",
+ "writeback",
"swap",
};
@@ -280,6 +268,7 @@ struct mem_cgroup {
bool oom_lock;
atomic_t under_oom;
+ atomic_t oom_wakeups;
int swappiness;
/* OOM-Killer disable */
@@ -304,7 +293,7 @@ struct mem_cgroup {
* Should we move charges of a task when a task is moved into this
* mem_cgroup ? And what type of charges should we move ?
*/
- unsigned long move_charge_at_immigrate;
+ unsigned long move_charge_at_immigrate;
/*
* set > 0 if pages under this cgroup are moving to other cgroup.
*/
@@ -324,7 +313,7 @@ struct mem_cgroup {
atomic_t dead_count;
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
- struct tcp_memcontrol tcp_mem;
+ struct cg_proto tcp_mem;
#endif
#if defined(CONFIG_MEMCG_KMEM)
/* analogous to slab_common's slab_caches list. per-memcg */
@@ -511,6 +500,29 @@ static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
return (memcg == root_mem_cgroup);
}
+/*
+ * We restrict the id in the range of [1, 65535], so it can fit into
+ * an unsigned short.
+ */
+#define MEM_CGROUP_ID_MAX USHRT_MAX
+
+static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
+{
+ /*
+ * The ID of the root cgroup is 0, but memcg treat 0 as an
+ * invalid ID, so we return (cgroup_id + 1).
+ */
+ return memcg->css.cgroup->id + 1;
+}
+
+static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
+{
+ struct cgroup_subsys_state *css;
+
+ css = css_from_id(id - 1, &mem_cgroup_subsys);
+ return mem_cgroup_from_css(css);
+}
+
/* Writing them here to avoid exposing memcg's inner layout */
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
@@ -563,13 +575,13 @@ struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
if (!memcg || mem_cgroup_is_root(memcg))
return NULL;
- return &memcg->tcp_mem.cg_proto;
+ return &memcg->tcp_mem;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
- if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
+ if (!memcg_proto_activated(&memcg->tcp_mem))
return;
static_key_slow_dec(&memcg_socket_limit_enabled);
}
@@ -582,16 +594,11 @@ static void disarm_sock_keys(struct mem_cgroup *memcg)
#ifdef CONFIG_MEMCG_KMEM
/*
* This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
- * There are two main reasons for not using the css_id for this:
- * 1) this works better in sparse environments, where we have a lot of memcgs,
- * but only a few kmem-limited. Or also, if we have, for instance, 200
- * memcgs, and none but the 200th is kmem-limited, we'd have to have a
- * 200 entry array for that.
- *
- * 2) In order not to violate the cgroup API, we would like to do all memory
- * allocation in ->create(). At that point, we haven't yet allocated the
- * css_id. Having a separate index prevents us from messing with the cgroup
- * core for this
+ * The main reason for not using cgroup id for this:
+ * this works better in sparse environments, where we have a lot of memcgs,
+ * but only a few kmem-limited. Or also, if we have, for instance, 200
+ * memcgs, and none but the 200th is kmem-limited, we'd have to have a
+ * 200 entry array for that.
*
* The current size of the caches array is stored in
* memcg_limited_groups_array_size. It will double each time we have to
@@ -606,14 +613,14 @@ int memcg_limited_groups_array_size;
* cgroups is a reasonable guess. In the future, it could be a parameter or
* tunable, but that is strictly not necessary.
*
- * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
+ * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
* this constant directly from cgroup, but it is understandable that this is
* better kept as an internal representation in cgroup.c. In any case, the
- * css_id space is not getting any smaller, and we don't have to necessarily
+ * cgrp_id space is not getting any smaller, and we don't have to necessarily
* increase ours as well if it increases.
*/
#define MEMCG_CACHES_MIN_SIZE 4
-#define MEMCG_CACHES_MAX_SIZE 65535
+#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
/*
* A lot of the calls to the cache allocation functions are expected to be
@@ -879,6 +886,7 @@ static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
unsigned long val = 0;
int cpu;
+ get_online_cpus();
for_each_online_cpu(cpu)
val += per_cpu(memcg->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
@@ -886,6 +894,7 @@ static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
val += memcg->nocpu_base.events[idx];
spin_unlock(&memcg->pcp_counter_lock);
#endif
+ put_online_cpus();
return val;
}
@@ -1418,7 +1427,7 @@ bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
return true;
if (!root_memcg->use_hierarchy || !memcg)
return false;
- return css_is_ancestor(&memcg->css, &root_memcg->css);
+ return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
}
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
@@ -2057,15 +2066,24 @@ static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
return total;
}
+#ifdef CONFIG_LOCKDEP
+static struct lockdep_map memcg_oom_lock_dep_map = {
+ .name = "memcg_oom_lock",
+};
+#endif
+
+static DEFINE_SPINLOCK(memcg_oom_lock);
+
/*
* Check OOM-Killer is already running under our hierarchy.
* If someone is running, return false.
- * Has to be called with memcg_oom_lock
*/
-static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
+static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter, *failed = NULL;
+ spin_lock(&memcg_oom_lock);
+
for_each_mem_cgroup_tree(iter, memcg) {
if (iter->oom_lock) {
/*
@@ -2079,33 +2097,35 @@ static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
iter->oom_lock = true;
}
- if (!failed)
- return true;
-
- /*
- * OK, we failed to lock the whole subtree so we have to clean up
- * what we set up to the failing subtree
- */
- for_each_mem_cgroup_tree(iter, memcg) {
- if (iter == failed) {
- mem_cgroup_iter_break(memcg, iter);
- break;
+ if (failed) {
+ /*
+ * OK, we failed to lock the whole subtree so we have
+ * to clean up what we set up to the failing subtree
+ */
+ for_each_mem_cgroup_tree(iter, memcg) {
+ if (iter == failed) {
+ mem_cgroup_iter_break(memcg, iter);
+ break;
+ }
+ iter->oom_lock = false;
}
- iter->oom_lock = false;
- }
- return false;
+ } else
+ mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
+
+ spin_unlock(&memcg_oom_lock);
+
+ return !failed;
}
-/*
- * Has to be called with memcg_oom_lock
- */
-static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
+static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
{
struct mem_cgroup *iter;
+ spin_lock(&memcg_oom_lock);
+ mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
for_each_mem_cgroup_tree(iter, memcg)
iter->oom_lock = false;
- return 0;
+ spin_unlock(&memcg_oom_lock);
}
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
@@ -2129,7 +2149,6 @@ static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
atomic_add_unless(&iter->under_oom, -1, 0);
}
-static DEFINE_SPINLOCK(memcg_oom_lock);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
struct oom_wait_info {
@@ -2159,6 +2178,7 @@ static int memcg_oom_wake_function(wait_queue_t *wait,
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
{
+ atomic_inc(&memcg->oom_wakeups);
/* for filtering, pass "memcg" as argument. */
__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
}
@@ -2169,57 +2189,97 @@ static void memcg_oom_recover(struct mem_cgroup *memcg)
memcg_wakeup_oom(memcg);
}
-/*
- * try to call OOM killer. returns false if we should exit memory-reclaim loop.
+static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
+{
+ if (!current->memcg_oom.may_oom)
+ return;
+ /*
+ * We are in the middle of the charge context here, so we
+ * don't want to block when potentially sitting on a callstack
+ * that holds all kinds of filesystem and mm locks.
+ *
+ * Also, the caller may handle a failed allocation gracefully
+ * (like optional page cache readahead) and so an OOM killer
+ * invocation might not even be necessary.
+ *
+ * That's why we don't do anything here except remember the
+ * OOM context and then deal with it at the end of the page
+ * fault when the stack is unwound, the locks are released,
+ * and when we know whether the fault was overall successful.
+ */
+ css_get(&memcg->css);
+ current->memcg_oom.memcg = memcg;
+ current->memcg_oom.gfp_mask = mask;
+ current->memcg_oom.order = order;
+}
+
+/**
+ * mem_cgroup_oom_synchronize - complete memcg OOM handling
+ * @handle: actually kill/wait or just clean up the OOM state
+ *
+ * This has to be called at the end of a page fault if the memcg OOM
+ * handler was enabled.
+ *
+ * Memcg supports userspace OOM handling where failed allocations must
+ * sleep on a waitqueue until the userspace task resolves the
+ * situation. Sleeping directly in the charge context with all kinds
+ * of locks held is not a good idea, instead we remember an OOM state
+ * in the task and mem_cgroup_oom_synchronize() has to be called at
+ * the end of the page fault to complete the OOM handling.
+ *
+ * Returns %true if an ongoing memcg OOM situation was detected and
+ * completed, %false otherwise.
*/
-static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
- int order)
+bool mem_cgroup_oom_synchronize(bool handle)
{
+ struct mem_cgroup *memcg = current->memcg_oom.memcg;
struct oom_wait_info owait;
- bool locked, need_to_kill;
+ bool locked;
+
+ /* OOM is global, do not handle */
+ if (!memcg)
+ return false;
+
+ if (!handle)
+ goto cleanup;
owait.memcg = memcg;
owait.wait.flags = 0;
owait.wait.func = memcg_oom_wake_function;
owait.wait.private = current;
INIT_LIST_HEAD(&owait.wait.task_list);
- need_to_kill = true;
- mem_cgroup_mark_under_oom(memcg);
- /* At first, try to OOM lock hierarchy under memcg.*/
- spin_lock(&memcg_oom_lock);
- locked = mem_cgroup_oom_lock(memcg);
- /*
- * Even if signal_pending(), we can't quit charge() loop without
- * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
- * under OOM is always welcomed, use TASK_KILLABLE here.
- */
prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
- if (!locked || memcg->oom_kill_disable)
- need_to_kill = false;
+ mem_cgroup_mark_under_oom(memcg);
+
+ locked = mem_cgroup_oom_trylock(memcg);
+
if (locked)
mem_cgroup_oom_notify(memcg);
- spin_unlock(&memcg_oom_lock);
- if (need_to_kill) {
+ if (locked && !memcg->oom_kill_disable) {
+ mem_cgroup_unmark_under_oom(memcg);
finish_wait(&memcg_oom_waitq, &owait.wait);
- mem_cgroup_out_of_memory(memcg, mask, order);
+ mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
+ current->memcg_oom.order);
} else {
schedule();
+ mem_cgroup_unmark_under_oom(memcg);
finish_wait(&memcg_oom_waitq, &owait.wait);
}
- spin_lock(&memcg_oom_lock);
- if (locked)
- mem_cgroup_oom_unlock(memcg);
- memcg_wakeup_oom(memcg);
- spin_unlock(&memcg_oom_lock);
-
- mem_cgroup_unmark_under_oom(memcg);
- if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
- return false;
- /* Give chance to dying process */
- schedule_timeout_uninterruptible(1);
+ if (locked) {
+ mem_cgroup_oom_unlock(memcg);
+ /*
+ * There is no guarantee that an OOM-lock contender
+ * sees the wakeups triggered by the OOM kill
+ * uncharges. Wake any sleepers explicitely.
+ */
+ memcg_oom_recover(memcg);
+ }
+cleanup:
+ current->memcg_oom.memcg = NULL;
+ css_put(&memcg->css);
return true;
}
@@ -2288,7 +2348,7 @@ void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
}
void mem_cgroup_update_page_stat(struct page *page,
- enum mem_cgroup_page_stat_item idx, int val)
+ enum mem_cgroup_stat_index idx, int val)
{
struct mem_cgroup *memcg;
struct page_cgroup *pc = lookup_page_cgroup(page);
@@ -2297,18 +2357,11 @@ void mem_cgroup_update_page_stat(struct page *page,
if (mem_cgroup_disabled())
return;
+ VM_BUG_ON(!rcu_read_lock_held());
memcg = pc->mem_cgroup;
if (unlikely(!memcg || !PageCgroupUsed(pc)))
return;
- switch (idx) {
- case MEMCG_NR_FILE_MAPPED:
- idx = MEM_CGROUP_STAT_FILE_MAPPED;
- break;
- default:
- BUG();
- }
-
this_cpu_add(memcg->stat->count[idx], val);
}
@@ -2450,7 +2503,7 @@ static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
flush_work(&stock->work);
}
out:
- put_online_cpus();
+ put_online_cpus();
}
/*
@@ -2532,12 +2585,11 @@ enum {
CHARGE_RETRY, /* need to retry but retry is not bad */
CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
- CHARGE_OOM_DIE, /* the current is killed because of OOM */
};
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
unsigned int nr_pages, unsigned int min_pages,
- bool oom_check)
+ bool invoke_oom)
{
unsigned long csize = nr_pages * PAGE_SIZE;
struct mem_cgroup *mem_over_limit;
@@ -2594,14 +2646,10 @@ static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
if (mem_cgroup_wait_acct_move(mem_over_limit))
return CHARGE_RETRY;
- /* If we don't need to call oom-killer at el, return immediately */
- if (!oom_check)
- return CHARGE_NOMEM;
- /* check OOM */
- if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
- return CHARGE_OOM_DIE;
+ if (invoke_oom)
+ mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
- return CHARGE_RETRY;
+ return CHARGE_NOMEM;
}
/*
@@ -2645,6 +2693,12 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm,
|| fatal_signal_pending(current)))
goto bypass;
+ if (unlikely(task_in_memcg_oom(current)))
+ goto nomem;
+
+ if (gfp_mask & __GFP_NOFAIL)
+ oom = false;
+
/*
* We always charge the cgroup the mm_struct belongs to.
* The mm_struct's mem_cgroup changes on task migration if the
@@ -2704,7 +2758,7 @@ again:
}
do {
- bool oom_check;
+ bool invoke_oom = oom && !nr_oom_retries;
/* If killed, bypass charge */
if (fatal_signal_pending(current)) {
@@ -2712,14 +2766,8 @@ again:
goto bypass;
}
- oom_check = false;
- if (oom && !nr_oom_retries) {
- oom_check = true;
- nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
- }
-
- ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
- oom_check);
+ ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
+ nr_pages, invoke_oom);
switch (ret) {
case CHARGE_OK:
break;
@@ -2732,16 +2780,12 @@ again:
css_put(&memcg->css);
goto nomem;
case CHARGE_NOMEM: /* OOM routine works */
- if (!oom) {
+ if (!oom || invoke_oom) {
css_put(&memcg->css);
goto nomem;
}
- /* If oom, we never return -ENOMEM */
nr_oom_retries--;
break;
- case CHARGE_OOM_DIE: /* Killed by OOM Killer */
- css_put(&memcg->css);
- goto bypass;
}
} while (ret != CHARGE_OK);
@@ -2752,8 +2796,10 @@ done:
*ptr = memcg;
return 0;
nomem:
- *ptr = NULL;
- return -ENOMEM;
+ if (!(gfp_mask & __GFP_NOFAIL)) {
+ *ptr = NULL;
+ return -ENOMEM;
+ }
bypass:
*ptr = root_mem_cgroup;
return -EINTR;
@@ -2802,15 +2848,10 @@ static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
*/
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
- struct cgroup_subsys_state *css;
-
/* ID 0 is unused ID */
if (!id)
return NULL;
- css = css_lookup(&mem_cgroup_subsys, id);
- if (!css)
- return NULL;
- return mem_cgroup_from_css(css);
+ return mem_cgroup_from_id(id);
}
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
@@ -2882,7 +2923,7 @@ static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
* is accessed after testing USED bit. To make pc->mem_cgroup visible
* before USED bit, we need memory barrier here.
* See mem_cgroup_add_lru_list(), etc.
- */
+ */
smp_wmb();
SetPageCgroupUsed(pc);
@@ -2931,7 +2972,7 @@ static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
VM_BUG_ON(p->is_root_cache);
cachep = p->root_cache;
- return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
+ return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
}
#ifdef CONFIG_SLABINFO
@@ -2960,21 +3001,14 @@ static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
struct res_counter *fail_res;
struct mem_cgroup *_memcg;
int ret = 0;
- bool may_oom;
ret = res_counter_charge(&memcg->kmem, size, &fail_res);
if (ret)
return ret;
- /*
- * Conditions under which we can wait for the oom_killer. Those are
- * the same conditions tested by the core page allocator
- */
- may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
-
_memcg = memcg;
ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
- &_memcg, may_oom);
+ &_memcg, oom_gfp_allowed(gfp));
if (ret == -EINTR) {
/*
@@ -3114,14 +3148,14 @@ int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
struct memcg_cache_params *cur_params = s->memcg_params;
- VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
+ VM_BUG_ON(!is_root_cache(s));
if (num_groups > memcg_limited_groups_array_size) {
int i;
ssize_t size = memcg_caches_array_size(num_groups);
size *= sizeof(void *);
- size += sizeof(struct memcg_cache_params);
+ size += offsetof(struct memcg_cache_params, memcg_caches);
s->memcg_params = kzalloc(size, GFP_KERNEL);
if (!s->memcg_params) {
@@ -3164,13 +3198,16 @@ int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
struct kmem_cache *root_cache)
{
- size_t size = sizeof(struct memcg_cache_params);
+ size_t size;
if (!memcg_kmem_enabled())
return 0;
- if (!memcg)
+ if (!memcg) {
+ size = offsetof(struct memcg_cache_params, memcg_caches);
size += memcg_limited_groups_array_size * sizeof(void *);
+ } else
+ size = sizeof(struct memcg_cache_params);
s->memcg_params = kzalloc(size, GFP_KERNEL);
if (!s->memcg_params)
@@ -3372,7 +3409,7 @@ static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
idx = memcg_cache_id(memcg);
mutex_lock(&memcg_cache_mutex);
- new_cachep = cachep->memcg_params->memcg_caches[idx];
+ new_cachep = cache_from_memcg_idx(cachep, idx);
if (new_cachep) {
css_put(&memcg->css);
goto out;
@@ -3418,8 +3455,8 @@ void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
* we'll take the set_limit_mutex to protect ourselves against this.
*/
mutex_lock(&set_limit_mutex);
- for (i = 0; i < memcg_limited_groups_array_size; i++) {
- c = s->memcg_params->memcg_caches[i];
+ for_each_memcg_cache_index(i) {
+ c = cache_from_memcg_idx(s, i);
if (!c)
continue;
@@ -3552,8 +3589,8 @@ struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
* code updating memcg_caches will issue a write barrier to match this.
*/
read_barrier_depends();
- if (likely(cachep->memcg_params->memcg_caches[idx])) {
- cachep = cachep->memcg_params->memcg_caches[idx];
+ if (likely(cache_from_memcg_idx(cachep, idx))) {
+ cachep = cache_from_memcg_idx(cachep, idx);
goto out;
}
@@ -3623,9 +3660,9 @@ __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
* the page allocator. Therefore, the following sequence when backed by
* the SLUB allocator:
*
- * memcg_stop_kmem_account();
- * kmalloc(<large_number>)
- * memcg_resume_kmem_account();
+ * memcg_stop_kmem_account();
+ * kmalloc(<large_number>)
+ * memcg_resume_kmem_account();
*
* would effectively ignore the fact that we should skip accounting,
* since it will drive us directly to this function without passing
@@ -3747,6 +3784,19 @@ void mem_cgroup_split_huge_fixup(struct page *head)
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+static inline
+void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
+ struct mem_cgroup *to,
+ unsigned int nr_pages,
+ enum mem_cgroup_stat_index idx)
+{
+ /* Update stat data for mem_cgroup */
+ preempt_disable();
+ __this_cpu_sub(from->stat->count[idx], nr_pages);
+ __this_cpu_add(to->stat->count[idx], nr_pages);
+ preempt_enable();
+}
+
/**
* mem_cgroup_move_account - move account of the page
* @page: the page
@@ -3792,13 +3842,14 @@ static int mem_cgroup_move_account(struct page *page,
move_lock_mem_cgroup(from, &flags);
- if (!anon && page_mapped(page)) {
- /* Update mapped_file data for mem_cgroup */
- preempt_disable();
- __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
- __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
- preempt_enable();
- }
+ if (!anon && page_mapped(page))
+ mem_cgroup_move_account_page_stat(from, to, nr_pages,
+ MEM_CGROUP_STAT_FILE_MAPPED);
+
+ if (PageWriteback(page))
+ mem_cgroup_move_account_page_stat(from, to, nr_pages,
+ MEM_CGROUP_STAT_WRITEBACK);
+
mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
/* caller should have done css_get */
@@ -4309,7 +4360,7 @@ mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
* css_get() was called in uncharge().
*/
if (do_swap_account && swapout && memcg)
- swap_cgroup_record(ent, css_id(&memcg->css));
+ swap_cgroup_record(ent, mem_cgroup_id(memcg));
}
#endif
@@ -4361,8 +4412,8 @@ static int mem_cgroup_move_swap_account(swp_entry_t entry,
{
unsigned short old_id, new_id;
- old_id = css_id(&from->css);
- new_id = css_id(&to->css);
+ old_id = mem_cgroup_id(from);
+ new_id = mem_cgroup_id(to);
if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
mem_cgroup_swap_statistics(from, false);
@@ -4654,7 +4705,7 @@ static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
MEM_CGROUP_RECLAIM_SHRINK);
curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
/* Usage is reduced ? */
- if (curusage >= oldusage)
+ if (curusage >= oldusage)
retry_count--;
else
oldusage = curusage;
@@ -4675,7 +4726,7 @@ static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
int enlarge = 0;
/* see mem_cgroup_resize_res_limit */
- retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
+ retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
while (retry_count) {
if (signal_pending(current)) {
@@ -4917,31 +4968,18 @@ static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
} while (usage > 0);
}
-/*
- * This mainly exists for tests during the setting of set of use_hierarchy.
- * Since this is the very setting we are changing, the current hierarchy value
- * is meaningless
- */
-static inline bool __memcg_has_children(struct mem_cgroup *memcg)
-{
- struct cgroup_subsys_state *pos;
-
- /* bounce at first found */
- css_for_each_child(pos, &memcg->css)
- return true;
- return false;
-}
-
-/*
- * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
- * to be already dead (as in mem_cgroup_force_empty, for instance). This is
- * from mem_cgroup_count_children(), in the sense that we don't really care how
- * many children we have; we only need to know if we have any. It also counts
- * any memcg without hierarchy as infertile.
- */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
- return memcg->use_hierarchy && __memcg_has_children(memcg);
+ lockdep_assert_held(&memcg_create_mutex);
+ /*
+ * The lock does not prevent addition or deletion to the list
+ * of children, but it prevents a new child from being
+ * initialized based on this parent in css_online(), so it's
+ * enough to decide whether hierarchically inherited
+ * attributes can still be changed or not.
+ */
+ return memcg->use_hierarchy &&
+ !list_empty(&memcg->css.cgroup->children);
}
/*
@@ -4987,18 +5025,12 @@ static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
unsigned int event)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
- int ret;
if (mem_cgroup_is_root(memcg))
return -EINVAL;
- css_get(&memcg->css);
- ret = mem_cgroup_force_empty(memcg);
- css_put(&memcg->css);
-
- return ret;
+ return mem_cgroup_force_empty(memcg);
}
-
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
@@ -5027,7 +5059,7 @@ static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
*/
if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
(val == 1 || val == 0)) {
- if (!__memcg_has_children(memcg))
+ if (list_empty(&memcg->css.cgroup->children))
memcg->use_hierarchy = val;
else
retval = -EBUSY;
@@ -5136,7 +5168,7 @@ static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
*/
mutex_lock(&memcg_create_mutex);
mutex_lock(&set_limit_mutex);
- if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
+ if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
ret = -EBUSY;
goto out;
@@ -5146,7 +5178,7 @@ static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
ret = memcg_update_cache_sizes(memcg);
if (ret) {
- res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
+ res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
goto out;
}
static_key_slow_inc(&memcg_kmem_enabled_key);
@@ -5354,45 +5386,50 @@ static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
struct cftype *cft, struct seq_file *m)
{
+ struct numa_stat {
+ const char *name;
+ unsigned int lru_mask;
+ };
+
+ static const struct numa_stat stats[] = {
+ { "total", LRU_ALL },
+ { "file", LRU_ALL_FILE },
+ { "anon", LRU_ALL_ANON },
+ { "unevictable", BIT(LRU_UNEVICTABLE) },
+ };
+ const struct numa_stat *stat;
int nid;
- unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
- unsigned long node_nr;
+ unsigned long nr;
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
- total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
- seq_printf(m, "total=%lu", total_nr);
- for_each_node_state(nid, N_MEMORY) {
- node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
- seq_printf(m, " N%d=%lu", nid, node_nr);
- }
- seq_putc(m, '\n');
-
- file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
- seq_printf(m, "file=%lu", file_nr);
- for_each_node_state(nid, N_MEMORY) {
- node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
- LRU_ALL_FILE);
- seq_printf(m, " N%d=%lu", nid, node_nr);
- }
- seq_putc(m, '\n');
-
- anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
- seq_printf(m, "anon=%lu", anon_nr);
- for_each_node_state(nid, N_MEMORY) {
- node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
- LRU_ALL_ANON);
- seq_printf(m, " N%d=%lu", nid, node_nr);
+ for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
+ nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
+ seq_printf(m, "%s=%lu", stat->name, nr);
+ for_each_node_state(nid, N_MEMORY) {
+ nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
+ stat->lru_mask);
+ seq_printf(m, " N%d=%lu", nid, nr);
+ }
+ seq_putc(m, '\n');
+ }
+
+ for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
+ struct mem_cgroup *iter;
+
+ nr = 0;
+ for_each_mem_cgroup_tree(iter, memcg)
+ nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
+ seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
+ for_each_node_state(nid, N_MEMORY) {
+ nr = 0;
+ for_each_mem_cgroup_tree(iter, memcg)
+ nr += mem_cgroup_node_nr_lru_pages(
+ iter, nid, stat->lru_mask);
+ seq_printf(m, " N%d=%lu", nid, nr);
+ }
+ seq_putc(m, '\n');
}
- seq_putc(m, '\n');
- unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
- seq_printf(m, "unevictable=%lu", unevictable_nr);
- for_each_node_state(nid, N_MEMORY) {
- node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
- BIT(LRU_UNEVICTABLE));
- seq_printf(m, " N%d=%lu", nid, node_nr);
- }
- seq_putc(m, '\n');
return 0;
}
#endif /* CONFIG_NUMA */
@@ -5588,7 +5625,13 @@ static int compare_thresholds(const void *a, const void *b)
const struct mem_cgroup_threshold *_a = a;
const struct mem_cgroup_threshold *_b = b;
- return _a->threshold - _b->threshold;
+ if (_a->threshold > _b->threshold)
+ return 1;
+
+ if (_a->threshold < _b->threshold)
+ return -1;
+
+ return 0;
}
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
@@ -6138,7 +6181,6 @@ static void __mem_cgroup_free(struct mem_cgroup *memcg)
size_t size = memcg_size();
mem_cgroup_remove_from_trees(memcg);
- free_css_id(&mem_cgroup_subsys, &memcg->css);
for_each_node(node)
free_mem_cgroup_per_zone_info(memcg, node);
@@ -6241,6 +6283,9 @@ mem_cgroup_css_online(struct cgroup_subsys_state *css)
struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
int error = 0;
+ if (css->cgroup->id > MEM_CGROUP_ID_MAX)
+ return -ENOSPC;
+
if (!parent)
return 0;
@@ -6310,6 +6355,42 @@ static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+ /*
+ * XXX: css_offline() would be where we should reparent all
+ * memory to prepare the cgroup for destruction. However,
+ * memcg does not do css_tryget() and res_counter charging
+ * under the same RCU lock region, which means that charging
+ * could race with offlining. Offlining only happens to
+ * cgroups with no tasks in them but charges can show up
+ * without any tasks from the swapin path when the target
+ * memcg is looked up from the swapout record and not from the
+ * current task as it usually is. A race like this can leak
+ * charges and put pages with stale cgroup pointers into
+ * circulation:
+ *
+ * #0 #1
+ * lookup_swap_cgroup_id()
+ * rcu_read_lock()
+ * mem_cgroup_lookup()
+ * css_tryget()
+ * rcu_read_unlock()
+ * disable css_tryget()
+ * call_rcu()
+ * offline_css()
+ * reparent_charges()
+ * res_counter_charge()
+ * css_put()
+ * css_free()
+ * pc->mem_cgroup = dead memcg
+ * add page to lru
+ *
+ * The bulk of the charges are still moved in offline_css() to
+ * avoid pinning a lot of pages in case a long-term reference
+ * like a swapout record is deferring the css_free() to long
+ * after offlining. But this makes sure we catch any charges
+ * made after offlining:
+ */
+ mem_cgroup_reparent_charges(memcg);
memcg_destroy_kmem(memcg);
__mem_cgroup_free(memcg);
@@ -6512,7 +6593,7 @@ static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
}
/* There is a swap entry and a page doesn't exist or isn't charged */
if (ent.val && !ret &&
- css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
+ mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
ret = MC_TARGET_SWAP;
if (target)
target->ent = ent;
@@ -6563,10 +6644,10 @@ static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
pte_t *pte;
spinlock_t *ptl;
- if (pmd_trans_huge_lock(pmd, vma) == 1) {
+ if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
mc.precharge += HPAGE_PMD_NR;
- spin_unlock(&vma->vm_mm->page_table_lock);
+ spin_unlock(ptl);
return 0;
}
@@ -6755,9 +6836,9 @@ static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
* to be unlocked in __split_huge_page_splitting(), where the main
* part of thp split is not executed yet.
*/
- if (pmd_trans_huge_lock(pmd, vma) == 1) {
+ if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
if (mc.precharge < HPAGE_PMD_NR) {
- spin_unlock(&vma->vm_mm->page_table_lock);
+ spin_unlock(ptl);
return 0;
}
target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
@@ -6774,7 +6855,7 @@ static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
}
put_page(page);
}
- spin_unlock(&vma->vm_mm->page_table_lock);
+ spin_unlock(ptl);
return 0;
}
@@ -6932,7 +7013,6 @@ struct cgroup_subsys mem_cgroup_subsys = {
.bind = mem_cgroup_bind,
.base_cftypes = mem_cgroup_files,
.early_init = 0,
- .use_id = 1,
};
#ifdef CONFIG_MEMCG_SWAP
diff --git a/mm/memory-failure.c b/mm/memory-failure.c
index d84c5e5331bb..b7c171602ba1 100644
--- a/mm/memory-failure.c
+++ b/mm/memory-failure.c
@@ -206,7 +206,7 @@ static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
#ifdef __ARCH_SI_TRAPNO
si.si_trapno = trapno;
#endif
- si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
+ si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
if ((flags & MF_ACTION_REQUIRED) && t == current) {
si.si_code = BUS_MCEERR_AR;
@@ -248,10 +248,12 @@ void shake_page(struct page *p, int access)
*/
if (access) {
int nr;
+ int nid = page_to_nid(p);
do {
struct shrink_control shrink = {
.gfp_mask = GFP_KERNEL,
};
+ node_set(nid, shrink.nodes_to_scan);
nr = shrink_slab(&shrink, 1000, 1000);
if (page_count(p) == 1)
@@ -983,7 +985,7 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
static void set_page_hwpoison_huge_page(struct page *hpage)
{
int i;
- int nr_pages = 1 << compound_trans_order(hpage);
+ int nr_pages = 1 << compound_order(hpage);
for (i = 0; i < nr_pages; i++)
SetPageHWPoison(hpage + i);
}
@@ -991,7 +993,7 @@ static void set_page_hwpoison_huge_page(struct page *hpage)
static void clear_page_hwpoison_huge_page(struct page *hpage)
{
int i;
- int nr_pages = 1 << compound_trans_order(hpage);
+ int nr_pages = 1 << compound_order(hpage);
for (i = 0; i < nr_pages; i++)
ClearPageHWPoison(hpage + i);
}
@@ -1112,8 +1114,10 @@ int memory_failure(unsigned long pfn, int trapno, int flags)
* shake_page could have turned it free.
*/
if (is_free_buddy_page(p)) {
- action_result(pfn, "free buddy, 2nd try",
- DELAYED);
+ if (flags & MF_COUNT_INCREASED)
+ action_result(pfn, "free buddy", DELAYED);
+ else
+ action_result(pfn, "free buddy, 2nd try", DELAYED);
return 0;
}
action_result(pfn, "non LRU", IGNORED);
@@ -1204,6 +1208,9 @@ int memory_failure(unsigned long pfn, int trapno, int flags)
for (ps = error_states;; ps++)
if ((p->flags & ps->mask) == ps->res)
break;
+
+ page_flags |= (p->flags & (1UL << PG_dirty));
+
if (!ps->mask)
for (ps = error_states;; ps++)
if ((page_flags & ps->mask) == ps->res)
@@ -1262,7 +1269,7 @@ void memory_failure_queue(unsigned long pfn, int trapno, int flags)
mf_cpu = &get_cpu_var(memory_failure_cpu);
spin_lock_irqsave(&mf_cpu->lock, proc_flags);
- if (kfifo_put(&mf_cpu->fifo, &entry))
+ if (kfifo_put(&mf_cpu->fifo, entry))
schedule_work_on(smp_processor_id(), &mf_cpu->work);
else
pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
@@ -1339,7 +1346,17 @@ int unpoison_memory(unsigned long pfn)
return 0;
}
- nr_pages = 1 << compound_trans_order(page);
+ /*
+ * unpoison_memory() can encounter thp only when the thp is being
+ * worked by memory_failure() and the page lock is not held yet.
+ * In such case, we yield to memory_failure() and make unpoison fail.
+ */
+ if (!PageHuge(page) && PageTransHuge(page)) {
+ pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
+ return 0;
+ }
+
+ nr_pages = 1 << compound_order(page);
if (!get_page_unless_zero(page)) {
/*
@@ -1353,7 +1370,7 @@ int unpoison_memory(unsigned long pfn)
return 0;
}
if (TestClearPageHWPoison(p))
- atomic_long_sub(nr_pages, &num_poisoned_pages);
+ atomic_long_dec(&num_poisoned_pages);
pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
return 0;
}
@@ -1375,7 +1392,7 @@ int unpoison_memory(unsigned long pfn)
unlock_page(page);
put_page(page);
- if (freeit)
+ if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
put_page(page);
return 0;
@@ -1406,18 +1423,6 @@ static int __get_any_page(struct page *p, unsigned long pfn, int flags)
return 1;
/*
- * The lock_memory_hotplug prevents a race with memory hotplug.
- * This is a big hammer, a better would be nicer.
- */
- lock_memory_hotplug();
-
- /*
- * Isolate the page, so that it doesn't get reallocated if it
- * was free. This flag should be kept set until the source page
- * is freed and PG_hwpoison on it is set.
- */
- set_migratetype_isolate(p, true);
- /*
* When the target page is a free hugepage, just remove it
* from free hugepage list.
*/
@@ -1437,7 +1442,6 @@ static int __get_any_page(struct page *p, unsigned long pfn, int flags)
/* Not a free page */
ret = 1;
}
- unlock_memory_hotplug();
return ret;
}
@@ -1470,6 +1474,7 @@ static int soft_offline_huge_page(struct page *page, int flags)
int ret;
unsigned long pfn = page_to_pfn(page);
struct page *hpage = compound_head(page);
+ LIST_HEAD(pagelist);
/*
* This double-check of PageHWPoison is to avoid the race with
@@ -1485,86 +1490,29 @@ static int soft_offline_huge_page(struct page *page, int flags)
unlock_page(hpage);
/* Keep page count to indicate a given hugepage is isolated. */
- ret = migrate_huge_page(hpage, new_page, MPOL_MF_MOVE_ALL,
- MIGRATE_SYNC);
- put_page(hpage);
+ list_move(&hpage->lru, &pagelist);
+ ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
+ MIGRATE_SYNC, MR_MEMORY_FAILURE);
if (ret) {
pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
pfn, ret, page->flags);
+ /*
+ * We know that soft_offline_huge_page() tries to migrate
+ * only one hugepage pointed to by hpage, so we need not
+ * run through the pagelist here.
+ */
+ putback_active_hugepage(hpage);
+ if (ret > 0)
+ ret = -EIO;
} else {
set_page_hwpoison_huge_page(hpage);
dequeue_hwpoisoned_huge_page(hpage);
- atomic_long_add(1 << compound_trans_order(hpage),
+ atomic_long_add(1 << compound_order(hpage),
&num_poisoned_pages);
}
return ret;
}
-static int __soft_offline_page(struct page *page, int flags);
-
-/**
- * soft_offline_page - Soft offline a page.
- * @page: page to offline
- * @flags: flags. Same as memory_failure().
- *
- * Returns 0 on success, otherwise negated errno.
- *
- * Soft offline a page, by migration or invalidation,
- * without killing anything. This is for the case when
- * a page is not corrupted yet (so it's still valid to access),
- * but has had a number of corrected errors and is better taken
- * out.
- *
- * The actual policy on when to do that is maintained by
- * user space.
- *
- * This should never impact any application or cause data loss,
- * however it might take some time.
- *
- * This is not a 100% solution for all memory, but tries to be
- * ``good enough'' for the majority of memory.
- */
-int soft_offline_page(struct page *page, int flags)
-{
- int ret;
- unsigned long pfn = page_to_pfn(page);
- struct page *hpage = compound_trans_head(page);
-
- if (PageHWPoison(page)) {
- pr_info("soft offline: %#lx page already poisoned\n", pfn);
- return -EBUSY;
- }
- if (!PageHuge(page) && PageTransHuge(hpage)) {
- if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
- pr_info("soft offline: %#lx: failed to split THP\n",
- pfn);
- return -EBUSY;
- }
- }
-
- ret = get_any_page(page, pfn, flags);
- if (ret < 0)
- return ret;
- if (ret) { /* for in-use pages */
- if (PageHuge(page))
- ret = soft_offline_huge_page(page, flags);
- else
- ret = __soft_offline_page(page, flags);
- } else { /* for free pages */
- if (PageHuge(page)) {
- set_page_hwpoison_huge_page(hpage);
- dequeue_hwpoisoned_huge_page(hpage);
- atomic_long_add(1 << compound_trans_order(hpage),
- &num_poisoned_pages);
- } else {
- SetPageHWPoison(page);
- atomic_long_inc(&num_poisoned_pages);
- }
- }
- unset_migratetype_isolate(page, MIGRATE_MOVABLE);
- return ret;
-}
-
static int __soft_offline_page(struct page *page, int flags)
{
int ret;
@@ -1651,3 +1599,79 @@ static int __soft_offline_page(struct page *page, int flags)
}
return ret;
}
+
+/**
+ * soft_offline_page - Soft offline a page.
+ * @page: page to offline
+ * @flags: flags. Same as memory_failure().
+ *
+ * Returns 0 on success, otherwise negated errno.
+ *
+ * Soft offline a page, by migration or invalidation,
+ * without killing anything. This is for the case when
+ * a page is not corrupted yet (so it's still valid to access),
+ * but has had a number of corrected errors and is better taken
+ * out.
+ *
+ * The actual policy on when to do that is maintained by
+ * user space.
+ *
+ * This should never impact any application or cause data loss,
+ * however it might take some time.
+ *
+ * This is not a 100% solution for all memory, but tries to be
+ * ``good enough'' for the majority of memory.
+ */
+int soft_offline_page(struct page *page, int flags)
+{
+ int ret;
+ unsigned long pfn = page_to_pfn(page);
+ struct page *hpage = compound_trans_head(page);
+
+ if (PageHWPoison(page)) {
+ pr_info("soft offline: %#lx page already poisoned\n", pfn);
+ return -EBUSY;
+ }
+ if (!PageHuge(page) && PageTransHuge(hpage)) {
+ if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
+ pr_info("soft offline: %#lx: failed to split THP\n",
+ pfn);
+ return -EBUSY;
+ }
+ }
+
+ /*
+ * The lock_memory_hotplug prevents a race with memory hotplug.
+ * This is a big hammer, a better would be nicer.
+ */
+ lock_memory_hotplug();
+
+ /*
+ * Isolate the page, so that it doesn't get reallocated if it
+ * was free. This flag should be kept set until the source page
+ * is freed and PG_hwpoison on it is set.
+ */
+ if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
+ set_migratetype_isolate(page, true);
+
+ ret = get_any_page(page, pfn, flags);
+ unlock_memory_hotplug();
+ if (ret > 0) { /* for in-use pages */
+ if (PageHuge(page))
+ ret = soft_offline_huge_page(page, flags);
+ else
+ ret = __soft_offline_page(page, flags);
+ } else if (ret == 0) { /* for free pages */
+ if (PageHuge(page)) {
+ set_page_hwpoison_huge_page(hpage);
+ dequeue_hwpoisoned_huge_page(hpage);
+ atomic_long_add(1 << compound_order(hpage),
+ &num_poisoned_pages);
+ } else {
+ SetPageHWPoison(page);
+ atomic_long_inc(&num_poisoned_pages);
+ }
+ }
+ unset_migratetype_isolate(page, MIGRATE_MOVABLE);
+ return ret;
+}
diff --git a/mm/memory.c b/mm/memory.c
index b3c6bf9a398e..5d9025f3b3e1 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -69,8 +69,8 @@
#include "internal.h"
-#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
-#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
+#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
+#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
#endif
#ifndef CONFIG_NEED_MULTIPLE_NODES
@@ -373,30 +373,6 @@ void tlb_remove_table(struct mmu_gather *tlb, void *table)
#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
/*
- * If a p?d_bad entry is found while walking page tables, report
- * the error, before resetting entry to p?d_none. Usually (but
- * very seldom) called out from the p?d_none_or_clear_bad macros.
- */
-
-void pgd_clear_bad(pgd_t *pgd)
-{
- pgd_ERROR(*pgd);
- pgd_clear(pgd);
-}
-
-void pud_clear_bad(pud_t *pud)
-{
- pud_ERROR(*pud);
- pud_clear(pud);
-}
-
-void pmd_clear_bad(pmd_t *pmd)
-{
- pmd_ERROR(*pmd);
- pmd_clear(pmd);
-}
-
-/*
* Note: this doesn't free the actual pages themselves. That
* has been handled earlier when unmapping all the memory regions.
*/
@@ -406,7 +382,7 @@ static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
pgtable_t token = pmd_pgtable(*pmd);
pmd_clear(pmd);
pte_free_tlb(tlb, token, addr);
- tlb->mm->nr_ptes--;
+ atomic_long_dec(&tlb->mm->nr_ptes);
}
static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
@@ -477,8 +453,6 @@ static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
/*
* This function frees user-level page tables of a process.
- *
- * Must be called with pagetable lock held.
*/
void free_pgd_range(struct mmu_gather *tlb,
unsigned long addr, unsigned long end,
@@ -576,6 +550,7 @@ void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
pmd_t *pmd, unsigned long address)
{
+ spinlock_t *ptl;
pgtable_t new = pte_alloc_one(mm, address);
int wait_split_huge_page;
if (!new)
@@ -596,15 +571,15 @@ int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
*/
smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
- spin_lock(&mm->page_table_lock);
+ ptl = pmd_lock(mm, pmd);
wait_split_huge_page = 0;
if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
- mm->nr_ptes++;
+ atomic_long_inc(&mm->nr_ptes);
pmd_populate(mm, pmd, new);
new = NULL;
} else if (unlikely(pmd_trans_splitting(*pmd)))
wait_split_huge_page = 1;
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
if (new)
pte_free(mm, new);
if (wait_split_huge_page)
@@ -705,7 +680,7 @@ static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
if (vma->vm_ops)
printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
vma->vm_ops->fault);
- if (vma->vm_file && vma->vm_file->f_op)
+ if (vma->vm_file)
printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
vma->vm_file->f_op->mmap);
dump_stack();
@@ -861,6 +836,8 @@ copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
*/
make_migration_entry_read(&entry);
pte = swp_entry_to_pte(entry);
+ if (pte_swp_soft_dirty(*src_pte))
+ pte = pte_swp_mksoft_dirty(pte);
set_pte_at(src_mm, addr, src_pte, pte);
}
}
@@ -1505,7 +1482,8 @@ struct page *follow_page_mask(struct vm_area_struct *vma,
if (pud_none(*pud))
goto no_page_table;
if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
- BUG_ON(flags & FOLL_GET);
+ if (flags & FOLL_GET)
+ goto out;
page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
goto out;
}
@@ -1516,8 +1494,20 @@ struct page *follow_page_mask(struct vm_area_struct *vma,
if (pmd_none(*pmd))
goto no_page_table;
if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
- BUG_ON(flags & FOLL_GET);
page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
+ if (flags & FOLL_GET) {
+ /*
+ * Refcount on tail pages are not well-defined and
+ * shouldn't be taken. The caller should handle a NULL
+ * return when trying to follow tail pages.
+ */
+ if (PageHead(page))
+ get_page(page);
+ else {
+ page = NULL;
+ goto out;
+ }
+ }
goto out;
}
if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
@@ -1527,20 +1517,20 @@ struct page *follow_page_mask(struct vm_area_struct *vma,
split_huge_page_pmd(vma, address, pmd);
goto split_fallthrough;
}
- spin_lock(&mm->page_table_lock);
+ ptl = pmd_lock(mm, pmd);
if (likely(pmd_trans_huge(*pmd))) {
if (unlikely(pmd_trans_splitting(*pmd))) {
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
wait_split_huge_page(vma->anon_vma, pmd);
} else {
page = follow_trans_huge_pmd(vma, address,
pmd, flags);
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
*page_mask = HPAGE_PMD_NR - 1;
goto out;
}
} else
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
/* fall through */
}
split_fallthrough:
@@ -2730,6 +2720,14 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
get_page(dirty_page);
reuse:
+ /*
+ * Clear the pages cpupid information as the existing
+ * information potentially belongs to a now completely
+ * unrelated process.
+ */
+ if (old_page)
+ page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
+
flush_cache_page(vma, address, pte_pfn(orig_pte));
entry = pte_mkyoung(orig_pte);
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
@@ -3530,13 +3528,16 @@ static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
}
int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
- unsigned long addr, int current_nid)
+ unsigned long addr, int page_nid,
+ int *flags)
{
get_page(page);
count_vm_numa_event(NUMA_HINT_FAULTS);
- if (current_nid == numa_node_id())
+ if (page_nid == numa_node_id()) {
count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
+ *flags |= TNF_FAULT_LOCAL;
+ }
return mpol_misplaced(page, vma, addr);
}
@@ -3546,9 +3547,11 @@ int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
{
struct page *page = NULL;
spinlock_t *ptl;
- int current_nid = -1;
+ int page_nid = -1;
+ int last_cpupid;
int target_nid;
bool migrated = false;
+ int flags = 0;
/*
* The "pte" at this point cannot be used safely without
@@ -3575,123 +3578,44 @@ int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
pte_unmap_unlock(ptep, ptl);
return 0;
}
+ BUG_ON(is_zero_pfn(page_to_pfn(page)));
+
+ /*
+ * Avoid grouping on DSO/COW pages in specific and RO pages
+ * in general, RO pages shouldn't hurt as much anyway since
+ * they can be in shared cache state.
+ */
+ if (!pte_write(pte))
+ flags |= TNF_NO_GROUP;
+
+ /*
+ * Flag if the page is shared between multiple address spaces. This
+ * is later used when determining whether to group tasks together
+ */
+ if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
+ flags |= TNF_SHARED;
- current_nid = page_to_nid(page);
- target_nid = numa_migrate_prep(page, vma, addr, current_nid);
+ last_cpupid = page_cpupid_last(page);
+ page_nid = page_to_nid(page);
+ target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
pte_unmap_unlock(ptep, ptl);
if (target_nid == -1) {
- /*
- * Account for the fault against the current node if it not
- * being replaced regardless of where the page is located.
- */
- current_nid = numa_node_id();
put_page(page);
goto out;
}
/* Migrate to the requested node */
- migrated = migrate_misplaced_page(page, target_nid);
- if (migrated)
- current_nid = target_nid;
-
-out:
- if (current_nid != -1)
- task_numa_fault(current_nid, 1, migrated);
- return 0;
-}
-
-/* NUMA hinting page fault entry point for regular pmds */
-#ifdef CONFIG_NUMA_BALANCING
-static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long addr, pmd_t *pmdp)
-{
- pmd_t pmd;
- pte_t *pte, *orig_pte;
- unsigned long _addr = addr & PMD_MASK;
- unsigned long offset;
- spinlock_t *ptl;
- bool numa = false;
- int local_nid = numa_node_id();
-
- spin_lock(&mm->page_table_lock);
- pmd = *pmdp;
- if (pmd_numa(pmd)) {
- set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
- numa = true;
- }
- spin_unlock(&mm->page_table_lock);
-
- if (!numa)
- return 0;
-
- /* we're in a page fault so some vma must be in the range */
- BUG_ON(!vma);
- BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
- offset = max(_addr, vma->vm_start) & ~PMD_MASK;
- VM_BUG_ON(offset >= PMD_SIZE);
- orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
- pte += offset >> PAGE_SHIFT;
- for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
- pte_t pteval = *pte;
- struct page *page;
- int curr_nid = local_nid;
- int target_nid;
- bool migrated;
- if (!pte_present(pteval))
- continue;
- if (!pte_numa(pteval))
- continue;
- if (addr >= vma->vm_end) {
- vma = find_vma(mm, addr);
- /* there's a pte present so there must be a vma */
- BUG_ON(!vma);
- BUG_ON(addr < vma->vm_start);
- }
- if (pte_numa(pteval)) {
- pteval = pte_mknonnuma(pteval);
- set_pte_at(mm, addr, pte, pteval);
- }
- page = vm_normal_page(vma, addr, pteval);
- if (unlikely(!page))
- continue;
- /* only check non-shared pages */
- if (unlikely(page_mapcount(page) != 1))
- continue;
-
- /*
- * Note that the NUMA fault is later accounted to either
- * the node that is currently running or where the page is
- * migrated to.
- */
- curr_nid = local_nid;
- target_nid = numa_migrate_prep(page, vma, addr,
- page_to_nid(page));
- if (target_nid == -1) {
- put_page(page);
- continue;
- }
-
- /* Migrate to the requested node */
- pte_unmap_unlock(pte, ptl);
- migrated = migrate_misplaced_page(page, target_nid);
- if (migrated)
- curr_nid = target_nid;
- task_numa_fault(curr_nid, 1, migrated);
-
- pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
+ migrated = migrate_misplaced_page(page, vma, target_nid);
+ if (migrated) {
+ page_nid = target_nid;
+ flags |= TNF_MIGRATED;
}
- pte_unmap_unlock(orig_pte, ptl);
+out:
+ if (page_nid != -1)
+ task_numa_fault(last_cpupid, page_nid, 1, flags);
return 0;
}
-#else
-static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long addr, pmd_t *pmdp)
-{
- BUG();
- return 0;
-}
-#endif /* CONFIG_NUMA_BALANCING */
/*
* These routines also need to handle stuff like marking pages dirty
@@ -3706,7 +3630,7 @@ static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
* but allow concurrent faults), and pte mapped but not yet locked.
* We return with mmap_sem still held, but pte unmapped and unlocked.
*/
-int handle_pte_fault(struct mm_struct *mm,
+static int handle_pte_fault(struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long address,
pte_t *pte, pmd_t *pmd, unsigned int flags)
{
@@ -3765,22 +3689,14 @@ unlock:
/*
* By the time we get here, we already hold the mm semaphore
*/
-int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, unsigned int flags)
+static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long address, unsigned int flags)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
- __set_current_state(TASK_RUNNING);
-
- count_vm_event(PGFAULT);
- mem_cgroup_count_vm_event(mm, PGFAULT);
-
- /* do counter updates before entering really critical section. */
- check_sync_rss_stat(current);
-
if (unlikely(is_vm_hugetlb_page(vma)))
return hugetlb_fault(mm, vma, address, flags);
@@ -3793,9 +3709,12 @@ retry:
if (!pmd)
return VM_FAULT_OOM;
if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
+ int ret = VM_FAULT_FALLBACK;
if (!vma->vm_ops)
- return do_huge_pmd_anonymous_page(mm, vma, address,
- pmd, flags);
+ ret = do_huge_pmd_anonymous_page(mm, vma, address,
+ pmd, flags);
+ if (!(ret & VM_FAULT_FALLBACK))
+ return ret;
} else {
pmd_t orig_pmd = *pmd;
int ret;
@@ -3836,8 +3755,8 @@ retry:
}
}
- if (pmd_numa(*pmd))
- return do_pmd_numa_page(mm, vma, address, pmd);
+ /* THP should already have been handled */
+ BUG_ON(pmd_numa(*pmd));
/*
* Use __pte_alloc instead of pte_alloc_map, because we can't
@@ -3861,6 +3780,43 @@ retry:
return handle_pte_fault(mm, vma, address, pte, pmd, flags);
}
+int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long address, unsigned int flags)
+{
+ int ret;
+
+ __set_current_state(TASK_RUNNING);
+
+ count_vm_event(PGFAULT);
+ mem_cgroup_count_vm_event(mm, PGFAULT);
+
+ /* do counter updates before entering really critical section. */
+ check_sync_rss_stat(current);
+
+ /*
+ * Enable the memcg OOM handling for faults triggered in user
+ * space. Kernel faults are handled more gracefully.
+ */
+ if (flags & FAULT_FLAG_USER)
+ mem_cgroup_oom_enable();
+
+ ret = __handle_mm_fault(mm, vma, address, flags);
+
+ if (flags & FAULT_FLAG_USER) {
+ mem_cgroup_oom_disable();
+ /*
+ * The task may have entered a memcg OOM situation but
+ * if the allocation error was handled gracefully (no
+ * VM_FAULT_OOM), there is no need to kill anything.
+ * Just clean up the OOM state peacefully.
+ */
+ if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
+ mem_cgroup_oom_synchronize(false);
+ }
+
+ return ret;
+}
+
#ifndef __PAGETABLE_PUD_FOLDED
/*
* Allocate page upper directory.
@@ -4314,3 +4270,21 @@ void copy_user_huge_page(struct page *dst, struct page *src,
}
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
+
+#if USE_SPLIT_PTE_PTLOCKS && BLOATED_SPINLOCKS
+bool ptlock_alloc(struct page *page)
+{
+ spinlock_t *ptl;
+
+ ptl = kmalloc(sizeof(spinlock_t), GFP_KERNEL);
+ if (!ptl)
+ return false;
+ page->ptl = ptl;
+ return true;
+}
+
+void ptlock_free(struct page *page)
+{
+ kfree(page->ptl);
+}
+#endif
diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c
index ca1dd3aa5eee..489f235502db 100644
--- a/mm/memory_hotplug.c
+++ b/mm/memory_hotplug.c
@@ -30,6 +30,8 @@
#include <linux/mm_inline.h>
#include <linux/firmware-map.h>
#include <linux/stop_machine.h>
+#include <linux/hugetlb.h>
+#include <linux/memblock.h>
#include <asm/tlbflush.h>
@@ -51,14 +53,10 @@ DEFINE_MUTEX(mem_hotplug_mutex);
void lock_memory_hotplug(void)
{
mutex_lock(&mem_hotplug_mutex);
-
- /* for exclusive hibernation if CONFIG_HIBERNATION=y */
- lock_system_sleep();
}
void unlock_memory_hotplug(void)
{
- unlock_system_sleep();
mutex_unlock(&mem_hotplug_mutex);
}
@@ -194,7 +192,7 @@ void register_page_bootmem_info_node(struct pglist_data *pgdat)
zone = &pgdat->node_zones[0];
for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
- if (zone->wait_table) {
+ if (zone_is_initialized(zone)) {
nr_pages = zone->wait_table_hash_nr_entries
* sizeof(wait_queue_head_t);
nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
@@ -229,8 +227,8 @@ static void grow_zone_span(struct zone *zone, unsigned long start_pfn,
zone_span_writelock(zone);
- old_zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
- if (!zone->spanned_pages || start_pfn < zone->zone_start_pfn)
+ old_zone_end_pfn = zone_end_pfn(zone);
+ if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
zone->zone_start_pfn = start_pfn;
zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
@@ -305,7 +303,7 @@ static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
goto out_fail;
/* use start_pfn for z1's start_pfn if z1 is empty */
- if (z1->spanned_pages)
+ if (!zone_is_empty(z1))
z1_start_pfn = z1->zone_start_pfn;
else
z1_start_pfn = start_pfn;
@@ -347,7 +345,7 @@ static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
goto out_fail;
/* use end_pfn for z2's end_pfn if z2 is empty */
- if (z2->spanned_pages)
+ if (!zone_is_empty(z2))
z2_end_pfn = zone_end_pfn(z2);
else
z2_end_pfn = end_pfn;
@@ -368,8 +366,7 @@ out_fail:
static void grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
unsigned long end_pfn)
{
- unsigned long old_pgdat_end_pfn =
- pgdat->node_start_pfn + pgdat->node_spanned_pages;
+ unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
pgdat->node_start_pfn = start_pfn;
@@ -405,13 +402,12 @@ static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
static int __meminit __add_section(int nid, struct zone *zone,
unsigned long phys_start_pfn)
{
- int nr_pages = PAGES_PER_SECTION;
int ret;
if (pfn_valid(phys_start_pfn))
return -EEXIST;
- ret = sparse_add_one_section(zone, phys_start_pfn, nr_pages);
+ ret = sparse_add_one_section(zone, phys_start_pfn);
if (ret < 0)
return ret;
@@ -514,8 +510,9 @@ static int find_biggest_section_pfn(int nid, struct zone *zone,
static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
unsigned long end_pfn)
{
- unsigned long zone_start_pfn = zone->zone_start_pfn;
- unsigned long zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
+ unsigned long zone_start_pfn = zone->zone_start_pfn;
+ unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
+ unsigned long zone_end_pfn = z;
unsigned long pfn;
struct mem_section *ms;
int nid = zone_to_nid(zone);
@@ -581,9 +578,9 @@ static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
static void shrink_pgdat_span(struct pglist_data *pgdat,
unsigned long start_pfn, unsigned long end_pfn)
{
- unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
- unsigned long pgdat_end_pfn =
- pgdat->node_start_pfn + pgdat->node_spanned_pages;
+ unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
+ unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
+ unsigned long pgdat_end_pfn = p;
unsigned long pfn;
struct mem_section *ms;
int nid = pgdat->node_id;
@@ -937,7 +934,7 @@ int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_typ
arg.nr_pages = nr_pages;
node_states_check_changes_online(nr_pages, zone, &arg);
- nid = page_to_nid(pfn_to_page(pfn));
+ nid = pfn_to_nid(pfn);
ret = memory_notify(MEM_GOING_ONLINE, &arg);
ret = notifier_to_errno(ret);
@@ -1046,17 +1043,23 @@ static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
}
-/*
+/**
+ * try_online_node - online a node if offlined
+ *
* called by cpu_up() to online a node without onlined memory.
*/
-int mem_online_node(int nid)
+int try_online_node(int nid)
{
pg_data_t *pgdat;
int ret;
+ if (node_online(nid))
+ return 0;
+
lock_memory_hotplug();
pgdat = hotadd_new_pgdat(nid, 0);
if (!pgdat) {
+ pr_err("Cannot online node %d due to NULL pgdat\n", nid);
ret = -ENOMEM;
goto out;
}
@@ -1064,11 +1067,34 @@ int mem_online_node(int nid)
ret = register_one_node(nid);
BUG_ON(ret);
+ if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
+ mutex_lock(&zonelists_mutex);
+ build_all_zonelists(NULL, NULL);
+ mutex_unlock(&zonelists_mutex);
+ }
+
out:
unlock_memory_hotplug();
return ret;
}
+static int check_hotplug_memory_range(u64 start, u64 size)
+{
+ u64 start_pfn = start >> PAGE_SHIFT;
+ u64 nr_pages = size >> PAGE_SHIFT;
+
+ /* Memory range must be aligned with section */
+ if ((start_pfn & ~PAGE_SECTION_MASK) ||
+ (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
+ pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
+ (unsigned long long)start,
+ (unsigned long long)size);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
int __ref add_memory(int nid, u64 start, u64 size)
{
@@ -1078,6 +1104,10 @@ int __ref add_memory(int nid, u64 start, u64 size)
struct resource *res;
int ret;
+ ret = check_hotplug_memory_range(start, size);
+ if (ret)
+ return ret;
+
lock_memory_hotplug();
res = register_memory_resource(start, size);
@@ -1208,10 +1238,12 @@ static int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
}
/*
- * Scanning pfn is much easier than scanning lru list.
- * Scan pfn from start to end and Find LRU page.
+ * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
+ * and hugepages). We scan pfn because it's much easier than scanning over
+ * linked list. This function returns the pfn of the first found movable
+ * page if it's found, otherwise 0.
*/
-static unsigned long scan_lru_pages(unsigned long start, unsigned long end)
+static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
{
unsigned long pfn;
struct page *page;
@@ -1220,6 +1252,13 @@ static unsigned long scan_lru_pages(unsigned long start, unsigned long end)
page = pfn_to_page(pfn);
if (PageLRU(page))
return pfn;
+ if (PageHuge(page)) {
+ if (is_hugepage_active(page))
+ return pfn;
+ else
+ pfn = round_up(pfn + 1,
+ 1 << compound_order(page)) - 1;
+ }
}
}
return 0;
@@ -1240,6 +1279,19 @@ do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
if (!pfn_valid(pfn))
continue;
page = pfn_to_page(pfn);
+
+ if (PageHuge(page)) {
+ struct page *head = compound_head(page);
+ pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
+ if (compound_order(head) > PFN_SECTION_SHIFT) {
+ ret = -EBUSY;
+ break;
+ }
+ if (isolate_huge_page(page, &source))
+ move_pages -= 1 << compound_order(head);
+ continue;
+ }
+
if (!get_page_unless_zero(page))
continue;
/*
@@ -1272,7 +1324,7 @@ do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
}
if (!list_empty(&source)) {
if (not_managed) {
- putback_lru_pages(&source);
+ putback_movable_pages(&source);
goto out;
}
@@ -1283,7 +1335,7 @@ do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
ret = migrate_pages(&source, alloc_migrate_target, 0,
MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
if (ret)
- putback_lru_pages(&source);
+ putback_movable_pages(&source);
}
out:
return ret;
@@ -1371,6 +1423,36 @@ static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
}
#endif /* CONFIG_MOVABLE_NODE */
+static int __init cmdline_parse_movable_node(char *p)
+{
+#ifdef CONFIG_MOVABLE_NODE
+ /*
+ * Memory used by the kernel cannot be hot-removed because Linux
+ * cannot migrate the kernel pages. When memory hotplug is
+ * enabled, we should prevent memblock from allocating memory
+ * for the kernel.
+ *
+ * ACPI SRAT records all hotpluggable memory ranges. But before
+ * SRAT is parsed, we don't know about it.
+ *
+ * The kernel image is loaded into memory at very early time. We
+ * cannot prevent this anyway. So on NUMA system, we set any
+ * node the kernel resides in as un-hotpluggable.
+ *
+ * Since on modern servers, one node could have double-digit
+ * gigabytes memory, we can assume the memory around the kernel
+ * image is also un-hotpluggable. So before SRAT is parsed, just
+ * allocate memory near the kernel image to try the best to keep
+ * the kernel away from hotpluggable memory.
+ */
+ memblock_set_bottom_up(true);
+#else
+ pr_warn("movable_node option not supported\n");
+#endif
+ return 0;
+}
+early_param("movable_node", cmdline_parse_movable_node);
+
/* check which state of node_states will be changed when offline memory */
static void node_states_check_changes_offline(unsigned long nr_pages,
struct zone *zone, struct memory_notify *arg)
@@ -1472,7 +1554,6 @@ static int __ref __offline_pages(unsigned long start_pfn,
struct zone *zone;
struct memory_notify arg;
- BUG_ON(start_pfn >= end_pfn);
/* at least, alignment against pageblock is necessary */
if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
return -EINVAL;
@@ -1527,8 +1608,8 @@ repeat:
drain_all_pages();
}
- pfn = scan_lru_pages(start_pfn, end_pfn);
- if (pfn) { /* We have page on LRU */
+ pfn = scan_movable_pages(start_pfn, end_pfn);
+ if (pfn) { /* We have movable pages */
ret = do_migrate_range(pfn, end_pfn);
if (!ret) {
drain = 1;
@@ -1547,6 +1628,11 @@ repeat:
yield();
/* drain pcp pages, this is synchronous. */
drain_all_pages();
+ /*
+ * dissolve free hugepages in the memory block before doing offlining
+ * actually in order to make hugetlbfs's object counting consistent.
+ */
+ dissolve_free_huge_pages(start_pfn, end_pfn);
/* check again */
offlined_pages = check_pages_isolated(start_pfn, end_pfn);
if (offlined_pages < 0) {
@@ -1657,7 +1743,7 @@ int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
}
#ifdef CONFIG_MEMORY_HOTREMOVE
-static int is_memblock_offlined_cb(struct memory_block *mem, void *arg)
+static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
{
int ret = !is_memblock_offlined(mem);
@@ -1674,9 +1760,8 @@ static int is_memblock_offlined_cb(struct memory_block *mem, void *arg)
return ret;
}
-static int check_cpu_on_node(void *data)
+static int check_cpu_on_node(pg_data_t *pgdat)
{
- struct pglist_data *pgdat = data;
int cpu;
for_each_present_cpu(cpu) {
@@ -1691,10 +1776,9 @@ static int check_cpu_on_node(void *data)
return 0;
}
-static void unmap_cpu_on_node(void *data)
+static void unmap_cpu_on_node(pg_data_t *pgdat)
{
#ifdef CONFIG_ACPI_NUMA
- struct pglist_data *pgdat = data;
int cpu;
for_each_possible_cpu(cpu)
@@ -1703,10 +1787,11 @@ static void unmap_cpu_on_node(void *data)
#endif
}
-static int check_and_unmap_cpu_on_node(void *data)
+static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
{
- int ret = check_cpu_on_node(data);
+ int ret;
+ ret = check_cpu_on_node(pgdat);
if (ret)
return ret;
@@ -1715,11 +1800,18 @@ static int check_and_unmap_cpu_on_node(void *data)
* the cpu_to_node() now.
*/
- unmap_cpu_on_node(data);
+ unmap_cpu_on_node(pgdat);
return 0;
}
-/* offline the node if all memory sections of this node are removed */
+/**
+ * try_offline_node
+ *
+ * Offline a node if all memory sections and cpus of the node are removed.
+ *
+ * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
+ * and online/offline operations before this call.
+ */
void try_offline_node(int nid)
{
pg_data_t *pgdat = NODE_DATA(nid);
@@ -1745,7 +1837,7 @@ void try_offline_node(int nid)
return;
}
- if (stop_machine(check_and_unmap_cpu_on_node, pgdat, NULL))
+ if (check_and_unmap_cpu_on_node(pgdat))
return;
/*
@@ -1782,10 +1874,19 @@ void try_offline_node(int nid)
}
EXPORT_SYMBOL(try_offline_node);
+/**
+ * remove_memory
+ *
+ * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
+ * and online/offline operations before this call, as required by
+ * try_offline_node().
+ */
void __ref remove_memory(int nid, u64 start, u64 size)
{
int ret;
+ BUG_ON(check_hotplug_memory_range(start, size));
+
lock_memory_hotplug();
/*
@@ -1794,7 +1895,7 @@ void __ref remove_memory(int nid, u64 start, u64 size)
* if this is not the case.
*/
ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
- is_memblock_offlined_cb);
+ check_memblock_offlined_cb);
if (ret) {
unlock_memory_hotplug();
BUG();
diff --git a/mm/mempolicy.c b/mm/mempolicy.c
index 4baf12e534d1..eca4a3129129 100644
--- a/mm/mempolicy.c
+++ b/mm/mempolicy.c
@@ -123,16 +123,19 @@ static struct mempolicy preferred_node_policy[MAX_NUMNODES];
static struct mempolicy *get_task_policy(struct task_struct *p)
{
struct mempolicy *pol = p->mempolicy;
- int node;
if (!pol) {
- node = numa_node_id();
- if (node != NUMA_NO_NODE)
- pol = &preferred_node_policy[node];
+ int node = numa_node_id();
- /* preferred_node_policy is not initialised early in boot */
- if (!pol->mode)
- pol = NULL;
+ if (node != NUMA_NO_NODE) {
+ pol = &preferred_node_policy[node];
+ /*
+ * preferred_node_policy is not initialised early in
+ * boot
+ */
+ if (!pol->mode)
+ pol = NULL;
+ }
}
return pol;
@@ -473,8 +476,11 @@ static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
static void migrate_page_add(struct page *page, struct list_head *pagelist,
unsigned long flags);
-/* Scan through pages checking if pages follow certain conditions. */
-static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
+/*
+ * Scan through pages checking if pages follow certain conditions,
+ * and move them to the pagelist if they do.
+ */
+static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, unsigned long end,
const nodemask_t *nodes, unsigned long flags,
void *private)
@@ -512,7 +518,32 @@ static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
return addr != end;
}
-static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
+static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
+ pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
+ void *private)
+{
+#ifdef CONFIG_HUGETLB_PAGE
+ int nid;
+ struct page *page;
+ spinlock_t *ptl;
+
+ ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
+ page = pte_page(huge_ptep_get((pte_t *)pmd));
+ nid = page_to_nid(page);
+ if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
+ goto unlock;
+ /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
+ if (flags & (MPOL_MF_MOVE_ALL) ||
+ (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
+ isolate_huge_page(page, private);
+unlock:
+ spin_unlock(ptl);
+#else
+ BUG();
+#endif
+}
+
+static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
unsigned long addr, unsigned long end,
const nodemask_t *nodes, unsigned long flags,
void *private)
@@ -523,17 +554,24 @@ static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
+ if (!pmd_present(*pmd))
+ continue;
+ if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
+ queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
+ flags, private);
+ continue;
+ }
split_huge_page_pmd(vma, addr, pmd);
if (pmd_none_or_trans_huge_or_clear_bad(pmd))
continue;
- if (check_pte_range(vma, pmd, addr, next, nodes,
+ if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
flags, private))
return -EIO;
} while (pmd++, addr = next, addr != end);
return 0;
}
-static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
+static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
unsigned long addr, unsigned long end,
const nodemask_t *nodes, unsigned long flags,
void *private)
@@ -544,16 +582,18 @@ static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
pud = pud_offset(pgd, addr);
do {
next = pud_addr_end(addr, end);
+ if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
+ continue;
if (pud_none_or_clear_bad(pud))
continue;
- if (check_pmd_range(vma, pud, addr, next, nodes,
+ if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
flags, private))
return -EIO;
} while (pud++, addr = next, addr != end);
return 0;
}
-static inline int check_pgd_range(struct vm_area_struct *vma,
+static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
unsigned long addr, unsigned long end,
const nodemask_t *nodes, unsigned long flags,
void *private)
@@ -566,7 +606,7 @@ static inline int check_pgd_range(struct vm_area_struct *vma,
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
continue;
- if (check_pud_range(vma, pgd, addr, next, nodes,
+ if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
flags, private))
return -EIO;
} while (pgd++, addr = next, addr != end);
@@ -604,12 +644,14 @@ static unsigned long change_prot_numa(struct vm_area_struct *vma,
#endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
/*
- * Check if all pages in a range are on a set of nodes.
- * If pagelist != NULL then isolate pages from the LRU and
- * put them on the pagelist.
+ * Walk through page tables and collect pages to be migrated.
+ *
+ * If pages found in a given range are on a set of nodes (determined by
+ * @nodes and @flags,) it's isolated and queued to the pagelist which is
+ * passed via @private.)
*/
static struct vm_area_struct *
-check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
+queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
const nodemask_t *nodes, unsigned long flags, void *private)
{
int err;
@@ -635,9 +677,6 @@ check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
return ERR_PTR(-EFAULT);
}
- if (is_vm_hugetlb_page(vma))
- goto next;
-
if (flags & MPOL_MF_LAZY) {
change_prot_numa(vma, start, endvma);
goto next;
@@ -647,7 +686,7 @@ check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
vma_migratable(vma))) {
- err = check_pgd_range(vma, start, endvma, nodes,
+ err = queue_pages_pgd_range(vma, start, endvma, nodes,
flags, private);
if (err) {
first = ERR_PTR(err);
@@ -990,7 +1029,11 @@ static void migrate_page_add(struct page *page, struct list_head *pagelist,
static struct page *new_node_page(struct page *page, unsigned long node, int **x)
{
- return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
+ if (PageHuge(page))
+ return alloc_huge_page_node(page_hstate(compound_head(page)),
+ node);
+ else
+ return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
}
/*
@@ -1013,14 +1056,14 @@ static int migrate_to_node(struct mm_struct *mm, int source, int dest,
* space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
*/
VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
- check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
+ queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
flags | MPOL_MF_DISCONTIG_OK, &pagelist);
if (!list_empty(&pagelist)) {
err = migrate_pages(&pagelist, new_node_page, dest,
MIGRATE_SYNC, MR_SYSCALL);
if (err)
- putback_lru_pages(&pagelist);
+ putback_movable_pages(&pagelist);
}
return err;
@@ -1083,7 +1126,7 @@ int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
tmp = *from;
while (!nodes_empty(tmp)) {
int s,d;
- int source = -1;
+ int source = NUMA_NO_NODE;
int dest = 0;
for_each_node_mask(s, tmp) {
@@ -1118,7 +1161,7 @@ int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
if (!node_isset(dest, tmp))
break;
}
- if (source == -1)
+ if (source == NUMA_NO_NODE)
break;
node_clear(source, tmp);
@@ -1154,10 +1197,14 @@ static struct page *new_vma_page(struct page *page, unsigned long private, int *
break;
vma = vma->vm_next;
}
-
/*
- * if !vma, alloc_page_vma() will use task or system default policy
+ * queue_pages_range() confirms that @page belongs to some vma,
+ * so vma shouldn't be NULL.
*/
+ BUG_ON(!vma);
+
+ if (PageHuge(page))
+ return alloc_huge_page_noerr(vma, address, 1);
return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
}
#else
@@ -1249,7 +1296,7 @@ static long do_mbind(unsigned long start, unsigned long len,
if (err)
goto mpol_out;
- vma = check_range(mm, start, end, nmask,
+ vma = queue_pages_range(mm, start, end, nmask,
flags | MPOL_MF_INVERT, &pagelist);
err = PTR_ERR(vma); /* maybe ... */
@@ -1265,7 +1312,7 @@ static long do_mbind(unsigned long start, unsigned long len,
(unsigned long)vma,
MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
if (nr_failed)
- putback_lru_pages(&pagelist);
+ putback_movable_pages(&pagelist);
}
if (nr_failed && (flags & MPOL_MF_STRICT))
@@ -1633,6 +1680,30 @@ struct mempolicy *get_vma_policy(struct task_struct *task,
return pol;
}
+bool vma_policy_mof(struct task_struct *task, struct vm_area_struct *vma)
+{
+ struct mempolicy *pol = get_task_policy(task);
+ if (vma) {
+ if (vma->vm_ops && vma->vm_ops->get_policy) {
+ bool ret = false;
+
+ pol = vma->vm_ops->get_policy(vma, vma->vm_start);
+ if (pol && (pol->flags & MPOL_F_MOF))
+ ret = true;
+ mpol_cond_put(pol);
+
+ return ret;
+ } else if (vma->vm_policy) {
+ pol = vma->vm_policy;
+ }
+ }
+
+ if (!pol)
+ return default_policy.flags & MPOL_F_MOF;
+
+ return pol->flags & MPOL_F_MOF;
+}
+
static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
{
enum zone_type dynamic_policy_zone = policy_zone;
@@ -1765,7 +1836,7 @@ static unsigned offset_il_node(struct mempolicy *pol,
unsigned nnodes = nodes_weight(pol->v.nodes);
unsigned target;
int c;
- int nid = -1;
+ int nid = NUMA_NO_NODE;
if (!nnodes)
return numa_node_id();
@@ -1802,11 +1873,11 @@ static inline unsigned interleave_nid(struct mempolicy *pol,
/*
* Return the bit number of a random bit set in the nodemask.
- * (returns -1 if nodemask is empty)
+ * (returns NUMA_NO_NODE if nodemask is empty)
*/
int node_random(const nodemask_t *maskp)
{
- int w, bit = -1;
+ int w, bit = NUMA_NO_NODE;
w = nodes_weight(*maskp);
if (w)
@@ -2065,6 +2136,16 @@ retry_cpuset:
}
EXPORT_SYMBOL(alloc_pages_current);
+int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
+{
+ struct mempolicy *pol = mpol_dup(vma_policy(src));
+
+ if (IS_ERR(pol))
+ return PTR_ERR(pol);
+ dst->vm_policy = pol;
+ return 0;
+}
+
/*
* If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
* rebinds the mempolicy its copying by calling mpol_rebind_policy()
@@ -2221,6 +2302,35 @@ static void sp_free(struct sp_node *n)
kmem_cache_free(sn_cache, n);
}
+#ifdef CONFIG_NUMA_BALANCING
+static bool numa_migrate_deferred(struct task_struct *p, int last_cpupid)
+{
+ /* Never defer a private fault */
+ if (cpupid_match_pid(p, last_cpupid))
+ return false;
+
+ if (p->numa_migrate_deferred) {
+ p->numa_migrate_deferred--;
+ return true;
+ }
+ return false;
+}
+
+static inline void defer_numa_migrate(struct task_struct *p)
+{
+ p->numa_migrate_deferred = sysctl_numa_balancing_migrate_deferred;
+}
+#else
+static inline bool numa_migrate_deferred(struct task_struct *p, int last_cpupid)
+{
+ return false;
+}
+
+static inline void defer_numa_migrate(struct task_struct *p)
+{
+}
+#endif /* CONFIG_NUMA_BALANCING */
+
/**
* mpol_misplaced - check whether current page node is valid in policy
*
@@ -2244,6 +2354,8 @@ int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long
struct zone *zone;
int curnid = page_to_nid(page);
unsigned long pgoff;
+ int thiscpu = raw_smp_processor_id();
+ int thisnid = cpu_to_node(thiscpu);
int polnid = -1;
int ret = -1;
@@ -2292,9 +2404,11 @@ int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long
/* Migrate the page towards the node whose CPU is referencing it */
if (pol->flags & MPOL_F_MORON) {
- int last_nid;
+ int last_cpupid;
+ int this_cpupid;
- polnid = numa_node_id();
+ polnid = thisnid;
+ this_cpupid = cpu_pid_to_cpupid(thiscpu, current->pid);
/*
* Multi-stage node selection is used in conjunction
@@ -2317,8 +2431,25 @@ int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long
* it less likely we act on an unlikely task<->page
* relation.
*/
- last_nid = page_nid_xchg_last(page, polnid);
- if (last_nid != polnid)
+ last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
+ if (!cpupid_pid_unset(last_cpupid) && cpupid_to_nid(last_cpupid) != thisnid) {
+
+ /* See sysctl_numa_balancing_migrate_deferred comment */
+ if (!cpupid_match_pid(current, last_cpupid))
+ defer_numa_migrate(current);
+
+ goto out;
+ }
+
+ /*
+ * The quadratic filter above reduces extraneous migration
+ * of shared pages somewhat. This code reduces it even more,
+ * reducing the overhead of page migrations of shared pages.
+ * This makes workloads with shared pages rely more on
+ * "move task near its memory", and less on "move memory
+ * towards its task", which is exactly what we want.
+ */
+ if (numa_migrate_deferred(current, last_cpupid))
goto out;
}
@@ -2784,62 +2915,45 @@ out:
* @maxlen: length of @buffer
* @pol: pointer to mempolicy to be formatted
*
- * Convert a mempolicy into a string.
- * Returns the number of characters in buffer (if positive)
- * or an error (negative)
+ * Convert @pol into a string. If @buffer is too short, truncate the string.
+ * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
+ * longest flag, "relative", and to display at least a few node ids.
*/
-int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
+void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
{
char *p = buffer;
- int l;
- nodemask_t nodes;
- unsigned short mode;
- unsigned short flags = pol ? pol->flags : 0;
-
- /*
- * Sanity check: room for longest mode, flag and some nodes
- */
- VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
+ nodemask_t nodes = NODE_MASK_NONE;
+ unsigned short mode = MPOL_DEFAULT;
+ unsigned short flags = 0;
- if (!pol || pol == &default_policy)
- mode = MPOL_DEFAULT;
- else
+ if (pol && pol != &default_policy) {
mode = pol->mode;
+ flags = pol->flags;
+ }
switch (mode) {
case MPOL_DEFAULT:
- nodes_clear(nodes);
break;
-
case MPOL_PREFERRED:
- nodes_clear(nodes);
if (flags & MPOL_F_LOCAL)
mode = MPOL_LOCAL;
else
node_set(pol->v.preferred_node, nodes);
break;
-
case MPOL_BIND:
- /* Fall through */
case MPOL_INTERLEAVE:
nodes = pol->v.nodes;
break;
-
default:
- return -EINVAL;
+ WARN_ON_ONCE(1);
+ snprintf(p, maxlen, "unknown");
+ return;
}
- l = strlen(policy_modes[mode]);
- if (buffer + maxlen < p + l + 1)
- return -ENOSPC;
-
- strcpy(p, policy_modes[mode]);
- p += l;
+ p += snprintf(p, maxlen, "%s", policy_modes[mode]);
if (flags & MPOL_MODE_FLAGS) {
- if (buffer + maxlen < p + 2)
- return -ENOSPC;
- *p++ = '=';
+ p += snprintf(p, buffer + maxlen - p, "=");
/*
* Currently, the only defined flags are mutually exclusive
@@ -2851,10 +2965,7 @@ int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
}
if (!nodes_empty(nodes)) {
- if (buffer + maxlen < p + 2)
- return -ENOSPC;
- *p++ = ':';
+ p += snprintf(p, buffer + maxlen - p, ":");
p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
}
- return p - buffer;
}
diff --git a/mm/mempool.c b/mm/mempool.c
index 54990476c049..659aa42bad16 100644
--- a/mm/mempool.c
+++ b/mm/mempool.c
@@ -73,7 +73,7 @@ mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
gfp_t gfp_mask, int node_id)
{
mempool_t *pool;
- pool = kmalloc_node(sizeof(*pool), gfp_mask | __GFP_ZERO, node_id);
+ pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
if (!pool)
return NULL;
pool->elements = kmalloc_node(min_nr * sizeof(void *),
diff --git a/mm/migrate.c b/mm/migrate.c
index 6f0c24438bba..bb940045fe85 100644
--- a/mm/migrate.c
+++ b/mm/migrate.c
@@ -100,10 +100,14 @@ void putback_movable_pages(struct list_head *l)
struct page *page2;
list_for_each_entry_safe(page, page2, l, lru) {
+ if (unlikely(PageHuge(page))) {
+ putback_active_hugepage(page);
+ continue;
+ }
list_del(&page->lru);
dec_zone_page_state(page, NR_ISOLATED_ANON +
page_is_file_cache(page));
- if (unlikely(balloon_page_movable(page)))
+ if (unlikely(isolated_balloon_page(page)))
balloon_page_putback(page);
else
putback_lru_page(page);
@@ -126,7 +130,7 @@ static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
ptep = huge_pte_offset(mm, addr);
if (!ptep)
goto out;
- ptl = &mm->page_table_lock;
+ ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
} else {
pmd = mm_find_pmd(mm, addr);
if (!pmd)
@@ -157,6 +161,8 @@ static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
get_page(new);
pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
+ if (pte_swp_soft_dirty(*ptep))
+ pte = pte_mksoft_dirty(pte);
if (is_write_migration_entry(entry))
pte = pte_mkwrite(pte);
#ifdef CONFIG_HUGETLB_PAGE
@@ -243,9 +249,10 @@ void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
__migration_entry_wait(mm, ptep, ptl);
}
-void migration_entry_wait_huge(struct mm_struct *mm, pte_t *pte)
+void migration_entry_wait_huge(struct vm_area_struct *vma,
+ struct mm_struct *mm, pte_t *pte)
{
- spinlock_t *ptl = &(mm)->page_table_lock;
+ spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
__migration_entry_wait(mm, pte, ptl);
}
@@ -307,7 +314,7 @@ static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
* 2 for pages with a mapping
* 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
*/
-static int migrate_page_move_mapping(struct address_space *mapping,
+int migrate_page_move_mapping(struct address_space *mapping,
struct page *newpage, struct page *page,
struct buffer_head *head, enum migrate_mode mode)
{
@@ -435,10 +442,60 @@ int migrate_huge_page_move_mapping(struct address_space *mapping,
}
/*
+ * Gigantic pages are so large that we do not guarantee that page++ pointer
+ * arithmetic will work across the entire page. We need something more
+ * specialized.
+ */
+static void __copy_gigantic_page(struct page *dst, struct page *src,
+ int nr_pages)
+{
+ int i;
+ struct page *dst_base = dst;
+ struct page *src_base = src;
+
+ for (i = 0; i < nr_pages; ) {
+ cond_resched();
+ copy_highpage(dst, src);
+
+ i++;
+ dst = mem_map_next(dst, dst_base, i);
+ src = mem_map_next(src, src_base, i);
+ }
+}
+
+static void copy_huge_page(struct page *dst, struct page *src)
+{
+ int i;
+ int nr_pages;
+
+ if (PageHuge(src)) {
+ /* hugetlbfs page */
+ struct hstate *h = page_hstate(src);
+ nr_pages = pages_per_huge_page(h);
+
+ if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
+ __copy_gigantic_page(dst, src, nr_pages);
+ return;
+ }
+ } else {
+ /* thp page */
+ BUG_ON(!PageTransHuge(src));
+ nr_pages = hpage_nr_pages(src);
+ }
+
+ for (i = 0; i < nr_pages; i++) {
+ cond_resched();
+ copy_highpage(dst + i, src + i);
+ }
+}
+
+/*
* Copy the page to its new location
*/
void migrate_page_copy(struct page *newpage, struct page *page)
{
+ int cpupid;
+
if (PageHuge(page) || PageTransHuge(page))
copy_huge_page(newpage, page);
else
@@ -475,6 +532,13 @@ void migrate_page_copy(struct page *newpage, struct page *page)
__set_page_dirty_nobuffers(newpage);
}
+ /*
+ * Copy NUMA information to the new page, to prevent over-eager
+ * future migrations of this same page.
+ */
+ cpupid = page_cpupid_xchg_last(page, -1);
+ page_cpupid_xchg_last(newpage, cpupid);
+
mlock_migrate_page(newpage, page);
ksm_migrate_page(newpage, page);
/*
@@ -945,6 +1009,16 @@ static int unmap_and_move_huge_page(new_page_t get_new_page,
struct page *new_hpage = get_new_page(hpage, private, &result);
struct anon_vma *anon_vma = NULL;
+ /*
+ * Movability of hugepages depends on architectures and hugepage size.
+ * This check is necessary because some callers of hugepage migration
+ * like soft offline and memory hotremove don't walk through page
+ * tables or check whether the hugepage is pmd-based or not before
+ * kicking migration.
+ */
+ if (!hugepage_migration_support(page_hstate(hpage)))
+ return -ENOSYS;
+
if (!new_hpage)
return -ENOMEM;
@@ -975,6 +1049,8 @@ static int unmap_and_move_huge_page(new_page_t get_new_page,
unlock_page(hpage);
out:
+ if (rc != -EAGAIN)
+ putback_active_hugepage(hpage);
put_page(new_hpage);
if (result) {
if (rc)
@@ -1025,7 +1101,11 @@ int migrate_pages(struct list_head *from, new_page_t get_new_page,
list_for_each_entry_safe(page, page2, from, lru) {
cond_resched();
- rc = unmap_and_move(get_new_page, private,
+ if (PageHuge(page))
+ rc = unmap_and_move_huge_page(get_new_page,
+ private, page, pass > 2, mode);
+ else
+ rc = unmap_and_move(get_new_page, private,
page, pass > 2, mode);
switch(rc) {
@@ -1058,32 +1138,6 @@ out:
return rc;
}
-int migrate_huge_page(struct page *hpage, new_page_t get_new_page,
- unsigned long private, enum migrate_mode mode)
-{
- int pass, rc;
-
- for (pass = 0; pass < 10; pass++) {
- rc = unmap_and_move_huge_page(get_new_page, private,
- hpage, pass > 2, mode);
- switch (rc) {
- case -ENOMEM:
- goto out;
- case -EAGAIN:
- /* try again */
- cond_resched();
- break;
- case MIGRATEPAGE_SUCCESS:
- goto out;
- default:
- rc = -EIO;
- goto out;
- }
- }
-out:
- return rc;
-}
-
#ifdef CONFIG_NUMA
/*
* Move a list of individual pages
@@ -1108,7 +1162,11 @@ static struct page *new_page_node(struct page *p, unsigned long private,
*result = &pm->status;
- return alloc_pages_exact_node(pm->node,
+ if (PageHuge(p))
+ return alloc_huge_page_node(page_hstate(compound_head(p)),
+ pm->node);
+ else
+ return alloc_pages_exact_node(pm->node,
GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
}
@@ -1168,6 +1226,11 @@ static int do_move_page_to_node_array(struct mm_struct *mm,
!migrate_all)
goto put_and_set;
+ if (PageHuge(page)) {
+ isolate_huge_page(page, &pagelist);
+ goto put_and_set;
+ }
+
err = isolate_lru_page(page);
if (!err) {
list_add_tail(&page->lru, &pagelist);
@@ -1190,7 +1253,7 @@ set_status:
err = migrate_pages(&pagelist, new_page_node,
(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
if (err)
- putback_lru_pages(&pagelist);
+ putback_movable_pages(&pagelist);
}
up_read(&mm->mmap_sem);
@@ -1468,7 +1531,7 @@ static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
if (!populated_zone(zone))
continue;
- if (zone->all_unreclaimable)
+ if (!zone_reclaimable(zone))
continue;
/* Avoid waking kswapd by allocating pages_to_migrate pages. */
@@ -1495,7 +1558,7 @@ static struct page *alloc_misplaced_dst_page(struct page *page,
__GFP_NOWARN) &
~GFP_IOFS, 0);
if (newpage)
- page_nid_xchg_last(newpage, page_nid_last(page));
+ page_cpupid_xchg_last(newpage, page_cpupid_last(page));
return newpage;
}
@@ -1596,7 +1659,8 @@ int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
* node. Caller is expected to have an elevated reference count on
* the page that will be dropped by this function before returning.
*/
-int migrate_misplaced_page(struct page *page, int node)
+int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
+ int node)
{
pg_data_t *pgdat = NODE_DATA(node);
int isolated;
@@ -1604,10 +1668,11 @@ int migrate_misplaced_page(struct page *page, int node)
LIST_HEAD(migratepages);
/*
- * Don't migrate pages that are mapped in multiple processes.
- * TODO: Handle false sharing detection instead of this hammer
+ * Don't migrate file pages that are mapped in multiple processes
+ * with execute permissions as they are probably shared libraries.
*/
- if (page_mapcount(page) != 1)
+ if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
+ (vma->vm_flags & VM_EXEC))
goto out;
/*
@@ -1650,6 +1715,7 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
unsigned long address,
struct page *page, int node)
{
+ spinlock_t *ptl;
unsigned long haddr = address & HPAGE_PMD_MASK;
pg_data_t *pgdat = NODE_DATA(node);
int isolated = 0;
@@ -1658,13 +1724,6 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
int page_lru = page_is_file_cache(page);
/*
- * Don't migrate pages that are mapped in multiple processes.
- * TODO: Handle false sharing detection instead of this hammer
- */
- if (page_mapcount(page) != 1)
- goto out_dropref;
-
- /*
* Rate-limit the amount of data that is being migrated to a node.
* Optimal placement is no good if the memory bus is saturated and
* all the time is being spent migrating!
@@ -1677,7 +1736,7 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
if (!new_page)
goto out_fail;
- page_nid_xchg_last(new_page, page_nid_last(page));
+ page_cpupid_xchg_last(new_page, page_cpupid_last(page));
isolated = numamigrate_isolate_page(pgdat, page);
if (!isolated) {
@@ -1696,9 +1755,9 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
WARN_ON(PageLRU(new_page));
/* Recheck the target PMD */
- spin_lock(&mm->page_table_lock);
+ ptl = pmd_lock(mm, pmd);
if (unlikely(!pmd_same(*pmd, entry))) {
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
/* Reverse changes made by migrate_page_copy() */
if (TestClearPageActive(new_page))
@@ -1710,12 +1769,12 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
unlock_page(new_page);
put_page(new_page); /* Free it */
- unlock_page(page);
+ /* Retake the callers reference and putback on LRU */
+ get_page(page);
putback_lru_page(page);
-
- count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
- isolated = 0;
- goto out;
+ mod_zone_page_state(page_zone(page),
+ NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
+ goto out_fail;
}
/*
@@ -1732,9 +1791,9 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
entry = pmd_mkhuge(entry);
- page_add_new_anon_rmap(new_page, vma, haddr);
-
+ pmdp_clear_flush(vma, haddr, pmd);
set_pmd_at(mm, haddr, pmd, entry);
+ page_add_new_anon_rmap(new_page, vma, haddr);
update_mmu_cache_pmd(vma, address, &entry);
page_remove_rmap(page);
/*
@@ -1743,7 +1802,7 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
* before it's fully transferred to the new page.
*/
mem_cgroup_end_migration(memcg, page, new_page, true);
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
unlock_page(new_page);
unlock_page(page);
@@ -1753,7 +1812,6 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm,
count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
-out:
mod_zone_page_state(page_zone(page),
NR_ISOLATED_ANON + page_lru,
-HPAGE_PMD_NR);
@@ -1762,6 +1820,10 @@ out:
out_fail:
count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
out_dropref:
+ entry = pmd_mknonnuma(entry);
+ set_pmd_at(mm, haddr, pmd, entry);
+ update_mmu_cache_pmd(vma, address, &entry);
+
unlock_page(page);
put_page(page);
return 0;
diff --git a/mm/mlock.c b/mm/mlock.c
index 79b7cf7d1bca..d480cd6fc475 100644
--- a/mm/mlock.c
+++ b/mm/mlock.c
@@ -11,6 +11,7 @@
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/pagemap.h>
+#include <linux/pagevec.h>
#include <linux/mempolicy.h>
#include <linux/syscalls.h>
#include <linux/sched.h>
@@ -18,6 +19,8 @@
#include <linux/rmap.h>
#include <linux/mmzone.h>
#include <linux/hugetlb.h>
+#include <linux/memcontrol.h>
+#include <linux/mm_inline.h>
#include "internal.h"
@@ -87,6 +90,47 @@ void mlock_vma_page(struct page *page)
}
}
+/*
+ * Finish munlock after successful page isolation
+ *
+ * Page must be locked. This is a wrapper for try_to_munlock()
+ * and putback_lru_page() with munlock accounting.
+ */
+static void __munlock_isolated_page(struct page *page)
+{
+ int ret = SWAP_AGAIN;
+
+ /*
+ * Optimization: if the page was mapped just once, that's our mapping
+ * and we don't need to check all the other vmas.
+ */
+ if (page_mapcount(page) > 1)
+ ret = try_to_munlock(page);
+
+ /* Did try_to_unlock() succeed or punt? */
+ if (ret != SWAP_MLOCK)
+ count_vm_event(UNEVICTABLE_PGMUNLOCKED);
+
+ putback_lru_page(page);
+}
+
+/*
+ * Accounting for page isolation fail during munlock
+ *
+ * Performs accounting when page isolation fails in munlock. There is nothing
+ * else to do because it means some other task has already removed the page
+ * from the LRU. putback_lru_page() will take care of removing the page from
+ * the unevictable list, if necessary. vmscan [page_referenced()] will move
+ * the page back to the unevictable list if some other vma has it mlocked.
+ */
+static void __munlock_isolation_failed(struct page *page)
+{
+ if (PageUnevictable(page))
+ count_vm_event(UNEVICTABLE_PGSTRANDED);
+ else
+ count_vm_event(UNEVICTABLE_PGMUNLOCKED);
+}
+
/**
* munlock_vma_page - munlock a vma page
* @page - page to be unlocked
@@ -112,37 +156,10 @@ unsigned int munlock_vma_page(struct page *page)
unsigned int nr_pages = hpage_nr_pages(page);
mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
page_mask = nr_pages - 1;
- if (!isolate_lru_page(page)) {
- int ret = SWAP_AGAIN;
-
- /*
- * Optimization: if the page was mapped just once,
- * that's our mapping and we don't need to check all the
- * other vmas.
- */
- if (page_mapcount(page) > 1)
- ret = try_to_munlock(page);
- /*
- * did try_to_unlock() succeed or punt?
- */
- if (ret != SWAP_MLOCK)
- count_vm_event(UNEVICTABLE_PGMUNLOCKED);
-
- putback_lru_page(page);
- } else {
- /*
- * Some other task has removed the page from the LRU.
- * putback_lru_page() will take care of removing the
- * page from the unevictable list, if necessary.
- * vmscan [page_referenced()] will move the page back
- * to the unevictable list if some other vma has it
- * mlocked.
- */
- if (PageUnevictable(page))
- count_vm_event(UNEVICTABLE_PGSTRANDED);
- else
- count_vm_event(UNEVICTABLE_PGMUNLOCKED);
- }
+ if (!isolate_lru_page(page))
+ __munlock_isolated_page(page);
+ else
+ __munlock_isolation_failed(page);
}
return page_mask;
@@ -210,6 +227,195 @@ static int __mlock_posix_error_return(long retval)
}
/*
+ * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
+ *
+ * The fast path is available only for evictable pages with single mapping.
+ * Then we can bypass the per-cpu pvec and get better performance.
+ * when mapcount > 1 we need try_to_munlock() which can fail.
+ * when !page_evictable(), we need the full redo logic of putback_lru_page to
+ * avoid leaving evictable page in unevictable list.
+ *
+ * In case of success, @page is added to @pvec and @pgrescued is incremented
+ * in case that the page was previously unevictable. @page is also unlocked.
+ */
+static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
+ int *pgrescued)
+{
+ VM_BUG_ON(PageLRU(page));
+ VM_BUG_ON(!PageLocked(page));
+
+ if (page_mapcount(page) <= 1 && page_evictable(page)) {
+ pagevec_add(pvec, page);
+ if (TestClearPageUnevictable(page))
+ (*pgrescued)++;
+ unlock_page(page);
+ return true;
+ }
+
+ return false;
+}
+
+/*
+ * Putback multiple evictable pages to the LRU
+ *
+ * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
+ * the pages might have meanwhile become unevictable but that is OK.
+ */
+static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
+{
+ count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
+ /*
+ *__pagevec_lru_add() calls release_pages() so we don't call
+ * put_page() explicitly
+ */
+ __pagevec_lru_add(pvec);
+ count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
+}
+
+/*
+ * Munlock a batch of pages from the same zone
+ *
+ * The work is split to two main phases. First phase clears the Mlocked flag
+ * and attempts to isolate the pages, all under a single zone lru lock.
+ * The second phase finishes the munlock only for pages where isolation
+ * succeeded.
+ *
+ * Note that the pagevec may be modified during the process.
+ */
+static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
+{
+ int i;
+ int nr = pagevec_count(pvec);
+ int delta_munlocked = -nr;
+ struct pagevec pvec_putback;
+ int pgrescued = 0;
+
+ /* Phase 1: page isolation */
+ spin_lock_irq(&zone->lru_lock);
+ for (i = 0; i < nr; i++) {
+ struct page *page = pvec->pages[i];
+
+ if (TestClearPageMlocked(page)) {
+ struct lruvec *lruvec;
+ int lru;
+
+ if (PageLRU(page)) {
+ lruvec = mem_cgroup_page_lruvec(page, zone);
+ lru = page_lru(page);
+ /*
+ * We already have pin from follow_page_mask()
+ * so we can spare the get_page() here.
+ */
+ ClearPageLRU(page);
+ del_page_from_lru_list(page, lruvec, lru);
+ } else {
+ __munlock_isolation_failed(page);
+ goto skip_munlock;
+ }
+
+ } else {
+skip_munlock:
+ /*
+ * We won't be munlocking this page in the next phase
+ * but we still need to release the follow_page_mask()
+ * pin.
+ */
+ pvec->pages[i] = NULL;
+ put_page(page);
+ delta_munlocked++;
+ }
+ }
+ __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
+ spin_unlock_irq(&zone->lru_lock);
+
+ /* Phase 2: page munlock */
+ pagevec_init(&pvec_putback, 0);
+ for (i = 0; i < nr; i++) {
+ struct page *page = pvec->pages[i];
+
+ if (page) {
+ lock_page(page);
+ if (!__putback_lru_fast_prepare(page, &pvec_putback,
+ &pgrescued)) {
+ /*
+ * Slow path. We don't want to lose the last
+ * pin before unlock_page()
+ */
+ get_page(page); /* for putback_lru_page() */
+ __munlock_isolated_page(page);
+ unlock_page(page);
+ put_page(page); /* from follow_page_mask() */
+ }
+ }
+ }
+
+ /*
+ * Phase 3: page putback for pages that qualified for the fast path
+ * This will also call put_page() to return pin from follow_page_mask()
+ */
+ if (pagevec_count(&pvec_putback))
+ __putback_lru_fast(&pvec_putback, pgrescued);
+}
+
+/*
+ * Fill up pagevec for __munlock_pagevec using pte walk
+ *
+ * The function expects that the struct page corresponding to @start address is
+ * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
+ *
+ * The rest of @pvec is filled by subsequent pages within the same pmd and same
+ * zone, as long as the pte's are present and vm_normal_page() succeeds. These
+ * pages also get pinned.
+ *
+ * Returns the address of the next page that should be scanned. This equals
+ * @start + PAGE_SIZE when no page could be added by the pte walk.
+ */
+static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
+ struct vm_area_struct *vma, int zoneid, unsigned long start,
+ unsigned long end)
+{
+ pte_t *pte;
+ spinlock_t *ptl;
+
+ /*
+ * Initialize pte walk starting at the already pinned page where we
+ * are sure that there is a pte, as it was pinned under the same
+ * mmap_sem write op.
+ */
+ pte = get_locked_pte(vma->vm_mm, start, &ptl);
+ /* Make sure we do not cross the page table boundary */
+ end = pgd_addr_end(start, end);
+ end = pud_addr_end(start, end);
+ end = pmd_addr_end(start, end);
+
+ /* The page next to the pinned page is the first we will try to get */
+ start += PAGE_SIZE;
+ while (start < end) {
+ struct page *page = NULL;
+ pte++;
+ if (pte_present(*pte))
+ page = vm_normal_page(vma, start, *pte);
+ /*
+ * Break if page could not be obtained or the page's node+zone does not
+ * match
+ */
+ if (!page || page_zone_id(page) != zoneid)
+ break;
+
+ get_page(page);
+ /*
+ * Increase the address that will be returned *before* the
+ * eventual break due to pvec becoming full by adding the page
+ */
+ start += PAGE_SIZE;
+ if (pagevec_add(pvec, page) == 0)
+ break;
+ }
+ pte_unmap_unlock(pte, ptl);
+ return start;
+}
+
+/*
* munlock_vma_pages_range() - munlock all pages in the vma range.'
* @vma - vma containing range to be munlock()ed.
* @start - start address in @vma of the range
@@ -233,9 +439,13 @@ void munlock_vma_pages_range(struct vm_area_struct *vma,
vma->vm_flags &= ~VM_LOCKED;
while (start < end) {
- struct page *page;
+ struct page *page = NULL;
unsigned int page_mask, page_increm;
+ struct pagevec pvec;
+ struct zone *zone;
+ int zoneid;
+ pagevec_init(&pvec, 0);
/*
* Although FOLL_DUMP is intended for get_dump_page(),
* it just so happens that its special treatment of the
@@ -244,21 +454,45 @@ void munlock_vma_pages_range(struct vm_area_struct *vma,
* has sneaked into the range, we won't oops here: great).
*/
page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
- &page_mask);
+ &page_mask);
+
if (page && !IS_ERR(page)) {
- lock_page(page);
- lru_add_drain();
- /*
- * Any THP page found by follow_page_mask() may have
- * gotten split before reaching munlock_vma_page(),
- * so we need to recompute the page_mask here.
- */
- page_mask = munlock_vma_page(page);
- unlock_page(page);
- put_page(page);
+ if (PageTransHuge(page)) {
+ lock_page(page);
+ /*
+ * Any THP page found by follow_page_mask() may
+ * have gotten split before reaching
+ * munlock_vma_page(), so we need to recompute
+ * the page_mask here.
+ */
+ page_mask = munlock_vma_page(page);
+ unlock_page(page);
+ put_page(page); /* follow_page_mask() */
+ } else {
+ /*
+ * Non-huge pages are handled in batches via
+ * pagevec. The pin from follow_page_mask()
+ * prevents them from collapsing by THP.
+ */
+ pagevec_add(&pvec, page);
+ zone = page_zone(page);
+ zoneid = page_zone_id(page);
+
+ /*
+ * Try to fill the rest of pagevec using fast
+ * pte walk. This will also update start to
+ * the next page to process. Then munlock the
+ * pagevec.
+ */
+ start = __munlock_pagevec_fill(&pvec, vma,
+ zoneid, start, end);
+ __munlock_pagevec(&pvec, zone);
+ goto next;
+ }
}
page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
start += page_increm * PAGE_SIZE;
+next:
cond_resched();
}
}
@@ -506,6 +740,7 @@ static int do_mlockall(int flags)
/* Ignore errors */
mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
+ cond_resched();
}
out:
return 0;
diff --git a/mm/mm_init.c b/mm/mm_init.c
index 633c08863fd8..68562e92d50c 100644
--- a/mm/mm_init.c
+++ b/mm/mm_init.c
@@ -71,26 +71,26 @@ void __init mminit_verify_pageflags_layout(void)
unsigned long or_mask, add_mask;
shift = 8 * sizeof(unsigned long);
- width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH - LAST_NID_SHIFT;
+ width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH - LAST_CPUPID_SHIFT;
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
- "Section %d Node %d Zone %d Lastnid %d Flags %d\n",
+ "Section %d Node %d Zone %d Lastcpupid %d Flags %d\n",
SECTIONS_WIDTH,
NODES_WIDTH,
ZONES_WIDTH,
- LAST_NID_WIDTH,
+ LAST_CPUPID_WIDTH,
NR_PAGEFLAGS);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
- "Section %d Node %d Zone %d Lastnid %d\n",
+ "Section %d Node %d Zone %d Lastcpupid %d\n",
SECTIONS_SHIFT,
NODES_SHIFT,
ZONES_SHIFT,
- LAST_NID_SHIFT);
+ LAST_CPUPID_SHIFT);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
- "Section %lu Node %lu Zone %lu Lastnid %lu\n",
+ "Section %lu Node %lu Zone %lu Lastcpupid %lu\n",
(unsigned long)SECTIONS_PGSHIFT,
(unsigned long)NODES_PGSHIFT,
(unsigned long)ZONES_PGSHIFT,
- (unsigned long)LAST_NID_PGSHIFT);
+ (unsigned long)LAST_CPUPID_PGSHIFT);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
"Node/Zone ID: %lu -> %lu\n",
(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
@@ -102,9 +102,9 @@ void __init mminit_verify_pageflags_layout(void)
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
"Node not in page flags");
#endif
-#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
+#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
- "Last nid not in page flags");
+ "Last cpupid not in page flags");
#endif
if (SECTIONS_WIDTH) {
diff --git a/mm/mmap.c b/mm/mmap.c
index f9c97d10b873..834b2d785f1e 100644
--- a/mm/mmap.c
+++ b/mm/mmap.c
@@ -179,14 +179,12 @@ int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
goto error;
}
- allowed = (totalram_pages - hugetlb_total_pages())
- * sysctl_overcommit_ratio / 100;
+ allowed = vm_commit_limit();
/*
* Reserve some for root
*/
if (!cap_sys_admin)
allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
- allowed += total_swap_pages;
/*
* Don't let a single process grow so big a user can't recover
@@ -1202,7 +1200,6 @@ unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
unsigned long *populate)
{
struct mm_struct * mm = current->mm;
- struct inode *inode;
vm_flags_t vm_flags;
*populate = 0;
@@ -1265,9 +1262,9 @@ unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
return -EAGAIN;
}
- inode = file ? file_inode(file) : NULL;
-
if (file) {
+ struct inode *inode = file_inode(file);
+
switch (flags & MAP_TYPE) {
case MAP_SHARED:
if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
@@ -1300,8 +1297,10 @@ unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
vm_flags &= ~VM_MAYEXEC;
}
- if (!file->f_op || !file->f_op->mmap)
+ if (!file->f_op->mmap)
return -ENODEV;
+ if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
+ return -EINVAL;
break;
default:
@@ -1310,6 +1309,8 @@ unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
} else {
switch (flags & MAP_TYPE) {
case MAP_SHARED:
+ if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
+ return -EINVAL;
/*
* Ignore pgoff.
*/
@@ -1476,11 +1477,9 @@ unsigned long mmap_region(struct file *file, unsigned long addr,
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma, *prev;
- int correct_wcount = 0;
int error;
struct rb_node **rb_link, *rb_parent;
unsigned long charged = 0;
- struct inode *inode = file ? file_inode(file) : NULL;
/* Check against address space limit. */
if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
@@ -1544,16 +1543,11 @@ munmap_back:
vma->vm_pgoff = pgoff;
INIT_LIST_HEAD(&vma->anon_vma_chain);
- error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
-
if (file) {
- if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
- goto free_vma;
if (vm_flags & VM_DENYWRITE) {
error = deny_write_access(file);
if (error)
goto free_vma;
- correct_wcount = 1;
}
vma->vm_file = get_file(file);
error = file->f_op->mmap(file, vma);
@@ -1570,11 +1564,8 @@ munmap_back:
WARN_ON_ONCE(addr != vma->vm_start);
addr = vma->vm_start;
- pgoff = vma->vm_pgoff;
vm_flags = vma->vm_flags;
} else if (vm_flags & VM_SHARED) {
- if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
- goto free_vma;
error = shmem_zero_setup(vma);
if (error)
goto free_vma;
@@ -1596,11 +1587,10 @@ munmap_back:
}
vma_link(mm, vma, prev, rb_link, rb_parent);
- file = vma->vm_file;
-
/* Once vma denies write, undo our temporary denial count */
- if (correct_wcount)
- atomic_inc(&inode->i_writecount);
+ if (vm_flags & VM_DENYWRITE)
+ allow_write_access(file);
+ file = vma->vm_file;
out:
perf_event_mmap(vma);
@@ -1616,11 +1606,20 @@ out:
if (file)
uprobe_mmap(vma);
+ /*
+ * New (or expanded) vma always get soft dirty status.
+ * Otherwise user-space soft-dirty page tracker won't
+ * be able to distinguish situation when vma area unmapped,
+ * then new mapped in-place (which must be aimed as
+ * a completely new data area).
+ */
+ vma->vm_flags |= VM_SOFTDIRTY;
+
return addr;
unmap_and_free_vma:
- if (correct_wcount)
- atomic_inc(&inode->i_writecount);
+ if (vm_flags & VM_DENYWRITE)
+ allow_write_access(file);
vma->vm_file = NULL;
fput(file);
@@ -1855,7 +1854,7 @@ arch_get_unmapped_area(struct file *filp, unsigned long addr,
struct vm_area_struct *vma;
struct vm_unmapped_area_info info;
- if (len > TASK_SIZE)
+ if (len > TASK_SIZE - mmap_min_addr)
return -ENOMEM;
if (flags & MAP_FIXED)
@@ -1864,14 +1863,14 @@ arch_get_unmapped_area(struct file *filp, unsigned long addr,
if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma(mm, addr);
- if (TASK_SIZE - len >= addr &&
+ if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
(!vma || addr + len <= vma->vm_start))
return addr;
}
info.flags = 0;
info.length = len;
- info.low_limit = TASK_UNMAPPED_BASE;
+ info.low_limit = mm->mmap_base;
info.high_limit = TASK_SIZE;
info.align_mask = 0;
return vm_unmapped_area(&info);
@@ -1894,7 +1893,7 @@ arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
struct vm_unmapped_area_info info;
/* requested length too big for entire address space */
- if (len > TASK_SIZE)
+ if (len > TASK_SIZE - mmap_min_addr)
return -ENOMEM;
if (flags & MAP_FIXED)
@@ -1904,14 +1903,14 @@ arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma(mm, addr);
- if (TASK_SIZE - len >= addr &&
+ if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
(!vma || addr + len <= vma->vm_start))
return addr;
}
info.flags = VM_UNMAPPED_AREA_TOPDOWN;
info.length = len;
- info.low_limit = PAGE_SIZE;
+ info.low_limit = max(PAGE_SIZE, mmap_min_addr);
info.high_limit = mm->mmap_base;
info.align_mask = 0;
addr = vm_unmapped_area(&info);
@@ -1950,7 +1949,7 @@ get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
return -ENOMEM;
get_area = current->mm->get_unmapped_area;
- if (file && file->f_op && file->f_op->get_unmapped_area)
+ if (file && file->f_op->get_unmapped_area)
get_area = file->f_op->get_unmapped_area;
addr = get_area(file, addr, len, pgoff, flags);
if (IS_ERR_VALUE(addr))
@@ -2380,7 +2379,6 @@ detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
unsigned long addr, int new_below)
{
- struct mempolicy *pol;
struct vm_area_struct *new;
int err = -ENOMEM;
@@ -2404,12 +2402,9 @@ static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
}
- pol = mpol_dup(vma_policy(vma));
- if (IS_ERR(pol)) {
- err = PTR_ERR(pol);
+ err = vma_dup_policy(vma, new);
+ if (err)
goto out_free_vma;
- }
- vma_set_policy(new, pol);
if (anon_vma_clone(new, vma))
goto out_free_mpol;
@@ -2437,7 +2432,7 @@ static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
fput(new->vm_file);
unlink_anon_vmas(new);
out_free_mpol:
- mpol_put(pol);
+ mpol_put(vma_policy(new));
out_free_vma:
kmem_cache_free(vm_area_cachep, new);
out_err:
@@ -2663,6 +2658,7 @@ out:
mm->total_vm += len >> PAGE_SHIFT;
if (flags & VM_LOCKED)
mm->locked_vm += (len >> PAGE_SHIFT);
+ vma->vm_flags |= VM_SOFTDIRTY;
return addr;
}
@@ -2728,7 +2724,8 @@ void exit_mmap(struct mm_struct *mm)
}
vm_unacct_memory(nr_accounted);
- WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
+ WARN_ON(atomic_long_read(&mm->nr_ptes) >
+ (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
}
/* Insert vm structure into process list sorted by address
@@ -2780,7 +2777,6 @@ struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
struct mm_struct *mm = vma->vm_mm;
struct vm_area_struct *new_vma, *prev;
struct rb_node **rb_link, *rb_parent;
- struct mempolicy *pol;
bool faulted_in_anon_vma = true;
/*
@@ -2825,10 +2821,8 @@ struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
new_vma->vm_start = addr;
new_vma->vm_end = addr + len;
new_vma->vm_pgoff = pgoff;
- pol = mpol_dup(vma_policy(vma));
- if (IS_ERR(pol))
+ if (vma_dup_policy(vma, new_vma))
goto out_free_vma;
- vma_set_policy(new_vma, pol);
INIT_LIST_HEAD(&new_vma->anon_vma_chain);
if (anon_vma_clone(new_vma, vma))
goto out_free_mempol;
@@ -2843,7 +2837,7 @@ struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
return new_vma;
out_free_mempol:
- mpol_put(pol);
+ mpol_put(vma_policy(new_vma));
out_free_vma:
kmem_cache_free(vm_area_cachep, new_vma);
return NULL;
@@ -2930,7 +2924,7 @@ int install_special_mapping(struct mm_struct *mm,
vma->vm_start = addr;
vma->vm_end = addr + len;
- vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
+ vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
vma->vm_ops = &special_mapping_vmops;
diff --git a/mm/mmzone.c b/mm/mmzone.c
index 2ac0afbd68f3..bf34fb8556db 100644
--- a/mm/mmzone.c
+++ b/mm/mmzone.c
@@ -97,20 +97,20 @@ void lruvec_init(struct lruvec *lruvec)
INIT_LIST_HEAD(&lruvec->lists[lru]);
}
-#if defined(CONFIG_NUMA_BALANCING) && !defined(LAST_NID_NOT_IN_PAGE_FLAGS)
-int page_nid_xchg_last(struct page *page, int nid)
+#if defined(CONFIG_NUMA_BALANCING) && !defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS)
+int page_cpupid_xchg_last(struct page *page, int cpupid)
{
unsigned long old_flags, flags;
- int last_nid;
+ int last_cpupid;
do {
old_flags = flags = page->flags;
- last_nid = page_nid_last(page);
+ last_cpupid = page_cpupid_last(page);
- flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
- flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
+ flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
+ flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
} while (unlikely(cmpxchg(&page->flags, old_flags, flags) != old_flags));
- return last_nid;
+ return last_cpupid;
}
#endif
diff --git a/mm/mprotect.c b/mm/mprotect.c
index 94722a4d6b43..26667971c824 100644
--- a/mm/mprotect.c
+++ b/mm/mprotect.c
@@ -37,14 +37,12 @@ static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, unsigned long end, pgprot_t newprot,
- int dirty_accountable, int prot_numa, bool *ret_all_same_node)
+ int dirty_accountable, int prot_numa)
{
struct mm_struct *mm = vma->vm_mm;
pte_t *pte, oldpte;
spinlock_t *ptl;
unsigned long pages = 0;
- bool all_same_node = true;
- int last_nid = -1;
pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
arch_enter_lazy_mmu_mode();
@@ -63,15 +61,7 @@ static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
page = vm_normal_page(vma, addr, oldpte);
if (page) {
- int this_nid = page_to_nid(page);
- if (last_nid == -1)
- last_nid = this_nid;
- if (last_nid != this_nid)
- all_same_node = false;
-
- /* only check non-shared pages */
- if (!pte_numa(oldpte) &&
- page_mapcount(page) == 1) {
+ if (!pte_numa(oldpte)) {
ptent = pte_mknuma(ptent);
updated = true;
}
@@ -94,40 +84,27 @@ static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
swp_entry_t entry = pte_to_swp_entry(oldpte);
if (is_write_migration_entry(entry)) {
+ pte_t newpte;
/*
* A protection check is difficult so
* just be safe and disable write
*/
make_migration_entry_read(&entry);
- set_pte_at(mm, addr, pte,
- swp_entry_to_pte(entry));
+ newpte = swp_entry_to_pte(entry);
+ if (pte_swp_soft_dirty(oldpte))
+ newpte = pte_swp_mksoft_dirty(newpte);
+ set_pte_at(mm, addr, pte, newpte);
+
+ pages++;
}
- pages++;
}
} while (pte++, addr += PAGE_SIZE, addr != end);
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(pte - 1, ptl);
- *ret_all_same_node = all_same_node;
return pages;
}
-#ifdef CONFIG_NUMA_BALANCING
-static inline void change_pmd_protnuma(struct mm_struct *mm, unsigned long addr,
- pmd_t *pmd)
-{
- spin_lock(&mm->page_table_lock);
- set_pmd_at(mm, addr & PMD_MASK, pmd, pmd_mknuma(*pmd));
- spin_unlock(&mm->page_table_lock);
-}
-#else
-static inline void change_pmd_protnuma(struct mm_struct *mm, unsigned long addr,
- pmd_t *pmd)
-{
- BUG();
-}
-#endif /* CONFIG_NUMA_BALANCING */
-
static inline unsigned long change_pmd_range(struct vm_area_struct *vma,
pud_t *pud, unsigned long addr, unsigned long end,
pgprot_t newprot, int dirty_accountable, int prot_numa)
@@ -135,36 +112,39 @@ static inline unsigned long change_pmd_range(struct vm_area_struct *vma,
pmd_t *pmd;
unsigned long next;
unsigned long pages = 0;
- bool all_same_node;
+ unsigned long nr_huge_updates = 0;
pmd = pmd_offset(pud, addr);
do {
+ unsigned long this_pages;
+
next = pmd_addr_end(addr, end);
if (pmd_trans_huge(*pmd)) {
if (next - addr != HPAGE_PMD_SIZE)
split_huge_page_pmd(vma, addr, pmd);
- else if (change_huge_pmd(vma, pmd, addr, newprot,
- prot_numa)) {
- pages += HPAGE_PMD_NR;
- continue;
+ else {
+ int nr_ptes = change_huge_pmd(vma, pmd, addr,
+ newprot, prot_numa);
+
+ if (nr_ptes) {
+ if (nr_ptes == HPAGE_PMD_NR) {
+ pages += HPAGE_PMD_NR;
+ nr_huge_updates++;
+ }
+ continue;
+ }
}
/* fall through */
}
if (pmd_none_or_clear_bad(pmd))
continue;
- pages += change_pte_range(vma, pmd, addr, next, newprot,
- dirty_accountable, prot_numa, &all_same_node);
-
- /*
- * If we are changing protections for NUMA hinting faults then
- * set pmd_numa if the examined pages were all on the same
- * node. This allows a regular PMD to be handled as one fault
- * and effectively batches the taking of the PTL
- */
- if (prot_numa && all_same_node)
- change_pmd_protnuma(vma->vm_mm, addr, pmd);
+ this_pages = change_pte_range(vma, pmd, addr, next, newprot,
+ dirty_accountable, prot_numa);
+ pages += this_pages;
} while (pmd++, addr = next, addr != end);
+ if (nr_huge_updates)
+ count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates);
return pages;
}
diff --git a/mm/nobootmem.c b/mm/nobootmem.c
index 61107cf55bb3..2c254d374655 100644
--- a/mm/nobootmem.c
+++ b/mm/nobootmem.c
@@ -82,27 +82,18 @@ void __init free_bootmem_late(unsigned long addr, unsigned long size)
static void __init __free_pages_memory(unsigned long start, unsigned long end)
{
- unsigned long i, start_aligned, end_aligned;
- int order = ilog2(BITS_PER_LONG);
+ int order;
- start_aligned = (start + (BITS_PER_LONG - 1)) & ~(BITS_PER_LONG - 1);
- end_aligned = end & ~(BITS_PER_LONG - 1);
+ while (start < end) {
+ order = min(MAX_ORDER - 1UL, __ffs(start));
- if (end_aligned <= start_aligned) {
- for (i = start; i < end; i++)
- __free_pages_bootmem(pfn_to_page(i), 0);
+ while (start + (1UL << order) > end)
+ order--;
- return;
- }
-
- for (i = start; i < start_aligned; i++)
- __free_pages_bootmem(pfn_to_page(i), 0);
+ __free_pages_bootmem(pfn_to_page(start), order);
- for (i = start_aligned; i < end_aligned; i += BITS_PER_LONG)
- __free_pages_bootmem(pfn_to_page(i), order);
-
- for (i = end_aligned; i < end; i++)
- __free_pages_bootmem(pfn_to_page(i), 0);
+ start += (1UL << order);
+ }
}
static unsigned long __init __free_memory_core(phys_addr_t start,
diff --git a/mm/nommu.c b/mm/nommu.c
index ecd1f158548e..fec093adad9c 100644
--- a/mm/nommu.c
+++ b/mm/nommu.c
@@ -937,7 +937,7 @@ static int validate_mmap_request(struct file *file,
struct address_space *mapping;
/* files must support mmap */
- if (!file->f_op || !file->f_op->mmap)
+ if (!file->f_op->mmap)
return -ENODEV;
/* work out if what we've got could possibly be shared
@@ -1948,13 +1948,12 @@ int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
goto error;
}
- allowed = totalram_pages * sysctl_overcommit_ratio / 100;
+ allowed = vm_commit_limit();
/*
* Reserve some 3% for root
*/
if (!cap_sys_admin)
allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
- allowed += total_swap_pages;
/*
* Don't let a single process grow so big a user can't recover
diff --git a/mm/oom_kill.c b/mm/oom_kill.c
index 98e75f2ac7bc..1e4a600a6163 100644
--- a/mm/oom_kill.c
+++ b/mm/oom_kill.c
@@ -161,7 +161,7 @@ unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
* The baseline for the badness score is the proportion of RAM that each
* task's rss, pagetable and swap space use.
*/
- points = get_mm_rss(p->mm) + p->mm->nr_ptes +
+ points = get_mm_rss(p->mm) + atomic_long_read(&p->mm->nr_ptes) +
get_mm_counter(p->mm, MM_SWAPENTS);
task_unlock(p);
@@ -364,10 +364,10 @@ static void dump_tasks(const struct mem_cgroup *memcg, const nodemask_t *nodemas
continue;
}
- pr_info("[%5d] %5d %5d %8lu %8lu %7lu %8lu %5hd %s\n",
+ pr_info("[%5d] %5d %5d %8lu %8lu %7ld %8lu %5hd %s\n",
task->pid, from_kuid(&init_user_ns, task_uid(task)),
task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
- task->mm->nr_ptes,
+ atomic_long_read(&task->mm->nr_ptes),
get_mm_counter(task->mm, MM_SWAPENTS),
task->signal->oom_score_adj, task->comm);
task_unlock(task);
@@ -678,9 +678,12 @@ out:
*/
void pagefault_out_of_memory(void)
{
- struct zonelist *zonelist = node_zonelist(first_online_node,
- GFP_KERNEL);
+ struct zonelist *zonelist;
+ if (mem_cgroup_oom_synchronize(true))
+ return;
+
+ zonelist = node_zonelist(first_online_node, GFP_KERNEL);
if (try_set_zonelist_oom(zonelist, GFP_KERNEL)) {
out_of_memory(NULL, 0, 0, NULL, false);
clear_zonelist_oom(zonelist, GFP_KERNEL);
diff --git a/mm/page-writeback.c b/mm/page-writeback.c
index 3f0c895c71fe..63807583d8e8 100644
--- a/mm/page-writeback.c
+++ b/mm/page-writeback.c
@@ -36,8 +36,11 @@
#include <linux/pagevec.h>
#include <linux/timer.h>
#include <linux/sched/rt.h>
+#include <linux/mm_inline.h>
#include <trace/events/writeback.h>
+#include "internal.h"
+
/*
* Sleep at most 200ms at a time in balance_dirty_pages().
*/
@@ -241,9 +244,6 @@ static unsigned long global_dirtyable_memory(void)
if (!vm_highmem_is_dirtyable)
x -= highmem_dirtyable_memory(x);
- /* Subtract min_free_kbytes */
- x -= min_t(unsigned long, x, min_free_kbytes >> (PAGE_SHIFT - 10));
-
return x + 1; /* Ensure that we never return 0 */
}
@@ -585,6 +585,37 @@ unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
}
/*
+ * setpoint - dirty 3
+ * f(dirty) := 1.0 + (----------------)
+ * limit - setpoint
+ *
+ * it's a 3rd order polynomial that subjects to
+ *
+ * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
+ * (2) f(setpoint) = 1.0 => the balance point
+ * (3) f(limit) = 0 => the hard limit
+ * (4) df/dx <= 0 => negative feedback control
+ * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
+ * => fast response on large errors; small oscillation near setpoint
+ */
+static inline long long pos_ratio_polynom(unsigned long setpoint,
+ unsigned long dirty,
+ unsigned long limit)
+{
+ long long pos_ratio;
+ long x;
+
+ x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
+ limit - setpoint + 1);
+ pos_ratio = x;
+ pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
+ pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
+ pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
+
+ return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
+}
+
+/*
* Dirty position control.
*
* (o) global/bdi setpoints
@@ -682,26 +713,80 @@ static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
/*
* global setpoint
*
- * setpoint - dirty 3
- * f(dirty) := 1.0 + (----------------)
- * limit - setpoint
+ * See comment for pos_ratio_polynom().
+ */
+ setpoint = (freerun + limit) / 2;
+ pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
+
+ /*
+ * The strictlimit feature is a tool preventing mistrusted filesystems
+ * from growing a large number of dirty pages before throttling. For
+ * such filesystems balance_dirty_pages always checks bdi counters
+ * against bdi limits. Even if global "nr_dirty" is under "freerun".
+ * This is especially important for fuse which sets bdi->max_ratio to
+ * 1% by default. Without strictlimit feature, fuse writeback may
+ * consume arbitrary amount of RAM because it is accounted in
+ * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
*
- * it's a 3rd order polynomial that subjects to
+ * Here, in bdi_position_ratio(), we calculate pos_ratio based on
+ * two values: bdi_dirty and bdi_thresh. Let's consider an example:
+ * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
+ * limits are set by default to 10% and 20% (background and throttle).
+ * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
+ * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is
+ * about ~6K pages (as the average of background and throttle bdi
+ * limits). The 3rd order polynomial will provide positive feedback if
+ * bdi_dirty is under bdi_setpoint and vice versa.
*
- * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
- * (2) f(setpoint) = 1.0 => the balance point
- * (3) f(limit) = 0 => the hard limit
- * (4) df/dx <= 0 => negative feedback control
- * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
- * => fast response on large errors; small oscillation near setpoint
+ * Note, that we cannot use global counters in these calculations
+ * because we want to throttle process writing to a strictlimit BDI
+ * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
+ * in the example above).
*/
- setpoint = (freerun + limit) / 2;
- x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
- limit - setpoint + 1);
- pos_ratio = x;
- pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
- pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
- pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
+ if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
+ long long bdi_pos_ratio;
+ unsigned long bdi_bg_thresh;
+
+ if (bdi_dirty < 8)
+ return min_t(long long, pos_ratio * 2,
+ 2 << RATELIMIT_CALC_SHIFT);
+
+ if (bdi_dirty >= bdi_thresh)
+ return 0;
+
+ bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh);
+ bdi_setpoint = dirty_freerun_ceiling(bdi_thresh,
+ bdi_bg_thresh);
+
+ if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh)
+ return 0;
+
+ bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty,
+ bdi_thresh);
+
+ /*
+ * Typically, for strictlimit case, bdi_setpoint << setpoint
+ * and pos_ratio >> bdi_pos_ratio. In the other words global
+ * state ("dirty") is not limiting factor and we have to
+ * make decision based on bdi counters. But there is an
+ * important case when global pos_ratio should get precedence:
+ * global limits are exceeded (e.g. due to activities on other
+ * BDIs) while given strictlimit BDI is below limit.
+ *
+ * "pos_ratio * bdi_pos_ratio" would work for the case above,
+ * but it would look too non-natural for the case of all
+ * activity in the system coming from a single strictlimit BDI
+ * with bdi->max_ratio == 100%.
+ *
+ * Note that min() below somewhat changes the dynamics of the
+ * control system. Normally, pos_ratio value can be well over 3
+ * (when globally we are at freerun and bdi is well below bdi
+ * setpoint). Now the maximum pos_ratio in the same situation
+ * is 2. We might want to tweak this if we observe the control
+ * system is too slow to adapt.
+ */
+ return min(pos_ratio, bdi_pos_ratio);
+ }
/*
* We have computed basic pos_ratio above based on global situation. If
@@ -994,6 +1079,27 @@ static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
* keep that period small to reduce time lags).
*/
step = 0;
+
+ /*
+ * For strictlimit case, calculations above were based on bdi counters
+ * and limits (starting from pos_ratio = bdi_position_ratio() and up to
+ * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
+ * Hence, to calculate "step" properly, we have to use bdi_dirty as
+ * "dirty" and bdi_setpoint as "setpoint".
+ *
+ * We rampup dirty_ratelimit forcibly if bdi_dirty is low because
+ * it's possible that bdi_thresh is close to zero due to inactivity
+ * of backing device (see the implementation of bdi_dirty_limit()).
+ */
+ if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
+ dirty = bdi_dirty;
+ if (bdi_dirty < 8)
+ setpoint = bdi_dirty + 1;
+ else
+ setpoint = (bdi_thresh +
+ bdi_dirty_limit(bdi, bg_thresh)) / 2;
+ }
+
if (dirty < setpoint) {
x = min(bdi->balanced_dirty_ratelimit,
min(balanced_dirty_ratelimit, task_ratelimit));
@@ -1104,11 +1210,11 @@ static unsigned long dirty_poll_interval(unsigned long dirty,
return 1;
}
-static long bdi_max_pause(struct backing_dev_info *bdi,
- unsigned long bdi_dirty)
+static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
+ unsigned long bdi_dirty)
{
- long bw = bdi->avg_write_bandwidth;
- long t;
+ unsigned long bw = bdi->avg_write_bandwidth;
+ unsigned long t;
/*
* Limit pause time for small memory systems. If sleeping for too long
@@ -1120,7 +1226,7 @@ static long bdi_max_pause(struct backing_dev_info *bdi,
t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
t++;
- return min_t(long, t, MAX_PAUSE);
+ return min_t(unsigned long, t, MAX_PAUSE);
}
static long bdi_min_pause(struct backing_dev_info *bdi,
@@ -1198,6 +1304,56 @@ static long bdi_min_pause(struct backing_dev_info *bdi,
return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
}
+static inline void bdi_dirty_limits(struct backing_dev_info *bdi,
+ unsigned long dirty_thresh,
+ unsigned long background_thresh,
+ unsigned long *bdi_dirty,
+ unsigned long *bdi_thresh,
+ unsigned long *bdi_bg_thresh)
+{
+ unsigned long bdi_reclaimable;
+
+ /*
+ * bdi_thresh is not treated as some limiting factor as
+ * dirty_thresh, due to reasons
+ * - in JBOD setup, bdi_thresh can fluctuate a lot
+ * - in a system with HDD and USB key, the USB key may somehow
+ * go into state (bdi_dirty >> bdi_thresh) either because
+ * bdi_dirty starts high, or because bdi_thresh drops low.
+ * In this case we don't want to hard throttle the USB key
+ * dirtiers for 100 seconds until bdi_dirty drops under
+ * bdi_thresh. Instead the auxiliary bdi control line in
+ * bdi_position_ratio() will let the dirtier task progress
+ * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
+ */
+ *bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
+
+ if (bdi_bg_thresh)
+ *bdi_bg_thresh = div_u64((u64)*bdi_thresh *
+ background_thresh,
+ dirty_thresh);
+
+ /*
+ * In order to avoid the stacked BDI deadlock we need
+ * to ensure we accurately count the 'dirty' pages when
+ * the threshold is low.
+ *
+ * Otherwise it would be possible to get thresh+n pages
+ * reported dirty, even though there are thresh-m pages
+ * actually dirty; with m+n sitting in the percpu
+ * deltas.
+ */
+ if (*bdi_thresh < 2 * bdi_stat_error(bdi)) {
+ bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
+ *bdi_dirty = bdi_reclaimable +
+ bdi_stat_sum(bdi, BDI_WRITEBACK);
+ } else {
+ bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
+ *bdi_dirty = bdi_reclaimable +
+ bdi_stat(bdi, BDI_WRITEBACK);
+ }
+}
+
/*
* balance_dirty_pages() must be called by processes which are generating dirty
* data. It looks at the number of dirty pages in the machine and will force
@@ -1209,13 +1365,9 @@ static void balance_dirty_pages(struct address_space *mapping,
unsigned long pages_dirtied)
{
unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
- unsigned long bdi_reclaimable;
unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
- unsigned long bdi_dirty;
- unsigned long freerun;
unsigned long background_thresh;
unsigned long dirty_thresh;
- unsigned long bdi_thresh;
long period;
long pause;
long max_pause;
@@ -1226,10 +1378,16 @@ static void balance_dirty_pages(struct address_space *mapping,
unsigned long dirty_ratelimit;
unsigned long pos_ratio;
struct backing_dev_info *bdi = mapping->backing_dev_info;
+ bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
unsigned long start_time = jiffies;
for (;;) {
unsigned long now = jiffies;
+ unsigned long uninitialized_var(bdi_thresh);
+ unsigned long thresh;
+ unsigned long uninitialized_var(bdi_dirty);
+ unsigned long dirty;
+ unsigned long bg_thresh;
/*
* Unstable writes are a feature of certain networked
@@ -1243,61 +1401,44 @@ static void balance_dirty_pages(struct address_space *mapping,
global_dirty_limits(&background_thresh, &dirty_thresh);
+ if (unlikely(strictlimit)) {
+ bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
+ &bdi_dirty, &bdi_thresh, &bg_thresh);
+
+ dirty = bdi_dirty;
+ thresh = bdi_thresh;
+ } else {
+ dirty = nr_dirty;
+ thresh = dirty_thresh;
+ bg_thresh = background_thresh;
+ }
+
/*
* Throttle it only when the background writeback cannot
* catch-up. This avoids (excessively) small writeouts
- * when the bdi limits are ramping up.
+ * when the bdi limits are ramping up in case of !strictlimit.
+ *
+ * In strictlimit case make decision based on the bdi counters
+ * and limits. Small writeouts when the bdi limits are ramping
+ * up are the price we consciously pay for strictlimit-ing.
*/
- freerun = dirty_freerun_ceiling(dirty_thresh,
- background_thresh);
- if (nr_dirty <= freerun) {
+ if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
current->dirty_paused_when = now;
current->nr_dirtied = 0;
current->nr_dirtied_pause =
- dirty_poll_interval(nr_dirty, dirty_thresh);
+ dirty_poll_interval(dirty, thresh);
break;
}
if (unlikely(!writeback_in_progress(bdi)))
bdi_start_background_writeback(bdi);
- /*
- * bdi_thresh is not treated as some limiting factor as
- * dirty_thresh, due to reasons
- * - in JBOD setup, bdi_thresh can fluctuate a lot
- * - in a system with HDD and USB key, the USB key may somehow
- * go into state (bdi_dirty >> bdi_thresh) either because
- * bdi_dirty starts high, or because bdi_thresh drops low.
- * In this case we don't want to hard throttle the USB key
- * dirtiers for 100 seconds until bdi_dirty drops under
- * bdi_thresh. Instead the auxiliary bdi control line in
- * bdi_position_ratio() will let the dirtier task progress
- * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
- */
- bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
-
- /*
- * In order to avoid the stacked BDI deadlock we need
- * to ensure we accurately count the 'dirty' pages when
- * the threshold is low.
- *
- * Otherwise it would be possible to get thresh+n pages
- * reported dirty, even though there are thresh-m pages
- * actually dirty; with m+n sitting in the percpu
- * deltas.
- */
- if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
- bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
- bdi_dirty = bdi_reclaimable +
- bdi_stat_sum(bdi, BDI_WRITEBACK);
- } else {
- bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
- bdi_dirty = bdi_reclaimable +
- bdi_stat(bdi, BDI_WRITEBACK);
- }
+ if (!strictlimit)
+ bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
+ &bdi_dirty, &bdi_thresh, NULL);
dirty_exceeded = (bdi_dirty > bdi_thresh) &&
- (nr_dirty > dirty_thresh);
+ ((nr_dirty > dirty_thresh) || strictlimit);
if (dirty_exceeded && !bdi->dirty_exceeded)
bdi->dirty_exceeded = 1;
@@ -2002,11 +2143,17 @@ EXPORT_SYMBOL(account_page_dirtied);
/*
* Helper function for set_page_writeback family.
+ *
+ * The caller must hold mem_cgroup_begin/end_update_page_stat() lock
+ * while calling this function.
+ * See test_set_page_writeback for example.
+ *
* NOTE: Unlike account_page_dirtied this does not rely on being atomic
* wrt interrupts.
*/
void account_page_writeback(struct page *page)
{
+ mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
inc_zone_page_state(page, NR_WRITEBACK);
}
EXPORT_SYMBOL(account_page_writeback);
@@ -2223,7 +2370,10 @@ int test_clear_page_writeback(struct page *page)
{
struct address_space *mapping = page_mapping(page);
int ret;
+ bool locked;
+ unsigned long memcg_flags;
+ mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags);
if (mapping) {
struct backing_dev_info *bdi = mapping->backing_dev_info;
unsigned long flags;
@@ -2244,9 +2394,11 @@ int test_clear_page_writeback(struct page *page)
ret = TestClearPageWriteback(page);
}
if (ret) {
+ mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
dec_zone_page_state(page, NR_WRITEBACK);
inc_zone_page_state(page, NR_WRITTEN);
}
+ mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags);
return ret;
}
@@ -2254,7 +2406,10 @@ int test_set_page_writeback(struct page *page)
{
struct address_space *mapping = page_mapping(page);
int ret;
+ bool locked;
+ unsigned long memcg_flags;
+ mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags);
if (mapping) {
struct backing_dev_info *bdi = mapping->backing_dev_info;
unsigned long flags;
@@ -2281,6 +2436,7 @@ int test_set_page_writeback(struct page *page)
}
if (!ret)
account_page_writeback(page);
+ mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags);
return ret;
}
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index c2b59dbda196..580a5f075ed0 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -56,6 +56,7 @@
#include <linux/ftrace_event.h>
#include <linux/memcontrol.h>
#include <linux/prefetch.h>
+#include <linux/mm_inline.h>
#include <linux/migrate.h>
#include <linux/page-debug-flags.h>
#include <linux/hugetlb.h>
@@ -233,8 +234,8 @@ int page_group_by_mobility_disabled __read_mostly;
void set_pageblock_migratetype(struct page *page, int migratetype)
{
-
- if (unlikely(page_group_by_mobility_disabled))
+ if (unlikely(page_group_by_mobility_disabled &&
+ migratetype < MIGRATE_PCPTYPES))
migratetype = MIGRATE_UNMOVABLE;
set_pageblock_flags_group(page, (unsigned long)migratetype,
@@ -488,8 +489,10 @@ __find_buddy_index(unsigned long page_idx, unsigned int order)
* (c) a page and its buddy have the same order &&
* (d) a page and its buddy are in the same zone.
*
- * For recording whether a page is in the buddy system, we set ->_mapcount -2.
- * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
+ * For recording whether a page is in the buddy system, we set ->_mapcount
+ * PAGE_BUDDY_MAPCOUNT_VALUE.
+ * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
+ * serialized by zone->lock.
*
* For recording page's order, we use page_private(page).
*/
@@ -527,8 +530,9 @@ static inline int page_is_buddy(struct page *page, struct page *buddy,
* as necessary, plus some accounting needed to play nicely with other
* parts of the VM system.
* At each level, we keep a list of pages, which are heads of continuous
- * free pages of length of (1 << order) and marked with _mapcount -2. Page's
- * order is recorded in page_private(page) field.
+ * free pages of length of (1 << order) and marked with _mapcount
+ * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
+ * field.
* So when we are allocating or freeing one, we can derive the state of the
* other. That is, if we allocate a small block, and both were
* free, the remainder of the region must be split into blocks.
@@ -622,7 +626,7 @@ static inline int free_pages_check(struct page *page)
bad_page(page);
return 1;
}
- page_nid_reset_last(page);
+ page_cpupid_reset_last(page);
if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
return 0;
@@ -647,7 +651,6 @@ static void free_pcppages_bulk(struct zone *zone, int count,
int to_free = count;
spin_lock(&zone->lock);
- zone->all_unreclaimable = 0;
zone->pages_scanned = 0;
while (to_free) {
@@ -696,7 +699,6 @@ static void free_one_page(struct zone *zone, struct page *page, int order,
int migratetype)
{
spin_lock(&zone->lock);
- zone->all_unreclaimable = 0;
zone->pages_scanned = 0;
__free_one_page(page, zone, order, migratetype);
@@ -721,7 +723,8 @@ static bool free_pages_prepare(struct page *page, unsigned int order)
return false;
if (!PageHighMem(page)) {
- debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
+ debug_check_no_locks_freed(page_address(page),
+ PAGE_SIZE << order);
debug_check_no_obj_freed(page_address(page),
PAGE_SIZE << order);
}
@@ -750,19 +753,19 @@ static void __free_pages_ok(struct page *page, unsigned int order)
void __init __free_pages_bootmem(struct page *page, unsigned int order)
{
unsigned int nr_pages = 1 << order;
+ struct page *p = page;
unsigned int loop;
- prefetchw(page);
- for (loop = 0; loop < nr_pages; loop++) {
- struct page *p = &page[loop];
-
- if (loop + 1 < nr_pages)
- prefetchw(p + 1);
+ prefetchw(p);
+ for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
+ prefetchw(p + 1);
__ClearPageReserved(p);
set_page_count(p, 0);
}
+ __ClearPageReserved(p);
+ set_page_count(p, 0);
- page_zone(page)->managed_pages += 1 << order;
+ page_zone(page)->managed_pages += nr_pages;
set_page_refcounted(page);
__free_pages(page, order);
}
@@ -885,7 +888,7 @@ struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
int migratetype)
{
unsigned int current_order;
- struct free_area * area;
+ struct free_area *area;
struct page *page;
/* Find a page of the appropriate size in the preferred list */
@@ -1007,14 +1010,64 @@ static void change_pageblock_range(struct page *pageblock_page,
}
}
+/*
+ * If breaking a large block of pages, move all free pages to the preferred
+ * allocation list. If falling back for a reclaimable kernel allocation, be
+ * more aggressive about taking ownership of free pages.
+ *
+ * On the other hand, never change migration type of MIGRATE_CMA pageblocks
+ * nor move CMA pages to different free lists. We don't want unmovable pages
+ * to be allocated from MIGRATE_CMA areas.
+ *
+ * Returns the new migratetype of the pageblock (or the same old migratetype
+ * if it was unchanged).
+ */
+static int try_to_steal_freepages(struct zone *zone, struct page *page,
+ int start_type, int fallback_type)
+{
+ int current_order = page_order(page);
+
+ /*
+ * When borrowing from MIGRATE_CMA, we need to release the excess
+ * buddy pages to CMA itself.
+ */
+ if (is_migrate_cma(fallback_type))
+ return fallback_type;
+
+ /* Take ownership for orders >= pageblock_order */
+ if (current_order >= pageblock_order) {
+ change_pageblock_range(page, current_order, start_type);
+ return start_type;
+ }
+
+ if (current_order >= pageblock_order / 2 ||
+ start_type == MIGRATE_RECLAIMABLE ||
+ page_group_by_mobility_disabled) {
+ int pages;
+
+ pages = move_freepages_block(zone, page, start_type);
+
+ /* Claim the whole block if over half of it is free */
+ if (pages >= (1 << (pageblock_order-1)) ||
+ page_group_by_mobility_disabled) {
+
+ set_pageblock_migratetype(page, start_type);
+ return start_type;
+ }
+
+ }
+
+ return fallback_type;
+}
+
/* Remove an element from the buddy allocator from the fallback list */
static inline struct page *
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
{
- struct free_area * area;
+ struct free_area *area;
int current_order;
struct page *page;
- int migratetype, i;
+ int migratetype, new_type, i;
/* Find the largest possible block of pages in the other list */
for (current_order = MAX_ORDER-1; current_order >= order;
@@ -1034,51 +1087,19 @@ __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
struct page, lru);
area->nr_free--;
- /*
- * If breaking a large block of pages, move all free
- * pages to the preferred allocation list. If falling
- * back for a reclaimable kernel allocation, be more
- * aggressive about taking ownership of free pages
- *
- * On the other hand, never change migration
- * type of MIGRATE_CMA pageblocks nor move CMA
- * pages on different free lists. We don't
- * want unmovable pages to be allocated from
- * MIGRATE_CMA areas.
- */
- if (!is_migrate_cma(migratetype) &&
- (current_order >= pageblock_order / 2 ||
- start_migratetype == MIGRATE_RECLAIMABLE ||
- page_group_by_mobility_disabled)) {
- int pages;
- pages = move_freepages_block(zone, page,
- start_migratetype);
-
- /* Claim the whole block if over half of it is free */
- if (pages >= (1 << (pageblock_order-1)) ||
- page_group_by_mobility_disabled)
- set_pageblock_migratetype(page,
- start_migratetype);
-
- migratetype = start_migratetype;
- }
+ new_type = try_to_steal_freepages(zone, page,
+ start_migratetype,
+ migratetype);
/* Remove the page from the freelists */
list_del(&page->lru);
rmv_page_order(page);
- /* Take ownership for orders >= pageblock_order */
- if (current_order >= pageblock_order &&
- !is_migrate_cma(migratetype))
- change_pageblock_range(page, current_order,
- start_migratetype);
-
expand(zone, page, order, current_order, area,
- is_migrate_cma(migratetype)
- ? migratetype : start_migratetype);
+ new_type);
trace_mm_page_alloc_extfrag(page, order, current_order,
- start_migratetype, migratetype);
+ start_migratetype, migratetype, new_type);
return page;
}
@@ -1281,7 +1302,7 @@ void mark_free_pages(struct zone *zone)
int order, t;
struct list_head *curr;
- if (!zone->spanned_pages)
+ if (zone_is_empty(zone))
return;
spin_lock_irqsave(&zone->lock, flags);
@@ -1526,6 +1547,7 @@ again:
get_pageblock_migratetype(page));
}
+ __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
__count_zone_vm_events(PGALLOC, zone, 1 << order);
zone_statistics(preferred_zone, zone, gfp_flags);
local_irq_restore(flags);
@@ -1683,7 +1705,7 @@ bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
* comments in mmzone.h. Reduces cache footprint of zonelist scans
* that have to skip over a lot of full or unallowed zones.
*
- * If the zonelist cache is present in the passed in zonelist, then
+ * If the zonelist cache is present in the passed zonelist, then
* returns a pointer to the allowed node mask (either the current
* tasks mems_allowed, or node_states[N_MEMORY].)
*
@@ -1792,6 +1814,11 @@ static void zlc_clear_zones_full(struct zonelist *zonelist)
bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
}
+static bool zone_local(struct zone *local_zone, struct zone *zone)
+{
+ return node_distance(local_zone->node, zone->node) == LOCAL_DISTANCE;
+}
+
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
@@ -1829,6 +1856,11 @@ static void zlc_clear_zones_full(struct zonelist *zonelist)
{
}
+static bool zone_local(struct zone *local_zone, struct zone *zone)
+{
+ return true;
+}
+
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
return true;
@@ -1860,16 +1892,41 @@ get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
zonelist_scan:
/*
* Scan zonelist, looking for a zone with enough free.
- * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
+ * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
*/
for_each_zone_zonelist_nodemask(zone, z, zonelist,
high_zoneidx, nodemask) {
+ unsigned long mark;
+
if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
!zlc_zone_worth_trying(zonelist, z, allowednodes))
continue;
if ((alloc_flags & ALLOC_CPUSET) &&
!cpuset_zone_allowed_softwall(zone, gfp_mask))
continue;
+ BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
+ if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
+ goto try_this_zone;
+ /*
+ * Distribute pages in proportion to the individual
+ * zone size to ensure fair page aging. The zone a
+ * page was allocated in should have no effect on the
+ * time the page has in memory before being reclaimed.
+ *
+ * When zone_reclaim_mode is enabled, try to stay in
+ * local zones in the fastpath. If that fails, the
+ * slowpath is entered, which will do another pass
+ * starting with the local zones, but ultimately fall
+ * back to remote zones that do not partake in the
+ * fairness round-robin cycle of this zonelist.
+ */
+ if (alloc_flags & ALLOC_WMARK_LOW) {
+ if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
+ continue;
+ if (zone_reclaim_mode &&
+ !zone_local(preferred_zone, zone))
+ continue;
+ }
/*
* When allocating a page cache page for writing, we
* want to get it from a zone that is within its dirty
@@ -1900,16 +1957,11 @@ zonelist_scan:
(gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
goto this_zone_full;
- BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
- if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
- unsigned long mark;
+ mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
+ if (!zone_watermark_ok(zone, order, mark,
+ classzone_idx, alloc_flags)) {
int ret;
- mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
- if (zone_watermark_ok(zone, order, mark,
- classzone_idx, alloc_flags))
- goto try_this_zone;
-
if (IS_ENABLED(CONFIG_NUMA) &&
!did_zlc_setup && nr_online_nodes > 1) {
/*
@@ -2321,16 +2373,30 @@ __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
return page;
}
-static inline
-void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
- enum zone_type high_zoneidx,
- enum zone_type classzone_idx)
+static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
+ struct zonelist *zonelist,
+ enum zone_type high_zoneidx,
+ struct zone *preferred_zone)
{
struct zoneref *z;
struct zone *zone;
- for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
- wakeup_kswapd(zone, order, classzone_idx);
+ for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
+ if (!(gfp_mask & __GFP_NO_KSWAPD))
+ wakeup_kswapd(zone, order, zone_idx(preferred_zone));
+ /*
+ * Only reset the batches of zones that were actually
+ * considered in the fast path, we don't want to
+ * thrash fairness information for zones that are not
+ * actually part of this zonelist's round-robin cycle.
+ */
+ if (zone_reclaim_mode && !zone_local(preferred_zone, zone))
+ continue;
+ mod_zone_page_state(zone, NR_ALLOC_BATCH,
+ high_wmark_pages(zone) -
+ low_wmark_pages(zone) -
+ zone_page_state(zone, NR_ALLOC_BATCH));
+ }
}
static inline int
@@ -2426,9 +2492,8 @@ __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
goto nopage;
restart:
- if (!(gfp_mask & __GFP_NO_KSWAPD))
- wake_all_kswapd(order, zonelist, high_zoneidx,
- zone_idx(preferred_zone));
+ prepare_slowpath(gfp_mask, order, zonelist,
+ high_zoneidx, preferred_zone);
/*
* OK, we're below the kswapd watermark and have kicked background
@@ -2522,7 +2587,7 @@ rebalance:
* running out of options and have to consider going OOM
*/
if (!did_some_progress) {
- if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
+ if (oom_gfp_allowed(gfp_mask)) {
if (oom_killer_disabled)
goto nopage;
/* Coredumps can quickly deplete all memory reserves */
@@ -3095,7 +3160,7 @@ void show_free_areas(unsigned int filter)
K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
zone->pages_scanned,
- (zone->all_unreclaimable ? "yes" : "no")
+ (!zone_reclaimable(zone) ? "yes" : "no")
);
printk("lowmem_reserve[]:");
for (i = 0; i < MAX_NR_ZONES; i++)
@@ -3104,7 +3169,7 @@ void show_free_areas(unsigned int filter)
}
for_each_populated_zone(zone) {
- unsigned long nr[MAX_ORDER], flags, order, total = 0;
+ unsigned long nr[MAX_ORDER], flags, order, total = 0;
unsigned char types[MAX_ORDER];
if (skip_free_areas_node(filter, zone_to_nid(zone)))
@@ -3416,11 +3481,11 @@ static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
static int default_zonelist_order(void)
{
int nid, zone_type;
- unsigned long low_kmem_size,total_size;
+ unsigned long low_kmem_size, total_size;
struct zone *z;
int average_size;
/*
- * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
+ * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
* If they are really small and used heavily, the system can fall
* into OOM very easily.
* This function detect ZONE_DMA/DMA32 size and configures zone order.
@@ -3452,9 +3517,9 @@ static int default_zonelist_order(void)
return ZONELIST_ORDER_NODE;
/*
* look into each node's config.
- * If there is a node whose DMA/DMA32 memory is very big area on
- * local memory, NODE_ORDER may be suitable.
- */
+ * If there is a node whose DMA/DMA32 memory is very big area on
+ * local memory, NODE_ORDER may be suitable.
+ */
average_size = total_size /
(nodes_weight(node_states[N_MEMORY]) + 1);
for_each_online_node(nid) {
@@ -3810,8 +3875,6 @@ static inline unsigned long wait_table_bits(unsigned long size)
return ffz(~size);
}
-#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
-
/*
* Check if a pageblock contains reserved pages
*/
@@ -3944,7 +4007,7 @@ void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
mminit_verify_page_links(page, zone, nid, pfn);
init_page_count(page);
page_mapcount_reset(page);
- page_nid_reset_last(page);
+ page_cpupid_reset_last(page);
SetPageReserved(page);
/*
* Mark the block movable so that blocks are reserved for
@@ -4180,7 +4243,7 @@ int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
if (!zone->wait_table)
return -ENOMEM;
- for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
+ for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
init_waitqueue_head(zone->wait_table + i);
return 0;
@@ -4195,7 +4258,7 @@ static __meminit void zone_pcp_init(struct zone *zone)
*/
zone->pageset = &boot_pageset;
- if (zone->present_pages)
+ if (populated_zone(zone))
printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
zone->name, zone->present_pages,
zone_batchsize(zone));
@@ -4237,7 +4300,7 @@ int __meminit init_currently_empty_zone(struct zone *zone,
int __meminit __early_pfn_to_nid(unsigned long pfn)
{
unsigned long start_pfn, end_pfn;
- int i, nid;
+ int nid;
/*
* NOTE: The following SMP-unsafe globals are only used early in boot
* when the kernel is running single-threaded.
@@ -4248,15 +4311,14 @@ int __meminit __early_pfn_to_nid(unsigned long pfn)
if (last_start_pfn <= pfn && pfn < last_end_pfn)
return last_nid;
- for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
- if (start_pfn <= pfn && pfn < end_pfn) {
- last_start_pfn = start_pfn;
- last_end_pfn = end_pfn;
- last_nid = nid;
- return nid;
- }
- /* This is a memory hole */
- return -1;
+ nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
+ if (nid != -1) {
+ last_start_pfn = start_pfn;
+ last_end_pfn = end_pfn;
+ last_nid = nid;
+ }
+
+ return nid;
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
@@ -4586,7 +4648,7 @@ static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
-void __init set_pageblock_order(void)
+void __paginginit set_pageblock_order(void)
{
unsigned int order;
@@ -4614,7 +4676,7 @@ void __init set_pageblock_order(void)
* include/linux/pageblock-flags.h for the values of pageblock_order based on
* the kernel config
*/
-void __init set_pageblock_order(void)
+void __paginginit set_pageblock_order(void)
{
}
@@ -4728,8 +4790,11 @@ static void __paginginit free_area_init_core(struct pglist_data *pgdat,
spin_lock_init(&zone->lru_lock);
zone_seqlock_init(zone);
zone->zone_pgdat = pgdat;
-
zone_pcp_init(zone);
+
+ /* For bootup, initialized properly in watermark setup */
+ mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
+
lruvec_init(&zone->lruvec);
if (!size)
continue;
@@ -4930,7 +4995,7 @@ static unsigned long __init early_calculate_totalpages(void)
if (pages)
node_set_state(nid, N_MEMORY);
}
- return totalpages;
+ return totalpages;
}
/*
@@ -5047,7 +5112,7 @@ restart:
/*
* Some kernelcore has been met, update counts and
* break if the kernelcore for this node has been
- * satisified
+ * satisfied
*/
required_kernelcore -= min(required_kernelcore,
size_pages);
@@ -5061,7 +5126,7 @@ restart:
* If there is still required_kernelcore, we do another pass with one
* less node in the count. This will push zone_movable_pfn[nid] further
* along on the nodes that still have memory until kernelcore is
- * satisified
+ * satisfied
*/
usable_nodes--;
if (usable_nodes && required_kernelcore > usable_nodes)
@@ -5087,7 +5152,7 @@ static void check_for_memory(pg_data_t *pgdat, int nid)
for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
struct zone *zone = &pgdat->node_zones[zone_type];
- if (zone->present_pages) {
+ if (populated_zone(zone)) {
node_set_state(nid, N_HIGH_MEMORY);
if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
zone_type <= ZONE_NORMAL)
@@ -5286,8 +5351,10 @@ void __init mem_init_print_info(const char *str)
* 3) .rodata.* may be embedded into .text or .data sections.
*/
#define adj_init_size(start, end, size, pos, adj) \
- if (start <= pos && pos < end && size > adj) \
- size -= adj;
+ do { \
+ if (start <= pos && pos < end && size > adj) \
+ size -= adj; \
+ } while (0)
adj_init_size(__init_begin, __init_end, init_data_size,
_sinittext, init_code_size);
@@ -5361,7 +5428,7 @@ static int page_alloc_cpu_notify(struct notifier_block *self,
* This is only okay since the processor is dead and cannot
* race with what we are doing.
*/
- refresh_cpu_vm_stats(cpu);
+ cpu_vm_stats_fold(cpu);
}
return NOTIFY_OK;
}
@@ -5498,6 +5565,11 @@ static void __setup_per_zone_wmarks(void)
zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
+ __mod_zone_page_state(zone, NR_ALLOC_BATCH,
+ high_wmark_pages(zone) -
+ low_wmark_pages(zone) -
+ zone_page_state(zone, NR_ALLOC_BATCH));
+
setup_zone_migrate_reserve(zone);
spin_unlock_irqrestore(&zone->lock, flags);
}
@@ -5570,7 +5642,7 @@ static void __meminit setup_per_zone_inactive_ratio(void)
* we want it large (64MB max). But it is not linear, because network
* bandwidth does not increase linearly with machine size. We use
*
- * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
+ * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
* min_free_kbytes = sqrt(lowmem_kbytes * 16)
*
* which yields
@@ -5614,11 +5686,11 @@ int __meminit init_per_zone_wmark_min(void)
module_init(init_per_zone_wmark_min)
/*
- * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
+ * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
* that we can call two helper functions whenever min_free_kbytes
* changes.
*/
-int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
+int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
proc_dointvec(table, write, buffer, length, ppos);
@@ -5682,8 +5754,8 @@ int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
/*
* percpu_pagelist_fraction - changes the pcp->high for each zone on each
- * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
- * can have before it gets flushed back to buddy allocator.
+ * cpu. It is the fraction of total pages in each zone that a hot per cpu
+ * pagelist can have before it gets flushed back to buddy allocator.
*/
int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
@@ -5745,9 +5817,10 @@ void *__init alloc_large_system_hash(const char *tablename,
if (!numentries) {
/* round applicable memory size up to nearest megabyte */
numentries = nr_kernel_pages;
- numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
- numentries >>= 20 - PAGE_SHIFT;
- numentries <<= 20 - PAGE_SHIFT;
+
+ /* It isn't necessary when PAGE_SIZE >= 1MB */
+ if (PAGE_SHIFT < 20)
+ numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
/* limit to 1 bucket per 2^scale bytes of low memory */
if (scale > PAGE_SHIFT)
@@ -5900,7 +5973,7 @@ void set_pageblock_flags_group(struct page *page, unsigned long flags,
* This function checks whether pageblock includes unmovable pages or not.
* If @count is not zero, it is okay to include less @count unmovable pages
*
- * PageLRU check wihtout isolation or lru_lock could race so that
+ * PageLRU check without isolation or lru_lock could race so that
* MIGRATE_MOVABLE block might include unmovable pages. It means you can't
* expect this function should be exact.
*/
@@ -5928,6 +6001,17 @@ bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
continue;
page = pfn_to_page(check);
+
+ /*
+ * Hugepages are not in LRU lists, but they're movable.
+ * We need not scan over tail pages bacause we don't
+ * handle each tail page individually in migration.
+ */
+ if (PageHuge(page)) {
+ iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
+ continue;
+ }
+
/*
* We can't use page_count without pin a page
* because another CPU can free compound page.
@@ -6274,10 +6358,6 @@ __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
list_del(&page->lru);
rmv_page_order(page);
zone->free_area[order].nr_free--;
-#ifdef CONFIG_HIGHMEM
- if (PageHighMem(page))
- totalhigh_pages -= 1 << order;
-#endif
for (i = 0; i < (1 << order); i++)
SetPageReserved((page+i));
pfn += (1 << order);
diff --git a/mm/page_io.c b/mm/page_io.c
index ba05b64e5d8d..8c79a4764be0 100644
--- a/mm/page_io.c
+++ b/mm/page_io.c
@@ -266,7 +266,6 @@ int __swap_writepage(struct page *page, struct writeback_control *wbc,
init_sync_kiocb(&kiocb, swap_file);
kiocb.ki_pos = page_file_offset(page);
- kiocb.ki_left = PAGE_SIZE;
kiocb.ki_nbytes = PAGE_SIZE;
set_page_writeback(page);
diff --git a/mm/page_isolation.c b/mm/page_isolation.c
index 0cee10ffb98d..d1473b2e9481 100644
--- a/mm/page_isolation.c
+++ b/mm/page_isolation.c
@@ -6,6 +6,7 @@
#include <linux/page-isolation.h>
#include <linux/pageblock-flags.h>
#include <linux/memory.h>
+#include <linux/hugetlb.h>
#include "internal.h"
int set_migratetype_isolate(struct page *page, bool skip_hwpoisoned_pages)
@@ -252,6 +253,19 @@ struct page *alloc_migrate_target(struct page *page, unsigned long private,
{
gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
+ /*
+ * TODO: allocate a destination hugepage from a nearest neighbor node,
+ * accordance with memory policy of the user process if possible. For
+ * now as a simple work-around, we use the next node for destination.
+ */
+ if (PageHuge(page)) {
+ nodemask_t src = nodemask_of_node(page_to_nid(page));
+ nodemask_t dst;
+ nodes_complement(dst, src);
+ return alloc_huge_page_node(page_hstate(compound_head(page)),
+ next_node(page_to_nid(page), dst));
+ }
+
if (PageHighMem(page))
gfp_mask |= __GFP_HIGHMEM;
diff --git a/mm/pagewalk.c b/mm/pagewalk.c
index 5da2cbcfdbb5..2beeabf502c5 100644
--- a/mm/pagewalk.c
+++ b/mm/pagewalk.c
@@ -242,7 +242,7 @@ int walk_page_range(unsigned long addr, unsigned long end,
if (err)
break;
pgd++;
- } while (addr = next, addr != end);
+ } while (addr = next, addr < end);
return err;
}
diff --git a/mm/percpu.c b/mm/percpu.c
index 8c8e08f3a692..0d10defe951e 100644
--- a/mm/percpu.c
+++ b/mm/percpu.c
@@ -1706,8 +1706,9 @@ int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
out_free_areas:
for (group = 0; group < ai->nr_groups; group++)
- free_fn(areas[group],
- ai->groups[group].nr_units * ai->unit_size);
+ if (areas[group])
+ free_fn(areas[group],
+ ai->groups[group].nr_units * ai->unit_size);
out_free:
pcpu_free_alloc_info(ai);
if (areas)
diff --git a/mm/pgtable-generic.c b/mm/pgtable-generic.c
index e1a6e4fab016..cbb38545d9d6 100644
--- a/mm/pgtable-generic.c
+++ b/mm/pgtable-generic.c
@@ -10,6 +10,30 @@
#include <asm/tlb.h>
#include <asm-generic/pgtable.h>
+/*
+ * If a p?d_bad entry is found while walking page tables, report
+ * the error, before resetting entry to p?d_none. Usually (but
+ * very seldom) called out from the p?d_none_or_clear_bad macros.
+ */
+
+void pgd_clear_bad(pgd_t *pgd)
+{
+ pgd_ERROR(*pgd);
+ pgd_clear(pgd);
+}
+
+void pud_clear_bad(pud_t *pud)
+{
+ pud_ERROR(*pud);
+ pud_clear(pud);
+}
+
+void pmd_clear_bad(pmd_t *pmd)
+{
+ pmd_ERROR(*pmd);
+ pmd_clear(pmd);
+}
+
#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
/*
* Only sets the access flags (dirty, accessed), as well as write
@@ -127,14 +151,14 @@ void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
pgtable_t pgtable)
{
- assert_spin_locked(&mm->page_table_lock);
+ assert_spin_locked(pmd_lockptr(mm, pmdp));
/* FIFO */
- if (!mm->pmd_huge_pte)
+ if (!pmd_huge_pte(mm, pmdp))
INIT_LIST_HEAD(&pgtable->lru);
else
- list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
- mm->pmd_huge_pte = pgtable;
+ list_add(&pgtable->lru, &pmd_huge_pte(mm, pmdp)->lru);
+ pmd_huge_pte(mm, pmdp) = pgtable;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#endif
@@ -146,14 +170,14 @@ pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
{
pgtable_t pgtable;
- assert_spin_locked(&mm->page_table_lock);
+ assert_spin_locked(pmd_lockptr(mm, pmdp));
/* FIFO */
- pgtable = mm->pmd_huge_pte;
+ pgtable = pmd_huge_pte(mm, pmdp);
if (list_empty(&pgtable->lru))
- mm->pmd_huge_pte = NULL;
+ pmd_huge_pte(mm, pmdp) = NULL;
else {
- mm->pmd_huge_pte = list_entry(pgtable->lru.next,
+ pmd_huge_pte(mm, pmdp) = list_entry(pgtable->lru.next,
struct page, lru);
list_del(&pgtable->lru);
}
diff --git a/mm/readahead.c b/mm/readahead.c
index 829a77c62834..7cdbb44aa90b 100644
--- a/mm/readahead.c
+++ b/mm/readahead.c
@@ -371,10 +371,10 @@ static int try_context_readahead(struct address_space *mapping,
size = count_history_pages(mapping, ra, offset, max);
/*
- * no history pages:
+ * not enough history pages:
* it could be a random read
*/
- if (!size)
+ if (size <= req_size)
return 0;
/*
@@ -385,8 +385,8 @@ static int try_context_readahead(struct address_space *mapping,
size *= 2;
ra->start = offset;
- ra->size = get_init_ra_size(size + req_size, max);
- ra->async_size = ra->size;
+ ra->size = min(size + req_size, max);
+ ra->async_size = 1;
return 1;
}
@@ -401,6 +401,7 @@ ondemand_readahead(struct address_space *mapping,
unsigned long req_size)
{
unsigned long max = max_sane_readahead(ra->ra_pages);
+ pgoff_t prev_offset;
/*
* start of file
@@ -452,8 +453,11 @@ ondemand_readahead(struct address_space *mapping,
/*
* sequential cache miss
+ * trivial case: (offset - prev_offset) == 1
+ * unaligned reads: (offset - prev_offset) == 0
*/
- if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)
+ prev_offset = (unsigned long long)ra->prev_pos >> PAGE_CACHE_SHIFT;
+ if (offset - prev_offset <= 1UL)
goto initial_readahead;
/*
@@ -569,7 +573,7 @@ static ssize_t
do_readahead(struct address_space *mapping, struct file *filp,
pgoff_t index, unsigned long nr)
{
- if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
+ if (!mapping || !mapping->a_ops)
return -EINVAL;
force_page_cache_readahead(mapping, filp, index, nr);
diff --git a/mm/rmap.c b/mm/rmap.c
index 07748e68b729..55c8b8dc9ffb 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -601,7 +601,7 @@ pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
if (unlikely(PageHuge(page))) {
pte = huge_pte_offset(mm, address);
- ptl = &mm->page_table_lock;
+ ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
goto check;
}
@@ -665,25 +665,23 @@ int page_referenced_one(struct page *page, struct vm_area_struct *vma,
unsigned long *vm_flags)
{
struct mm_struct *mm = vma->vm_mm;
+ spinlock_t *ptl;
int referenced = 0;
if (unlikely(PageTransHuge(page))) {
pmd_t *pmd;
- spin_lock(&mm->page_table_lock);
/*
* rmap might return false positives; we must filter
* these out using page_check_address_pmd().
*/
pmd = page_check_address_pmd(page, mm, address,
- PAGE_CHECK_ADDRESS_PMD_FLAG);
- if (!pmd) {
- spin_unlock(&mm->page_table_lock);
+ PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
+ if (!pmd)
goto out;
- }
if (vma->vm_flags & VM_LOCKED) {
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
*mapcount = 0; /* break early from loop */
*vm_flags |= VM_LOCKED;
goto out;
@@ -692,10 +690,9 @@ int page_referenced_one(struct page *page, struct vm_area_struct *vma,
/* go ahead even if the pmd is pmd_trans_splitting() */
if (pmdp_clear_flush_young_notify(vma, address, pmd))
referenced++;
- spin_unlock(&mm->page_table_lock);
+ spin_unlock(ptl);
} else {
pte_t *pte;
- spinlock_t *ptl;
/*
* rmap might return false positives; we must filter
@@ -1052,11 +1049,11 @@ void do_page_add_anon_rmap(struct page *page,
{
int first = atomic_inc_and_test(&page->_mapcount);
if (first) {
- if (!PageTransHuge(page))
- __inc_zone_page_state(page, NR_ANON_PAGES);
- else
+ if (PageTransHuge(page))
__inc_zone_page_state(page,
NR_ANON_TRANSPARENT_HUGEPAGES);
+ __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
+ hpage_nr_pages(page));
}
if (unlikely(PageKsm(page)))
return;
@@ -1085,10 +1082,10 @@ void page_add_new_anon_rmap(struct page *page,
VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
SetPageSwapBacked(page);
atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
- if (!PageTransHuge(page))
- __inc_zone_page_state(page, NR_ANON_PAGES);
- else
+ if (PageTransHuge(page))
__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
+ __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
+ hpage_nr_pages(page));
__page_set_anon_rmap(page, vma, address, 1);
if (!mlocked_vma_newpage(vma, page)) {
SetPageActive(page);
@@ -1111,7 +1108,7 @@ void page_add_file_rmap(struct page *page)
mem_cgroup_begin_update_page_stat(page, &locked, &flags);
if (atomic_inc_and_test(&page->_mapcount)) {
__inc_zone_page_state(page, NR_FILE_MAPPED);
- mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
+ mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
}
mem_cgroup_end_update_page_stat(page, &locked, &flags);
}
@@ -1148,14 +1145,14 @@ void page_remove_rmap(struct page *page)
goto out;
if (anon) {
mem_cgroup_uncharge_page(page);
- if (!PageTransHuge(page))
- __dec_zone_page_state(page, NR_ANON_PAGES);
- else
+ if (PageTransHuge(page))
__dec_zone_page_state(page,
NR_ANON_TRANSPARENT_HUGEPAGES);
+ __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
+ -hpage_nr_pages(page));
} else {
__dec_zone_page_state(page, NR_FILE_MAPPED);
- mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
+ mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
mem_cgroup_end_update_page_stat(page, &locked, &flags);
}
if (unlikely(PageMlocked(page)))
diff --git a/mm/shmem.c b/mm/shmem.c
index 526149846d0a..902a14842b74 100644
--- a/mm/shmem.c
+++ b/mm/shmem.c
@@ -1205,7 +1205,7 @@ repeat:
gfp & GFP_RECLAIM_MASK);
if (error)
goto decused;
- error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
+ error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
if (!error) {
error = shmem_add_to_page_cache(page, mapping, index,
gfp, NULL);
@@ -2819,6 +2819,10 @@ int __init shmem_init(void)
{
int error;
+ /* If rootfs called this, don't re-init */
+ if (shmem_inode_cachep)
+ return 0;
+
error = bdi_init(&shmem_backing_dev_info);
if (error)
goto out4;
@@ -2914,13 +2918,8 @@ static struct dentry_operations anon_ops = {
.d_dname = simple_dname
};
-/**
- * shmem_file_setup - get an unlinked file living in tmpfs
- * @name: name for dentry (to be seen in /proc/<pid>/maps
- * @size: size to be set for the file
- * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
- */
-struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
+static struct file *__shmem_file_setup(const char *name, loff_t size,
+ unsigned long flags, unsigned int i_flags)
{
struct file *res;
struct inode *inode;
@@ -2953,6 +2952,7 @@ struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags
if (!inode)
goto put_dentry;
+ inode->i_flags |= i_flags;
d_instantiate(path.dentry, inode);
inode->i_size = size;
clear_nlink(inode); /* It is unlinked */
@@ -2973,6 +2973,32 @@ put_memory:
shmem_unacct_size(flags, size);
return res;
}
+
+/**
+ * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
+ * kernel internal. There will be NO LSM permission checks against the
+ * underlying inode. So users of this interface must do LSM checks at a
+ * higher layer. The one user is the big_key implementation. LSM checks
+ * are provided at the key level rather than the inode level.
+ * @name: name for dentry (to be seen in /proc/<pid>/maps
+ * @size: size to be set for the file
+ * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
+ */
+struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
+{
+ return __shmem_file_setup(name, size, flags, S_PRIVATE);
+}
+
+/**
+ * shmem_file_setup - get an unlinked file living in tmpfs
+ * @name: name for dentry (to be seen in /proc/<pid>/maps
+ * @size: size to be set for the file
+ * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
+ */
+struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
+{
+ return __shmem_file_setup(name, size, flags, 0);
+}
EXPORT_SYMBOL_GPL(shmem_file_setup);
/**
diff --git a/mm/slab.c b/mm/slab.c
index 2580db062df9..eb043bf05f4c 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -164,72 +164,6 @@
static bool pfmemalloc_active __read_mostly;
/*
- * kmem_bufctl_t:
- *
- * Bufctl's are used for linking objs within a slab
- * linked offsets.
- *
- * This implementation relies on "struct page" for locating the cache &
- * slab an object belongs to.
- * This allows the bufctl structure to be small (one int), but limits
- * the number of objects a slab (not a cache) can contain when off-slab
- * bufctls are used. The limit is the size of the largest general cache
- * that does not use off-slab slabs.
- * For 32bit archs with 4 kB pages, is this 56.
- * This is not serious, as it is only for large objects, when it is unwise
- * to have too many per slab.
- * Note: This limit can be raised by introducing a general cache whose size
- * is less than 512 (PAGE_SIZE<<3), but greater than 256.
- */
-
-typedef unsigned int kmem_bufctl_t;
-#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
-#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
-#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
-#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
-
-/*
- * struct slab_rcu
- *
- * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
- * arrange for kmem_freepages to be called via RCU. This is useful if
- * we need to approach a kernel structure obliquely, from its address
- * obtained without the usual locking. We can lock the structure to
- * stabilize it and check it's still at the given address, only if we
- * can be sure that the memory has not been meanwhile reused for some
- * other kind of object (which our subsystem's lock might corrupt).
- *
- * rcu_read_lock before reading the address, then rcu_read_unlock after
- * taking the spinlock within the structure expected at that address.
- */
-struct slab_rcu {
- struct rcu_head head;
- struct kmem_cache *cachep;
- void *addr;
-};
-
-/*
- * struct slab
- *
- * Manages the objs in a slab. Placed either at the beginning of mem allocated
- * for a slab, or allocated from an general cache.
- * Slabs are chained into three list: fully used, partial, fully free slabs.
- */
-struct slab {
- union {
- struct {
- struct list_head list;
- unsigned long colouroff;
- void *s_mem; /* including colour offset */
- unsigned int inuse; /* num of objs active in slab */
- kmem_bufctl_t free;
- unsigned short nodeid;
- };
- struct slab_rcu __slab_cover_slab_rcu;
- };
-};
-
-/*
* struct array_cache
*
* Purpose:
@@ -456,18 +390,10 @@ static inline struct kmem_cache *virt_to_cache(const void *obj)
return page->slab_cache;
}
-static inline struct slab *virt_to_slab(const void *obj)
-{
- struct page *page = virt_to_head_page(obj);
-
- VM_BUG_ON(!PageSlab(page));
- return page->slab_page;
-}
-
-static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
+static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
unsigned int idx)
{
- return slab->s_mem + cache->size * idx;
+ return page->s_mem + cache->size * idx;
}
/*
@@ -477,9 +403,9 @@ static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
* reciprocal_divide(offset, cache->reciprocal_buffer_size)
*/
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
- const struct slab *slab, void *obj)
+ const struct page *page, void *obj)
{
- u32 offset = (obj - slab->s_mem);
+ u32 offset = (obj - page->s_mem);
return reciprocal_divide(offset, cache->reciprocal_buffer_size);
}
@@ -641,7 +567,7 @@ static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
{
- return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
+ return ALIGN(nr_objs * sizeof(unsigned int), align);
}
/*
@@ -660,8 +586,7 @@ static void cache_estimate(unsigned long gfporder, size_t buffer_size,
* on it. For the latter case, the memory allocated for a
* slab is used for:
*
- * - The struct slab
- * - One kmem_bufctl_t for each object
+ * - One unsigned int for each object
* - Padding to respect alignment of @align
* - @buffer_size bytes for each object
*
@@ -674,8 +599,6 @@ static void cache_estimate(unsigned long gfporder, size_t buffer_size,
mgmt_size = 0;
nr_objs = slab_size / buffer_size;
- if (nr_objs > SLAB_LIMIT)
- nr_objs = SLAB_LIMIT;
} else {
/*
* Ignore padding for the initial guess. The padding
@@ -685,8 +608,7 @@ static void cache_estimate(unsigned long gfporder, size_t buffer_size,
* into the memory allocation when taking the padding
* into account.
*/
- nr_objs = (slab_size - sizeof(struct slab)) /
- (buffer_size + sizeof(kmem_bufctl_t));
+ nr_objs = (slab_size) / (buffer_size + sizeof(unsigned int));
/*
* This calculated number will be either the right
@@ -696,9 +618,6 @@ static void cache_estimate(unsigned long gfporder, size_t buffer_size,
> slab_size)
nr_objs--;
- if (nr_objs > SLAB_LIMIT)
- nr_objs = SLAB_LIMIT;
-
mgmt_size = slab_mgmt_size(nr_objs, align);
}
*num = nr_objs;
@@ -829,10 +748,8 @@ static struct array_cache *alloc_arraycache(int node, int entries,
return nc;
}
-static inline bool is_slab_pfmemalloc(struct slab *slabp)
+static inline bool is_slab_pfmemalloc(struct page *page)
{
- struct page *page = virt_to_page(slabp->s_mem);
-
return PageSlabPfmemalloc(page);
}
@@ -841,23 +758,23 @@ static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
struct array_cache *ac)
{
struct kmem_cache_node *n = cachep->node[numa_mem_id()];
- struct slab *slabp;
+ struct page *page;
unsigned long flags;
if (!pfmemalloc_active)
return;
spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(slabp, &n->slabs_full, list)
- if (is_slab_pfmemalloc(slabp))
+ list_for_each_entry(page, &n->slabs_full, lru)
+ if (is_slab_pfmemalloc(page))
goto out;
- list_for_each_entry(slabp, &n->slabs_partial, list)
- if (is_slab_pfmemalloc(slabp))
+ list_for_each_entry(page, &n->slabs_partial, lru)
+ if (is_slab_pfmemalloc(page))
goto out;
- list_for_each_entry(slabp, &n->slabs_free, list)
- if (is_slab_pfmemalloc(slabp))
+ list_for_each_entry(page, &n->slabs_free, lru)
+ if (is_slab_pfmemalloc(page))
goto out;
pfmemalloc_active = false;
@@ -897,8 +814,8 @@ static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
*/
n = cachep->node[numa_mem_id()];
if (!list_empty(&n->slabs_free) && force_refill) {
- struct slab *slabp = virt_to_slab(objp);
- ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
+ struct page *page = virt_to_head_page(objp);
+ ClearPageSlabPfmemalloc(page);
clear_obj_pfmemalloc(&objp);
recheck_pfmemalloc_active(cachep, ac);
return objp;
@@ -1099,8 +1016,7 @@ static void drain_alien_cache(struct kmem_cache *cachep,
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
- struct slab *slabp = virt_to_slab(objp);
- int nodeid = slabp->nodeid;
+ int nodeid = page_to_nid(virt_to_page(objp));
struct kmem_cache_node *n;
struct array_cache *alien = NULL;
int node;
@@ -1111,7 +1027,7 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
* Make sure we are not freeing a object from another node to the array
* cache on this cpu.
*/
- if (likely(slabp->nodeid == node))
+ if (likely(nodeid == node))
return 0;
n = cachep->node[node];
@@ -1512,6 +1428,8 @@ void __init kmem_cache_init(void)
{
int i;
+ BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
+ sizeof(struct rcu_head));
kmem_cache = &kmem_cache_boot;
setup_node_pointer(kmem_cache);
@@ -1687,7 +1605,7 @@ static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
struct kmem_cache_node *n;
- struct slab *slabp;
+ struct page *page;
unsigned long flags;
int node;
@@ -1706,15 +1624,15 @@ slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
continue;
spin_lock_irqsave(&n->list_lock, flags);
- list_for_each_entry(slabp, &n->slabs_full, list) {
+ list_for_each_entry(page, &n->slabs_full, lru) {
active_objs += cachep->num;
active_slabs++;
}
- list_for_each_entry(slabp, &n->slabs_partial, list) {
- active_objs += slabp->inuse;
+ list_for_each_entry(page, &n->slabs_partial, lru) {
+ active_objs += page->active;
active_slabs++;
}
- list_for_each_entry(slabp, &n->slabs_free, list)
+ list_for_each_entry(page, &n->slabs_free, lru)
num_slabs++;
free_objects += n->free_objects;
@@ -1736,19 +1654,11 @@ slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
* did not request dmaable memory, we might get it, but that
* would be relatively rare and ignorable.
*/
-static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
+static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
+ int nodeid)
{
struct page *page;
int nr_pages;
- int i;
-
-#ifndef CONFIG_MMU
- /*
- * Nommu uses slab's for process anonymous memory allocations, and thus
- * requires __GFP_COMP to properly refcount higher order allocations
- */
- flags |= __GFP_COMP;
-#endif
flags |= cachep->allocflags;
if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
@@ -1772,12 +1682,9 @@ static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
else
add_zone_page_state(page_zone(page),
NR_SLAB_UNRECLAIMABLE, nr_pages);
- for (i = 0; i < nr_pages; i++) {
- __SetPageSlab(page + i);
-
- if (page->pfmemalloc)
- SetPageSlabPfmemalloc(page + i);
- }
+ __SetPageSlab(page);
+ if (page->pfmemalloc)
+ SetPageSlabPfmemalloc(page);
memcg_bind_pages(cachep, cachep->gfporder);
if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
@@ -1789,17 +1696,15 @@ static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
kmemcheck_mark_unallocated_pages(page, nr_pages);
}
- return page_address(page);
+ return page;
}
/*
* Interface to system's page release.
*/
-static void kmem_freepages(struct kmem_cache *cachep, void *addr)
+static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
{
- unsigned long i = (1 << cachep->gfporder);
- struct page *page = virt_to_page(addr);
- const unsigned long nr_freed = i;
+ const unsigned long nr_freed = (1 << cachep->gfporder);
kmemcheck_free_shadow(page, cachep->gfporder);
@@ -1809,27 +1714,28 @@ static void kmem_freepages(struct kmem_cache *cachep, void *addr)
else
sub_zone_page_state(page_zone(page),
NR_SLAB_UNRECLAIMABLE, nr_freed);
- while (i--) {
- BUG_ON(!PageSlab(page));
- __ClearPageSlabPfmemalloc(page);
- __ClearPageSlab(page);
- page++;
- }
+
+ BUG_ON(!PageSlab(page));
+ __ClearPageSlabPfmemalloc(page);
+ __ClearPageSlab(page);
+ page_mapcount_reset(page);
+ page->mapping = NULL;
memcg_release_pages(cachep, cachep->gfporder);
if (current->reclaim_state)
current->reclaim_state->reclaimed_slab += nr_freed;
- free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
+ __free_memcg_kmem_pages(page, cachep->gfporder);
}
static void kmem_rcu_free(struct rcu_head *head)
{
- struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
- struct kmem_cache *cachep = slab_rcu->cachep;
+ struct kmem_cache *cachep;
+ struct page *page;
- kmem_freepages(cachep, slab_rcu->addr);
- if (OFF_SLAB(cachep))
- kmem_cache_free(cachep->slabp_cache, slab_rcu);
+ page = container_of(head, struct page, rcu_head);
+ cachep = page->slab_cache;
+
+ kmem_freepages(cachep, page);
}
#if DEBUG
@@ -1978,19 +1884,19 @@ static void check_poison_obj(struct kmem_cache *cachep, void *objp)
/* Print some data about the neighboring objects, if they
* exist:
*/
- struct slab *slabp = virt_to_slab(objp);
+ struct page *page = virt_to_head_page(objp);
unsigned int objnr;
- objnr = obj_to_index(cachep, slabp, objp);
+ objnr = obj_to_index(cachep, page, objp);
if (objnr) {
- objp = index_to_obj(cachep, slabp, objnr - 1);
+ objp = index_to_obj(cachep, page, objnr - 1);
realobj = (char *)objp + obj_offset(cachep);
printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
realobj, size);
print_objinfo(cachep, objp, 2);
}
if (objnr + 1 < cachep->num) {
- objp = index_to_obj(cachep, slabp, objnr + 1);
+ objp = index_to_obj(cachep, page, objnr + 1);
realobj = (char *)objp + obj_offset(cachep);
printk(KERN_ERR "Next obj: start=%p, len=%d\n",
realobj, size);
@@ -2001,11 +1907,12 @@ static void check_poison_obj(struct kmem_cache *cachep, void *objp)
#endif
#if DEBUG
-static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
+static void slab_destroy_debugcheck(struct kmem_cache *cachep,
+ struct page *page)
{
int i;
for (i = 0; i < cachep->num; i++) {
- void *objp = index_to_obj(cachep, slabp, i);
+ void *objp = index_to_obj(cachep, page, i);
if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
@@ -2030,7 +1937,8 @@ static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slab
}
}
#else
-static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
+static void slab_destroy_debugcheck(struct kmem_cache *cachep,
+ struct page *page)
{
}
#endif
@@ -2044,23 +1952,34 @@ static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slab
* Before calling the slab must have been unlinked from the cache. The
* cache-lock is not held/needed.
*/
-static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
+static void slab_destroy(struct kmem_cache *cachep, struct page *page)
{
- void *addr = slabp->s_mem - slabp->colouroff;
+ void *freelist;
- slab_destroy_debugcheck(cachep, slabp);
+ freelist = page->freelist;
+ slab_destroy_debugcheck(cachep, page);
if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
- struct slab_rcu *slab_rcu;
+ struct rcu_head *head;
+
+ /*
+ * RCU free overloads the RCU head over the LRU.
+ * slab_page has been overloeaded over the LRU,
+ * however it is not used from now on so that
+ * we can use it safely.
+ */
+ head = (void *)&page->rcu_head;
+ call_rcu(head, kmem_rcu_free);
- slab_rcu = (struct slab_rcu *)slabp;
- slab_rcu->cachep = cachep;
- slab_rcu->addr = addr;
- call_rcu(&slab_rcu->head, kmem_rcu_free);
} else {
- kmem_freepages(cachep, addr);
- if (OFF_SLAB(cachep))
- kmem_cache_free(cachep->slabp_cache, slabp);
+ kmem_freepages(cachep, page);
}
+
+ /*
+ * From now on, we don't use freelist
+ * although actual page can be freed in rcu context
+ */
+ if (OFF_SLAB(cachep))
+ kmem_cache_free(cachep->freelist_cache, freelist);
}
/**
@@ -2097,8 +2016,8 @@ static size_t calculate_slab_order(struct kmem_cache *cachep,
* use off-slab slabs. Needed to avoid a possible
* looping condition in cache_grow().
*/
- offslab_limit = size - sizeof(struct slab);
- offslab_limit /= sizeof(kmem_bufctl_t);
+ offslab_limit = size;
+ offslab_limit /= sizeof(unsigned int);
if (num > offslab_limit)
break;
@@ -2220,7 +2139,7 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
int
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
{
- size_t left_over, slab_size, ralign;
+ size_t left_over, freelist_size, ralign;
gfp_t gfp;
int err;
size_t size = cachep->size;
@@ -2339,22 +2258,21 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
if (!cachep->num)
return -E2BIG;
- slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
- + sizeof(struct slab), cachep->align);
+ freelist_size =
+ ALIGN(cachep->num * sizeof(unsigned int), cachep->align);
/*
* If the slab has been placed off-slab, and we have enough space then
* move it on-slab. This is at the expense of any extra colouring.
*/
- if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
+ if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
flags &= ~CFLGS_OFF_SLAB;
- left_over -= slab_size;
+ left_over -= freelist_size;
}
if (flags & CFLGS_OFF_SLAB) {
/* really off slab. No need for manual alignment */
- slab_size =
- cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
+ freelist_size = cachep->num * sizeof(unsigned int);
#ifdef CONFIG_PAGE_POISONING
/* If we're going to use the generic kernel_map_pages()
@@ -2371,16 +2289,16 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
if (cachep->colour_off < cachep->align)
cachep->colour_off = cachep->align;
cachep->colour = left_over / cachep->colour_off;
- cachep->slab_size = slab_size;
+ cachep->freelist_size = freelist_size;
cachep->flags = flags;
- cachep->allocflags = 0;
+ cachep->allocflags = __GFP_COMP;
if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
cachep->allocflags |= GFP_DMA;
cachep->size = size;
cachep->reciprocal_buffer_size = reciprocal_value(size);
if (flags & CFLGS_OFF_SLAB) {
- cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
+ cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
/*
* This is a possibility for one of the malloc_sizes caches.
* But since we go off slab only for object size greater than
@@ -2388,7 +2306,7 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
* this should not happen at all.
* But leave a BUG_ON for some lucky dude.
*/
- BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
+ BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
}
err = setup_cpu_cache(cachep, gfp);
@@ -2494,7 +2412,7 @@ static int drain_freelist(struct kmem_cache *cache,
{
struct list_head *p;
int nr_freed;
- struct slab *slabp;
+ struct page *page;
nr_freed = 0;
while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
@@ -2506,18 +2424,18 @@ static int drain_freelist(struct kmem_cache *cache,
goto out;
}
- slabp = list_entry(p, struct slab, list);
+ page = list_entry(p, struct page, lru);
#if DEBUG
- BUG_ON(slabp->inuse);
+ BUG_ON(page->active);
#endif
- list_del(&slabp->list);
+ list_del(&page->lru);
/*
* Safe to drop the lock. The slab is no longer linked
* to the cache.
*/
n->free_objects -= cache->num;
spin_unlock_irq(&n->list_lock);
- slab_destroy(cache, slabp);
+ slab_destroy(cache, page);
nr_freed++;
}
out:
@@ -2600,52 +2518,42 @@ int __kmem_cache_shutdown(struct kmem_cache *cachep)
* descriptors in kmem_cache_create, we search through the malloc_sizes array.
* If we are creating a malloc_sizes cache here it would not be visible to
* kmem_find_general_cachep till the initialization is complete.
- * Hence we cannot have slabp_cache same as the original cache.
+ * Hence we cannot have freelist_cache same as the original cache.
*/
-static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
- int colour_off, gfp_t local_flags,
- int nodeid)
+static void *alloc_slabmgmt(struct kmem_cache *cachep,
+ struct page *page, int colour_off,
+ gfp_t local_flags, int nodeid)
{
- struct slab *slabp;
+ void *freelist;
+ void *addr = page_address(page);
if (OFF_SLAB(cachep)) {
/* Slab management obj is off-slab. */
- slabp = kmem_cache_alloc_node(cachep->slabp_cache,
+ freelist = kmem_cache_alloc_node(cachep->freelist_cache,
local_flags, nodeid);
- /*
- * If the first object in the slab is leaked (it's allocated
- * but no one has a reference to it), we want to make sure
- * kmemleak does not treat the ->s_mem pointer as a reference
- * to the object. Otherwise we will not report the leak.
- */
- kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
- local_flags);
- if (!slabp)
+ if (!freelist)
return NULL;
} else {
- slabp = objp + colour_off;
- colour_off += cachep->slab_size;
+ freelist = addr + colour_off;
+ colour_off += cachep->freelist_size;
}
- slabp->inuse = 0;
- slabp->colouroff = colour_off;
- slabp->s_mem = objp + colour_off;
- slabp->nodeid = nodeid;
- slabp->free = 0;
- return slabp;
+ page->active = 0;
+ page->s_mem = addr + colour_off;
+ return freelist;
}
-static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
+static inline unsigned int *slab_freelist(struct page *page)
{
- return (kmem_bufctl_t *) (slabp + 1);
+ return (unsigned int *)(page->freelist);
}
static void cache_init_objs(struct kmem_cache *cachep,
- struct slab *slabp)
+ struct page *page)
{
int i;
for (i = 0; i < cachep->num; i++) {
- void *objp = index_to_obj(cachep, slabp, i);
+ void *objp = index_to_obj(cachep, page, i);
#if DEBUG
/* need to poison the objs? */
if (cachep->flags & SLAB_POISON)
@@ -2681,9 +2589,8 @@ static void cache_init_objs(struct kmem_cache *cachep,
if (cachep->ctor)
cachep->ctor(objp);
#endif
- slab_bufctl(slabp)[i] = i + 1;
+ slab_freelist(page)[i] = i;
}
- slab_bufctl(slabp)[i - 1] = BUFCTL_END;
}
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
@@ -2696,41 +2603,41 @@ static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
}
}
-static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
+static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
int nodeid)
{
- void *objp = index_to_obj(cachep, slabp, slabp->free);
- kmem_bufctl_t next;
+ void *objp;
- slabp->inuse++;
- next = slab_bufctl(slabp)[slabp->free];
+ objp = index_to_obj(cachep, page, slab_freelist(page)[page->active]);
+ page->active++;
#if DEBUG
- slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
- WARN_ON(slabp->nodeid != nodeid);
+ WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
#endif
- slabp->free = next;
return objp;
}
-static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
+static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
void *objp, int nodeid)
{
- unsigned int objnr = obj_to_index(cachep, slabp, objp);
-
+ unsigned int objnr = obj_to_index(cachep, page, objp);
#if DEBUG
+ unsigned int i;
+
/* Verify that the slab belongs to the intended node */
- WARN_ON(slabp->nodeid != nodeid);
+ WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
- if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
- printk(KERN_ERR "slab: double free detected in cache "
- "'%s', objp %p\n", cachep->name, objp);
- BUG();
+ /* Verify double free bug */
+ for (i = page->active; i < cachep->num; i++) {
+ if (slab_freelist(page)[i] == objnr) {
+ printk(KERN_ERR "slab: double free detected in cache "
+ "'%s', objp %p\n", cachep->name, objp);
+ BUG();
+ }
}
#endif
- slab_bufctl(slabp)[objnr] = slabp->free;
- slabp->free = objnr;
- slabp->inuse--;
+ page->active--;
+ slab_freelist(page)[page->active] = objnr;
}
/*
@@ -2738,23 +2645,11 @@ static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
* for the slab allocator to be able to lookup the cache and slab of a
* virtual address for kfree, ksize, and slab debugging.
*/
-static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
- void *addr)
+static void slab_map_pages(struct kmem_cache *cache, struct page *page,
+ void *freelist)
{
- int nr_pages;
- struct page *page;
-
- page = virt_to_page(addr);
-
- nr_pages = 1;
- if (likely(!PageCompound(page)))
- nr_pages <<= cache->gfporder;
-
- do {
- page->slab_cache = cache;
- page->slab_page = slab;
- page++;
- } while (--nr_pages);
+ page->slab_cache = cache;
+ page->freelist = freelist;
}
/*
@@ -2762,9 +2657,9 @@ static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
* kmem_cache_alloc() when there are no active objs left in a cache.
*/
static int cache_grow(struct kmem_cache *cachep,
- gfp_t flags, int nodeid, void *objp)
+ gfp_t flags, int nodeid, struct page *page)
{
- struct slab *slabp;
+ void *freelist;
size_t offset;
gfp_t local_flags;
struct kmem_cache_node *n;
@@ -2805,20 +2700,20 @@ static int cache_grow(struct kmem_cache *cachep,
* Get mem for the objs. Attempt to allocate a physical page from
* 'nodeid'.
*/
- if (!objp)
- objp = kmem_getpages(cachep, local_flags, nodeid);
- if (!objp)
+ if (!page)
+ page = kmem_getpages(cachep, local_flags, nodeid);
+ if (!page)
goto failed;
/* Get slab management. */
- slabp = alloc_slabmgmt(cachep, objp, offset,
+ freelist = alloc_slabmgmt(cachep, page, offset,
local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
- if (!slabp)
+ if (!freelist)
goto opps1;
- slab_map_pages(cachep, slabp, objp);
+ slab_map_pages(cachep, page, freelist);
- cache_init_objs(cachep, slabp);
+ cache_init_objs(cachep, page);
if (local_flags & __GFP_WAIT)
local_irq_disable();
@@ -2826,13 +2721,13 @@ static int cache_grow(struct kmem_cache *cachep,
spin_lock(&n->list_lock);
/* Make slab active. */
- list_add_tail(&slabp->list, &(n->slabs_free));
+ list_add_tail(&page->lru, &(n->slabs_free));
STATS_INC_GROWN(cachep);
n->free_objects += cachep->num;
spin_unlock(&n->list_lock);
return 1;
opps1:
- kmem_freepages(cachep, objp);
+ kmem_freepages(cachep, page);
failed:
if (local_flags & __GFP_WAIT)
local_irq_disable();
@@ -2880,9 +2775,8 @@ static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
unsigned long caller)
{
- struct page *page;
unsigned int objnr;
- struct slab *slabp;
+ struct page *page;
BUG_ON(virt_to_cache(objp) != cachep);
@@ -2890,8 +2784,6 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
kfree_debugcheck(objp);
page = virt_to_head_page(objp);
- slabp = page->slab_page;
-
if (cachep->flags & SLAB_RED_ZONE) {
verify_redzone_free(cachep, objp);
*dbg_redzone1(cachep, objp) = RED_INACTIVE;
@@ -2900,14 +2792,11 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
if (cachep->flags & SLAB_STORE_USER)
*dbg_userword(cachep, objp) = (void *)caller;
- objnr = obj_to_index(cachep, slabp, objp);
+ objnr = obj_to_index(cachep, page, objp);
BUG_ON(objnr >= cachep->num);
- BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
+ BUG_ON(objp != index_to_obj(cachep, page, objnr));
-#ifdef CONFIG_DEBUG_SLAB_LEAK
- slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
-#endif
if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
@@ -2924,33 +2813,9 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
return objp;
}
-static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
-{
- kmem_bufctl_t i;
- int entries = 0;
-
- /* Check slab's freelist to see if this obj is there. */
- for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
- entries++;
- if (entries > cachep->num || i >= cachep->num)
- goto bad;
- }
- if (entries != cachep->num - slabp->inuse) {
-bad:
- printk(KERN_ERR "slab: Internal list corruption detected in "
- "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
- cachep->name, cachep->num, slabp, slabp->inuse,
- print_tainted());
- print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
- sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
- 1);
- BUG();
- }
-}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
-#define check_slabp(x,y) do { } while(0)
#endif
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
@@ -2989,7 +2854,7 @@ retry:
while (batchcount > 0) {
struct list_head *entry;
- struct slab *slabp;
+ struct page *page;
/* Get slab alloc is to come from. */
entry = n->slabs_partial.next;
if (entry == &n->slabs_partial) {
@@ -2999,8 +2864,7 @@ retry:
goto must_grow;
}
- slabp = list_entry(entry, struct slab, list);
- check_slabp(cachep, slabp);
+ page = list_entry(entry, struct page, lru);
check_spinlock_acquired(cachep);
/*
@@ -3008,24 +2872,23 @@ retry:
* there must be at least one object available for
* allocation.
*/
- BUG_ON(slabp->inuse >= cachep->num);
+ BUG_ON(page->active >= cachep->num);
- while (slabp->inuse < cachep->num && batchcount--) {
+ while (page->active < cachep->num && batchcount--) {
STATS_INC_ALLOCED(cachep);
STATS_INC_ACTIVE(cachep);
STATS_SET_HIGH(cachep);
- ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
+ ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
node));
}
- check_slabp(cachep, slabp);
/* move slabp to correct slabp list: */
- list_del(&slabp->list);
- if (slabp->free == BUFCTL_END)
- list_add(&slabp->list, &n->slabs_full);
+ list_del(&page->lru);
+ if (page->active == cachep->num)
+ list_add(&page->list, &n->slabs_full);
else
- list_add(&slabp->list, &n->slabs_partial);
+ list_add(&page->list, &n->slabs_partial);
}
must_grow:
@@ -3097,16 +2960,6 @@ static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
*dbg_redzone1(cachep, objp) = RED_ACTIVE;
*dbg_redzone2(cachep, objp) = RED_ACTIVE;
}
-#ifdef CONFIG_DEBUG_SLAB_LEAK
- {
- struct slab *slabp;
- unsigned objnr;
-
- slabp = virt_to_head_page(objp)->slab_page;
- objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
- slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
- }
-#endif
objp += obj_offset(cachep);
if (cachep->ctor && cachep->flags & SLAB_POISON)
cachep->ctor(objp);
@@ -3248,18 +3101,20 @@ retry:
* We may trigger various forms of reclaim on the allowed
* set and go into memory reserves if necessary.
*/
+ struct page *page;
+
if (local_flags & __GFP_WAIT)
local_irq_enable();
kmem_flagcheck(cache, flags);
- obj = kmem_getpages(cache, local_flags, numa_mem_id());
+ page = kmem_getpages(cache, local_flags, numa_mem_id());
if (local_flags & __GFP_WAIT)
local_irq_disable();
- if (obj) {
+ if (page) {
/*
* Insert into the appropriate per node queues
*/
- nid = page_to_nid(virt_to_page(obj));
- if (cache_grow(cache, flags, nid, obj)) {
+ nid = page_to_nid(page);
+ if (cache_grow(cache, flags, nid, page)) {
obj = ____cache_alloc_node(cache,
flags | GFP_THISNODE, nid);
if (!obj)
@@ -3288,7 +3143,7 @@ static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
int nodeid)
{
struct list_head *entry;
- struct slab *slabp;
+ struct page *page;
struct kmem_cache_node *n;
void *obj;
int x;
@@ -3308,26 +3163,24 @@ retry:
goto must_grow;
}
- slabp = list_entry(entry, struct slab, list);
+ page = list_entry(entry, struct page, lru);
check_spinlock_acquired_node(cachep, nodeid);
- check_slabp(cachep, slabp);
STATS_INC_NODEALLOCS(cachep);
STATS_INC_ACTIVE(cachep);
STATS_SET_HIGH(cachep);
- BUG_ON(slabp->inuse == cachep->num);
+ BUG_ON(page->active == cachep->num);
- obj = slab_get_obj(cachep, slabp, nodeid);
- check_slabp(cachep, slabp);
+ obj = slab_get_obj(cachep, page, nodeid);
n->free_objects--;
/* move slabp to correct slabp list: */
- list_del(&slabp->list);
+ list_del(&page->lru);
- if (slabp->free == BUFCTL_END)
- list_add(&slabp->list, &n->slabs_full);
+ if (page->active == cachep->num)
+ list_add(&page->lru, &n->slabs_full);
else
- list_add(&slabp->list, &n->slabs_partial);
+ list_add(&page->lru, &n->slabs_partial);
spin_unlock(&n->list_lock);
goto done;
@@ -3477,23 +3330,21 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
for (i = 0; i < nr_objects; i++) {
void *objp;
- struct slab *slabp;
+ struct page *page;
clear_obj_pfmemalloc(&objpp[i]);
objp = objpp[i];
- slabp = virt_to_slab(objp);
+ page = virt_to_head_page(objp);
n = cachep->node[node];
- list_del(&slabp->list);
+ list_del(&page->lru);
check_spinlock_acquired_node(cachep, node);
- check_slabp(cachep, slabp);
- slab_put_obj(cachep, slabp, objp, node);
+ slab_put_obj(cachep, page, objp, node);
STATS_DEC_ACTIVE(cachep);
n->free_objects++;
- check_slabp(cachep, slabp);
/* fixup slab chains */
- if (slabp->inuse == 0) {
+ if (page->active == 0) {
if (n->free_objects > n->free_limit) {
n->free_objects -= cachep->num;
/* No need to drop any previously held
@@ -3502,16 +3353,16 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
* a different cache, refer to comments before
* alloc_slabmgmt.
*/
- slab_destroy(cachep, slabp);
+ slab_destroy(cachep, page);
} else {
- list_add(&slabp->list, &n->slabs_free);
+ list_add(&page->lru, &n->slabs_free);
}
} else {
/* Unconditionally move a slab to the end of the
* partial list on free - maximum time for the
* other objects to be freed, too.
*/
- list_add_tail(&slabp->list, &n->slabs_partial);
+ list_add_tail(&page->lru, &n->slabs_partial);
}
}
}
@@ -3551,10 +3402,10 @@ free_done:
p = n->slabs_free.next;
while (p != &(n->slabs_free)) {
- struct slab *slabp;
+ struct page *page;
- slabp = list_entry(p, struct slab, list);
- BUG_ON(slabp->inuse);
+ page = list_entry(p, struct page, lru);
+ BUG_ON(page->active);
i++;
p = p->next;
@@ -3982,7 +3833,7 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
VM_BUG_ON(!mutex_is_locked(&slab_mutex));
for_each_memcg_cache_index(i) {
- c = cache_from_memcg(cachep, i);
+ c = cache_from_memcg_idx(cachep, i);
if (c)
/* return value determined by the parent cache only */
__do_tune_cpucache(c, limit, batchcount, shared, gfp);
@@ -4158,7 +4009,7 @@ out:
#ifdef CONFIG_SLABINFO
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
{
- struct slab *slabp;
+ struct page *page;
unsigned long active_objs;
unsigned long num_objs;
unsigned long active_slabs = 0;
@@ -4178,23 +4029,23 @@ void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
check_irq_on();
spin_lock_irq(&n->list_lock);
- list_for_each_entry(slabp, &n->slabs_full, list) {
- if (slabp->inuse != cachep->num && !error)
+ list_for_each_entry(page, &n->slabs_full, lru) {
+ if (page->active != cachep->num && !error)
error = "slabs_full accounting error";
active_objs += cachep->num;
active_slabs++;
}
- list_for_each_entry(slabp, &n->slabs_partial, list) {
- if (slabp->inuse == cachep->num && !error)
- error = "slabs_partial inuse accounting error";
- if (!slabp->inuse && !error)
- error = "slabs_partial/inuse accounting error";
- active_objs += slabp->inuse;
+ list_for_each_entry(page, &n->slabs_partial, lru) {
+ if (page->active == cachep->num && !error)
+ error = "slabs_partial accounting error";
+ if (!page->active && !error)
+ error = "slabs_partial accounting error";
+ active_objs += page->active;
active_slabs++;
}
- list_for_each_entry(slabp, &n->slabs_free, list) {
- if (slabp->inuse && !error)
- error = "slabs_free/inuse accounting error";
+ list_for_each_entry(page, &n->slabs_free, lru) {
+ if (page->active && !error)
+ error = "slabs_free accounting error";
num_slabs++;
}
free_objects += n->free_objects;
@@ -4346,15 +4197,27 @@ static inline int add_caller(unsigned long *n, unsigned long v)
return 1;
}
-static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
+static void handle_slab(unsigned long *n, struct kmem_cache *c,
+ struct page *page)
{
void *p;
- int i;
+ int i, j;
+
if (n[0] == n[1])
return;
- for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
- if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
+ for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
+ bool active = true;
+
+ for (j = page->active; j < c->num; j++) {
+ /* Skip freed item */
+ if (slab_freelist(page)[j] == i) {
+ active = false;
+ break;
+ }
+ }
+ if (!active)
continue;
+
if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
return;
}
@@ -4379,7 +4242,7 @@ static void show_symbol(struct seq_file *m, unsigned long address)
static int leaks_show(struct seq_file *m, void *p)
{
struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
- struct slab *slabp;
+ struct page *page;
struct kmem_cache_node *n;
const char *name;
unsigned long *x = m->private;
@@ -4403,10 +4266,10 @@ static int leaks_show(struct seq_file *m, void *p)
check_irq_on();
spin_lock_irq(&n->list_lock);
- list_for_each_entry(slabp, &n->slabs_full, list)
- handle_slab(x, cachep, slabp);
- list_for_each_entry(slabp, &n->slabs_partial, list)
- handle_slab(x, cachep, slabp);
+ list_for_each_entry(page, &n->slabs_full, lru)
+ handle_slab(x, cachep, page);
+ list_for_each_entry(page, &n->slabs_partial, lru)
+ handle_slab(x, cachep, page);
spin_unlock_irq(&n->list_lock);
}
name = cachep->name;
diff --git a/mm/slab.h b/mm/slab.h
index a535033f7e9a..0859c4241ba1 100644
--- a/mm/slab.h
+++ b/mm/slab.h
@@ -160,7 +160,8 @@ static inline const char *cache_name(struct kmem_cache *s)
return s->name;
}
-static inline struct kmem_cache *cache_from_memcg(struct kmem_cache *s, int idx)
+static inline struct kmem_cache *
+cache_from_memcg_idx(struct kmem_cache *s, int idx)
{
if (!s->memcg_params)
return NULL;
@@ -204,7 +205,8 @@ static inline const char *cache_name(struct kmem_cache *s)
return s->name;
}
-static inline struct kmem_cache *cache_from_memcg(struct kmem_cache *s, int idx)
+static inline struct kmem_cache *
+cache_from_memcg_idx(struct kmem_cache *s, int idx)
{
return NULL;
}
diff --git a/mm/slab_common.c b/mm/slab_common.c
index 538bade6df7d..0b7bb399b0e4 100644
--- a/mm/slab_common.c
+++ b/mm/slab_common.c
@@ -19,6 +19,7 @@
#include <asm/tlbflush.h>
#include <asm/page.h>
#include <linux/memcontrol.h>
+#include <trace/events/kmem.h>
#include "slab.h"
@@ -55,6 +56,7 @@ static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name,
continue;
}
+#if !defined(CONFIG_SLUB) || !defined(CONFIG_SLUB_DEBUG_ON)
/*
* For simplicity, we won't check this in the list of memcg
* caches. We have control over memcg naming, and if there
@@ -68,6 +70,7 @@ static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name,
s = NULL;
return -EINVAL;
}
+#endif
}
WARN_ON(strchr(name, ' ')); /* It confuses parsers */
@@ -373,7 +376,7 @@ struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
int index;
- if (size > KMALLOC_MAX_SIZE) {
+ if (unlikely(size > KMALLOC_MAX_SIZE)) {
WARN_ON_ONCE(!(flags & __GFP_NOWARN));
return NULL;
}
@@ -495,6 +498,15 @@ void __init create_kmalloc_caches(unsigned long flags)
}
#endif /* !CONFIG_SLOB */
+#ifdef CONFIG_TRACING
+void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
+{
+ void *ret = kmalloc_order(size, flags, order);
+ trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
+ return ret;
+}
+EXPORT_SYMBOL(kmalloc_order_trace);
+#endif
#ifdef CONFIG_SLABINFO
@@ -559,7 +571,7 @@ memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
return;
for_each_memcg_cache_index(i) {
- c = cache_from_memcg(s, i);
+ c = cache_from_memcg_idx(s, i);
if (!c)
continue;
diff --git a/mm/slob.c b/mm/slob.c
index 91bd3f2dd2f0..4bf8809dfcce 100644
--- a/mm/slob.c
+++ b/mm/slob.c
@@ -462,11 +462,11 @@ __do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
return ret;
}
-void *__kmalloc_node(size_t size, gfp_t gfp, int node)
+void *__kmalloc(size_t size, gfp_t gfp)
{
- return __do_kmalloc_node(size, gfp, node, _RET_IP_);
+ return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
}
-EXPORT_SYMBOL(__kmalloc_node);
+EXPORT_SYMBOL(__kmalloc);
#ifdef CONFIG_TRACING
void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
@@ -534,7 +534,7 @@ int __kmem_cache_create(struct kmem_cache *c, unsigned long flags)
return 0;
}
-void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
+void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
{
void *b;
@@ -560,7 +560,27 @@ void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
return b;
}
+EXPORT_SYMBOL(slob_alloc_node);
+
+void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
+{
+ return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
+}
+EXPORT_SYMBOL(kmem_cache_alloc);
+
+#ifdef CONFIG_NUMA
+void *__kmalloc_node(size_t size, gfp_t gfp, int node)
+{
+ return __do_kmalloc_node(size, gfp, node, _RET_IP_);
+}
+EXPORT_SYMBOL(__kmalloc_node);
+
+void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
+{
+ return slob_alloc_node(cachep, gfp, node);
+}
EXPORT_SYMBOL(kmem_cache_alloc_node);
+#endif
static void __kmem_cache_free(void *b, int size)
{
diff --git a/mm/slub.c b/mm/slub.c
index 6a2fa986e7a7..545a170ebf9f 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -155,7 +155,7 @@ static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
/*
* Maximum number of desirable partial slabs.
* The existence of more partial slabs makes kmem_cache_shrink
- * sort the partial list by the number of objects in the.
+ * sort the partial list by the number of objects in use.
*/
#define MAX_PARTIAL 10
@@ -373,7 +373,8 @@ static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page
#endif
{
slab_lock(page);
- if (page->freelist == freelist_old && page->counters == counters_old) {
+ if (page->freelist == freelist_old &&
+ page->counters == counters_old) {
page->freelist = freelist_new;
page->counters = counters_new;
slab_unlock(page);
@@ -411,7 +412,8 @@ static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
local_irq_save(flags);
slab_lock(page);
- if (page->freelist == freelist_old && page->counters == counters_old) {
+ if (page->freelist == freelist_old &&
+ page->counters == counters_old) {
page->freelist = freelist_new;
page->counters = counters_new;
slab_unlock(page);
@@ -553,8 +555,9 @@ static void print_tracking(struct kmem_cache *s, void *object)
static void print_page_info(struct page *page)
{
- printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
- page, page->objects, page->inuse, page->freelist, page->flags);
+ printk(KERN_ERR
+ "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
+ page, page->objects, page->inuse, page->freelist, page->flags);
}
@@ -629,7 +632,8 @@ static void object_err(struct kmem_cache *s, struct page *page,
print_trailer(s, page, object);
}
-static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
+static void slab_err(struct kmem_cache *s, struct page *page,
+ const char *fmt, ...)
{
va_list args;
char buf[100];
@@ -788,7 +792,8 @@ static int check_object(struct kmem_cache *s, struct page *page,
} else {
if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
check_bytes_and_report(s, page, p, "Alignment padding",
- endobject, POISON_INUSE, s->inuse - s->object_size);
+ endobject, POISON_INUSE,
+ s->inuse - s->object_size);
}
}
@@ -873,7 +878,6 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
object_err(s, page, object,
"Freechain corrupt");
set_freepointer(s, object, NULL);
- break;
} else {
slab_err(s, page, "Freepointer corrupt");
page->freelist = NULL;
@@ -918,7 +922,8 @@ static void trace(struct kmem_cache *s, struct page *page, void *object,
page->freelist);
if (!alloc)
- print_section("Object ", (void *)object, s->object_size);
+ print_section("Object ", (void *)object,
+ s->object_size);
dump_stack();
}
@@ -928,6 +933,16 @@ static void trace(struct kmem_cache *s, struct page *page, void *object,
* Hooks for other subsystems that check memory allocations. In a typical
* production configuration these hooks all should produce no code at all.
*/
+static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
+{
+ kmemleak_alloc(ptr, size, 1, flags);
+}
+
+static inline void kfree_hook(const void *x)
+{
+ kmemleak_free(x);
+}
+
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{
flags &= gfp_allowed_mask;
@@ -937,7 +952,8 @@ static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
return should_failslab(s->object_size, flags, s->flags);
}
-static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
+static inline void slab_post_alloc_hook(struct kmem_cache *s,
+ gfp_t flags, void *object)
{
flags &= gfp_allowed_mask;
kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
@@ -1039,7 +1055,8 @@ static void setup_object_debug(struct kmem_cache *s, struct page *page,
init_tracking(s, object);
}
-static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
+static noinline int alloc_debug_processing(struct kmem_cache *s,
+ struct page *page,
void *object, unsigned long addr)
{
if (!check_slab(s, page))
@@ -1210,8 +1227,8 @@ static unsigned long kmem_cache_flags(unsigned long object_size,
/*
* Enable debugging if selected on the kernel commandline.
*/
- if (slub_debug && (!slub_debug_slabs ||
- !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
+ if (slub_debug && (!slub_debug_slabs || (name &&
+ !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
flags |= slub_debug;
return flags;
@@ -1253,13 +1270,30 @@ static inline void inc_slabs_node(struct kmem_cache *s, int node,
static inline void dec_slabs_node(struct kmem_cache *s, int node,
int objects) {}
+static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
+{
+ kmemleak_alloc(ptr, size, 1, flags);
+}
+
+static inline void kfree_hook(const void *x)
+{
+ kmemleak_free(x);
+}
+
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{ return 0; }
static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
- void *object) {}
+ void *object)
+{
+ kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
+ flags & gfp_allowed_mask);
+}
-static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
+static inline void slab_free_hook(struct kmem_cache *s, void *x)
+{
+ kmemleak_free_recursive(x, s->flags);
+}
#endif /* CONFIG_SLUB_DEBUG */
@@ -1743,7 +1777,8 @@ static void init_kmem_cache_cpus(struct kmem_cache *s)
/*
* Remove the cpu slab
*/
-static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
+static void deactivate_slab(struct kmem_cache *s, struct page *page,
+ void *freelist)
{
enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
@@ -1999,7 +2034,8 @@ static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
page->pobjects = pobjects;
page->next = oldpage;
- } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
+ } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
+ != oldpage);
#endif
}
@@ -2169,8 +2205,8 @@ static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
}
/*
- * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
- * or deactivate the page.
+ * Check the page->freelist of a page and either transfer the freelist to the
+ * per cpu freelist or deactivate the page.
*
* The page is still frozen if the return value is not NULL.
*
@@ -2314,7 +2350,8 @@ new_slab:
goto load_freelist;
/* Only entered in the debug case */
- if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
+ if (kmem_cache_debug(s) &&
+ !alloc_debug_processing(s, page, freelist, addr))
goto new_slab; /* Slab failed checks. Next slab needed */
deactivate_slab(s, page, get_freepointer(s, freelist));
@@ -2372,7 +2409,7 @@ redo:
object = c->freelist;
page = c->page;
- if (unlikely(!object || !page || !node_match(page, node)))
+ if (unlikely(!object || !node_match(page, node)))
object = __slab_alloc(s, gfpflags, node, addr, c);
else {
@@ -2382,13 +2419,15 @@ redo:
* The cmpxchg will only match if there was no additional
* operation and if we are on the right processor.
*
- * The cmpxchg does the following atomically (without lock semantics!)
+ * The cmpxchg does the following atomically (without lock
+ * semantics!)
* 1. Relocate first pointer to the current per cpu area.
* 2. Verify that tid and freelist have not been changed
* 3. If they were not changed replace tid and freelist
*
- * Since this is without lock semantics the protection is only against
- * code executing on this cpu *not* from access by other cpus.
+ * Since this is without lock semantics the protection is only
+ * against code executing on this cpu *not* from access by
+ * other cpus.
*/
if (unlikely(!this_cpu_cmpxchg_double(
s->cpu_slab->freelist, s->cpu_slab->tid,
@@ -2420,7 +2459,8 @@ void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
void *ret = slab_alloc(s, gfpflags, _RET_IP_);
- trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
+ trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
+ s->size, gfpflags);
return ret;
}
@@ -2434,14 +2474,6 @@ void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
-
-void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
-{
- void *ret = kmalloc_order(size, flags, order);
- trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
- return ret;
-}
-EXPORT_SYMBOL(kmalloc_order_trace);
#endif
#ifdef CONFIG_NUMA
@@ -2512,8 +2544,10 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
if (kmem_cache_has_cpu_partial(s) && !prior)
/*
- * Slab was on no list before and will be partially empty
- * We can defer the list move and instead freeze it.
+ * Slab was on no list before and will be
+ * partially empty
+ * We can defer the list move and instead
+ * freeze it.
*/
new.frozen = 1;
@@ -2822,8 +2856,8 @@ static struct kmem_cache *kmem_cache_node;
* slab on the node for this slabcache. There are no concurrent accesses
* possible.
*
- * Note that this function only works on the kmalloc_node_cache
- * when allocating for the kmalloc_node_cache. This is used for bootstrapping
+ * Note that this function only works on the kmem_cache_node
+ * when allocating for the kmem_cache_node. This is used for bootstrapping
* memory on a fresh node that has no slab structures yet.
*/
static void early_kmem_cache_node_alloc(int node)
@@ -3071,8 +3105,8 @@ static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
* A) The number of objects from per cpu partial slabs dumped to the
* per node list when we reach the limit.
* B) The number of objects in cpu partial slabs to extract from the
- * per node list when we run out of per cpu objects. We only fetch 50%
- * to keep some capacity around for frees.
+ * per node list when we run out of per cpu objects. We only fetch
+ * 50% to keep some capacity around for frees.
*/
if (!kmem_cache_has_cpu_partial(s))
s->cpu_partial = 0;
@@ -3099,8 +3133,8 @@ error:
if (flags & SLAB_PANIC)
panic("Cannot create slab %s size=%lu realsize=%u "
"order=%u offset=%u flags=%lx\n",
- s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
- s->offset, flags);
+ s->name, (unsigned long)s->size, s->size,
+ oo_order(s->oo), s->offset, flags);
return -EINVAL;
}
@@ -3265,7 +3299,7 @@ static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
if (page)
ptr = page_address(page);
- kmemleak_alloc(ptr, size, 1, flags);
+ kmalloc_large_node_hook(ptr, size, flags);
return ptr;
}
@@ -3316,42 +3350,6 @@ size_t ksize(const void *object)
}
EXPORT_SYMBOL(ksize);
-#ifdef CONFIG_SLUB_DEBUG
-bool verify_mem_not_deleted(const void *x)
-{
- struct page *page;
- void *object = (void *)x;
- unsigned long flags;
- bool rv;
-
- if (unlikely(ZERO_OR_NULL_PTR(x)))
- return false;
-
- local_irq_save(flags);
-
- page = virt_to_head_page(x);
- if (unlikely(!PageSlab(page))) {
- /* maybe it was from stack? */
- rv = true;
- goto out_unlock;
- }
-
- slab_lock(page);
- if (on_freelist(page->slab_cache, page, object)) {
- object_err(page->slab_cache, page, object, "Object is on free-list");
- rv = false;
- } else {
- rv = true;
- }
- slab_unlock(page);
-
-out_unlock:
- local_irq_restore(flags);
- return rv;
-}
-EXPORT_SYMBOL(verify_mem_not_deleted);
-#endif
-
void kfree(const void *x)
{
struct page *page;
@@ -3365,7 +3363,7 @@ void kfree(const void *x)
page = virt_to_head_page(x);
if (unlikely(!PageSlab(page))) {
BUG_ON(!PageCompound(page));
- kmemleak_free(x);
+ kfree_hook(x);
__free_memcg_kmem_pages(page, compound_order(page));
return;
}
@@ -4162,15 +4160,17 @@ static int list_locations(struct kmem_cache *s, char *buf,
!cpumask_empty(to_cpumask(l->cpus)) &&
len < PAGE_SIZE - 60) {
len += sprintf(buf + len, " cpus=");
- len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
+ len += cpulist_scnprintf(buf + len,
+ PAGE_SIZE - len - 50,
to_cpumask(l->cpus));
}
if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
len < PAGE_SIZE - 60) {
len += sprintf(buf + len, " nodes=");
- len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
- l->nodes);
+ len += nodelist_scnprintf(buf + len,
+ PAGE_SIZE - len - 50,
+ l->nodes);
}
len += sprintf(buf + len, "\n");
@@ -4268,18 +4268,17 @@ static ssize_t show_slab_objects(struct kmem_cache *s,
int node;
int x;
unsigned long *nodes;
- unsigned long *per_cpu;
- nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
+ nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
if (!nodes)
return -ENOMEM;
- per_cpu = nodes + nr_node_ids;
if (flags & SO_CPU) {
int cpu;
for_each_possible_cpu(cpu) {
- struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
+ struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
+ cpu);
int node;
struct page *page;
@@ -4304,8 +4303,6 @@ static ssize_t show_slab_objects(struct kmem_cache *s,
total += x;
nodes[node] += x;
}
-
- per_cpu[node]++;
}
}
@@ -4315,12 +4312,11 @@ static ssize_t show_slab_objects(struct kmem_cache *s,
for_each_node_state(node, N_NORMAL_MEMORY) {
struct kmem_cache_node *n = get_node(s, node);
- if (flags & SO_TOTAL)
- x = atomic_long_read(&n->total_objects);
- else if (flags & SO_OBJECTS)
- x = atomic_long_read(&n->total_objects) -
- count_partial(n, count_free);
-
+ if (flags & SO_TOTAL)
+ x = atomic_long_read(&n->total_objects);
+ else if (flags & SO_OBJECTS)
+ x = atomic_long_read(&n->total_objects) -
+ count_partial(n, count_free);
else
x = atomic_long_read(&n->nr_slabs);
total += x;
@@ -4420,7 +4416,7 @@ static ssize_t order_store(struct kmem_cache *s,
unsigned long order;
int err;
- err = strict_strtoul(buf, 10, &order);
+ err = kstrtoul(buf, 10, &order);
if (err)
return err;
@@ -4448,7 +4444,7 @@ static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
unsigned long min;
int err;
- err = strict_strtoul(buf, 10, &min);
+ err = kstrtoul(buf, 10, &min);
if (err)
return err;
@@ -4468,7 +4464,7 @@ static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
unsigned long objects;
int err;
- err = strict_strtoul(buf, 10, &objects);
+ err = kstrtoul(buf, 10, &objects);
if (err)
return err;
if (objects && !kmem_cache_has_cpu_partial(s))
@@ -4784,7 +4780,7 @@ static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
unsigned long ratio;
int err;
- err = strict_strtoul(buf, 10, &ratio);
+ err = kstrtoul(buf, 10, &ratio);
if (err)
return err;
@@ -5014,7 +5010,7 @@ static ssize_t slab_attr_store(struct kobject *kobj,
* through the descendants with best-effort propagation.
*/
for_each_memcg_cache_index(i) {
- struct kmem_cache *c = cache_from_memcg(s, i);
+ struct kmem_cache *c = cache_from_memcg_idx(s, i);
if (c)
attribute->store(c, buf, len);
}
@@ -5136,7 +5132,8 @@ static char *create_unique_id(struct kmem_cache *s)
#ifdef CONFIG_MEMCG_KMEM
if (!is_root_cache(s))
- p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
+ p += sprintf(p, "-%08d",
+ memcg_cache_id(s->memcg_params->memcg));
#endif
BUG_ON(p > name + ID_STR_LENGTH - 1);
diff --git a/mm/sparse.c b/mm/sparse.c
index 308d50331bc3..8cc7be0e9590 100644
--- a/mm/sparse.c
+++ b/mm/sparse.c
@@ -339,13 +339,14 @@ static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
-static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
+static void __init sparse_early_usemaps_alloc_node(void *data,
unsigned long pnum_begin,
unsigned long pnum_end,
unsigned long usemap_count, int nodeid)
{
void *usemap;
unsigned long pnum;
+ unsigned long **usemap_map = (unsigned long **)data;
int size = usemap_size();
usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
@@ -430,11 +431,12 @@ void __init sparse_mem_maps_populate_node(struct page **map_map,
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
-static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
+static void __init sparse_early_mem_maps_alloc_node(void *data,
unsigned long pnum_begin,
unsigned long pnum_end,
unsigned long map_count, int nodeid)
{
+ struct page **map_map = (struct page **)data;
sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
map_count, nodeid);
}
@@ -460,6 +462,55 @@ void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
{
}
+/**
+ * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
+ * @map: usemap_map for pageblock flags or mmap_map for vmemmap
+ */
+static void __init alloc_usemap_and_memmap(void (*alloc_func)
+ (void *, unsigned long, unsigned long,
+ unsigned long, int), void *data)
+{
+ unsigned long pnum;
+ unsigned long map_count;
+ int nodeid_begin = 0;
+ unsigned long pnum_begin = 0;
+
+ for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
+ struct mem_section *ms;
+
+ if (!present_section_nr(pnum))
+ continue;
+ ms = __nr_to_section(pnum);
+ nodeid_begin = sparse_early_nid(ms);
+ pnum_begin = pnum;
+ break;
+ }
+ map_count = 1;
+ for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
+ struct mem_section *ms;
+ int nodeid;
+
+ if (!present_section_nr(pnum))
+ continue;
+ ms = __nr_to_section(pnum);
+ nodeid = sparse_early_nid(ms);
+ if (nodeid == nodeid_begin) {
+ map_count++;
+ continue;
+ }
+ /* ok, we need to take cake of from pnum_begin to pnum - 1*/
+ alloc_func(data, pnum_begin, pnum,
+ map_count, nodeid_begin);
+ /* new start, update count etc*/
+ nodeid_begin = nodeid;
+ pnum_begin = pnum;
+ map_count = 1;
+ }
+ /* ok, last chunk */
+ alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
+ map_count, nodeid_begin);
+}
+
/*
* Allocate the accumulated non-linear sections, allocate a mem_map
* for each and record the physical to section mapping.
@@ -471,11 +522,7 @@ void __init sparse_init(void)
unsigned long *usemap;
unsigned long **usemap_map;
int size;
- int nodeid_begin = 0;
- unsigned long pnum_begin = 0;
- unsigned long usemap_count;
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
- unsigned long map_count;
int size2;
struct page **map_map;
#endif
@@ -501,82 +548,16 @@ void __init sparse_init(void)
usemap_map = alloc_bootmem(size);
if (!usemap_map)
panic("can not allocate usemap_map\n");
-
- for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
- struct mem_section *ms;
-
- if (!present_section_nr(pnum))
- continue;
- ms = __nr_to_section(pnum);
- nodeid_begin = sparse_early_nid(ms);
- pnum_begin = pnum;
- break;
- }
- usemap_count = 1;
- for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
- struct mem_section *ms;
- int nodeid;
-
- if (!present_section_nr(pnum))
- continue;
- ms = __nr_to_section(pnum);
- nodeid = sparse_early_nid(ms);
- if (nodeid == nodeid_begin) {
- usemap_count++;
- continue;
- }
- /* ok, we need to take cake of from pnum_begin to pnum - 1*/
- sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
- usemap_count, nodeid_begin);
- /* new start, update count etc*/
- nodeid_begin = nodeid;
- pnum_begin = pnum;
- usemap_count = 1;
- }
- /* ok, last chunk */
- sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
- usemap_count, nodeid_begin);
+ alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
+ (void *)usemap_map);
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
map_map = alloc_bootmem(size2);
if (!map_map)
panic("can not allocate map_map\n");
-
- for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
- struct mem_section *ms;
-
- if (!present_section_nr(pnum))
- continue;
- ms = __nr_to_section(pnum);
- nodeid_begin = sparse_early_nid(ms);
- pnum_begin = pnum;
- break;
- }
- map_count = 1;
- for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
- struct mem_section *ms;
- int nodeid;
-
- if (!present_section_nr(pnum))
- continue;
- ms = __nr_to_section(pnum);
- nodeid = sparse_early_nid(ms);
- if (nodeid == nodeid_begin) {
- map_count++;
- continue;
- }
- /* ok, we need to take cake of from pnum_begin to pnum - 1*/
- sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
- map_count, nodeid_begin);
- /* new start, update count etc*/
- nodeid_begin = nodeid;
- pnum_begin = pnum;
- map_count = 1;
- }
- /* ok, last chunk */
- sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
- map_count, nodeid_begin);
+ alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
+ (void *)map_map);
#endif
for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
@@ -609,33 +590,32 @@ void __init sparse_init(void)
#ifdef CONFIG_MEMORY_HOTPLUG
#ifdef CONFIG_SPARSEMEM_VMEMMAP
-static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
- unsigned long nr_pages)
+static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
{
/* This will make the necessary allocations eventually. */
return sparse_mem_map_populate(pnum, nid);
}
-static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
+static void __kfree_section_memmap(struct page *memmap)
{
unsigned long start = (unsigned long)memmap;
- unsigned long end = (unsigned long)(memmap + nr_pages);
+ unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
vmemmap_free(start, end);
}
#ifdef CONFIG_MEMORY_HOTREMOVE
-static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
+static void free_map_bootmem(struct page *memmap)
{
unsigned long start = (unsigned long)memmap;
- unsigned long end = (unsigned long)(memmap + nr_pages);
+ unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
vmemmap_free(start, end);
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
#else
-static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
+static struct page *__kmalloc_section_memmap(void)
{
struct page *page, *ret;
- unsigned long memmap_size = sizeof(struct page) * nr_pages;
+ unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
if (page)
@@ -653,28 +633,30 @@ got_map_ptr:
return ret;
}
-static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
- unsigned long nr_pages)
+static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
{
- return __kmalloc_section_memmap(nr_pages);
+ return __kmalloc_section_memmap();
}
-static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
+static void __kfree_section_memmap(struct page *memmap)
{
if (is_vmalloc_addr(memmap))
vfree(memmap);
else
free_pages((unsigned long)memmap,
- get_order(sizeof(struct page) * nr_pages));
+ get_order(sizeof(struct page) * PAGES_PER_SECTION));
}
#ifdef CONFIG_MEMORY_HOTREMOVE
-static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
+static void free_map_bootmem(struct page *memmap)
{
unsigned long maps_section_nr, removing_section_nr, i;
- unsigned long magic;
+ unsigned long magic, nr_pages;
struct page *page = virt_to_page(memmap);
+ nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
+ >> PAGE_SHIFT;
+
for (i = 0; i < nr_pages; i++, page++) {
magic = (unsigned long) page->lru.next;
@@ -703,8 +685,7 @@ static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
* set. If this is <=0, then that means that the passed-in
* map was not consumed and must be freed.
*/
-int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
- int nr_pages)
+int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
{
unsigned long section_nr = pfn_to_section_nr(start_pfn);
struct pglist_data *pgdat = zone->zone_pgdat;
@@ -721,12 +702,12 @@ int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
ret = sparse_index_init(section_nr, pgdat->node_id);
if (ret < 0 && ret != -EEXIST)
return ret;
- memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
+ memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
if (!memmap)
return -ENOMEM;
usemap = __kmalloc_section_usemap();
if (!usemap) {
- __kfree_section_memmap(memmap, nr_pages);
+ __kfree_section_memmap(memmap);
return -ENOMEM;
}
@@ -738,7 +719,7 @@ int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
goto out;
}
- memset(memmap, 0, sizeof(struct page) * nr_pages);
+ memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
ms->section_mem_map |= SECTION_MARKED_PRESENT;
@@ -748,7 +729,7 @@ out:
pgdat_resize_unlock(pgdat, &flags);
if (ret <= 0) {
kfree(usemap);
- __kfree_section_memmap(memmap, nr_pages);
+ __kfree_section_memmap(memmap);
}
return ret;
}
@@ -778,7 +759,6 @@ static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
static void free_section_usemap(struct page *memmap, unsigned long *usemap)
{
struct page *usemap_page;
- unsigned long nr_pages;
if (!usemap)
return;
@@ -790,7 +770,7 @@ static void free_section_usemap(struct page *memmap, unsigned long *usemap)
if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
kfree(usemap);
if (memmap)
- __kfree_section_memmap(memmap, PAGES_PER_SECTION);
+ __kfree_section_memmap(memmap);
return;
}
@@ -799,12 +779,8 @@ static void free_section_usemap(struct page *memmap, unsigned long *usemap)
* on the section which has pgdat at boot time. Just keep it as is now.
*/
- if (memmap) {
- nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
- >> PAGE_SHIFT;
-
- free_map_bootmem(memmap, nr_pages);
- }
+ if (memmap)
+ free_map_bootmem(memmap);
}
void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
diff --git a/mm/swap.c b/mm/swap.c
index 62b78a6e224f..84b26aaabd03 100644
--- a/mm/swap.c
+++ b/mm/swap.c
@@ -31,6 +31,7 @@
#include <linux/memcontrol.h>
#include <linux/gfp.h>
#include <linux/uio.h>
+#include <linux/hugetlb.h>
#include "internal.h"
@@ -97,14 +98,31 @@ static void put_compound_page(struct page *page)
* still hot on arches that do not support
* this_cpu_cmpxchg_double().
*/
- if (PageSlab(page_head)) {
- if (PageTail(page)) {
+ if (PageSlab(page_head) || PageHeadHuge(page_head)) {
+ if (likely(PageTail(page))) {
+ /*
+ * __split_huge_page_refcount
+ * cannot race here.
+ */
+ VM_BUG_ON(!PageHead(page_head));
+ atomic_dec(&page->_mapcount);
if (put_page_testzero(page_head))
VM_BUG_ON(1);
-
- atomic_dec(&page->_mapcount);
- goto skip_lock_tail;
+ if (put_page_testzero(page_head))
+ __put_compound_page(page_head);
+ return;
} else
+ /*
+ * __split_huge_page_refcount
+ * run before us, "page" was a
+ * THP tail. The split
+ * page_head has been freed
+ * and reallocated as slab or
+ * hugetlbfs page of smaller
+ * order (only possible if
+ * reallocated as slab on
+ * x86).
+ */
goto skip_lock;
}
/*
@@ -118,8 +136,27 @@ static void put_compound_page(struct page *page)
/* __split_huge_page_refcount run before us */
compound_unlock_irqrestore(page_head, flags);
skip_lock:
- if (put_page_testzero(page_head))
- __put_single_page(page_head);
+ if (put_page_testzero(page_head)) {
+ /*
+ * The head page may have been
+ * freed and reallocated as a
+ * compound page of smaller
+ * order and then freed again.
+ * All we know is that it
+ * cannot have become: a THP
+ * page, a compound page of
+ * higher order, a tail page.
+ * That is because we still
+ * hold the refcount of the
+ * split THP tail and
+ * page_head was the THP head
+ * before the split.
+ */
+ if (PageHead(page_head))
+ __put_compound_page(page_head);
+ else
+ __put_single_page(page_head);
+ }
out_put_single:
if (put_page_testzero(page))
__put_single_page(page);
@@ -141,7 +178,6 @@ out_put_single:
VM_BUG_ON(atomic_read(&page->_count) != 0);
compound_unlock_irqrestore(page_head, flags);
-skip_lock_tail:
if (put_page_testzero(page_head)) {
if (PageHead(page_head))
__put_compound_page(page_head);
@@ -189,13 +225,27 @@ bool __get_page_tail(struct page *page)
struct page *page_head = compound_trans_head(page);
if (likely(page != page_head && get_page_unless_zero(page_head))) {
-
/* Ref to put_compound_page() comment. */
- if (PageSlab(page_head)) {
+ if (PageSlab(page_head) || PageHeadHuge(page_head)) {
if (likely(PageTail(page))) {
+ /*
+ * This is a hugetlbfs page or a slab
+ * page. __split_huge_page_refcount
+ * cannot race here.
+ */
+ VM_BUG_ON(!PageHead(page_head));
__get_page_tail_foll(page, false);
return true;
} else {
+ /*
+ * __split_huge_page_refcount run
+ * before us, "page" was a THP
+ * tail. The split page_head has been
+ * freed and reallocated as slab or
+ * hugetlbfs page of smaller order
+ * (only possible if reallocated as
+ * slab on x86).
+ */
put_page(page_head);
return false;
}
@@ -405,6 +455,11 @@ static void activate_page_drain(int cpu)
pagevec_lru_move_fn(pvec, __activate_page, NULL);
}
+static bool need_activate_page_drain(int cpu)
+{
+ return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
+}
+
void activate_page(struct page *page)
{
if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
@@ -422,6 +477,11 @@ static inline void activate_page_drain(int cpu)
{
}
+static bool need_activate_page_drain(int cpu)
+{
+ return false;
+}
+
void activate_page(struct page *page)
{
struct zone *zone = page_zone(page);
@@ -674,12 +734,36 @@ static void lru_add_drain_per_cpu(struct work_struct *dummy)
lru_add_drain();
}
-/*
- * Returns 0 for success
- */
-int lru_add_drain_all(void)
+static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
+
+void lru_add_drain_all(void)
{
- return schedule_on_each_cpu(lru_add_drain_per_cpu);
+ static DEFINE_MUTEX(lock);
+ static struct cpumask has_work;
+ int cpu;
+
+ mutex_lock(&lock);
+ get_online_cpus();
+ cpumask_clear(&has_work);
+
+ for_each_online_cpu(cpu) {
+ struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
+
+ if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
+ pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
+ pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
+ need_activate_page_drain(cpu)) {
+ INIT_WORK(work, lru_add_drain_per_cpu);
+ schedule_work_on(cpu, work);
+ cpumask_set_cpu(cpu, &has_work);
+ }
+ }
+
+ for_each_cpu(cpu, &has_work)
+ flush_work(&per_cpu(lru_add_drain_work, cpu));
+
+ put_online_cpus();
+ mutex_unlock(&lock);
}
/*
@@ -873,7 +957,8 @@ void __init swap_setup(void)
#ifdef CONFIG_SWAP
int i;
- bdi_init(swapper_spaces[0].backing_dev_info);
+ if (bdi_init(swapper_spaces[0].backing_dev_info))
+ panic("Failed to init swap bdi");
for (i = 0; i < MAX_SWAPFILES; i++) {
spin_lock_init(&swapper_spaces[i].tree_lock);
INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
diff --git a/mm/swap_state.c b/mm/swap_state.c
index f24ab0dff554..e6f15f8ca2af 100644
--- a/mm/swap_state.c
+++ b/mm/swap_state.c
@@ -122,7 +122,7 @@ int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
{
int error;
- error = radix_tree_preload(gfp_mask);
+ error = radix_tree_maybe_preload(gfp_mask);
if (!error) {
error = __add_to_swap_cache(page, entry);
radix_tree_preload_end();
@@ -328,7 +328,7 @@ struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
/*
* call radix_tree_preload() while we can wait.
*/
- err = radix_tree_preload(gfp_mask & GFP_KERNEL);
+ err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
if (err)
break;
diff --git a/mm/swapfile.c b/mm/swapfile.c
index 6cf2e60983b7..612a7c9795f6 100644
--- a/mm/swapfile.c
+++ b/mm/swapfile.c
@@ -175,14 +175,296 @@ static void discard_swap_cluster(struct swap_info_struct *si,
}
}
-static int wait_for_discard(void *word)
+#define SWAPFILE_CLUSTER 256
+#define LATENCY_LIMIT 256
+
+static inline void cluster_set_flag(struct swap_cluster_info *info,
+ unsigned int flag)
{
- schedule();
- return 0;
+ info->flags = flag;
}
-#define SWAPFILE_CLUSTER 256
-#define LATENCY_LIMIT 256
+static inline unsigned int cluster_count(struct swap_cluster_info *info)
+{
+ return info->data;
+}
+
+static inline void cluster_set_count(struct swap_cluster_info *info,
+ unsigned int c)
+{
+ info->data = c;
+}
+
+static inline void cluster_set_count_flag(struct swap_cluster_info *info,
+ unsigned int c, unsigned int f)
+{
+ info->flags = f;
+ info->data = c;
+}
+
+static inline unsigned int cluster_next(struct swap_cluster_info *info)
+{
+ return info->data;
+}
+
+static inline void cluster_set_next(struct swap_cluster_info *info,
+ unsigned int n)
+{
+ info->data = n;
+}
+
+static inline void cluster_set_next_flag(struct swap_cluster_info *info,
+ unsigned int n, unsigned int f)
+{
+ info->flags = f;
+ info->data = n;
+}
+
+static inline bool cluster_is_free(struct swap_cluster_info *info)
+{
+ return info->flags & CLUSTER_FLAG_FREE;
+}
+
+static inline bool cluster_is_null(struct swap_cluster_info *info)
+{
+ return info->flags & CLUSTER_FLAG_NEXT_NULL;
+}
+
+static inline void cluster_set_null(struct swap_cluster_info *info)
+{
+ info->flags = CLUSTER_FLAG_NEXT_NULL;
+ info->data = 0;
+}
+
+/* Add a cluster to discard list and schedule it to do discard */
+static void swap_cluster_schedule_discard(struct swap_info_struct *si,
+ unsigned int idx)
+{
+ /*
+ * If scan_swap_map() can't find a free cluster, it will check
+ * si->swap_map directly. To make sure the discarding cluster isn't
+ * taken by scan_swap_map(), mark the swap entries bad (occupied). It
+ * will be cleared after discard
+ */
+ memset(si->swap_map + idx * SWAPFILE_CLUSTER,
+ SWAP_MAP_BAD, SWAPFILE_CLUSTER);
+
+ if (cluster_is_null(&si->discard_cluster_head)) {
+ cluster_set_next_flag(&si->discard_cluster_head,
+ idx, 0);
+ cluster_set_next_flag(&si->discard_cluster_tail,
+ idx, 0);
+ } else {
+ unsigned int tail = cluster_next(&si->discard_cluster_tail);
+ cluster_set_next(&si->cluster_info[tail], idx);
+ cluster_set_next_flag(&si->discard_cluster_tail,
+ idx, 0);
+ }
+
+ schedule_work(&si->discard_work);
+}
+
+/*
+ * Doing discard actually. After a cluster discard is finished, the cluster
+ * will be added to free cluster list. caller should hold si->lock.
+*/
+static void swap_do_scheduled_discard(struct swap_info_struct *si)
+{
+ struct swap_cluster_info *info;
+ unsigned int idx;
+
+ info = si->cluster_info;
+
+ while (!cluster_is_null(&si->discard_cluster_head)) {
+ idx = cluster_next(&si->discard_cluster_head);
+
+ cluster_set_next_flag(&si->discard_cluster_head,
+ cluster_next(&info[idx]), 0);
+ if (cluster_next(&si->discard_cluster_tail) == idx) {
+ cluster_set_null(&si->discard_cluster_head);
+ cluster_set_null(&si->discard_cluster_tail);
+ }
+ spin_unlock(&si->lock);
+
+ discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
+ SWAPFILE_CLUSTER);
+
+ spin_lock(&si->lock);
+ cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
+ if (cluster_is_null(&si->free_cluster_head)) {
+ cluster_set_next_flag(&si->free_cluster_head,
+ idx, 0);
+ cluster_set_next_flag(&si->free_cluster_tail,
+ idx, 0);
+ } else {
+ unsigned int tail;
+
+ tail = cluster_next(&si->free_cluster_tail);
+ cluster_set_next(&info[tail], idx);
+ cluster_set_next_flag(&si->free_cluster_tail,
+ idx, 0);
+ }
+ memset(si->swap_map + idx * SWAPFILE_CLUSTER,
+ 0, SWAPFILE_CLUSTER);
+ }
+}
+
+static void swap_discard_work(struct work_struct *work)
+{
+ struct swap_info_struct *si;
+
+ si = container_of(work, struct swap_info_struct, discard_work);
+
+ spin_lock(&si->lock);
+ swap_do_scheduled_discard(si);
+ spin_unlock(&si->lock);
+}
+
+/*
+ * The cluster corresponding to page_nr will be used. The cluster will be
+ * removed from free cluster list and its usage counter will be increased.
+ */
+static void inc_cluster_info_page(struct swap_info_struct *p,
+ struct swap_cluster_info *cluster_info, unsigned long page_nr)
+{
+ unsigned long idx = page_nr / SWAPFILE_CLUSTER;
+
+ if (!cluster_info)
+ return;
+ if (cluster_is_free(&cluster_info[idx])) {
+ VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
+ cluster_set_next_flag(&p->free_cluster_head,
+ cluster_next(&cluster_info[idx]), 0);
+ if (cluster_next(&p->free_cluster_tail) == idx) {
+ cluster_set_null(&p->free_cluster_tail);
+ cluster_set_null(&p->free_cluster_head);
+ }
+ cluster_set_count_flag(&cluster_info[idx], 0, 0);
+ }
+
+ VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
+ cluster_set_count(&cluster_info[idx],
+ cluster_count(&cluster_info[idx]) + 1);
+}
+
+/*
+ * The cluster corresponding to page_nr decreases one usage. If the usage
+ * counter becomes 0, which means no page in the cluster is in using, we can
+ * optionally discard the cluster and add it to free cluster list.
+ */
+static void dec_cluster_info_page(struct swap_info_struct *p,
+ struct swap_cluster_info *cluster_info, unsigned long page_nr)
+{
+ unsigned long idx = page_nr / SWAPFILE_CLUSTER;
+
+ if (!cluster_info)
+ return;
+
+ VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
+ cluster_set_count(&cluster_info[idx],
+ cluster_count(&cluster_info[idx]) - 1);
+
+ if (cluster_count(&cluster_info[idx]) == 0) {
+ /*
+ * If the swap is discardable, prepare discard the cluster
+ * instead of free it immediately. The cluster will be freed
+ * after discard.
+ */
+ if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
+ (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
+ swap_cluster_schedule_discard(p, idx);
+ return;
+ }
+
+ cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
+ if (cluster_is_null(&p->free_cluster_head)) {
+ cluster_set_next_flag(&p->free_cluster_head, idx, 0);
+ cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
+ } else {
+ unsigned int tail = cluster_next(&p->free_cluster_tail);
+ cluster_set_next(&cluster_info[tail], idx);
+ cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
+ }
+ }
+}
+
+/*
+ * It's possible scan_swap_map() uses a free cluster in the middle of free
+ * cluster list. Avoiding such abuse to avoid list corruption.
+ */
+static bool
+scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
+ unsigned long offset)
+{
+ struct percpu_cluster *percpu_cluster;
+ bool conflict;
+
+ offset /= SWAPFILE_CLUSTER;
+ conflict = !cluster_is_null(&si->free_cluster_head) &&
+ offset != cluster_next(&si->free_cluster_head) &&
+ cluster_is_free(&si->cluster_info[offset]);
+
+ if (!conflict)
+ return false;
+
+ percpu_cluster = this_cpu_ptr(si->percpu_cluster);
+ cluster_set_null(&percpu_cluster->index);
+ return true;
+}
+
+/*
+ * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
+ * might involve allocating a new cluster for current CPU too.
+ */
+static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
+ unsigned long *offset, unsigned long *scan_base)
+{
+ struct percpu_cluster *cluster;
+ bool found_free;
+ unsigned long tmp;
+
+new_cluster:
+ cluster = this_cpu_ptr(si->percpu_cluster);
+ if (cluster_is_null(&cluster->index)) {
+ if (!cluster_is_null(&si->free_cluster_head)) {
+ cluster->index = si->free_cluster_head;
+ cluster->next = cluster_next(&cluster->index) *
+ SWAPFILE_CLUSTER;
+ } else if (!cluster_is_null(&si->discard_cluster_head)) {
+ /*
+ * we don't have free cluster but have some clusters in
+ * discarding, do discard now and reclaim them
+ */
+ swap_do_scheduled_discard(si);
+ *scan_base = *offset = si->cluster_next;
+ goto new_cluster;
+ } else
+ return;
+ }
+
+ found_free = false;
+
+ /*
+ * Other CPUs can use our cluster if they can't find a free cluster,
+ * check if there is still free entry in the cluster
+ */
+ tmp = cluster->next;
+ while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
+ SWAPFILE_CLUSTER) {
+ if (!si->swap_map[tmp]) {
+ found_free = true;
+ break;
+ }
+ tmp++;
+ }
+ if (!found_free) {
+ cluster_set_null(&cluster->index);
+ goto new_cluster;
+ }
+ cluster->next = tmp + 1;
+ *offset = tmp;
+ *scan_base = tmp;
+}
static unsigned long scan_swap_map(struct swap_info_struct *si,
unsigned char usage)
@@ -191,7 +473,6 @@ static unsigned long scan_swap_map(struct swap_info_struct *si,
unsigned long scan_base;
unsigned long last_in_cluster = 0;
int latency_ration = LATENCY_LIMIT;
- int found_free_cluster = 0;
/*
* We try to cluster swap pages by allocating them sequentially
@@ -207,24 +488,18 @@ static unsigned long scan_swap_map(struct swap_info_struct *si,
si->flags += SWP_SCANNING;
scan_base = offset = si->cluster_next;
+ /* SSD algorithm */
+ if (si->cluster_info) {
+ scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
+ goto checks;
+ }
+
if (unlikely(!si->cluster_nr--)) {
if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
si->cluster_nr = SWAPFILE_CLUSTER - 1;
goto checks;
}
- if (si->flags & SWP_PAGE_DISCARD) {
- /*
- * Start range check on racing allocations, in case
- * they overlap the cluster we eventually decide on
- * (we scan without swap_lock to allow preemption).
- * It's hardly conceivable that cluster_nr could be
- * wrapped during our scan, but don't depend on it.
- */
- if (si->lowest_alloc)
- goto checks;
- si->lowest_alloc = si->max;
- si->highest_alloc = 0;
- }
+
spin_unlock(&si->lock);
/*
@@ -248,7 +523,6 @@ static unsigned long scan_swap_map(struct swap_info_struct *si,
offset -= SWAPFILE_CLUSTER - 1;
si->cluster_next = offset;
si->cluster_nr = SWAPFILE_CLUSTER - 1;
- found_free_cluster = 1;
goto checks;
}
if (unlikely(--latency_ration < 0)) {
@@ -269,7 +543,6 @@ static unsigned long scan_swap_map(struct swap_info_struct *si,
offset -= SWAPFILE_CLUSTER - 1;
si->cluster_next = offset;
si->cluster_nr = SWAPFILE_CLUSTER - 1;
- found_free_cluster = 1;
goto checks;
}
if (unlikely(--latency_ration < 0)) {
@@ -281,10 +554,13 @@ static unsigned long scan_swap_map(struct swap_info_struct *si,
offset = scan_base;
spin_lock(&si->lock);
si->cluster_nr = SWAPFILE_CLUSTER - 1;
- si->lowest_alloc = 0;
}
checks:
+ if (si->cluster_info) {
+ while (scan_swap_map_ssd_cluster_conflict(si, offset))
+ scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
+ }
if (!(si->flags & SWP_WRITEOK))
goto no_page;
if (!si->highest_bit)
@@ -317,62 +593,10 @@ checks:
si->highest_bit = 0;
}
si->swap_map[offset] = usage;
+ inc_cluster_info_page(si, si->cluster_info, offset);
si->cluster_next = offset + 1;
si->flags -= SWP_SCANNING;
- if (si->lowest_alloc) {
- /*
- * Only set when SWP_PAGE_DISCARD, and there's a scan
- * for a free cluster in progress or just completed.
- */
- if (found_free_cluster) {
- /*
- * To optimize wear-levelling, discard the
- * old data of the cluster, taking care not to
- * discard any of its pages that have already
- * been allocated by racing tasks (offset has
- * already stepped over any at the beginning).
- */
- if (offset < si->highest_alloc &&
- si->lowest_alloc <= last_in_cluster)
- last_in_cluster = si->lowest_alloc - 1;
- si->flags |= SWP_DISCARDING;
- spin_unlock(&si->lock);
-
- if (offset < last_in_cluster)
- discard_swap_cluster(si, offset,
- last_in_cluster - offset + 1);
-
- spin_lock(&si->lock);
- si->lowest_alloc = 0;
- si->flags &= ~SWP_DISCARDING;
-
- smp_mb(); /* wake_up_bit advises this */
- wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
-
- } else if (si->flags & SWP_DISCARDING) {
- /*
- * Delay using pages allocated by racing tasks
- * until the whole discard has been issued. We
- * could defer that delay until swap_writepage,
- * but it's easier to keep this self-contained.
- */
- spin_unlock(&si->lock);
- wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
- wait_for_discard, TASK_UNINTERRUPTIBLE);
- spin_lock(&si->lock);
- } else {
- /*
- * Note pages allocated by racing tasks while
- * scan for a free cluster is in progress, so
- * that its final discard can exclude them.
- */
- if (offset < si->lowest_alloc)
- si->lowest_alloc = offset;
- if (offset > si->highest_alloc)
- si->highest_alloc = offset;
- }
- }
return offset;
scan:
@@ -483,7 +707,7 @@ noswap:
return (swp_entry_t) {0};
}
-/* The only caller of this function is now susupend routine */
+/* The only caller of this function is now suspend routine */
swp_entry_t get_swap_page_of_type(int type)
{
struct swap_info_struct *si;
@@ -527,16 +751,16 @@ static struct swap_info_struct *swap_info_get(swp_entry_t entry)
return p;
bad_free:
- printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
+ pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
goto out;
bad_offset:
- printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
+ pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
goto out;
bad_device:
- printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
+ pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
goto out;
bad_nofile:
- printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
+ pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
out:
return NULL;
}
@@ -600,6 +824,7 @@ static unsigned char swap_entry_free(struct swap_info_struct *p,
/* free if no reference */
if (!usage) {
+ dec_cluster_info_page(p, p->cluster_info, offset);
if (offset < p->lowest_bit)
p->lowest_bit = offset;
if (offset > p->highest_bit)
@@ -620,7 +845,7 @@ static unsigned char swap_entry_free(struct swap_info_struct *p,
}
/*
- * Caller has made sure that the swapdevice corresponding to entry
+ * Caller has made sure that the swap device corresponding to entry
* is still around or has not been recycled.
*/
void swap_free(swp_entry_t entry)
@@ -722,7 +947,7 @@ int try_to_free_swap(struct page *page)
* original page might be freed under memory pressure, then
* later read back in from swap, now with the wrong data.
*
- * Hibration suspends storage while it is writing the image
+ * Hibernation suspends storage while it is writing the image
* to disk so check that here.
*/
if (pm_suspended_storage())
@@ -954,7 +1179,7 @@ static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
* some architectures (e.g. x86_32 with PAE) we might catch a glimpse
* of unmatched parts which look like swp_pte, so unuse_pte must
* recheck under pte lock. Scanning without pte lock lets it be
- * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
+ * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
*/
pte = pte_offset_map(pmd, addr);
do {
@@ -1107,7 +1332,7 @@ static unsigned int find_next_to_unuse(struct swap_info_struct *si,
else
continue;
}
- count = si->swap_map[i];
+ count = ACCESS_ONCE(si->swap_map[i]);
if (count && swap_count(count) != SWAP_MAP_BAD)
break;
}
@@ -1127,7 +1352,11 @@ int try_to_unuse(unsigned int type, bool frontswap,
{
struct swap_info_struct *si = swap_info[type];
struct mm_struct *start_mm;
- unsigned char *swap_map;
+ volatile unsigned char *swap_map; /* swap_map is accessed without
+ * locking. Mark it as volatile
+ * to prevent compiler doing
+ * something odd.
+ */
unsigned char swcount;
struct page *page;
swp_entry_t entry;
@@ -1178,7 +1407,15 @@ int try_to_unuse(unsigned int type, bool frontswap,
* reused since sys_swapoff() already disabled
* allocation from here, or alloc_page() failed.
*/
- if (!*swap_map)
+ swcount = *swap_map;
+ /*
+ * We don't hold lock here, so the swap entry could be
+ * SWAP_MAP_BAD (when the cluster is discarding).
+ * Instead of fail out, We can just skip the swap
+ * entry because swapoff will wait for discarding
+ * finish anyway.
+ */
+ if (!swcount || swcount == SWAP_MAP_BAD)
continue;
retval = -ENOMEM;
break;
@@ -1524,7 +1761,8 @@ static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
}
static void _enable_swap_info(struct swap_info_struct *p, int prio,
- unsigned char *swap_map)
+ unsigned char *swap_map,
+ struct swap_cluster_info *cluster_info)
{
int i, prev;
@@ -1533,6 +1771,7 @@ static void _enable_swap_info(struct swap_info_struct *p, int prio,
else
p->prio = --least_priority;
p->swap_map = swap_map;
+ p->cluster_info = cluster_info;
p->flags |= SWP_WRITEOK;
atomic_long_add(p->pages, &nr_swap_pages);
total_swap_pages += p->pages;
@@ -1553,12 +1792,13 @@ static void _enable_swap_info(struct swap_info_struct *p, int prio,
static void enable_swap_info(struct swap_info_struct *p, int prio,
unsigned char *swap_map,
+ struct swap_cluster_info *cluster_info,
unsigned long *frontswap_map)
{
frontswap_init(p->type, frontswap_map);
spin_lock(&swap_lock);
spin_lock(&p->lock);
- _enable_swap_info(p, prio, swap_map);
+ _enable_swap_info(p, prio, swap_map, cluster_info);
spin_unlock(&p->lock);
spin_unlock(&swap_lock);
}
@@ -1567,7 +1807,7 @@ static void reinsert_swap_info(struct swap_info_struct *p)
{
spin_lock(&swap_lock);
spin_lock(&p->lock);
- _enable_swap_info(p, p->prio, p->swap_map);
+ _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
spin_unlock(&p->lock);
spin_unlock(&swap_lock);
}
@@ -1576,6 +1816,7 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
{
struct swap_info_struct *p = NULL;
unsigned char *swap_map;
+ struct swap_cluster_info *cluster_info;
unsigned long *frontswap_map;
struct file *swap_file, *victim;
struct address_space *mapping;
@@ -1583,6 +1824,7 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
struct filename *pathname;
int i, type, prev;
int err;
+ unsigned int old_block_size;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
@@ -1651,6 +1893,8 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
goto out_dput;
}
+ flush_work(&p->discard_work);
+
destroy_swap_extents(p);
if (p->flags & SWP_CONTINUED)
free_swap_count_continuations(p);
@@ -1671,26 +1915,32 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
}
swap_file = p->swap_file;
+ old_block_size = p->old_block_size;
p->swap_file = NULL;
p->max = 0;
swap_map = p->swap_map;
p->swap_map = NULL;
+ cluster_info = p->cluster_info;
+ p->cluster_info = NULL;
p->flags = 0;
frontswap_map = frontswap_map_get(p);
- frontswap_map_set(p, NULL);
spin_unlock(&p->lock);
spin_unlock(&swap_lock);
frontswap_invalidate_area(type);
+ frontswap_map_set(p, NULL);
mutex_unlock(&swapon_mutex);
+ free_percpu(p->percpu_cluster);
+ p->percpu_cluster = NULL;
vfree(swap_map);
+ vfree(cluster_info);
vfree(frontswap_map);
- /* Destroy swap account informatin */
+ /* Destroy swap account information */
swap_cgroup_swapoff(type);
inode = mapping->host;
if (S_ISBLK(inode->i_mode)) {
struct block_device *bdev = I_BDEV(inode);
- set_blocksize(bdev, p->old_block_size);
+ set_blocksize(bdev, old_block_size);
blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
} else {
mutex_lock(&inode->i_mutex);
@@ -1926,9 +2176,10 @@ static unsigned long read_swap_header(struct swap_info_struct *p,
int i;
unsigned long maxpages;
unsigned long swapfilepages;
+ unsigned long last_page;
if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
- printk(KERN_ERR "Unable to find swap-space signature\n");
+ pr_err("Unable to find swap-space signature\n");
return 0;
}
@@ -1942,9 +2193,8 @@ static unsigned long read_swap_header(struct swap_info_struct *p,
}
/* Check the swap header's sub-version */
if (swap_header->info.version != 1) {
- printk(KERN_WARNING
- "Unable to handle swap header version %d\n",
- swap_header->info.version);
+ pr_warn("Unable to handle swap header version %d\n",
+ swap_header->info.version);
return 0;
}
@@ -1968,8 +2218,14 @@ static unsigned long read_swap_header(struct swap_info_struct *p,
*/
maxpages = swp_offset(pte_to_swp_entry(
swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
- if (maxpages > swap_header->info.last_page) {
- maxpages = swap_header->info.last_page + 1;
+ last_page = swap_header->info.last_page;
+ if (last_page > maxpages) {
+ pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
+ maxpages << (PAGE_SHIFT - 10),
+ last_page << (PAGE_SHIFT - 10));
+ }
+ if (maxpages > last_page) {
+ maxpages = last_page + 1;
/* p->max is an unsigned int: don't overflow it */
if ((unsigned int)maxpages == 0)
maxpages = UINT_MAX;
@@ -1980,8 +2236,7 @@ static unsigned long read_swap_header(struct swap_info_struct *p,
return 0;
swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
if (swapfilepages && maxpages > swapfilepages) {
- printk(KERN_WARNING
- "Swap area shorter than signature indicates\n");
+ pr_warn("Swap area shorter than signature indicates\n");
return 0;
}
if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
@@ -1995,15 +2250,23 @@ static unsigned long read_swap_header(struct swap_info_struct *p,
static int setup_swap_map_and_extents(struct swap_info_struct *p,
union swap_header *swap_header,
unsigned char *swap_map,
+ struct swap_cluster_info *cluster_info,
unsigned long maxpages,
sector_t *span)
{
int i;
unsigned int nr_good_pages;
int nr_extents;
+ unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
+ unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
nr_good_pages = maxpages - 1; /* omit header page */
+ cluster_set_null(&p->free_cluster_head);
+ cluster_set_null(&p->free_cluster_tail);
+ cluster_set_null(&p->discard_cluster_head);
+ cluster_set_null(&p->discard_cluster_tail);
+
for (i = 0; i < swap_header->info.nr_badpages; i++) {
unsigned int page_nr = swap_header->info.badpages[i];
if (page_nr == 0 || page_nr > swap_header->info.last_page)
@@ -2011,11 +2274,25 @@ static int setup_swap_map_and_extents(struct swap_info_struct *p,
if (page_nr < maxpages) {
swap_map[page_nr] = SWAP_MAP_BAD;
nr_good_pages--;
+ /*
+ * Haven't marked the cluster free yet, no list
+ * operation involved
+ */
+ inc_cluster_info_page(p, cluster_info, page_nr);
}
}
+ /* Haven't marked the cluster free yet, no list operation involved */
+ for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
+ inc_cluster_info_page(p, cluster_info, i);
+
if (nr_good_pages) {
swap_map[0] = SWAP_MAP_BAD;
+ /*
+ * Not mark the cluster free yet, no list
+ * operation involved
+ */
+ inc_cluster_info_page(p, cluster_info, 0);
p->max = maxpages;
p->pages = nr_good_pages;
nr_extents = setup_swap_extents(p, span);
@@ -2024,10 +2301,34 @@ static int setup_swap_map_and_extents(struct swap_info_struct *p,
nr_good_pages = p->pages;
}
if (!nr_good_pages) {
- printk(KERN_WARNING "Empty swap-file\n");
+ pr_warn("Empty swap-file\n");
return -EINVAL;
}
+ if (!cluster_info)
+ return nr_extents;
+
+ for (i = 0; i < nr_clusters; i++) {
+ if (!cluster_count(&cluster_info[idx])) {
+ cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
+ if (cluster_is_null(&p->free_cluster_head)) {
+ cluster_set_next_flag(&p->free_cluster_head,
+ idx, 0);
+ cluster_set_next_flag(&p->free_cluster_tail,
+ idx, 0);
+ } else {
+ unsigned int tail;
+
+ tail = cluster_next(&p->free_cluster_tail);
+ cluster_set_next(&cluster_info[tail], idx);
+ cluster_set_next_flag(&p->free_cluster_tail,
+ idx, 0);
+ }
+ }
+ idx++;
+ if (idx == nr_clusters)
+ idx = 0;
+ }
return nr_extents;
}
@@ -2059,6 +2360,7 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
sector_t span;
unsigned long maxpages;
unsigned char *swap_map = NULL;
+ struct swap_cluster_info *cluster_info = NULL;
unsigned long *frontswap_map = NULL;
struct page *page = NULL;
struct inode *inode = NULL;
@@ -2073,6 +2375,8 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
if (IS_ERR(p))
return PTR_ERR(p);
+ INIT_WORK(&p->discard_work, swap_discard_work);
+
name = getname(specialfile);
if (IS_ERR(name)) {
error = PTR_ERR(name);
@@ -2132,13 +2436,38 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
error = -ENOMEM;
goto bad_swap;
}
+ if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
+ p->flags |= SWP_SOLIDSTATE;
+ /*
+ * select a random position to start with to help wear leveling
+ * SSD
+ */
+ p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
+
+ cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
+ SWAPFILE_CLUSTER) * sizeof(*cluster_info));
+ if (!cluster_info) {
+ error = -ENOMEM;
+ goto bad_swap;
+ }
+ p->percpu_cluster = alloc_percpu(struct percpu_cluster);
+ if (!p->percpu_cluster) {
+ error = -ENOMEM;
+ goto bad_swap;
+ }
+ for_each_possible_cpu(i) {
+ struct percpu_cluster *cluster;
+ cluster = per_cpu_ptr(p->percpu_cluster, i);
+ cluster_set_null(&cluster->index);
+ }
+ }
error = swap_cgroup_swapon(p->type, maxpages);
if (error)
goto bad_swap;
nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
- maxpages, &span);
+ cluster_info, maxpages, &span);
if (unlikely(nr_extents < 0)) {
error = nr_extents;
goto bad_swap;
@@ -2147,41 +2476,33 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
if (frontswap_enabled)
frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
- if (p->bdev) {
- if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
- p->flags |= SWP_SOLIDSTATE;
- p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
- }
-
- if ((swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
- /*
- * When discard is enabled for swap with no particular
- * policy flagged, we set all swap discard flags here in
- * order to sustain backward compatibility with older
- * swapon(8) releases.
- */
- p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
- SWP_PAGE_DISCARD);
+ if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
+ /*
+ * When discard is enabled for swap with no particular
+ * policy flagged, we set all swap discard flags here in
+ * order to sustain backward compatibility with older
+ * swapon(8) releases.
+ */
+ p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
+ SWP_PAGE_DISCARD);
- /*
- * By flagging sys_swapon, a sysadmin can tell us to
- * either do single-time area discards only, or to just
- * perform discards for released swap page-clusters.
- * Now it's time to adjust the p->flags accordingly.
- */
- if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
- p->flags &= ~SWP_PAGE_DISCARD;
- else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
- p->flags &= ~SWP_AREA_DISCARD;
-
- /* issue a swapon-time discard if it's still required */
- if (p->flags & SWP_AREA_DISCARD) {
- int err = discard_swap(p);
- if (unlikely(err))
- printk(KERN_ERR
- "swapon: discard_swap(%p): %d\n",
- p, err);
- }
+ /*
+ * By flagging sys_swapon, a sysadmin can tell us to
+ * either do single-time area discards only, or to just
+ * perform discards for released swap page-clusters.
+ * Now it's time to adjust the p->flags accordingly.
+ */
+ if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
+ p->flags &= ~SWP_PAGE_DISCARD;
+ else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
+ p->flags &= ~SWP_AREA_DISCARD;
+
+ /* issue a swapon-time discard if it's still required */
+ if (p->flags & SWP_AREA_DISCARD) {
+ int err = discard_swap(p);
+ if (unlikely(err))
+ pr_err("swapon: discard_swap(%p): %d\n",
+ p, err);
}
}
@@ -2190,9 +2511,9 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
if (swap_flags & SWAP_FLAG_PREFER)
prio =
(swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
- enable_swap_info(p, prio, swap_map, frontswap_map);
+ enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
- printk(KERN_INFO "Adding %uk swap on %s. "
+ pr_info("Adding %uk swap on %s. "
"Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
@@ -2211,6 +2532,8 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
error = 0;
goto out;
bad_swap:
+ free_percpu(p->percpu_cluster);
+ p->percpu_cluster = NULL;
if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
set_blocksize(p->bdev, p->old_block_size);
blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
@@ -2222,6 +2545,7 @@ bad_swap:
p->flags = 0;
spin_unlock(&swap_lock);
vfree(swap_map);
+ vfree(cluster_info);
if (swap_file) {
if (inode && S_ISREG(inode->i_mode)) {
mutex_unlock(&inode->i_mutex);
@@ -2291,6 +2615,16 @@ static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
goto unlock_out;
count = p->swap_map[offset];
+
+ /*
+ * swapin_readahead() doesn't check if a swap entry is valid, so the
+ * swap entry could be SWAP_MAP_BAD. Check here with lock held.
+ */
+ if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
+ err = -ENOENT;
+ goto unlock_out;
+ }
+
has_cache = count & SWAP_HAS_CACHE;
count &= ~SWAP_HAS_CACHE;
err = 0;
@@ -2326,7 +2660,7 @@ out:
return err;
bad_file:
- printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
+ pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
goto out;
}
@@ -2452,8 +2786,8 @@ int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
/*
* We are fortunate that although vmalloc_to_page uses pte_offset_map,
- * no architecture is using highmem pages for kernel pagetables: so it
- * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
+ * no architecture is using highmem pages for kernel page tables: so it
+ * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
*/
head = vmalloc_to_page(si->swap_map + offset);
offset &= ~PAGE_MASK;
diff --git a/mm/truncate.c b/mm/truncate.c
index e2e8a8a7eb9d..353b683afd6e 100644
--- a/mm/truncate.c
+++ b/mm/truncate.c
@@ -567,7 +567,6 @@ EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
/**
* truncate_pagecache - unmap and remove pagecache that has been truncated
* @inode: inode
- * @oldsize: old file size
* @newsize: new file size
*
* inode's new i_size must already be written before truncate_pagecache
@@ -580,7 +579,7 @@ EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
* situations such as writepage being called for a page that has already
* had its underlying blocks deallocated.
*/
-void truncate_pagecache(struct inode *inode, loff_t oldsize, loff_t newsize)
+void truncate_pagecache(struct inode *inode, loff_t newsize)
{
struct address_space *mapping = inode->i_mapping;
loff_t holebegin = round_up(newsize, PAGE_SIZE);
@@ -614,12 +613,8 @@ EXPORT_SYMBOL(truncate_pagecache);
*/
void truncate_setsize(struct inode *inode, loff_t newsize)
{
- loff_t oldsize;
-
- oldsize = inode->i_size;
i_size_write(inode, newsize);
-
- truncate_pagecache(inode, oldsize, newsize);
+ truncate_pagecache(inode, newsize);
}
EXPORT_SYMBOL(truncate_setsize);
diff --git a/mm/util.c b/mm/util.c
index 7441c41d00f6..f7bc2096071c 100644
--- a/mm/util.c
+++ b/mm/util.c
@@ -7,6 +7,9 @@
#include <linux/security.h>
#include <linux/swap.h>
#include <linux/swapops.h>
+#include <linux/mman.h>
+#include <linux/hugetlb.h>
+
#include <asm/uaccess.h>
#include "internal.h"
@@ -388,19 +391,26 @@ struct address_space *page_mapping(struct page *page)
struct address_space *mapping = page->mapping;
VM_BUG_ON(PageSlab(page));
-#ifdef CONFIG_SWAP
if (unlikely(PageSwapCache(page))) {
swp_entry_t entry;
entry.val = page_private(page);
mapping = swap_address_space(entry);
- } else
-#endif
- if ((unsigned long)mapping & PAGE_MAPPING_ANON)
+ } else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
mapping = NULL;
return mapping;
}
+/*
+ * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
+ */
+unsigned long vm_commit_limit(void)
+{
+ return ((totalram_pages - hugetlb_total_pages())
+ * sysctl_overcommit_ratio / 100) + total_swap_pages;
+}
+
+
/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
diff --git a/mm/vmalloc.c b/mm/vmalloc.c
index 13a54953a273..0fdf96803c5b 100644
--- a/mm/vmalloc.c
+++ b/mm/vmalloc.c
@@ -359,6 +359,12 @@ static struct vmap_area *alloc_vmap_area(unsigned long size,
if (unlikely(!va))
return ERR_PTR(-ENOMEM);
+ /*
+ * Only scan the relevant parts containing pointers to other objects
+ * to avoid false negatives.
+ */
+ kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
+
retry:
spin_lock(&vmap_area_lock);
/*
@@ -752,7 +758,6 @@ struct vmap_block_queue {
struct vmap_block {
spinlock_t lock;
struct vmap_area *va;
- struct vmap_block_queue *vbq;
unsigned long free, dirty;
DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
struct list_head free_list;
@@ -830,7 +835,6 @@ static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
radix_tree_preload_end();
vbq = &get_cpu_var(vmap_block_queue);
- vb->vbq = vbq;
spin_lock(&vbq->lock);
list_add_rcu(&vb->free_list, &vbq->free);
spin_unlock(&vbq->lock);
@@ -1018,15 +1022,16 @@ void vm_unmap_aliases(void)
rcu_read_lock();
list_for_each_entry_rcu(vb, &vbq->free, free_list) {
- int i;
+ int i, j;
spin_lock(&vb->lock);
i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
- while (i < VMAP_BBMAP_BITS) {
+ if (i < VMAP_BBMAP_BITS) {
unsigned long s, e;
- int j;
- j = find_next_zero_bit(vb->dirty_map,
- VMAP_BBMAP_BITS, i);
+
+ j = find_last_bit(vb->dirty_map,
+ VMAP_BBMAP_BITS);
+ j = j + 1; /* need exclusive index */
s = vb->va->va_start + (i << PAGE_SHIFT);
e = vb->va->va_start + (j << PAGE_SHIFT);
@@ -1036,10 +1041,6 @@ void vm_unmap_aliases(void)
start = s;
if (e > end)
end = e;
-
- i = j;
- i = find_next_bit(vb->dirty_map,
- VMAP_BBMAP_BITS, i);
}
spin_unlock(&vb->lock);
}
@@ -1263,7 +1264,7 @@ void unmap_kernel_range(unsigned long addr, unsigned long size)
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
{
unsigned long addr = (unsigned long)area->addr;
- unsigned long end = addr + area->size - PAGE_SIZE;
+ unsigned long end = addr + get_vm_area_size(area);
int err;
err = vmap_page_range(addr, end, prot, *pages);
@@ -1551,27 +1552,26 @@ static void *__vmalloc_node(unsigned long size, unsigned long align,
gfp_t gfp_mask, pgprot_t prot,
int node, const void *caller);
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
- pgprot_t prot, int node, const void *caller)
+ pgprot_t prot, int node)
{
const int order = 0;
struct page **pages;
unsigned int nr_pages, array_size, i;
gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
- nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
+ nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
array_size = (nr_pages * sizeof(struct page *));
area->nr_pages = nr_pages;
/* Please note that the recursion is strictly bounded. */
if (array_size > PAGE_SIZE) {
pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
- PAGE_KERNEL, node, caller);
+ PAGE_KERNEL, node, area->caller);
area->flags |= VM_VPAGES;
} else {
pages = kmalloc_node(array_size, nested_gfp, node);
}
area->pages = pages;
- area->caller = caller;
if (!area->pages) {
remove_vm_area(area->addr);
kfree(area);
@@ -1582,7 +1582,7 @@ static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
struct page *page;
gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
- if (node < 0)
+ if (node == NUMA_NO_NODE)
page = alloc_page(tmp_mask);
else
page = alloc_pages_node(node, tmp_mask, order);
@@ -1639,9 +1639,9 @@ void *__vmalloc_node_range(unsigned long size, unsigned long align,
if (!area)
goto fail;
- addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
+ addr = __vmalloc_area_node(area, gfp_mask, prot, node);
if (!addr)
- goto fail;
+ return NULL;
/*
* In this function, newly allocated vm_struct has VM_UNINITIALIZED
@@ -1651,11 +1651,11 @@ void *__vmalloc_node_range(unsigned long size, unsigned long align,
clear_vm_uninitialized_flag(area);
/*
- * A ref_count = 3 is needed because the vm_struct and vmap_area
- * structures allocated in the __get_vm_area_node() function contain
- * references to the virtual address of the vmalloc'ed block.
+ * A ref_count = 2 is needed because vm_struct allocated in
+ * __get_vm_area_node() contains a reference to the virtual address of
+ * the vmalloc'ed block.
*/
- kmemleak_alloc(addr, real_size, 3, gfp_mask);
+ kmemleak_alloc(addr, real_size, 2, gfp_mask);
return addr;
@@ -1990,7 +1990,7 @@ long vread(char *buf, char *addr, unsigned long count)
vm = va->vm;
vaddr = (char *) vm->addr;
- if (addr >= vaddr + vm->size - PAGE_SIZE)
+ if (addr >= vaddr + get_vm_area_size(vm))
continue;
while (addr < vaddr) {
if (count == 0)
@@ -2000,7 +2000,7 @@ long vread(char *buf, char *addr, unsigned long count)
addr++;
count--;
}
- n = vaddr + vm->size - PAGE_SIZE - addr;
+ n = vaddr + get_vm_area_size(vm) - addr;
if (n > count)
n = count;
if (!(vm->flags & VM_IOREMAP))
@@ -2072,7 +2072,7 @@ long vwrite(char *buf, char *addr, unsigned long count)
vm = va->vm;
vaddr = (char *) vm->addr;
- if (addr >= vaddr + vm->size - PAGE_SIZE)
+ if (addr >= vaddr + get_vm_area_size(vm))
continue;
while (addr < vaddr) {
if (count == 0)
@@ -2081,7 +2081,7 @@ long vwrite(char *buf, char *addr, unsigned long count)
addr++;
count--;
}
- n = vaddr + vm->size - PAGE_SIZE - addr;
+ n = vaddr + get_vm_area_size(vm) - addr;
if (n > count)
n = count;
if (!(vm->flags & VM_IOREMAP)) {
@@ -2568,6 +2568,11 @@ static void show_numa_info(struct seq_file *m, struct vm_struct *v)
if (!counters)
return;
+ /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
+ smp_rmb();
+ if (v->flags & VM_UNINITIALIZED)
+ return;
+
memset(counters, 0, nr_node_ids * sizeof(unsigned int));
for (nr = 0; nr < v->nr_pages; nr++)
@@ -2584,23 +2589,15 @@ static int s_show(struct seq_file *m, void *p)
struct vmap_area *va = p;
struct vm_struct *v;
- if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
- return 0;
-
- if (!(va->flags & VM_VM_AREA)) {
- seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
- (void *)va->va_start, (void *)va->va_end,
- va->va_end - va->va_start);
+ /*
+ * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
+ * behalf of vmap area is being tear down or vm_map_ram allocation.
+ */
+ if (!(va->flags & VM_VM_AREA))
return 0;
- }
v = va->vm;
- /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
- smp_rmb();
- if (v->flags & VM_UNINITIALIZED)
- return 0;
-
seq_printf(m, "0x%pK-0x%pK %7ld",
v->addr, v->addr + v->size, v->size);
diff --git a/mm/vmscan.c b/mm/vmscan.c
index 2cff0d491c6d..eea668d9cff6 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -48,6 +48,7 @@
#include <asm/div64.h>
#include <linux/swapops.h>
+#include <linux/balloon_compaction.h>
#include "internal.h"
@@ -146,6 +147,25 @@ static bool global_reclaim(struct scan_control *sc)
}
#endif
+unsigned long zone_reclaimable_pages(struct zone *zone)
+{
+ int nr;
+
+ nr = zone_page_state(zone, NR_ACTIVE_FILE) +
+ zone_page_state(zone, NR_INACTIVE_FILE);
+
+ if (get_nr_swap_pages() > 0)
+ nr += zone_page_state(zone, NR_ACTIVE_ANON) +
+ zone_page_state(zone, NR_INACTIVE_ANON);
+
+ return nr;
+}
+
+bool zone_reclaimable(struct zone *zone)
+{
+ return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
+}
+
static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
{
if (!mem_cgroup_disabled())
@@ -155,14 +175,31 @@ static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
}
/*
- * Add a shrinker callback to be called from the vm
+ * Add a shrinker callback to be called from the vm.
*/
-void register_shrinker(struct shrinker *shrinker)
+int register_shrinker(struct shrinker *shrinker)
{
- atomic_long_set(&shrinker->nr_in_batch, 0);
+ size_t size = sizeof(*shrinker->nr_deferred);
+
+ /*
+ * If we only have one possible node in the system anyway, save
+ * ourselves the trouble and disable NUMA aware behavior. This way we
+ * will save memory and some small loop time later.
+ */
+ if (nr_node_ids == 1)
+ shrinker->flags &= ~SHRINKER_NUMA_AWARE;
+
+ if (shrinker->flags & SHRINKER_NUMA_AWARE)
+ size *= nr_node_ids;
+
+ shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
+ if (!shrinker->nr_deferred)
+ return -ENOMEM;
+
down_write(&shrinker_rwsem);
list_add_tail(&shrinker->list, &shrinker_list);
up_write(&shrinker_rwsem);
+ return 0;
}
EXPORT_SYMBOL(register_shrinker);
@@ -174,18 +211,106 @@ void unregister_shrinker(struct shrinker *shrinker)
down_write(&shrinker_rwsem);
list_del(&shrinker->list);
up_write(&shrinker_rwsem);
+ kfree(shrinker->nr_deferred);
}
EXPORT_SYMBOL(unregister_shrinker);
-static inline int do_shrinker_shrink(struct shrinker *shrinker,
- struct shrink_control *sc,
- unsigned long nr_to_scan)
-{
- sc->nr_to_scan = nr_to_scan;
- return (*shrinker->shrink)(shrinker, sc);
+#define SHRINK_BATCH 128
+
+static unsigned long
+shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
+ unsigned long nr_pages_scanned, unsigned long lru_pages)
+{
+ unsigned long freed = 0;
+ unsigned long long delta;
+ long total_scan;
+ long max_pass;
+ long nr;
+ long new_nr;
+ int nid = shrinkctl->nid;
+ long batch_size = shrinker->batch ? shrinker->batch
+ : SHRINK_BATCH;
+
+ max_pass = shrinker->count_objects(shrinker, shrinkctl);
+ if (max_pass == 0)
+ return 0;
+
+ /*
+ * copy the current shrinker scan count into a local variable
+ * and zero it so that other concurrent shrinker invocations
+ * don't also do this scanning work.
+ */
+ nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
+
+ total_scan = nr;
+ delta = (4 * nr_pages_scanned) / shrinker->seeks;
+ delta *= max_pass;
+ do_div(delta, lru_pages + 1);
+ total_scan += delta;
+ if (total_scan < 0) {
+ printk(KERN_ERR
+ "shrink_slab: %pF negative objects to delete nr=%ld\n",
+ shrinker->scan_objects, total_scan);
+ total_scan = max_pass;
+ }
+
+ /*
+ * We need to avoid excessive windup on filesystem shrinkers
+ * due to large numbers of GFP_NOFS allocations causing the
+ * shrinkers to return -1 all the time. This results in a large
+ * nr being built up so when a shrink that can do some work
+ * comes along it empties the entire cache due to nr >>>
+ * max_pass. This is bad for sustaining a working set in
+ * memory.
+ *
+ * Hence only allow the shrinker to scan the entire cache when
+ * a large delta change is calculated directly.
+ */
+ if (delta < max_pass / 4)
+ total_scan = min(total_scan, max_pass / 2);
+
+ /*
+ * Avoid risking looping forever due to too large nr value:
+ * never try to free more than twice the estimate number of
+ * freeable entries.
+ */
+ if (total_scan > max_pass * 2)
+ total_scan = max_pass * 2;
+
+ trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
+ nr_pages_scanned, lru_pages,
+ max_pass, delta, total_scan);
+
+ while (total_scan >= batch_size) {
+ unsigned long ret;
+
+ shrinkctl->nr_to_scan = batch_size;
+ ret = shrinker->scan_objects(shrinker, shrinkctl);
+ if (ret == SHRINK_STOP)
+ break;
+ freed += ret;
+
+ count_vm_events(SLABS_SCANNED, batch_size);
+ total_scan -= batch_size;
+
+ cond_resched();
+ }
+
+ /*
+ * move the unused scan count back into the shrinker in a
+ * manner that handles concurrent updates. If we exhausted the
+ * scan, there is no need to do an update.
+ */
+ if (total_scan > 0)
+ new_nr = atomic_long_add_return(total_scan,
+ &shrinker->nr_deferred[nid]);
+ else
+ new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
+
+ trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
+ return freed;
}
-#define SHRINK_BATCH 128
/*
* Call the shrink functions to age shrinkable caches
*
@@ -205,115 +330,45 @@ static inline int do_shrinker_shrink(struct shrinker *shrinker,
*
* Returns the number of slab objects which we shrunk.
*/
-unsigned long shrink_slab(struct shrink_control *shrink,
+unsigned long shrink_slab(struct shrink_control *shrinkctl,
unsigned long nr_pages_scanned,
unsigned long lru_pages)
{
struct shrinker *shrinker;
- unsigned long ret = 0;
+ unsigned long freed = 0;
if (nr_pages_scanned == 0)
nr_pages_scanned = SWAP_CLUSTER_MAX;
if (!down_read_trylock(&shrinker_rwsem)) {
- /* Assume we'll be able to shrink next time */
- ret = 1;
+ /*
+ * If we would return 0, our callers would understand that we
+ * have nothing else to shrink and give up trying. By returning
+ * 1 we keep it going and assume we'll be able to shrink next
+ * time.
+ */
+ freed = 1;
goto out;
}
list_for_each_entry(shrinker, &shrinker_list, list) {
- unsigned long long delta;
- long total_scan;
- long max_pass;
- int shrink_ret = 0;
- long nr;
- long new_nr;
- long batch_size = shrinker->batch ? shrinker->batch
- : SHRINK_BATCH;
-
- max_pass = do_shrinker_shrink(shrinker, shrink, 0);
- if (max_pass <= 0)
- continue;
-
- /*
- * copy the current shrinker scan count into a local variable
- * and zero it so that other concurrent shrinker invocations
- * don't also do this scanning work.
- */
- nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
-
- total_scan = nr;
- delta = (4 * nr_pages_scanned) / shrinker->seeks;
- delta *= max_pass;
- do_div(delta, lru_pages + 1);
- total_scan += delta;
- if (total_scan < 0) {
- printk(KERN_ERR "shrink_slab: %pF negative objects to "
- "delete nr=%ld\n",
- shrinker->shrink, total_scan);
- total_scan = max_pass;
- }
-
- /*
- * We need to avoid excessive windup on filesystem shrinkers
- * due to large numbers of GFP_NOFS allocations causing the
- * shrinkers to return -1 all the time. This results in a large
- * nr being built up so when a shrink that can do some work
- * comes along it empties the entire cache due to nr >>>
- * max_pass. This is bad for sustaining a working set in
- * memory.
- *
- * Hence only allow the shrinker to scan the entire cache when
- * a large delta change is calculated directly.
- */
- if (delta < max_pass / 4)
- total_scan = min(total_scan, max_pass / 2);
-
- /*
- * Avoid risking looping forever due to too large nr value:
- * never try to free more than twice the estimate number of
- * freeable entries.
- */
- if (total_scan > max_pass * 2)
- total_scan = max_pass * 2;
-
- trace_mm_shrink_slab_start(shrinker, shrink, nr,
- nr_pages_scanned, lru_pages,
- max_pass, delta, total_scan);
-
- while (total_scan >= batch_size) {
- int nr_before;
+ for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
+ if (!node_online(shrinkctl->nid))
+ continue;
- nr_before = do_shrinker_shrink(shrinker, shrink, 0);
- shrink_ret = do_shrinker_shrink(shrinker, shrink,
- batch_size);
- if (shrink_ret == -1)
+ if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
+ (shrinkctl->nid != 0))
break;
- if (shrink_ret < nr_before)
- ret += nr_before - shrink_ret;
- count_vm_events(SLABS_SCANNED, batch_size);
- total_scan -= batch_size;
- cond_resched();
- }
+ freed += shrink_slab_node(shrinkctl, shrinker,
+ nr_pages_scanned, lru_pages);
- /*
- * move the unused scan count back into the shrinker in a
- * manner that handles concurrent updates. If we exhausted the
- * scan, there is no need to do an update.
- */
- if (total_scan > 0)
- new_nr = atomic_long_add_return(total_scan,
- &shrinker->nr_in_batch);
- else
- new_nr = atomic_long_read(&shrinker->nr_in_batch);
-
- trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
+ }
}
up_read(&shrinker_rwsem);
out:
cond_resched();
- return ret;
+ return freed;
}
static inline int is_page_cache_freeable(struct page *page)
@@ -545,7 +600,7 @@ int remove_mapping(struct address_space *mapping, struct page *page)
*/
void putback_lru_page(struct page *page)
{
- int lru;
+ bool is_unevictable;
int was_unevictable = PageUnevictable(page);
VM_BUG_ON(PageLRU(page));
@@ -560,14 +615,14 @@ redo:
* unevictable page on [in]active list.
* We know how to handle that.
*/
- lru = page_lru_base_type(page);
+ is_unevictable = false;
lru_cache_add(page);
} else {
/*
* Put unevictable pages directly on zone's unevictable
* list.
*/
- lru = LRU_UNEVICTABLE;
+ is_unevictable = true;
add_page_to_unevictable_list(page);
/*
* When racing with an mlock or AS_UNEVICTABLE clearing
@@ -587,7 +642,7 @@ redo:
* page is on unevictable list, it never be freed. To avoid that,
* check after we added it to the list, again.
*/
- if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
+ if (is_unevictable && page_evictable(page)) {
if (!isolate_lru_page(page)) {
put_page(page);
goto redo;
@@ -598,9 +653,9 @@ redo:
*/
}
- if (was_unevictable && lru != LRU_UNEVICTABLE)
+ if (was_unevictable && !is_unevictable)
count_vm_event(UNEVICTABLE_PGRESCUED);
- else if (!was_unevictable && lru == LRU_UNEVICTABLE)
+ else if (!was_unevictable && is_unevictable)
count_vm_event(UNEVICTABLE_PGCULLED);
put_page(page); /* drop ref from isolate */
@@ -1060,7 +1115,8 @@ unsigned long reclaim_clean_pages_from_list(struct zone *zone,
LIST_HEAD(clean_pages);
list_for_each_entry_safe(page, next, page_list, lru) {
- if (page_is_file_cache(page) && !PageDirty(page)) {
+ if (page_is_file_cache(page) && !PageDirty(page) &&
+ !isolated_balloon_page(page)) {
ClearPageActive(page);
list_move(&page->lru, &clean_pages);
}
@@ -1789,7 +1845,7 @@ static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
* latencies, so it's better to scan a minimum amount there as
* well.
*/
- if (current_is_kswapd() && zone->all_unreclaimable)
+ if (current_is_kswapd() && !zone_reclaimable(zone))
force_scan = true;
if (!global_reclaim(sc))
force_scan = true;
@@ -2244,8 +2300,8 @@ static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
if (global_reclaim(sc)) {
if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
continue;
- if (zone->all_unreclaimable &&
- sc->priority != DEF_PRIORITY)
+ if (sc->priority != DEF_PRIORITY &&
+ !zone_reclaimable(zone))
continue; /* Let kswapd poll it */
if (IS_ENABLED(CONFIG_COMPACTION)) {
/*
@@ -2283,11 +2339,6 @@ static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
return aborted_reclaim;
}
-static bool zone_reclaimable(struct zone *zone)
-{
- return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
-}
-
/* All zones in zonelist are unreclaimable? */
static bool all_unreclaimable(struct zonelist *zonelist,
struct scan_control *sc)
@@ -2301,7 +2352,7 @@ static bool all_unreclaimable(struct zonelist *zonelist,
continue;
if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
continue;
- if (!zone->all_unreclaimable)
+ if (zone_reclaimable(zone))
return false;
}
@@ -2354,12 +2405,16 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
*/
if (global_reclaim(sc)) {
unsigned long lru_pages = 0;
+
+ nodes_clear(shrink->nodes_to_scan);
for_each_zone_zonelist(zone, z, zonelist,
gfp_zone(sc->gfp_mask)) {
if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
continue;
lru_pages += zone_reclaimable_pages(zone);
+ node_set(zone_to_nid(zone),
+ shrink->nodes_to_scan);
}
shrink_slab(shrink, sc->nr_scanned, lru_pages);
@@ -2712,7 +2767,7 @@ static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
* DEF_PRIORITY. Effectively, it considers them balanced so
* they must be considered balanced here as well!
*/
- if (zone->all_unreclaimable) {
+ if (!zone_reclaimable(zone)) {
balanced_pages += zone->managed_pages;
continue;
}
@@ -2773,7 +2828,6 @@ static bool kswapd_shrink_zone(struct zone *zone,
unsigned long lru_pages,
unsigned long *nr_attempted)
{
- unsigned long nr_slab;
int testorder = sc->order;
unsigned long balance_gap;
struct reclaim_state *reclaim_state = current->reclaim_state;
@@ -2816,17 +2870,16 @@ static bool kswapd_shrink_zone(struct zone *zone,
return true;
shrink_zone(zone, sc);
+ nodes_clear(shrink.nodes_to_scan);
+ node_set(zone_to_nid(zone), shrink.nodes_to_scan);
reclaim_state->reclaimed_slab = 0;
- nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
+ shrink_slab(&shrink, sc->nr_scanned, lru_pages);
sc->nr_reclaimed += reclaim_state->reclaimed_slab;
/* Account for the number of pages attempted to reclaim */
*nr_attempted += sc->nr_to_reclaim;
- if (nr_slab == 0 && !zone_reclaimable(zone))
- zone->all_unreclaimable = 1;
-
zone_clear_flag(zone, ZONE_WRITEBACK);
/*
@@ -2835,7 +2888,7 @@ static bool kswapd_shrink_zone(struct zone *zone,
* BDIs but as pressure is relieved, speculatively avoid congestion
* waits.
*/
- if (!zone->all_unreclaimable &&
+ if (zone_reclaimable(zone) &&
zone_balanced(zone, testorder, 0, classzone_idx)) {
zone_clear_flag(zone, ZONE_CONGESTED);
zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
@@ -2901,8 +2954,8 @@ static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
if (!populated_zone(zone))
continue;
- if (zone->all_unreclaimable &&
- sc.priority != DEF_PRIORITY)
+ if (sc.priority != DEF_PRIORITY &&
+ !zone_reclaimable(zone))
continue;
/*
@@ -2980,8 +3033,8 @@ static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
if (!populated_zone(zone))
continue;
- if (zone->all_unreclaimable &&
- sc.priority != DEF_PRIORITY)
+ if (sc.priority != DEF_PRIORITY &&
+ !zone_reclaimable(zone))
continue;
sc.nr_scanned = 0;
@@ -3237,7 +3290,7 @@ void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
}
if (!waitqueue_active(&pgdat->kswapd_wait))
return;
- if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
+ if (zone_balanced(zone, order, 0, 0))
return;
trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
@@ -3265,20 +3318,6 @@ unsigned long global_reclaimable_pages(void)
return nr;
}
-unsigned long zone_reclaimable_pages(struct zone *zone)
-{
- int nr;
-
- nr = zone_page_state(zone, NR_ACTIVE_FILE) +
- zone_page_state(zone, NR_INACTIVE_FILE);
-
- if (get_nr_swap_pages() > 0)
- nr += zone_page_state(zone, NR_ACTIVE_ANON) +
- zone_page_state(zone, NR_INACTIVE_ANON);
-
- return nr;
-}
-
#ifdef CONFIG_HIBERNATION
/*
* Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
@@ -3524,10 +3563,9 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
* number of slab pages and shake the slab until it is reduced
* by the same nr_pages that we used for reclaiming unmapped
* pages.
- *
- * Note that shrink_slab will free memory on all zones and may
- * take a long time.
*/
+ nodes_clear(shrink.nodes_to_scan);
+ node_set(zone_to_nid(zone), shrink.nodes_to_scan);
for (;;) {
unsigned long lru_pages = zone_reclaimable_pages(zone);
@@ -3576,7 +3614,7 @@ int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
return ZONE_RECLAIM_FULL;
- if (zone->all_unreclaimable)
+ if (!zone_reclaimable(zone))
return ZONE_RECLAIM_FULL;
/*
diff --git a/mm/vmstat.c b/mm/vmstat.c
index 20c2ef4458fa..72496140ac08 100644
--- a/mm/vmstat.c
+++ b/mm/vmstat.c
@@ -19,6 +19,9 @@
#include <linux/math64.h>
#include <linux/writeback.h>
#include <linux/compaction.h>
+#include <linux/mm_inline.h>
+
+#include "internal.h"
#ifdef CONFIG_VM_EVENT_COUNTERS
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
@@ -414,12 +417,17 @@ void dec_zone_page_state(struct page *page, enum zone_stat_item item)
EXPORT_SYMBOL(dec_zone_page_state);
#endif
+static inline void fold_diff(int *diff)
+{
+ int i;
+
+ for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
+ if (diff[i])
+ atomic_long_add(diff[i], &vm_stat[i]);
+}
+
/*
- * Update the zone counters for one cpu.
- *
- * The cpu specified must be either the current cpu or a processor that
- * is not online. If it is the current cpu then the execution thread must
- * be pinned to the current cpu.
+ * Update the zone counters for the current cpu.
*
* Note that refresh_cpu_vm_stats strives to only access
* node local memory. The per cpu pagesets on remote zones are placed
@@ -432,33 +440,29 @@ EXPORT_SYMBOL(dec_zone_page_state);
* with the global counters. These could cause remote node cache line
* bouncing and will have to be only done when necessary.
*/
-void refresh_cpu_vm_stats(int cpu)
+static void refresh_cpu_vm_stats(void)
{
struct zone *zone;
int i;
int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
for_each_populated_zone(zone) {
- struct per_cpu_pageset *p;
+ struct per_cpu_pageset __percpu *p = zone->pageset;
- p = per_cpu_ptr(zone->pageset, cpu);
+ for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
+ int v;
- for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
- if (p->vm_stat_diff[i]) {
- unsigned long flags;
- int v;
+ v = this_cpu_xchg(p->vm_stat_diff[i], 0);
+ if (v) {
- local_irq_save(flags);
- v = p->vm_stat_diff[i];
- p->vm_stat_diff[i] = 0;
- local_irq_restore(flags);
atomic_long_add(v, &zone->vm_stat[i]);
global_diff[i] += v;
#ifdef CONFIG_NUMA
/* 3 seconds idle till flush */
- p->expire = 3;
+ __this_cpu_write(p->expire, 3);
#endif
}
+ }
cond_resched();
#ifdef CONFIG_NUMA
/*
@@ -468,29 +472,57 @@ void refresh_cpu_vm_stats(int cpu)
* Check if there are pages remaining in this pageset
* if not then there is nothing to expire.
*/
- if (!p->expire || !p->pcp.count)
+ if (!__this_cpu_read(p->expire) ||
+ !__this_cpu_read(p->pcp.count))
continue;
/*
* We never drain zones local to this processor.
*/
if (zone_to_nid(zone) == numa_node_id()) {
- p->expire = 0;
+ __this_cpu_write(p->expire, 0);
continue;
}
- p->expire--;
- if (p->expire)
+
+ if (__this_cpu_dec_return(p->expire))
continue;
- if (p->pcp.count)
- drain_zone_pages(zone, &p->pcp);
+ if (__this_cpu_read(p->pcp.count))
+ drain_zone_pages(zone, __this_cpu_ptr(&p->pcp));
#endif
}
+ fold_diff(global_diff);
+}
- for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
- if (global_diff[i])
- atomic_long_add(global_diff[i], &vm_stat[i]);
+/*
+ * Fold the data for an offline cpu into the global array.
+ * There cannot be any access by the offline cpu and therefore
+ * synchronization is simplified.
+ */
+void cpu_vm_stats_fold(int cpu)
+{
+ struct zone *zone;
+ int i;
+ int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
+
+ for_each_populated_zone(zone) {
+ struct per_cpu_pageset *p;
+
+ p = per_cpu_ptr(zone->pageset, cpu);
+
+ for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
+ if (p->vm_stat_diff[i]) {
+ int v;
+
+ v = p->vm_stat_diff[i];
+ p->vm_stat_diff[i] = 0;
+ atomic_long_add(v, &zone->vm_stat[i]);
+ global_diff[i] += v;
+ }
+ }
+
+ fold_diff(global_diff);
}
/*
@@ -703,6 +735,7 @@ static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
const char * const vmstat_text[] = {
/* Zoned VM counters */
"nr_free_pages",
+ "nr_alloc_batch",
"nr_inactive_anon",
"nr_active_anon",
"nr_inactive_file",
@@ -779,6 +812,7 @@ const char * const vmstat_text[] = {
#ifdef CONFIG_NUMA_BALANCING
"numa_pte_updates",
+ "numa_huge_pte_updates",
"numa_hint_faults",
"numa_hint_faults_local",
"numa_pages_migrated",
@@ -817,6 +851,12 @@ const char * const vmstat_text[] = {
"thp_zero_page_alloc",
"thp_zero_page_alloc_failed",
#endif
+#ifdef CONFIG_SMP
+ "nr_tlb_remote_flush",
+ "nr_tlb_remote_flush_received",
+#endif
+ "nr_tlb_local_flush_all",
+ "nr_tlb_local_flush_one",
#endif /* CONFIG_VM_EVENTS_COUNTERS */
};
@@ -1052,7 +1092,7 @@ static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
"\n all_unreclaimable: %u"
"\n start_pfn: %lu"
"\n inactive_ratio: %u",
- zone->all_unreclaimable,
+ !zone_reclaimable(zone),
zone->zone_start_pfn,
zone->inactive_ratio);
seq_putc(m, '\n');
@@ -1177,7 +1217,7 @@ int sysctl_stat_interval __read_mostly = HZ;
static void vmstat_update(struct work_struct *w)
{
- refresh_cpu_vm_stats(smp_processor_id());
+ refresh_cpu_vm_stats();
schedule_delayed_work(&__get_cpu_var(vmstat_work),
round_jiffies_relative(sysctl_stat_interval));
}
@@ -1190,6 +1230,20 @@ static void start_cpu_timer(int cpu)
schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
}
+static void vmstat_cpu_dead(int node)
+{
+ int cpu;
+
+ get_online_cpus();
+ for_each_online_cpu(cpu)
+ if (cpu_to_node(cpu) == node)
+ goto end;
+
+ node_clear_state(node, N_CPU);
+end:
+ put_online_cpus();
+}
+
/*
* Use the cpu notifier to insure that the thresholds are recalculated
* when necessary.
@@ -1219,6 +1273,7 @@ static int vmstat_cpuup_callback(struct notifier_block *nfb,
case CPU_DEAD:
case CPU_DEAD_FROZEN:
refresh_zone_stat_thresholds();
+ vmstat_cpu_dead(cpu_to_node(cpu));
break;
default:
break;
@@ -1237,8 +1292,12 @@ static int __init setup_vmstat(void)
register_cpu_notifier(&vmstat_notifier);
- for_each_online_cpu(cpu)
+ get_online_cpus();
+ for_each_online_cpu(cpu) {
start_cpu_timer(cpu);
+ node_set_state(cpu_to_node(cpu), N_CPU);
+ }
+ put_online_cpus();
#endif
#ifdef CONFIG_PROC_FS
proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
diff --git a/mm/zbud.c b/mm/zbud.c
index ad1e781284fd..9451361e6aa7 100644
--- a/mm/zbud.c
+++ b/mm/zbud.c
@@ -16,7 +16,7 @@
*
* zbud works by storing compressed pages, or "zpages", together in pairs in a
* single memory page called a "zbud page". The first buddy is "left
- * justifed" at the beginning of the zbud page, and the last buddy is "right
+ * justified" at the beginning of the zbud page, and the last buddy is "right
* justified" at the end of the zbud page. The benefit is that if either
* buddy is freed, the freed buddy space, coalesced with whatever slack space
* that existed between the buddies, results in the largest possible free region
@@ -243,7 +243,7 @@ void zbud_destroy_pool(struct zbud_pool *pool)
* gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
* as zbud pool pages.
*
- * Return: 0 if success and handle is set, otherwise -EINVAL is the size or
+ * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
* gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
* a new page.
*/
diff --git a/mm/zswap.c b/mm/zswap.c
index deda2b671e12..5a63f78a5601 100644
--- a/mm/zswap.c
+++ b/mm/zswap.c
@@ -217,6 +217,7 @@ static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
if (!entry)
return NULL;
entry->refcount = 1;
+ RB_CLEAR_NODE(&entry->rbnode);
return entry;
}
@@ -225,19 +226,6 @@ static void zswap_entry_cache_free(struct zswap_entry *entry)
kmem_cache_free(zswap_entry_cache, entry);
}
-/* caller must hold the tree lock */
-static void zswap_entry_get(struct zswap_entry *entry)
-{
- entry->refcount++;
-}
-
-/* caller must hold the tree lock */
-static int zswap_entry_put(struct zswap_entry *entry)
-{
- entry->refcount--;
- return entry->refcount;
-}
-
/*********************************
* rbtree functions
**********************************/
@@ -285,6 +273,61 @@ static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
return 0;
}
+static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
+{
+ if (!RB_EMPTY_NODE(&entry->rbnode)) {
+ rb_erase(&entry->rbnode, root);
+ RB_CLEAR_NODE(&entry->rbnode);
+ }
+}
+
+/*
+ * Carries out the common pattern of freeing and entry's zsmalloc allocation,
+ * freeing the entry itself, and decrementing the number of stored pages.
+ */
+static void zswap_free_entry(struct zswap_tree *tree,
+ struct zswap_entry *entry)
+{
+ zbud_free(tree->pool, entry->handle);
+ zswap_entry_cache_free(entry);
+ atomic_dec(&zswap_stored_pages);
+ zswap_pool_pages = zbud_get_pool_size(tree->pool);
+}
+
+/* caller must hold the tree lock */
+static void zswap_entry_get(struct zswap_entry *entry)
+{
+ entry->refcount++;
+}
+
+/* caller must hold the tree lock
+* remove from the tree and free it, if nobody reference the entry
+*/
+static void zswap_entry_put(struct zswap_tree *tree,
+ struct zswap_entry *entry)
+{
+ int refcount = --entry->refcount;
+
+ BUG_ON(refcount < 0);
+ if (refcount == 0) {
+ zswap_rb_erase(&tree->rbroot, entry);
+ zswap_free_entry(tree, entry);
+ }
+}
+
+/* caller must hold the tree lock */
+static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
+ pgoff_t offset)
+{
+ struct zswap_entry *entry = NULL;
+
+ entry = zswap_rb_search(root, offset);
+ if (entry)
+ zswap_entry_get(entry);
+
+ return entry;
+}
+
/*********************************
* per-cpu code
**********************************/
@@ -368,18 +411,6 @@ static bool zswap_is_full(void)
zswap_pool_pages);
}
-/*
- * Carries out the common pattern of freeing and entry's zsmalloc allocation,
- * freeing the entry itself, and decrementing the number of stored pages.
- */
-static void zswap_free_entry(struct zswap_tree *tree, struct zswap_entry *entry)
-{
- zbud_free(tree->pool, entry->handle);
- zswap_entry_cache_free(entry);
- atomic_dec(&zswap_stored_pages);
- zswap_pool_pages = zbud_get_pool_size(tree->pool);
-}
-
/*********************************
* writeback code
**********************************/
@@ -387,7 +418,7 @@ static void zswap_free_entry(struct zswap_tree *tree, struct zswap_entry *entry)
enum zswap_get_swap_ret {
ZSWAP_SWAPCACHE_NEW,
ZSWAP_SWAPCACHE_EXIST,
- ZSWAP_SWAPCACHE_NOMEM
+ ZSWAP_SWAPCACHE_FAIL,
};
/*
@@ -401,15 +432,16 @@ enum zswap_get_swap_ret {
* added to the swap cache, and returned in retpage.
*
* If success, the swap cache page is returned in retpage
- * Returns 0 if page was already in the swap cache, page is not locked
- * Returns 1 if the new page needs to be populated, page is locked
- * Returns <0 on error
+ * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
+ * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
+ * the new page is added to swapcache and locked
+ * Returns ZSWAP_SWAPCACHE_FAIL on error
*/
static int zswap_get_swap_cache_page(swp_entry_t entry,
struct page **retpage)
{
struct page *found_page, *new_page = NULL;
- struct address_space *swapper_space = &swapper_spaces[swp_type(entry)];
+ struct address_space *swapper_space = swap_address_space(entry);
int err;
*retpage = NULL;
@@ -475,7 +507,7 @@ static int zswap_get_swap_cache_page(swp_entry_t entry,
if (new_page)
page_cache_release(new_page);
if (!found_page)
- return ZSWAP_SWAPCACHE_NOMEM;
+ return ZSWAP_SWAPCACHE_FAIL;
*retpage = found_page;
return ZSWAP_SWAPCACHE_EXIST;
}
@@ -502,7 +534,7 @@ static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle)
struct page *page;
u8 *src, *dst;
unsigned int dlen;
- int ret, refcount;
+ int ret;
struct writeback_control wbc = {
.sync_mode = WB_SYNC_NONE,
};
@@ -517,23 +549,22 @@ static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle)
/* find and ref zswap entry */
spin_lock(&tree->lock);
- entry = zswap_rb_search(&tree->rbroot, offset);
+ entry = zswap_entry_find_get(&tree->rbroot, offset);
if (!entry) {
/* entry was invalidated */
spin_unlock(&tree->lock);
return 0;
}
- zswap_entry_get(entry);
spin_unlock(&tree->lock);
BUG_ON(offset != entry->offset);
/* try to allocate swap cache page */
switch (zswap_get_swap_cache_page(swpentry, &page)) {
- case ZSWAP_SWAPCACHE_NOMEM: /* no memory */
+ case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
ret = -ENOMEM;
goto fail;
- case ZSWAP_SWAPCACHE_EXIST: /* page is unlocked */
+ case ZSWAP_SWAPCACHE_EXIST:
/* page is already in the swap cache, ignore for now */
page_cache_release(page);
ret = -EEXIST;
@@ -556,43 +587,44 @@ static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle)
SetPageUptodate(page);
}
+ /* move it to the tail of the inactive list after end_writeback */
+ SetPageReclaim(page);
+
/* start writeback */
__swap_writepage(page, &wbc, end_swap_bio_write);
page_cache_release(page);
zswap_written_back_pages++;
spin_lock(&tree->lock);
-
/* drop local reference */
- zswap_entry_put(entry);
- /* drop the initial reference from entry creation */
- refcount = zswap_entry_put(entry);
+ zswap_entry_put(tree, entry);
/*
- * There are three possible values for refcount here:
- * (1) refcount is 1, load is in progress, unlink from rbtree,
- * load will free
- * (2) refcount is 0, (normal case) entry is valid,
- * remove from rbtree and free entry
- * (3) refcount is -1, invalidate happened during writeback,
- * free entry
- */
- if (refcount >= 0) {
- /* no invalidate yet, remove from rbtree */
- rb_erase(&entry->rbnode, &tree->rbroot);
- }
+ * There are two possible situations for entry here:
+ * (1) refcount is 1(normal case), entry is valid and on the tree
+ * (2) refcount is 0, entry is freed and not on the tree
+ * because invalidate happened during writeback
+ * search the tree and free the entry if find entry
+ */
+ if (entry == zswap_rb_search(&tree->rbroot, offset))
+ zswap_entry_put(tree, entry);
spin_unlock(&tree->lock);
- if (refcount <= 0) {
- /* free the entry */
- zswap_free_entry(tree, entry);
- return 0;
- }
- return -EAGAIN;
+ goto end;
+
+ /*
+ * if we get here due to ZSWAP_SWAPCACHE_EXIST
+ * a load may happening concurrently
+ * it is safe and okay to not free the entry
+ * if we free the entry in the following put
+ * it it either okay to return !0
+ */
fail:
spin_lock(&tree->lock);
- zswap_entry_put(entry);
+ zswap_entry_put(tree, entry);
spin_unlock(&tree->lock);
+
+end:
return ret;
}
@@ -676,11 +708,8 @@ static int zswap_frontswap_store(unsigned type, pgoff_t offset,
if (ret == -EEXIST) {
zswap_duplicate_entry++;
/* remove from rbtree */
- rb_erase(&dupentry->rbnode, &tree->rbroot);
- if (!zswap_entry_put(dupentry)) {
- /* free */
- zswap_free_entry(tree, dupentry);
- }
+ zswap_rb_erase(&tree->rbroot, dupentry);
+ zswap_entry_put(tree, dupentry);
}
} while (ret == -EEXIST);
spin_unlock(&tree->lock);
@@ -709,17 +738,16 @@ static int zswap_frontswap_load(unsigned type, pgoff_t offset,
struct zswap_entry *entry;
u8 *src, *dst;
unsigned int dlen;
- int refcount, ret;
+ int ret;
/* find */
spin_lock(&tree->lock);
- entry = zswap_rb_search(&tree->rbroot, offset);
+ entry = zswap_entry_find_get(&tree->rbroot, offset);
if (!entry) {
/* entry was written back */
spin_unlock(&tree->lock);
return -1;
}
- zswap_entry_get(entry);
spin_unlock(&tree->lock);
/* decompress */
@@ -734,22 +762,9 @@ static int zswap_frontswap_load(unsigned type, pgoff_t offset,
BUG_ON(ret);
spin_lock(&tree->lock);
- refcount = zswap_entry_put(entry);
- if (likely(refcount)) {
- spin_unlock(&tree->lock);
- return 0;
- }
+ zswap_entry_put(tree, entry);
spin_unlock(&tree->lock);
- /*
- * We don't have to unlink from the rbtree because
- * zswap_writeback_entry() or zswap_frontswap_invalidate page()
- * has already done this for us if we are the last reference.
- */
- /* free */
-
- zswap_free_entry(tree, entry);
-
return 0;
}
@@ -758,7 +773,6 @@ static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
{
struct zswap_tree *tree = zswap_trees[type];
struct zswap_entry *entry;
- int refcount;
/* find */
spin_lock(&tree->lock);
@@ -770,52 +784,33 @@ static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
}
/* remove from rbtree */
- rb_erase(&entry->rbnode, &tree->rbroot);
+ zswap_rb_erase(&tree->rbroot, entry);
/* drop the initial reference from entry creation */
- refcount = zswap_entry_put(entry);
+ zswap_entry_put(tree, entry);
spin_unlock(&tree->lock);
-
- if (refcount) {
- /* writeback in progress, writeback will free */
- return;
- }
-
- /* free */
- zswap_free_entry(tree, entry);
}
/* frees all zswap entries for the given swap type */
static void zswap_frontswap_invalidate_area(unsigned type)
{
struct zswap_tree *tree = zswap_trees[type];
- struct rb_node *node;
- struct zswap_entry *entry;
+ struct zswap_entry *entry, *n;
if (!tree)
return;
/* walk the tree and free everything */
spin_lock(&tree->lock);
- /*
- * TODO: Even though this code should not be executed because
- * the try_to_unuse() in swapoff should have emptied the tree,
- * it is very wasteful to rebalance the tree after every
- * removal when we are freeing the whole tree.
- *
- * If post-order traversal code is ever added to the rbtree
- * implementation, it should be used here.
- */
- while ((node = rb_first(&tree->rbroot))) {
- entry = rb_entry(node, struct zswap_entry, rbnode);
- rb_erase(&entry->rbnode, &tree->rbroot);
- zbud_free(tree->pool, entry->handle);
- zswap_entry_cache_free(entry);
- atomic_dec(&zswap_stored_pages);
- }
+ rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
+ zswap_free_entry(tree, entry);
tree->rbroot = RB_ROOT;
spin_unlock(&tree->lock);
+
+ zbud_destroy_pool(tree->pool);
+ kfree(tree);
+ zswap_trees[type] = NULL;
}
static struct zbud_ops zswap_zbud_ops = {